llvm-project/llvm/lib/Target/ARM/MVETailPredication.cpp

645 lines
24 KiB
C++

//===- MVETailPredication.cpp - MVE Tail Predication ------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead
/// branches to help accelerate DSP applications. These two extensions,
/// combined with a new form of predication called tail-predication, can be used
/// to provide implicit vector predication within a low-overhead loop.
/// This is implicit because the predicate of active/inactive lanes is
/// calculated by hardware, and thus does not need to be explicitly passed
/// to vector instructions. The instructions responsible for this are the
/// DLSTP and WLSTP instructions, which setup a tail-predicated loop and the
/// the total number of data elements processed by the loop. The loop-end
/// LETP instruction is responsible for decrementing and setting the remaining
/// elements to be processed and generating the mask of active lanes.
///
/// The HardwareLoops pass inserts intrinsics identifying loops that the
/// backend will attempt to convert into a low-overhead loop. The vectorizer is
/// responsible for generating a vectorized loop in which the lanes are
/// predicated upon the iteration counter. This pass looks at these predicated
/// vector loops, that are targets for low-overhead loops, and prepares it for
/// code generation. Once the vectorizer has produced a masked loop, there's a
/// couple of final forms:
/// - A tail-predicated loop, with implicit predication.
/// - A loop containing multiple VCPT instructions, predicating multiple VPT
/// blocks of instructions operating on different vector types.
///
/// This pass:
/// 1) Checks if the predicates of the masked load/store instructions are
/// generated by intrinsic @llvm.get.active.lanes(). This intrinsic consumes
/// the the scalar loop tripcount as its second argument, which we extract
/// to set up the number of elements processed by the loop.
/// 2) Intrinsic @llvm.get.active.lanes() is then replaced by the MVE target
/// specific VCTP intrinsic to represent the effect of tail predication.
/// This will be picked up by the ARM Low-overhead loop pass, which performs
/// the final transformation to a DLSTP or WLSTP tail-predicated loop.
#include "ARM.h"
#include "ARMSubtarget.h"
#include "ARMTargetTransformInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicsARM.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
using namespace llvm;
#define DEBUG_TYPE "mve-tail-predication"
#define DESC "Transform predicated vector loops to use MVE tail predication"
cl::opt<TailPredication::Mode> EnableTailPredication(
"tail-predication", cl::desc("MVE tail-predication options"),
cl::init(TailPredication::Disabled),
cl::values(clEnumValN(TailPredication::Disabled, "disabled",
"Don't tail-predicate loops"),
clEnumValN(TailPredication::EnabledNoReductions,
"enabled-no-reductions",
"Enable tail-predication, but not for reduction loops"),
clEnumValN(TailPredication::Enabled,
"enabled",
"Enable tail-predication, including reduction loops"),
clEnumValN(TailPredication::ForceEnabledNoReductions,
"force-enabled-no-reductions",
"Enable tail-predication, but not for reduction loops, "
"and force this which might be unsafe"),
clEnumValN(TailPredication::ForceEnabled,
"force-enabled",
"Enable tail-predication, including reduction loops, "
"and force this which might be unsafe")));
namespace {
class MVETailPredication : public LoopPass {
SmallVector<IntrinsicInst*, 4> MaskedInsts;
Loop *L = nullptr;
ScalarEvolution *SE = nullptr;
TargetTransformInfo *TTI = nullptr;
const ARMSubtarget *ST = nullptr;
public:
static char ID;
MVETailPredication() : LoopPass(ID) { }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<ScalarEvolutionWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<TargetPassConfig>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addPreserved<LoopInfoWrapperPass>();
AU.setPreservesCFG();
}
bool runOnLoop(Loop *L, LPPassManager&) override;
private:
/// Perform the relevant checks on the loop and convert if possible.
bool TryConvert(Value *TripCount);
/// Return whether this is a vectorized loop, that contains masked
/// load/stores.
bool IsPredicatedVectorLoop();
/// Perform several checks on the arguments of @llvm.get.active.lane.mask
/// intrinsic. E.g., check that the loop induction variable and the element
/// count are of the form we expect, and also perform overflow checks for
/// the new expressions that are created.
bool IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, Value *TripCount,
FixedVectorType *VecTy);
/// Insert the intrinsic to represent the effect of tail predication.
void InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, Value *TripCount,
FixedVectorType *VecTy);
/// Rematerialize the iteration count in exit blocks, which enables
/// ARMLowOverheadLoops to better optimise away loop update statements inside
/// hardware-loops.
void RematerializeIterCount();
};
} // end namespace
static bool IsDecrement(Instruction &I) {
auto *Call = dyn_cast<IntrinsicInst>(&I);
if (!Call)
return false;
Intrinsic::ID ID = Call->getIntrinsicID();
return ID == Intrinsic::loop_decrement_reg;
}
static bool IsMasked(Instruction *I) {
auto *Call = dyn_cast<IntrinsicInst>(I);
if (!Call)
return false;
Intrinsic::ID ID = Call->getIntrinsicID();
return ID == Intrinsic::masked_store || ID == Intrinsic::masked_load ||
isGatherScatter(Call);
}
bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) {
if (skipLoop(L) || !EnableTailPredication)
return false;
MaskedInsts.clear();
Function &F = *L->getHeader()->getParent();
auto &TPC = getAnalysis<TargetPassConfig>();
auto &TM = TPC.getTM<TargetMachine>();
ST = &TM.getSubtarget<ARMSubtarget>(F);
TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
this->L = L;
// The MVE and LOB extensions are combined to enable tail-predication, but
// there's nothing preventing us from generating VCTP instructions for v8.1m.
if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) {
LLVM_DEBUG(dbgs() << "ARM TP: Not a v8.1m.main+mve target.\n");
return false;
}
BasicBlock *Preheader = L->getLoopPreheader();
if (!Preheader)
return false;
auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* {
for (auto &I : *BB) {
auto *Call = dyn_cast<IntrinsicInst>(&I);
if (!Call)
continue;
Intrinsic::ID ID = Call->getIntrinsicID();
if (ID == Intrinsic::set_loop_iterations ||
ID == Intrinsic::test_set_loop_iterations)
return cast<IntrinsicInst>(&I);
}
return nullptr;
};
// Look for the hardware loop intrinsic that sets the iteration count.
IntrinsicInst *Setup = FindLoopIterations(Preheader);
// The test.set iteration could live in the pre-preheader.
if (!Setup) {
if (!Preheader->getSinglePredecessor())
return false;
Setup = FindLoopIterations(Preheader->getSinglePredecessor());
if (!Setup)
return false;
}
// Search for the hardware loop intrinic that decrements the loop counter.
IntrinsicInst *Decrement = nullptr;
for (auto *BB : L->getBlocks()) {
for (auto &I : *BB) {
if (IsDecrement(I)) {
Decrement = cast<IntrinsicInst>(&I);
break;
}
}
}
if (!Decrement)
return false;
LLVM_DEBUG(dbgs() << "ARM TP: Running on Loop: " << *L << *Setup << "\n"
<< *Decrement << "\n");
if (!TryConvert(Setup->getArgOperand(0))) {
LLVM_DEBUG(dbgs() << "ARM TP: Can't tail-predicate this loop.\n");
return false;
}
return true;
}
static FixedVectorType *getVectorType(IntrinsicInst *I) {
unsigned ID = I->getIntrinsicID();
FixedVectorType *VecTy;
if (ID == Intrinsic::masked_load || isGather(I)) {
if (ID == Intrinsic::arm_mve_vldr_gather_base_wb ||
ID == Intrinsic::arm_mve_vldr_gather_base_wb_predicated)
// then the type is a StructType
VecTy = dyn_cast<FixedVectorType>(I->getType()->getContainedType(0));
else
VecTy = dyn_cast<FixedVectorType>(I->getType());
} else if (ID == Intrinsic::masked_store) {
VecTy = dyn_cast<FixedVectorType>(I->getOperand(0)->getType());
} else {
VecTy = dyn_cast<FixedVectorType>(I->getOperand(2)->getType());
}
assert(VecTy && "No scalable vectors expected here");
return VecTy;
}
bool MVETailPredication::IsPredicatedVectorLoop() {
// Check that the loop contains at least one masked load/store intrinsic.
// We only support 'normal' vector instructions - other than masked
// load/stores.
bool ActiveLaneMask = false;
for (auto *BB : L->getBlocks()) {
for (auto &I : *BB) {
auto *Int = dyn_cast<IntrinsicInst>(&I);
if (!Int)
continue;
switch (Int->getIntrinsicID()) {
case Intrinsic::get_active_lane_mask:
ActiveLaneMask = true;
continue;
case Intrinsic::sadd_sat:
case Intrinsic::uadd_sat:
case Intrinsic::ssub_sat:
case Intrinsic::usub_sat:
case Intrinsic::experimental_vector_reduce_add:
continue;
case Intrinsic::fma:
case Intrinsic::trunc:
case Intrinsic::rint:
case Intrinsic::round:
case Intrinsic::floor:
case Intrinsic::ceil:
case Intrinsic::fabs:
if (ST->hasMVEFloatOps())
continue;
break;
default:
break;
}
if (IsMasked(&I)) {
auto *VecTy = getVectorType(Int);
unsigned Lanes = VecTy->getNumElements();
unsigned ElementWidth = VecTy->getScalarSizeInBits();
// MVE vectors are 128-bit, but don't support 128 x i1.
// TODO: Can we support vectors larger than 128-bits?
unsigned MaxWidth = TTI->getRegisterBitWidth(true);
if (Lanes * ElementWidth > MaxWidth || Lanes == MaxWidth)
return false;
MaskedInsts.push_back(cast<IntrinsicInst>(&I));
continue;
}
for (const Use &U : Int->args()) {
if (isa<VectorType>(U->getType()))
return false;
}
}
}
if (!ActiveLaneMask) {
LLVM_DEBUG(dbgs() << "ARM TP: No get.active.lane.mask intrinsic found.\n");
return false;
}
return !MaskedInsts.empty();
}
// Look through the exit block to see whether there's a duplicate predicate
// instruction. This can happen when we need to perform a select on values
// from the last and previous iteration. Instead of doing a straight
// replacement of that predicate with the vctp, clone the vctp and place it
// in the block. This means that the VPR doesn't have to be live into the
// exit block which should make it easier to convert this loop into a proper
// tail predicated loop.
static void Cleanup(SetVector<Instruction*> &MaybeDead, Loop *L) {
BasicBlock *Exit = L->getUniqueExitBlock();
if (!Exit) {
LLVM_DEBUG(dbgs() << "ARM TP: can't find loop exit block\n");
return;
}
// Drop references and add operands to check for dead.
SmallPtrSet<Instruction*, 4> Dead;
while (!MaybeDead.empty()) {
auto *I = MaybeDead.front();
MaybeDead.remove(I);
if (I->hasNUsesOrMore(1))
continue;
for (auto &U : I->operands())
if (auto *OpI = dyn_cast<Instruction>(U))
MaybeDead.insert(OpI);
Dead.insert(I);
}
for (auto *I : Dead) {
LLVM_DEBUG(dbgs() << "ARM TP: removing dead insn: "; I->dump());
I->eraseFromParent();
}
for (auto I : L->blocks())
DeleteDeadPHIs(I);
}
// The active lane intrinsic has this form:
//
// @llvm.get.active.lane.mask(IV, TC)
//
// Here we perform checks that this intrinsic behaves as expected,
// which means:
//
// 1) Check that the TripCount (TC) belongs to this loop (originally).
// 2) The element count (TC) needs to be sufficiently large that the decrement
// of element counter doesn't overflow, which means that we need to prove:
// ceil(ElementCount / VectorWidth) >= TripCount
// by rounding up ElementCount up:
// ((ElementCount + (VectorWidth - 1)) / VectorWidth
// and evaluate if expression isKnownNonNegative:
// (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount
// 3) The IV must be an induction phi with an increment equal to the
// vector width.
bool MVETailPredication::IsSafeActiveMask(IntrinsicInst *ActiveLaneMask,
Value *TripCount, FixedVectorType *VecTy) {
bool ForceTailPredication =
EnableTailPredication == TailPredication::ForceEnabledNoReductions ||
EnableTailPredication == TailPredication::ForceEnabled;
// 1) Check that the original scalar loop TripCount (TC) belongs to this loop.
// The scalar tripcount corresponds the number of elements processed by the
// loop, so we will refer to that from this point on.
Value *ElemCount = ActiveLaneMask->getOperand(1);
auto *EC= SE->getSCEV(ElemCount);
auto *TC = SE->getSCEV(TripCount);
int VectorWidth = VecTy->getNumElements();
ConstantInt *ConstElemCount = nullptr;
if (!SE->isLoopInvariant(EC, L)) {
LLVM_DEBUG(dbgs() << "ARM TP: element count must be loop invariant.\n");
return false;
}
if ((ConstElemCount = dyn_cast<ConstantInt>(ElemCount))) {
ConstantInt *TC = dyn_cast<ConstantInt>(TripCount);
if (!TC) {
LLVM_DEBUG(dbgs() << "ARM TP: Constant tripcount expected in "
"set.loop.iterations\n");
return false;
}
// Calculate 2 tripcount values and check that they are consistent with
// each other:
// i) The number of loop iterations extracted from the set.loop.iterations
// intrinsic, multipled by the vector width:
uint64_t TC1 = TC->getZExtValue() * VectorWidth;
// ii) TC1 has to be equal to TC + 1, with the + 1 to compensate for start
// counting from 0.
uint64_t TC2 = ConstElemCount->getZExtValue() + 1;
if (TC1 != TC2) {
LLVM_DEBUG(dbgs() << "ARM TP: inconsistent constant tripcount values: "
<< TC1 << " from set.loop.iterations, and "
<< TC2 << " from get.active.lane.mask\n");
return false;
}
} else {
// Smoke tests if the element count is a runtime value. I.e., this isn't
// fully generic because that would require a full SCEV visitor here. It
// would require extracting the variable from the elementcount SCEV
// expression, and match this up with the tripcount SCEV expression. If
// this matches up, we know both expressions are bound by the same
// variable, and thus we know this tripcount belongs to this loop. The
// checks below will catch most cases though.
if (isa<SCEVAddExpr>(EC) || isa<SCEVUnknown>(EC)) {
// If the element count is a simple AddExpr or SCEVUnknown, which is e.g.
// the case when the element count is just a variable %N, we can just see
// if it is an operand in the tripcount scev expression.
if (isa<SCEVAddExpr>(TC) && !SE->hasOperand(TC, EC)) {
LLVM_DEBUG(dbgs() << "ARM TP: Can't verify the element counter\n");
return false;
}
} else if (const SCEVAddRecExpr *AddRecExpr = dyn_cast<SCEVAddRecExpr>(EC)) {
// For more complicated AddRecExpr, check that the corresponding loop and
// its loop hierarhy contains the trip count loop.
if (!AddRecExpr->getLoop()->contains(L)) {
LLVM_DEBUG(dbgs() << "ARM TP: Can't verify the element counter\n");
return false;
}
} else {
LLVM_DEBUG(dbgs() << "ARM TP: Unsupported SCEV type, can't verify the "
"element counter\n");
return false;
}
}
// 2) Prove that the sub expression is non-negative, i.e. it doesn't overflow:
//
// (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount
//
// 2.1) First prove overflow can't happen in:
//
// ElementCount + (VectorWidth - 1)
//
// Because of a lack of context, it is difficult to get a useful bounds on
// this expression. But since ElementCount uses the same variables as the
// TripCount (TC), for which we can find meaningful value ranges, we use that
// instead and assert that:
//
// upperbound(TC) <= UINT_MAX - VectorWidth
//
unsigned SizeInBits = TripCount->getType()->getScalarSizeInBits();
auto MaxMinusVW = APInt(SizeInBits, ~0) - APInt(SizeInBits, VectorWidth);
APInt UpperboundTC = SE->getUnsignedRangeMax(TC);
if (UpperboundTC.ugt(MaxMinusVW) && !ForceTailPredication) {
LLVM_DEBUG(dbgs() << "ARM TP: Overflow possible in tripcount rounding:\n";
dbgs() << "upperbound(TC) <= UINT_MAX - VectorWidth\n";
dbgs() << UpperboundTC << " <= " << MaxMinusVW << " == false\n";);
return false;
}
// 2.2) Make sure overflow doesn't happen in final expression:
// (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount,
// To do this, compare the full ranges of these subexpressions:
//
// Range(Ceil) <= Range(TC)
//
// where Ceil = ElementCount + (VW-1) / VW. If Ceil and TC are runtime
// values (and not constants), we have to compensate for the lowerbound value
// range to be off by 1. The reason is that the TC lives in the preheader in
// this form:
//
// %trip.count.minus = add nsw nuw i32 %N, -1
//
// For the loop to be executed, %N has to be >= 1 and as a result the value
// range of %trip.count.minus has a lower bound of 0. Value %TC has this form:
//
// %5 = add nuw nsw i32 %4, 1
// call void @llvm.set.loop.iterations.i32(i32 %5)
//
// where %5 is some expression using %N, which needs to have a lower bound of
// 1. Thus, if the ranges of Ceil and TC are not a single constant but a set,
// we first add 0 to TC such that we can do the <= comparison on both sets.
//
// Tmp = ElementCount + (VW-1)
auto *ECPlusVWMinus1 = SE->getAddExpr(EC,
SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth - 1)));
// Ceil = ElementCount + (VW-1) / VW
auto *Ceil = SE->getUDivExpr(ECPlusVWMinus1,
SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth)));
ConstantRange RangeCeil = SE->getUnsignedRange(Ceil) ;
ConstantRange RangeTC = SE->getUnsignedRange(TC) ;
if (!RangeTC.isSingleElement()) {
auto ZeroRange =
ConstantRange(APInt(TripCount->getType()->getScalarSizeInBits(), 0));
RangeTC = RangeTC.unionWith(ZeroRange);
}
if (!RangeTC.contains(RangeCeil) && !ForceTailPredication) {
LLVM_DEBUG(dbgs() << "ARM TP: Overflow possible in sub\n");
return false;
}
// 3) Find out if IV is an induction phi. Note that we can't use Loop
// helpers here to get the induction variable, because the hardware loop is
// no longer in loopsimplify form, and also the hwloop intrinsic uses a
// different counter. Using SCEV, we check that the induction is of the
// form i = i + 4, where the increment must be equal to the VectorWidth.
auto *IV = ActiveLaneMask->getOperand(0);
auto *IVExpr = SE->getSCEV(IV);
auto *AddExpr = dyn_cast<SCEVAddRecExpr>(IVExpr);
if (!AddExpr) {
LLVM_DEBUG(dbgs() << "ARM TP: induction not an add expr: "; IVExpr->dump());
return false;
}
// Check that this AddRec is associated with this loop.
if (AddExpr->getLoop() != L) {
LLVM_DEBUG(dbgs() << "ARM TP: phi not part of this loop\n");
return false;
}
auto *Step = dyn_cast<SCEVConstant>(AddExpr->getOperand(1));
if (!Step) {
LLVM_DEBUG(dbgs() << "ARM TP: induction step is not a constant: ";
AddExpr->getOperand(1)->dump());
return false;
}
auto StepValue = Step->getValue()->getSExtValue();
if (VectorWidth == StepValue)
return true;
LLVM_DEBUG(dbgs() << "ARM TP: Step value " << StepValue << " doesn't match "
"vector width " << VectorWidth << "\n");
return false;
}
void MVETailPredication::InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask,
Value *TripCount, FixedVectorType *VecTy) {
IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
Module *M = L->getHeader()->getModule();
Type *Ty = IntegerType::get(M->getContext(), 32);
unsigned VectorWidth = VecTy->getNumElements();
// Insert a phi to count the number of elements processed by the loop.
Builder.SetInsertPoint(L->getHeader()->getFirstNonPHI() );
PHINode *Processed = Builder.CreatePHI(Ty, 2);
Processed->addIncoming(ActiveLaneMask->getOperand(1), L->getLoopPreheader());
// Replace @llvm.get.active.mask() with the ARM specific VCTP intrinic, and
// thus represent the effect of tail predication.
Builder.SetInsertPoint(ActiveLaneMask);
ConstantInt *Factor = ConstantInt::get(cast<IntegerType>(Ty), VectorWidth);
Intrinsic::ID VCTPID;
switch (VectorWidth) {
default:
llvm_unreachable("unexpected number of lanes");
case 4: VCTPID = Intrinsic::arm_mve_vctp32; break;
case 8: VCTPID = Intrinsic::arm_mve_vctp16; break;
case 16: VCTPID = Intrinsic::arm_mve_vctp8; break;
// FIXME: vctp64 currently not supported because the predicate
// vector wants to be <2 x i1>, but v2i1 is not a legal MVE
// type, so problems happen at isel time.
// Intrinsic::arm_mve_vctp64 exists for ACLE intrinsics
// purposes, but takes a v4i1 instead of a v2i1.
}
Function *VCTP = Intrinsic::getDeclaration(M, VCTPID);
Value *VCTPCall = Builder.CreateCall(VCTP, Processed);
ActiveLaneMask->replaceAllUsesWith(VCTPCall);
// Add the incoming value to the new phi.
// TODO: This add likely already exists in the loop.
Value *Remaining = Builder.CreateSub(Processed, Factor);
Processed->addIncoming(Remaining, L->getLoopLatch());
LLVM_DEBUG(dbgs() << "ARM TP: Insert processed elements phi: "
<< *Processed << "\n"
<< "ARM TP: Inserted VCTP: " << *VCTPCall << "\n");
}
bool MVETailPredication::TryConvert(Value *TripCount) {
if (!IsPredicatedVectorLoop()) {
LLVM_DEBUG(dbgs() << "ARM TP: no masked instructions in loop.\n");
return false;
}
LLVM_DEBUG(dbgs() << "ARM TP: Found predicated vector loop.\n");
SetVector<Instruction*> Predicates;
auto getPredicateOp = [](IntrinsicInst *I) {
unsigned IntrinsicID = I->getIntrinsicID();
if (IntrinsicID == Intrinsic::arm_mve_vldr_gather_offset_predicated ||
IntrinsicID == Intrinsic::arm_mve_vstr_scatter_offset_predicated)
return 5;
return (IntrinsicID == Intrinsic::masked_load || isGather(I)) ? 2 : 3;
};
// Walk through the masked intrinsics and try to find whether the predicate
// operand is generated by intrinsic @llvm.get.active.lane.mask().
for (auto *I : MaskedInsts) {
Value *PredOp = I->getArgOperand(getPredicateOp(I));
auto *Predicate = dyn_cast<Instruction>(PredOp);
if (!Predicate || Predicates.count(Predicate))
continue;
auto *ActiveLaneMask = dyn_cast<IntrinsicInst>(Predicate);
if (!ActiveLaneMask ||
ActiveLaneMask->getIntrinsicID() != Intrinsic::get_active_lane_mask)
continue;
Predicates.insert(Predicate);
LLVM_DEBUG(dbgs() << "ARM TP: Found active lane mask: "
<< *ActiveLaneMask << "\n");
auto *VecTy = getVectorType(I);
if (!IsSafeActiveMask(ActiveLaneMask, TripCount, VecTy)) {
LLVM_DEBUG(dbgs() << "ARM TP: Not safe to insert VCTP.\n");
return false;
}
LLVM_DEBUG(dbgs() << "ARM TP: Safe to insert VCTP.\n");
InsertVCTPIntrinsic(ActiveLaneMask, TripCount, VecTy);
}
Cleanup(Predicates, L);
return true;
}
Pass *llvm::createMVETailPredicationPass() {
return new MVETailPredication();
}
char MVETailPredication::ID = 0;
INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false)
INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false)