forked from OSchip/llvm-project
645 lines
24 KiB
C++
645 lines
24 KiB
C++
//===- MVETailPredication.cpp - MVE Tail Predication ------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead
|
|
/// branches to help accelerate DSP applications. These two extensions,
|
|
/// combined with a new form of predication called tail-predication, can be used
|
|
/// to provide implicit vector predication within a low-overhead loop.
|
|
/// This is implicit because the predicate of active/inactive lanes is
|
|
/// calculated by hardware, and thus does not need to be explicitly passed
|
|
/// to vector instructions. The instructions responsible for this are the
|
|
/// DLSTP and WLSTP instructions, which setup a tail-predicated loop and the
|
|
/// the total number of data elements processed by the loop. The loop-end
|
|
/// LETP instruction is responsible for decrementing and setting the remaining
|
|
/// elements to be processed and generating the mask of active lanes.
|
|
///
|
|
/// The HardwareLoops pass inserts intrinsics identifying loops that the
|
|
/// backend will attempt to convert into a low-overhead loop. The vectorizer is
|
|
/// responsible for generating a vectorized loop in which the lanes are
|
|
/// predicated upon the iteration counter. This pass looks at these predicated
|
|
/// vector loops, that are targets for low-overhead loops, and prepares it for
|
|
/// code generation. Once the vectorizer has produced a masked loop, there's a
|
|
/// couple of final forms:
|
|
/// - A tail-predicated loop, with implicit predication.
|
|
/// - A loop containing multiple VCPT instructions, predicating multiple VPT
|
|
/// blocks of instructions operating on different vector types.
|
|
///
|
|
/// This pass:
|
|
/// 1) Checks if the predicates of the masked load/store instructions are
|
|
/// generated by intrinsic @llvm.get.active.lanes(). This intrinsic consumes
|
|
/// the the scalar loop tripcount as its second argument, which we extract
|
|
/// to set up the number of elements processed by the loop.
|
|
/// 2) Intrinsic @llvm.get.active.lanes() is then replaced by the MVE target
|
|
/// specific VCTP intrinsic to represent the effect of tail predication.
|
|
/// This will be picked up by the ARM Low-overhead loop pass, which performs
|
|
/// the final transformation to a DLSTP or WLSTP tail-predicated loop.
|
|
|
|
#include "ARM.h"
|
|
#include "ARMSubtarget.h"
|
|
#include "ARMTargetTransformInfo.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicsARM.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "mve-tail-predication"
|
|
#define DESC "Transform predicated vector loops to use MVE tail predication"
|
|
|
|
cl::opt<TailPredication::Mode> EnableTailPredication(
|
|
"tail-predication", cl::desc("MVE tail-predication options"),
|
|
cl::init(TailPredication::Disabled),
|
|
cl::values(clEnumValN(TailPredication::Disabled, "disabled",
|
|
"Don't tail-predicate loops"),
|
|
clEnumValN(TailPredication::EnabledNoReductions,
|
|
"enabled-no-reductions",
|
|
"Enable tail-predication, but not for reduction loops"),
|
|
clEnumValN(TailPredication::Enabled,
|
|
"enabled",
|
|
"Enable tail-predication, including reduction loops"),
|
|
clEnumValN(TailPredication::ForceEnabledNoReductions,
|
|
"force-enabled-no-reductions",
|
|
"Enable tail-predication, but not for reduction loops, "
|
|
"and force this which might be unsafe"),
|
|
clEnumValN(TailPredication::ForceEnabled,
|
|
"force-enabled",
|
|
"Enable tail-predication, including reduction loops, "
|
|
"and force this which might be unsafe")));
|
|
|
|
|
|
namespace {
|
|
|
|
class MVETailPredication : public LoopPass {
|
|
SmallVector<IntrinsicInst*, 4> MaskedInsts;
|
|
Loop *L = nullptr;
|
|
ScalarEvolution *SE = nullptr;
|
|
TargetTransformInfo *TTI = nullptr;
|
|
const ARMSubtarget *ST = nullptr;
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
MVETailPredication() : LoopPass(ID) { }
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<ScalarEvolutionWrapperPass>();
|
|
AU.addRequired<LoopInfoWrapperPass>();
|
|
AU.addRequired<TargetPassConfig>();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
AU.addPreserved<LoopInfoWrapperPass>();
|
|
AU.setPreservesCFG();
|
|
}
|
|
|
|
bool runOnLoop(Loop *L, LPPassManager&) override;
|
|
|
|
private:
|
|
/// Perform the relevant checks on the loop and convert if possible.
|
|
bool TryConvert(Value *TripCount);
|
|
|
|
/// Return whether this is a vectorized loop, that contains masked
|
|
/// load/stores.
|
|
bool IsPredicatedVectorLoop();
|
|
|
|
/// Perform several checks on the arguments of @llvm.get.active.lane.mask
|
|
/// intrinsic. E.g., check that the loop induction variable and the element
|
|
/// count are of the form we expect, and also perform overflow checks for
|
|
/// the new expressions that are created.
|
|
bool IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, Value *TripCount,
|
|
FixedVectorType *VecTy);
|
|
|
|
/// Insert the intrinsic to represent the effect of tail predication.
|
|
void InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, Value *TripCount,
|
|
FixedVectorType *VecTy);
|
|
|
|
/// Rematerialize the iteration count in exit blocks, which enables
|
|
/// ARMLowOverheadLoops to better optimise away loop update statements inside
|
|
/// hardware-loops.
|
|
void RematerializeIterCount();
|
|
};
|
|
|
|
} // end namespace
|
|
|
|
static bool IsDecrement(Instruction &I) {
|
|
auto *Call = dyn_cast<IntrinsicInst>(&I);
|
|
if (!Call)
|
|
return false;
|
|
|
|
Intrinsic::ID ID = Call->getIntrinsicID();
|
|
return ID == Intrinsic::loop_decrement_reg;
|
|
}
|
|
|
|
static bool IsMasked(Instruction *I) {
|
|
auto *Call = dyn_cast<IntrinsicInst>(I);
|
|
if (!Call)
|
|
return false;
|
|
|
|
Intrinsic::ID ID = Call->getIntrinsicID();
|
|
return ID == Intrinsic::masked_store || ID == Intrinsic::masked_load ||
|
|
isGatherScatter(Call);
|
|
}
|
|
|
|
bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) {
|
|
if (skipLoop(L) || !EnableTailPredication)
|
|
return false;
|
|
|
|
MaskedInsts.clear();
|
|
Function &F = *L->getHeader()->getParent();
|
|
auto &TPC = getAnalysis<TargetPassConfig>();
|
|
auto &TM = TPC.getTM<TargetMachine>();
|
|
ST = &TM.getSubtarget<ARMSubtarget>(F);
|
|
TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
|
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
|
this->L = L;
|
|
|
|
// The MVE and LOB extensions are combined to enable tail-predication, but
|
|
// there's nothing preventing us from generating VCTP instructions for v8.1m.
|
|
if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) {
|
|
LLVM_DEBUG(dbgs() << "ARM TP: Not a v8.1m.main+mve target.\n");
|
|
return false;
|
|
}
|
|
|
|
BasicBlock *Preheader = L->getLoopPreheader();
|
|
if (!Preheader)
|
|
return false;
|
|
|
|
auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* {
|
|
for (auto &I : *BB) {
|
|
auto *Call = dyn_cast<IntrinsicInst>(&I);
|
|
if (!Call)
|
|
continue;
|
|
|
|
Intrinsic::ID ID = Call->getIntrinsicID();
|
|
if (ID == Intrinsic::set_loop_iterations ||
|
|
ID == Intrinsic::test_set_loop_iterations)
|
|
return cast<IntrinsicInst>(&I);
|
|
}
|
|
return nullptr;
|
|
};
|
|
|
|
// Look for the hardware loop intrinsic that sets the iteration count.
|
|
IntrinsicInst *Setup = FindLoopIterations(Preheader);
|
|
|
|
// The test.set iteration could live in the pre-preheader.
|
|
if (!Setup) {
|
|
if (!Preheader->getSinglePredecessor())
|
|
return false;
|
|
Setup = FindLoopIterations(Preheader->getSinglePredecessor());
|
|
if (!Setup)
|
|
return false;
|
|
}
|
|
|
|
// Search for the hardware loop intrinic that decrements the loop counter.
|
|
IntrinsicInst *Decrement = nullptr;
|
|
for (auto *BB : L->getBlocks()) {
|
|
for (auto &I : *BB) {
|
|
if (IsDecrement(I)) {
|
|
Decrement = cast<IntrinsicInst>(&I);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!Decrement)
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "ARM TP: Running on Loop: " << *L << *Setup << "\n"
|
|
<< *Decrement << "\n");
|
|
|
|
if (!TryConvert(Setup->getArgOperand(0))) {
|
|
LLVM_DEBUG(dbgs() << "ARM TP: Can't tail-predicate this loop.\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static FixedVectorType *getVectorType(IntrinsicInst *I) {
|
|
unsigned ID = I->getIntrinsicID();
|
|
FixedVectorType *VecTy;
|
|
if (ID == Intrinsic::masked_load || isGather(I)) {
|
|
if (ID == Intrinsic::arm_mve_vldr_gather_base_wb ||
|
|
ID == Intrinsic::arm_mve_vldr_gather_base_wb_predicated)
|
|
// then the type is a StructType
|
|
VecTy = dyn_cast<FixedVectorType>(I->getType()->getContainedType(0));
|
|
else
|
|
VecTy = dyn_cast<FixedVectorType>(I->getType());
|
|
} else if (ID == Intrinsic::masked_store) {
|
|
VecTy = dyn_cast<FixedVectorType>(I->getOperand(0)->getType());
|
|
} else {
|
|
VecTy = dyn_cast<FixedVectorType>(I->getOperand(2)->getType());
|
|
}
|
|
assert(VecTy && "No scalable vectors expected here");
|
|
return VecTy;
|
|
}
|
|
|
|
bool MVETailPredication::IsPredicatedVectorLoop() {
|
|
// Check that the loop contains at least one masked load/store intrinsic.
|
|
// We only support 'normal' vector instructions - other than masked
|
|
// load/stores.
|
|
bool ActiveLaneMask = false;
|
|
for (auto *BB : L->getBlocks()) {
|
|
for (auto &I : *BB) {
|
|
auto *Int = dyn_cast<IntrinsicInst>(&I);
|
|
if (!Int)
|
|
continue;
|
|
|
|
switch (Int->getIntrinsicID()) {
|
|
case Intrinsic::get_active_lane_mask:
|
|
ActiveLaneMask = true;
|
|
continue;
|
|
case Intrinsic::sadd_sat:
|
|
case Intrinsic::uadd_sat:
|
|
case Intrinsic::ssub_sat:
|
|
case Intrinsic::usub_sat:
|
|
case Intrinsic::experimental_vector_reduce_add:
|
|
continue;
|
|
case Intrinsic::fma:
|
|
case Intrinsic::trunc:
|
|
case Intrinsic::rint:
|
|
case Intrinsic::round:
|
|
case Intrinsic::floor:
|
|
case Intrinsic::ceil:
|
|
case Intrinsic::fabs:
|
|
if (ST->hasMVEFloatOps())
|
|
continue;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (IsMasked(&I)) {
|
|
auto *VecTy = getVectorType(Int);
|
|
unsigned Lanes = VecTy->getNumElements();
|
|
unsigned ElementWidth = VecTy->getScalarSizeInBits();
|
|
// MVE vectors are 128-bit, but don't support 128 x i1.
|
|
// TODO: Can we support vectors larger than 128-bits?
|
|
unsigned MaxWidth = TTI->getRegisterBitWidth(true);
|
|
if (Lanes * ElementWidth > MaxWidth || Lanes == MaxWidth)
|
|
return false;
|
|
MaskedInsts.push_back(cast<IntrinsicInst>(&I));
|
|
continue;
|
|
}
|
|
|
|
for (const Use &U : Int->args()) {
|
|
if (isa<VectorType>(U->getType()))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!ActiveLaneMask) {
|
|
LLVM_DEBUG(dbgs() << "ARM TP: No get.active.lane.mask intrinsic found.\n");
|
|
return false;
|
|
}
|
|
return !MaskedInsts.empty();
|
|
}
|
|
|
|
// Look through the exit block to see whether there's a duplicate predicate
|
|
// instruction. This can happen when we need to perform a select on values
|
|
// from the last and previous iteration. Instead of doing a straight
|
|
// replacement of that predicate with the vctp, clone the vctp and place it
|
|
// in the block. This means that the VPR doesn't have to be live into the
|
|
// exit block which should make it easier to convert this loop into a proper
|
|
// tail predicated loop.
|
|
static void Cleanup(SetVector<Instruction*> &MaybeDead, Loop *L) {
|
|
BasicBlock *Exit = L->getUniqueExitBlock();
|
|
if (!Exit) {
|
|
LLVM_DEBUG(dbgs() << "ARM TP: can't find loop exit block\n");
|
|
return;
|
|
}
|
|
|
|
// Drop references and add operands to check for dead.
|
|
SmallPtrSet<Instruction*, 4> Dead;
|
|
while (!MaybeDead.empty()) {
|
|
auto *I = MaybeDead.front();
|
|
MaybeDead.remove(I);
|
|
if (I->hasNUsesOrMore(1))
|
|
continue;
|
|
|
|
for (auto &U : I->operands())
|
|
if (auto *OpI = dyn_cast<Instruction>(U))
|
|
MaybeDead.insert(OpI);
|
|
|
|
Dead.insert(I);
|
|
}
|
|
|
|
for (auto *I : Dead) {
|
|
LLVM_DEBUG(dbgs() << "ARM TP: removing dead insn: "; I->dump());
|
|
I->eraseFromParent();
|
|
}
|
|
|
|
for (auto I : L->blocks())
|
|
DeleteDeadPHIs(I);
|
|
}
|
|
|
|
// The active lane intrinsic has this form:
|
|
//
|
|
// @llvm.get.active.lane.mask(IV, TC)
|
|
//
|
|
// Here we perform checks that this intrinsic behaves as expected,
|
|
// which means:
|
|
//
|
|
// 1) Check that the TripCount (TC) belongs to this loop (originally).
|
|
// 2) The element count (TC) needs to be sufficiently large that the decrement
|
|
// of element counter doesn't overflow, which means that we need to prove:
|
|
// ceil(ElementCount / VectorWidth) >= TripCount
|
|
// by rounding up ElementCount up:
|
|
// ((ElementCount + (VectorWidth - 1)) / VectorWidth
|
|
// and evaluate if expression isKnownNonNegative:
|
|
// (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount
|
|
// 3) The IV must be an induction phi with an increment equal to the
|
|
// vector width.
|
|
bool MVETailPredication::IsSafeActiveMask(IntrinsicInst *ActiveLaneMask,
|
|
Value *TripCount, FixedVectorType *VecTy) {
|
|
bool ForceTailPredication =
|
|
EnableTailPredication == TailPredication::ForceEnabledNoReductions ||
|
|
EnableTailPredication == TailPredication::ForceEnabled;
|
|
|
|
// 1) Check that the original scalar loop TripCount (TC) belongs to this loop.
|
|
// The scalar tripcount corresponds the number of elements processed by the
|
|
// loop, so we will refer to that from this point on.
|
|
Value *ElemCount = ActiveLaneMask->getOperand(1);
|
|
auto *EC= SE->getSCEV(ElemCount);
|
|
auto *TC = SE->getSCEV(TripCount);
|
|
int VectorWidth = VecTy->getNumElements();
|
|
ConstantInt *ConstElemCount = nullptr;
|
|
|
|
if (!SE->isLoopInvariant(EC, L)) {
|
|
LLVM_DEBUG(dbgs() << "ARM TP: element count must be loop invariant.\n");
|
|
return false;
|
|
}
|
|
|
|
if ((ConstElemCount = dyn_cast<ConstantInt>(ElemCount))) {
|
|
ConstantInt *TC = dyn_cast<ConstantInt>(TripCount);
|
|
if (!TC) {
|
|
LLVM_DEBUG(dbgs() << "ARM TP: Constant tripcount expected in "
|
|
"set.loop.iterations\n");
|
|
return false;
|
|
}
|
|
|
|
// Calculate 2 tripcount values and check that they are consistent with
|
|
// each other:
|
|
// i) The number of loop iterations extracted from the set.loop.iterations
|
|
// intrinsic, multipled by the vector width:
|
|
uint64_t TC1 = TC->getZExtValue() * VectorWidth;
|
|
|
|
// ii) TC1 has to be equal to TC + 1, with the + 1 to compensate for start
|
|
// counting from 0.
|
|
uint64_t TC2 = ConstElemCount->getZExtValue() + 1;
|
|
|
|
if (TC1 != TC2) {
|
|
LLVM_DEBUG(dbgs() << "ARM TP: inconsistent constant tripcount values: "
|
|
<< TC1 << " from set.loop.iterations, and "
|
|
<< TC2 << " from get.active.lane.mask\n");
|
|
return false;
|
|
}
|
|
} else {
|
|
// Smoke tests if the element count is a runtime value. I.e., this isn't
|
|
// fully generic because that would require a full SCEV visitor here. It
|
|
// would require extracting the variable from the elementcount SCEV
|
|
// expression, and match this up with the tripcount SCEV expression. If
|
|
// this matches up, we know both expressions are bound by the same
|
|
// variable, and thus we know this tripcount belongs to this loop. The
|
|
// checks below will catch most cases though.
|
|
if (isa<SCEVAddExpr>(EC) || isa<SCEVUnknown>(EC)) {
|
|
// If the element count is a simple AddExpr or SCEVUnknown, which is e.g.
|
|
// the case when the element count is just a variable %N, we can just see
|
|
// if it is an operand in the tripcount scev expression.
|
|
if (isa<SCEVAddExpr>(TC) && !SE->hasOperand(TC, EC)) {
|
|
LLVM_DEBUG(dbgs() << "ARM TP: Can't verify the element counter\n");
|
|
return false;
|
|
}
|
|
} else if (const SCEVAddRecExpr *AddRecExpr = dyn_cast<SCEVAddRecExpr>(EC)) {
|
|
// For more complicated AddRecExpr, check that the corresponding loop and
|
|
// its loop hierarhy contains the trip count loop.
|
|
if (!AddRecExpr->getLoop()->contains(L)) {
|
|
LLVM_DEBUG(dbgs() << "ARM TP: Can't verify the element counter\n");
|
|
return false;
|
|
}
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "ARM TP: Unsupported SCEV type, can't verify the "
|
|
"element counter\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// 2) Prove that the sub expression is non-negative, i.e. it doesn't overflow:
|
|
//
|
|
// (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount
|
|
//
|
|
// 2.1) First prove overflow can't happen in:
|
|
//
|
|
// ElementCount + (VectorWidth - 1)
|
|
//
|
|
// Because of a lack of context, it is difficult to get a useful bounds on
|
|
// this expression. But since ElementCount uses the same variables as the
|
|
// TripCount (TC), for which we can find meaningful value ranges, we use that
|
|
// instead and assert that:
|
|
//
|
|
// upperbound(TC) <= UINT_MAX - VectorWidth
|
|
//
|
|
unsigned SizeInBits = TripCount->getType()->getScalarSizeInBits();
|
|
auto MaxMinusVW = APInt(SizeInBits, ~0) - APInt(SizeInBits, VectorWidth);
|
|
APInt UpperboundTC = SE->getUnsignedRangeMax(TC);
|
|
|
|
if (UpperboundTC.ugt(MaxMinusVW) && !ForceTailPredication) {
|
|
LLVM_DEBUG(dbgs() << "ARM TP: Overflow possible in tripcount rounding:\n";
|
|
dbgs() << "upperbound(TC) <= UINT_MAX - VectorWidth\n";
|
|
dbgs() << UpperboundTC << " <= " << MaxMinusVW << " == false\n";);
|
|
return false;
|
|
}
|
|
|
|
// 2.2) Make sure overflow doesn't happen in final expression:
|
|
// (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount,
|
|
// To do this, compare the full ranges of these subexpressions:
|
|
//
|
|
// Range(Ceil) <= Range(TC)
|
|
//
|
|
// where Ceil = ElementCount + (VW-1) / VW. If Ceil and TC are runtime
|
|
// values (and not constants), we have to compensate for the lowerbound value
|
|
// range to be off by 1. The reason is that the TC lives in the preheader in
|
|
// this form:
|
|
//
|
|
// %trip.count.minus = add nsw nuw i32 %N, -1
|
|
//
|
|
// For the loop to be executed, %N has to be >= 1 and as a result the value
|
|
// range of %trip.count.minus has a lower bound of 0. Value %TC has this form:
|
|
//
|
|
// %5 = add nuw nsw i32 %4, 1
|
|
// call void @llvm.set.loop.iterations.i32(i32 %5)
|
|
//
|
|
// where %5 is some expression using %N, which needs to have a lower bound of
|
|
// 1. Thus, if the ranges of Ceil and TC are not a single constant but a set,
|
|
// we first add 0 to TC such that we can do the <= comparison on both sets.
|
|
//
|
|
|
|
// Tmp = ElementCount + (VW-1)
|
|
auto *ECPlusVWMinus1 = SE->getAddExpr(EC,
|
|
SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth - 1)));
|
|
// Ceil = ElementCount + (VW-1) / VW
|
|
auto *Ceil = SE->getUDivExpr(ECPlusVWMinus1,
|
|
SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth)));
|
|
|
|
ConstantRange RangeCeil = SE->getUnsignedRange(Ceil) ;
|
|
ConstantRange RangeTC = SE->getUnsignedRange(TC) ;
|
|
if (!RangeTC.isSingleElement()) {
|
|
auto ZeroRange =
|
|
ConstantRange(APInt(TripCount->getType()->getScalarSizeInBits(), 0));
|
|
RangeTC = RangeTC.unionWith(ZeroRange);
|
|
}
|
|
if (!RangeTC.contains(RangeCeil) && !ForceTailPredication) {
|
|
LLVM_DEBUG(dbgs() << "ARM TP: Overflow possible in sub\n");
|
|
return false;
|
|
}
|
|
|
|
// 3) Find out if IV is an induction phi. Note that we can't use Loop
|
|
// helpers here to get the induction variable, because the hardware loop is
|
|
// no longer in loopsimplify form, and also the hwloop intrinsic uses a
|
|
// different counter. Using SCEV, we check that the induction is of the
|
|
// form i = i + 4, where the increment must be equal to the VectorWidth.
|
|
auto *IV = ActiveLaneMask->getOperand(0);
|
|
auto *IVExpr = SE->getSCEV(IV);
|
|
auto *AddExpr = dyn_cast<SCEVAddRecExpr>(IVExpr);
|
|
if (!AddExpr) {
|
|
LLVM_DEBUG(dbgs() << "ARM TP: induction not an add expr: "; IVExpr->dump());
|
|
return false;
|
|
}
|
|
// Check that this AddRec is associated with this loop.
|
|
if (AddExpr->getLoop() != L) {
|
|
LLVM_DEBUG(dbgs() << "ARM TP: phi not part of this loop\n");
|
|
return false;
|
|
}
|
|
auto *Step = dyn_cast<SCEVConstant>(AddExpr->getOperand(1));
|
|
if (!Step) {
|
|
LLVM_DEBUG(dbgs() << "ARM TP: induction step is not a constant: ";
|
|
AddExpr->getOperand(1)->dump());
|
|
return false;
|
|
}
|
|
auto StepValue = Step->getValue()->getSExtValue();
|
|
if (VectorWidth == StepValue)
|
|
return true;
|
|
|
|
LLVM_DEBUG(dbgs() << "ARM TP: Step value " << StepValue << " doesn't match "
|
|
"vector width " << VectorWidth << "\n");
|
|
|
|
return false;
|
|
}
|
|
|
|
void MVETailPredication::InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask,
|
|
Value *TripCount, FixedVectorType *VecTy) {
|
|
IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
|
|
Module *M = L->getHeader()->getModule();
|
|
Type *Ty = IntegerType::get(M->getContext(), 32);
|
|
unsigned VectorWidth = VecTy->getNumElements();
|
|
|
|
// Insert a phi to count the number of elements processed by the loop.
|
|
Builder.SetInsertPoint(L->getHeader()->getFirstNonPHI() );
|
|
PHINode *Processed = Builder.CreatePHI(Ty, 2);
|
|
Processed->addIncoming(ActiveLaneMask->getOperand(1), L->getLoopPreheader());
|
|
|
|
// Replace @llvm.get.active.mask() with the ARM specific VCTP intrinic, and
|
|
// thus represent the effect of tail predication.
|
|
Builder.SetInsertPoint(ActiveLaneMask);
|
|
ConstantInt *Factor = ConstantInt::get(cast<IntegerType>(Ty), VectorWidth);
|
|
|
|
Intrinsic::ID VCTPID;
|
|
switch (VectorWidth) {
|
|
default:
|
|
llvm_unreachable("unexpected number of lanes");
|
|
case 4: VCTPID = Intrinsic::arm_mve_vctp32; break;
|
|
case 8: VCTPID = Intrinsic::arm_mve_vctp16; break;
|
|
case 16: VCTPID = Intrinsic::arm_mve_vctp8; break;
|
|
|
|
// FIXME: vctp64 currently not supported because the predicate
|
|
// vector wants to be <2 x i1>, but v2i1 is not a legal MVE
|
|
// type, so problems happen at isel time.
|
|
// Intrinsic::arm_mve_vctp64 exists for ACLE intrinsics
|
|
// purposes, but takes a v4i1 instead of a v2i1.
|
|
}
|
|
Function *VCTP = Intrinsic::getDeclaration(M, VCTPID);
|
|
Value *VCTPCall = Builder.CreateCall(VCTP, Processed);
|
|
ActiveLaneMask->replaceAllUsesWith(VCTPCall);
|
|
|
|
// Add the incoming value to the new phi.
|
|
// TODO: This add likely already exists in the loop.
|
|
Value *Remaining = Builder.CreateSub(Processed, Factor);
|
|
Processed->addIncoming(Remaining, L->getLoopLatch());
|
|
LLVM_DEBUG(dbgs() << "ARM TP: Insert processed elements phi: "
|
|
<< *Processed << "\n"
|
|
<< "ARM TP: Inserted VCTP: " << *VCTPCall << "\n");
|
|
}
|
|
|
|
bool MVETailPredication::TryConvert(Value *TripCount) {
|
|
if (!IsPredicatedVectorLoop()) {
|
|
LLVM_DEBUG(dbgs() << "ARM TP: no masked instructions in loop.\n");
|
|
return false;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "ARM TP: Found predicated vector loop.\n");
|
|
SetVector<Instruction*> Predicates;
|
|
|
|
auto getPredicateOp = [](IntrinsicInst *I) {
|
|
unsigned IntrinsicID = I->getIntrinsicID();
|
|
if (IntrinsicID == Intrinsic::arm_mve_vldr_gather_offset_predicated ||
|
|
IntrinsicID == Intrinsic::arm_mve_vstr_scatter_offset_predicated)
|
|
return 5;
|
|
return (IntrinsicID == Intrinsic::masked_load || isGather(I)) ? 2 : 3;
|
|
};
|
|
|
|
// Walk through the masked intrinsics and try to find whether the predicate
|
|
// operand is generated by intrinsic @llvm.get.active.lane.mask().
|
|
for (auto *I : MaskedInsts) {
|
|
Value *PredOp = I->getArgOperand(getPredicateOp(I));
|
|
auto *Predicate = dyn_cast<Instruction>(PredOp);
|
|
if (!Predicate || Predicates.count(Predicate))
|
|
continue;
|
|
|
|
auto *ActiveLaneMask = dyn_cast<IntrinsicInst>(Predicate);
|
|
if (!ActiveLaneMask ||
|
|
ActiveLaneMask->getIntrinsicID() != Intrinsic::get_active_lane_mask)
|
|
continue;
|
|
|
|
Predicates.insert(Predicate);
|
|
LLVM_DEBUG(dbgs() << "ARM TP: Found active lane mask: "
|
|
<< *ActiveLaneMask << "\n");
|
|
|
|
auto *VecTy = getVectorType(I);
|
|
if (!IsSafeActiveMask(ActiveLaneMask, TripCount, VecTy)) {
|
|
LLVM_DEBUG(dbgs() << "ARM TP: Not safe to insert VCTP.\n");
|
|
return false;
|
|
}
|
|
LLVM_DEBUG(dbgs() << "ARM TP: Safe to insert VCTP.\n");
|
|
InsertVCTPIntrinsic(ActiveLaneMask, TripCount, VecTy);
|
|
}
|
|
|
|
Cleanup(Predicates, L);
|
|
return true;
|
|
}
|
|
|
|
Pass *llvm::createMVETailPredicationPass() {
|
|
return new MVETailPredication();
|
|
}
|
|
|
|
char MVETailPredication::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false)
|
|
INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false)
|