llvm-project/llvm/tools/llvm-objdump/MachODump.cpp

5566 lines
206 KiB
C++

//===-- MachODump.cpp - Object file dumping utility for llvm --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the MachO-specific dumper for llvm-objdump.
//
//===----------------------------------------------------------------------===//
#include "llvm-objdump.h"
#include "llvm-c/Disassembler.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Config/config.h"
#include "llvm/DebugInfo/DWARF/DIContext.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Object/MachO.h"
#include "llvm/Object/MachOUniversal.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/MachO.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstring>
#include <system_error>
#if HAVE_CXXABI_H
#include <cxxabi.h>
#endif
using namespace llvm;
using namespace object;
static cl::opt<bool>
UseDbg("g",
cl::desc("Print line information from debug info if available"));
static cl::opt<std::string> DSYMFile("dsym",
cl::desc("Use .dSYM file for debug info"));
static cl::opt<bool> FullLeadingAddr("full-leading-addr",
cl::desc("Print full leading address"));
static cl::opt<bool>
PrintImmHex("print-imm-hex",
cl::desc("Use hex format for immediate values"));
cl::opt<bool> llvm::UniversalHeaders("universal-headers",
cl::desc("Print Mach-O universal headers "
"(requires -macho)"));
cl::opt<bool>
llvm::ArchiveHeaders("archive-headers",
cl::desc("Print archive headers for Mach-O archives "
"(requires -macho)"));
cl::opt<bool>
llvm::IndirectSymbols("indirect-symbols",
cl::desc("Print indirect symbol table for Mach-O "
"objects (requires -macho)"));
cl::opt<bool>
llvm::DataInCode("data-in-code",
cl::desc("Print the data in code table for Mach-O objects "
"(requires -macho)"));
cl::opt<bool>
llvm::LinkOptHints("link-opt-hints",
cl::desc("Print the linker optimization hints for "
"Mach-O objects (requires -macho)"));
cl::list<std::string>
llvm::DumpSections("section",
cl::desc("Prints the specified segment,section for "
"Mach-O objects (requires -macho)"));
static cl::list<std::string>
ArchFlags("arch", cl::desc("architecture(s) from a Mach-O file to dump"),
cl::ZeroOrMore);
bool ArchAll = false;
static std::string ThumbTripleName;
static const Target *GetTarget(const MachOObjectFile *MachOObj,
const char **McpuDefault,
const Target **ThumbTarget) {
// Figure out the target triple.
if (TripleName.empty()) {
llvm::Triple TT("unknown-unknown-unknown");
llvm::Triple ThumbTriple = Triple();
TT = MachOObj->getArch(McpuDefault, &ThumbTriple);
TripleName = TT.str();
ThumbTripleName = ThumbTriple.str();
}
// Get the target specific parser.
std::string Error;
const Target *TheTarget = TargetRegistry::lookupTarget(TripleName, Error);
if (TheTarget && ThumbTripleName.empty())
return TheTarget;
*ThumbTarget = TargetRegistry::lookupTarget(ThumbTripleName, Error);
if (*ThumbTarget)
return TheTarget;
errs() << "llvm-objdump: error: unable to get target for '";
if (!TheTarget)
errs() << TripleName;
else
errs() << ThumbTripleName;
errs() << "', see --version and --triple.\n";
return nullptr;
}
struct SymbolSorter {
bool operator()(const SymbolRef &A, const SymbolRef &B) {
SymbolRef::Type AType, BType;
A.getType(AType);
B.getType(BType);
uint64_t AAddr, BAddr;
if (AType != SymbolRef::ST_Function)
AAddr = 0;
else
A.getAddress(AAddr);
if (BType != SymbolRef::ST_Function)
BAddr = 0;
else
B.getAddress(BAddr);
return AAddr < BAddr;
}
};
// Types for the storted data in code table that is built before disassembly
// and the predicate function to sort them.
typedef std::pair<uint64_t, DiceRef> DiceTableEntry;
typedef std::vector<DiceTableEntry> DiceTable;
typedef DiceTable::iterator dice_table_iterator;
// This is used to search for a data in code table entry for the PC being
// disassembled. The j parameter has the PC in j.first. A single data in code
// table entry can cover many bytes for each of its Kind's. So if the offset,
// aka the i.first value, of the data in code table entry plus its Length
// covers the PC being searched for this will return true. If not it will
// return false.
static bool compareDiceTableEntries(const DiceTableEntry &i,
const DiceTableEntry &j) {
uint16_t Length;
i.second.getLength(Length);
return j.first >= i.first && j.first < i.first + Length;
}
static uint64_t DumpDataInCode(const char *bytes, uint64_t Length,
unsigned short Kind) {
uint32_t Value, Size = 1;
switch (Kind) {
default:
case MachO::DICE_KIND_DATA:
if (Length >= 4) {
if (!NoShowRawInsn)
DumpBytes(StringRef(bytes, 4));
Value = bytes[3] << 24 | bytes[2] << 16 | bytes[1] << 8 | bytes[0];
outs() << "\t.long " << Value;
Size = 4;
} else if (Length >= 2) {
if (!NoShowRawInsn)
DumpBytes(StringRef(bytes, 2));
Value = bytes[1] << 8 | bytes[0];
outs() << "\t.short " << Value;
Size = 2;
} else {
if (!NoShowRawInsn)
DumpBytes(StringRef(bytes, 2));
Value = bytes[0];
outs() << "\t.byte " << Value;
Size = 1;
}
if (Kind == MachO::DICE_KIND_DATA)
outs() << "\t@ KIND_DATA\n";
else
outs() << "\t@ data in code kind = " << Kind << "\n";
break;
case MachO::DICE_KIND_JUMP_TABLE8:
if (!NoShowRawInsn)
DumpBytes(StringRef(bytes, 1));
Value = bytes[0];
outs() << "\t.byte " << format("%3u", Value) << "\t@ KIND_JUMP_TABLE8\n";
Size = 1;
break;
case MachO::DICE_KIND_JUMP_TABLE16:
if (!NoShowRawInsn)
DumpBytes(StringRef(bytes, 2));
Value = bytes[1] << 8 | bytes[0];
outs() << "\t.short " << format("%5u", Value & 0xffff)
<< "\t@ KIND_JUMP_TABLE16\n";
Size = 2;
break;
case MachO::DICE_KIND_JUMP_TABLE32:
case MachO::DICE_KIND_ABS_JUMP_TABLE32:
if (!NoShowRawInsn)
DumpBytes(StringRef(bytes, 4));
Value = bytes[3] << 24 | bytes[2] << 16 | bytes[1] << 8 | bytes[0];
outs() << "\t.long " << Value;
if (Kind == MachO::DICE_KIND_JUMP_TABLE32)
outs() << "\t@ KIND_JUMP_TABLE32\n";
else
outs() << "\t@ KIND_ABS_JUMP_TABLE32\n";
Size = 4;
break;
}
return Size;
}
static void getSectionsAndSymbols(const MachO::mach_header Header,
MachOObjectFile *MachOObj,
std::vector<SectionRef> &Sections,
std::vector<SymbolRef> &Symbols,
SmallVectorImpl<uint64_t> &FoundFns,
uint64_t &BaseSegmentAddress) {
for (const SymbolRef &Symbol : MachOObj->symbols()) {
StringRef SymName;
Symbol.getName(SymName);
if (!SymName.startswith("ltmp"))
Symbols.push_back(Symbol);
}
for (const SectionRef &Section : MachOObj->sections()) {
StringRef SectName;
Section.getName(SectName);
Sections.push_back(Section);
}
MachOObjectFile::LoadCommandInfo Command =
MachOObj->getFirstLoadCommandInfo();
bool BaseSegmentAddressSet = false;
for (unsigned i = 0;; ++i) {
if (Command.C.cmd == MachO::LC_FUNCTION_STARTS) {
// We found a function starts segment, parse the addresses for later
// consumption.
MachO::linkedit_data_command LLC =
MachOObj->getLinkeditDataLoadCommand(Command);
MachOObj->ReadULEB128s(LLC.dataoff, FoundFns);
} else if (Command.C.cmd == MachO::LC_SEGMENT) {
MachO::segment_command SLC = MachOObj->getSegmentLoadCommand(Command);
StringRef SegName = SLC.segname;
if (!BaseSegmentAddressSet && SegName != "__PAGEZERO") {
BaseSegmentAddressSet = true;
BaseSegmentAddress = SLC.vmaddr;
}
}
if (i == Header.ncmds - 1)
break;
else
Command = MachOObj->getNextLoadCommandInfo(Command);
}
}
static void PrintIndirectSymbolTable(MachOObjectFile *O, bool verbose,
uint32_t n, uint32_t count,
uint32_t stride, uint64_t addr) {
MachO::dysymtab_command Dysymtab = O->getDysymtabLoadCommand();
uint32_t nindirectsyms = Dysymtab.nindirectsyms;
if (n > nindirectsyms)
outs() << " (entries start past the end of the indirect symbol "
"table) (reserved1 field greater than the table size)";
else if (n + count > nindirectsyms)
outs() << " (entries extends past the end of the indirect symbol "
"table)";
outs() << "\n";
uint32_t cputype = O->getHeader().cputype;
if (cputype & MachO::CPU_ARCH_ABI64)
outs() << "address index";
else
outs() << "address index";
if (verbose)
outs() << " name\n";
else
outs() << "\n";
for (uint32_t j = 0; j < count && n + j < nindirectsyms; j++) {
if (cputype & MachO::CPU_ARCH_ABI64)
outs() << format("0x%016" PRIx64, addr + j * stride) << " ";
else
outs() << format("0x%08" PRIx32, addr + j * stride) << " ";
MachO::dysymtab_command Dysymtab = O->getDysymtabLoadCommand();
uint32_t indirect_symbol = O->getIndirectSymbolTableEntry(Dysymtab, n + j);
if (indirect_symbol == MachO::INDIRECT_SYMBOL_LOCAL) {
outs() << "LOCAL\n";
continue;
}
if (indirect_symbol ==
(MachO::INDIRECT_SYMBOL_LOCAL | MachO::INDIRECT_SYMBOL_ABS)) {
outs() << "LOCAL ABSOLUTE\n";
continue;
}
if (indirect_symbol == MachO::INDIRECT_SYMBOL_ABS) {
outs() << "ABSOLUTE\n";
continue;
}
outs() << format("%5u ", indirect_symbol);
MachO::symtab_command Symtab = O->getSymtabLoadCommand();
if (indirect_symbol < Symtab.nsyms) {
symbol_iterator Sym = O->getSymbolByIndex(indirect_symbol);
SymbolRef Symbol = *Sym;
StringRef SymName;
Symbol.getName(SymName);
outs() << SymName;
} else {
outs() << "?";
}
outs() << "\n";
}
}
static void PrintIndirectSymbols(MachOObjectFile *O, bool verbose) {
uint32_t LoadCommandCount = O->getHeader().ncmds;
MachOObjectFile::LoadCommandInfo Load = O->getFirstLoadCommandInfo();
for (unsigned I = 0;; ++I) {
if (Load.C.cmd == MachO::LC_SEGMENT_64) {
MachO::segment_command_64 Seg = O->getSegment64LoadCommand(Load);
for (unsigned J = 0; J < Seg.nsects; ++J) {
MachO::section_64 Sec = O->getSection64(Load, J);
uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
if (section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
section_type == MachO::S_SYMBOL_STUBS) {
uint32_t stride;
if (section_type == MachO::S_SYMBOL_STUBS)
stride = Sec.reserved2;
else
stride = 8;
if (stride == 0) {
outs() << "Can't print indirect symbols for (" << Sec.segname << ","
<< Sec.sectname << ") "
<< "(size of stubs in reserved2 field is zero)\n";
continue;
}
uint32_t count = Sec.size / stride;
outs() << "Indirect symbols for (" << Sec.segname << ","
<< Sec.sectname << ") " << count << " entries";
uint32_t n = Sec.reserved1;
PrintIndirectSymbolTable(O, verbose, n, count, stride, Sec.addr);
}
}
} else if (Load.C.cmd == MachO::LC_SEGMENT) {
MachO::segment_command Seg = O->getSegmentLoadCommand(Load);
for (unsigned J = 0; J < Seg.nsects; ++J) {
MachO::section Sec = O->getSection(Load, J);
uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
if (section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
section_type == MachO::S_SYMBOL_STUBS) {
uint32_t stride;
if (section_type == MachO::S_SYMBOL_STUBS)
stride = Sec.reserved2;
else
stride = 4;
if (stride == 0) {
outs() << "Can't print indirect symbols for (" << Sec.segname << ","
<< Sec.sectname << ") "
<< "(size of stubs in reserved2 field is zero)\n";
continue;
}
uint32_t count = Sec.size / stride;
outs() << "Indirect symbols for (" << Sec.segname << ","
<< Sec.sectname << ") " << count << " entries";
uint32_t n = Sec.reserved1;
PrintIndirectSymbolTable(O, verbose, n, count, stride, Sec.addr);
}
}
}
if (I == LoadCommandCount - 1)
break;
else
Load = O->getNextLoadCommandInfo(Load);
}
}
static void PrintDataInCodeTable(MachOObjectFile *O, bool verbose) {
MachO::linkedit_data_command DIC = O->getDataInCodeLoadCommand();
uint32_t nentries = DIC.datasize / sizeof(struct MachO::data_in_code_entry);
outs() << "Data in code table (" << nentries << " entries)\n";
outs() << "offset length kind\n";
for (dice_iterator DI = O->begin_dices(), DE = O->end_dices(); DI != DE;
++DI) {
uint32_t Offset;
DI->getOffset(Offset);
outs() << format("0x%08" PRIx32, Offset) << " ";
uint16_t Length;
DI->getLength(Length);
outs() << format("%6u", Length) << " ";
uint16_t Kind;
DI->getKind(Kind);
if (verbose) {
switch (Kind) {
case MachO::DICE_KIND_DATA:
outs() << "DATA";
break;
case MachO::DICE_KIND_JUMP_TABLE8:
outs() << "JUMP_TABLE8";
break;
case MachO::DICE_KIND_JUMP_TABLE16:
outs() << "JUMP_TABLE16";
break;
case MachO::DICE_KIND_JUMP_TABLE32:
outs() << "JUMP_TABLE32";
break;
case MachO::DICE_KIND_ABS_JUMP_TABLE32:
outs() << "ABS_JUMP_TABLE32";
break;
default:
outs() << format("0x%04" PRIx32, Kind);
break;
}
} else
outs() << format("0x%04" PRIx32, Kind);
outs() << "\n";
}
}
static void PrintLinkOptHints(MachOObjectFile *O) {
MachO::linkedit_data_command LohLC = O->getLinkOptHintsLoadCommand();
const char *loh = O->getData().substr(LohLC.dataoff, 1).data();
uint32_t nloh = LohLC.datasize;
outs() << "Linker optimiztion hints (" << nloh << " total bytes)\n";
for (uint32_t i = 0; i < nloh;) {
unsigned n;
uint64_t identifier = decodeULEB128((const uint8_t *)(loh + i), &n);
i += n;
outs() << " identifier " << identifier << " ";
if (i >= nloh)
return;
switch (identifier) {
case 1:
outs() << "AdrpAdrp\n";
break;
case 2:
outs() << "AdrpLdr\n";
break;
case 3:
outs() << "AdrpAddLdr\n";
break;
case 4:
outs() << "AdrpLdrGotLdr\n";
break;
case 5:
outs() << "AdrpAddStr\n";
break;
case 6:
outs() << "AdrpLdrGotStr\n";
break;
case 7:
outs() << "AdrpAdd\n";
break;
case 8:
outs() << "AdrpLdrGot\n";
break;
default:
outs() << "Unknown identifier value\n";
break;
}
uint64_t narguments = decodeULEB128((const uint8_t *)(loh + i), &n);
i += n;
outs() << " narguments " << narguments << "\n";
if (i >= nloh)
return;
for (uint32_t j = 0; j < narguments; j++) {
uint64_t value = decodeULEB128((const uint8_t *)(loh + i), &n);
i += n;
outs() << "\tvalue " << format("0x%" PRIx64, value) << "\n";
if (i >= nloh)
return;
}
}
}
typedef DenseMap<uint64_t, StringRef> SymbolAddressMap;
static void CreateSymbolAddressMap(MachOObjectFile *O,
SymbolAddressMap *AddrMap) {
// Create a map of symbol addresses to symbol names.
for (const SymbolRef &Symbol : O->symbols()) {
SymbolRef::Type ST;
Symbol.getType(ST);
if (ST == SymbolRef::ST_Function || ST == SymbolRef::ST_Data ||
ST == SymbolRef::ST_Other) {
uint64_t Address;
Symbol.getAddress(Address);
StringRef SymName;
Symbol.getName(SymName);
(*AddrMap)[Address] = SymName;
}
}
}
// GuessSymbolName is passed the address of what might be a symbol and a
// pointer to the SymbolAddressMap. It returns the name of a symbol
// with that address or nullptr if no symbol is found with that address.
static const char *GuessSymbolName(uint64_t value, SymbolAddressMap *AddrMap) {
const char *SymbolName = nullptr;
// A DenseMap can't lookup up some values.
if (value != 0xffffffffffffffffULL && value != 0xfffffffffffffffeULL) {
StringRef name = AddrMap->lookup(value);
if (!name.empty())
SymbolName = name.data();
}
return SymbolName;
}
static void DumpCstringSection(MachOObjectFile *O, const char *sect,
uint32_t sect_size, uint64_t sect_addr,
bool print_addresses) {
for (uint32_t i = 0; i < sect_size; i++) {
if (print_addresses) {
if (O->is64Bit())
outs() << format("0x%016" PRIx64, sect_addr + i) << " ";
else
outs() << format("0x%08" PRIx64, sect_addr + i) << " ";
}
for (; i < sect_size && sect[i] != '\0'; i++) {
char p[2];
p[0] = sect[i];
p[1] = '\0';
outs().write_escaped(p);
}
if (i < sect_size && sect[i] == '\0')
outs() << "\n";
}
}
static void DumpLiteral4(uint32_t l, float f) {
outs() << format("0x%08" PRIx32, l);
if ((l & 0x7f800000) != 0x7f800000)
outs() << format(" (%.16e)\n", f);
else {
if (l == 0x7f800000)
outs() << " (+Infinity)\n";
else if (l == 0xff800000)
outs() << " (-Infinity)\n";
else if ((l & 0x00400000) == 0x00400000)
outs() << " (non-signaling Not-a-Number)\n";
else
outs() << " (signaling Not-a-Number)\n";
}
}
static void DumpLiteral4Section(MachOObjectFile *O, const char *sect,
uint32_t sect_size, uint64_t sect_addr,
bool print_addresses) {
for (uint32_t i = 0; i < sect_size; i += sizeof(float)) {
if (print_addresses) {
if (O->is64Bit())
outs() << format("0x%016" PRIx64, sect_addr + i) << " ";
else
outs() << format("0x%08" PRIx64, sect_addr + i) << " ";
}
float f;
memcpy(&f, sect + i, sizeof(float));
if (O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(f);
uint32_t l;
memcpy(&l, sect + i, sizeof(uint32_t));
if (O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(l);
DumpLiteral4(l, f);
}
}
static void DumpLiteral8(MachOObjectFile *O, uint32_t l0, uint32_t l1,
double d) {
outs() << format("0x%08" PRIx32, l0) << " " << format("0x%08" PRIx32, l1);
uint32_t Hi, Lo;
if (O->isLittleEndian()) {
Hi = l1;
Lo = l0;
} else {
Hi = l0;
Lo = l1;
}
// Hi is the high word, so this is equivalent to if(isfinite(d))
if ((Hi & 0x7ff00000) != 0x7ff00000)
outs() << format(" (%.16e)\n", d);
else {
if (Hi == 0x7ff00000 && Lo == 0)
outs() << " (+Infinity)\n";
else if (Hi == 0xfff00000 && Lo == 0)
outs() << " (-Infinity)\n";
else if ((Hi & 0x00080000) == 0x00080000)
outs() << " (non-signaling Not-a-Number)\n";
else
outs() << " (signaling Not-a-Number)\n";
}
}
static void DumpLiteral8Section(MachOObjectFile *O, const char *sect,
uint32_t sect_size, uint64_t sect_addr,
bool print_addresses) {
for (uint32_t i = 0; i < sect_size; i += sizeof(double)) {
if (print_addresses) {
if (O->is64Bit())
outs() << format("0x%016" PRIx64, sect_addr + i) << " ";
else
outs() << format("0x%08" PRIx64, sect_addr + i) << " ";
}
double d;
memcpy(&d, sect + i, sizeof(double));
if (O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(d);
uint32_t l0, l1;
memcpy(&l0, sect + i, sizeof(uint32_t));
memcpy(&l1, sect + i + sizeof(uint32_t), sizeof(uint32_t));
if (O->isLittleEndian() != sys::IsLittleEndianHost) {
sys::swapByteOrder(l0);
sys::swapByteOrder(l1);
}
DumpLiteral8(O, l0, l1, d);
}
}
static void DumpLiteral16Section(MachOObjectFile *O, const char *sect,
uint32_t sect_size, uint64_t sect_addr,
bool print_addresses) {
for (uint32_t i = 0; i < sect_size; i += 16) {
if (print_addresses) {
if (O->is64Bit())
outs() << format("0x%016" PRIx64, sect_addr + i) << " ";
else
outs() << format("0x%08" PRIx64, sect_addr + i) << " ";
}
uint32_t l0, l1, l2, l3;
memcpy(&l0, sect + i, sizeof(uint32_t));
memcpy(&l1, sect + i + sizeof(uint32_t), sizeof(uint32_t));
memcpy(&l2, sect + i + 2 * sizeof(uint32_t), sizeof(uint32_t));
memcpy(&l3, sect + i + 3 * sizeof(uint32_t), sizeof(uint32_t));
if (O->isLittleEndian() != sys::IsLittleEndianHost) {
sys::swapByteOrder(l0);
sys::swapByteOrder(l1);
sys::swapByteOrder(l2);
sys::swapByteOrder(l3);
}
outs() << format("0x%08" PRIx32, l0) << " ";
outs() << format("0x%08" PRIx32, l1) << " ";
outs() << format("0x%08" PRIx32, l2) << " ";
outs() << format("0x%08" PRIx32, l3) << "\n";
}
}
static void DumpInitTermPointerSection(MachOObjectFile *O, const char *sect,
uint32_t sect_size, uint64_t sect_addr,
SymbolAddressMap *AddrMap,
bool verbose) {
uint32_t stride;
if (O->is64Bit())
stride = sizeof(uint64_t);
else
stride = sizeof(uint32_t);
for (uint32_t i = 0; i < sect_size; i += stride) {
const char *SymbolName = nullptr;
if (O->is64Bit()) {
outs() << format("0x%016" PRIx64, sect_addr + i * stride) << " ";
uint64_t pointer_value;
memcpy(&pointer_value, sect + i, stride);
if (O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(pointer_value);
outs() << format("0x%016" PRIx64, pointer_value);
if (verbose)
SymbolName = GuessSymbolName(pointer_value, AddrMap);
} else {
outs() << format("0x%08" PRIx64, sect_addr + i * stride) << " ";
uint32_t pointer_value;
memcpy(&pointer_value, sect + i, stride);
if (O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(pointer_value);
outs() << format("0x%08" PRIx32, pointer_value);
if (verbose)
SymbolName = GuessSymbolName(pointer_value, AddrMap);
}
if (SymbolName)
outs() << " " << SymbolName;
outs() << "\n";
}
}
static void DumpRawSectionContents(MachOObjectFile *O, const char *sect,
uint32_t size, uint64_t addr) {
uint32_t cputype = O->getHeader().cputype;
if (cputype == MachO::CPU_TYPE_I386 || cputype == MachO::CPU_TYPE_X86_64) {
uint32_t j;
for (uint32_t i = 0; i < size; i += j, addr += j) {
if (O->is64Bit())
outs() << format("%016" PRIx64, addr) << "\t";
else
outs() << format("%08" PRIx64, sect) << "\t";
for (j = 0; j < 16 && i + j < size; j++) {
uint8_t byte_word = *(sect + i + j);
outs() << format("%02" PRIx32, (uint32_t)byte_word) << " ";
}
outs() << "\n";
}
} else {
uint32_t j;
for (uint32_t i = 0; i < size; i += j, addr += j) {
if (O->is64Bit())
outs() << format("%016" PRIx64, addr) << "\t";
else
outs() << format("%08" PRIx64, sect) << "\t";
for (j = 0; j < 4 * sizeof(int32_t) && i + j < size;
j += sizeof(int32_t)) {
if (i + j + sizeof(int32_t) < size) {
uint32_t long_word;
memcpy(&long_word, sect + i + j, sizeof(int32_t));
if (O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(long_word);
outs() << format("%08" PRIx32, long_word) << " ";
} else {
for (uint32_t k = 0; i + j + k < size; k++) {
uint8_t byte_word = *(sect + i + j);
outs() << format("%02" PRIx32, (uint32_t)byte_word) << " ";
}
}
}
outs() << "\n";
}
}
}
static void DisassembleMachO(StringRef Filename, MachOObjectFile *MachOOF,
StringRef DisSegName, StringRef DisSectName);
static void DumpSectionContents(StringRef Filename, MachOObjectFile *O,
bool verbose) {
SymbolAddressMap AddrMap;
if (verbose)
CreateSymbolAddressMap(O, &AddrMap);
for (unsigned i = 0; i < DumpSections.size(); ++i) {
StringRef DumpSection = DumpSections[i];
std::pair<StringRef, StringRef> DumpSegSectName;
DumpSegSectName = DumpSection.split(',');
StringRef DumpSegName, DumpSectName;
if (DumpSegSectName.second.size()) {
DumpSegName = DumpSegSectName.first;
DumpSectName = DumpSegSectName.second;
} else {
DumpSegName = "";
DumpSectName = DumpSegSectName.first;
}
for (const SectionRef &Section : O->sections()) {
StringRef SectName;
Section.getName(SectName);
DataRefImpl Ref = Section.getRawDataRefImpl();
StringRef SegName = O->getSectionFinalSegmentName(Ref);
if ((DumpSegName.empty() || SegName == DumpSegName) &&
(SectName == DumpSectName)) {
outs() << "Contents of (" << SegName << "," << SectName
<< ") section\n";
uint32_t section_flags;
if (O->is64Bit()) {
const MachO::section_64 Sec = O->getSection64(Ref);
section_flags = Sec.flags;
} else {
const MachO::section Sec = O->getSection(Ref);
section_flags = Sec.flags;
}
uint32_t section_type = section_flags & MachO::SECTION_TYPE;
StringRef BytesStr;
Section.getContents(BytesStr);
const char *sect = reinterpret_cast<const char *>(BytesStr.data());
uint32_t sect_size = BytesStr.size();
uint64_t sect_addr = Section.getAddress();
if (verbose) {
if ((section_flags & MachO::S_ATTR_PURE_INSTRUCTIONS) ||
(section_flags & MachO::S_ATTR_SOME_INSTRUCTIONS)) {
DisassembleMachO(Filename, O, SegName, SectName);
continue;
}
switch (section_type) {
case MachO::S_REGULAR:
DumpRawSectionContents(O, sect, sect_size, sect_addr);
break;
case MachO::S_ZEROFILL:
outs() << "zerofill section and has no contents in the file\n";
break;
case MachO::S_CSTRING_LITERALS:
DumpCstringSection(O, sect, sect_size, sect_addr, verbose);
break;
case MachO::S_4BYTE_LITERALS:
DumpLiteral4Section(O, sect, sect_size, sect_addr, verbose);
break;
case MachO::S_8BYTE_LITERALS:
DumpLiteral8Section(O, sect, sect_size, sect_addr, verbose);
break;
case MachO::S_16BYTE_LITERALS:
DumpLiteral16Section(O, sect, sect_size, sect_addr, verbose);
break;
case MachO::S_MOD_INIT_FUNC_POINTERS:
case MachO::S_MOD_TERM_FUNC_POINTERS:
DumpInitTermPointerSection(O, sect, sect_size, sect_addr, &AddrMap,
verbose);
break;
default:
outs() << "Unknown section type ("
<< format("0x%08" PRIx32, section_type) << ")\n";
DumpRawSectionContents(O, sect, sect_size, sect_addr);
break;
}
} else {
if (section_type == MachO::S_ZEROFILL)
outs() << "zerofill section and has no contents in the file\n";
else
DumpRawSectionContents(O, sect, sect_size, sect_addr);
}
}
}
}
}
// checkMachOAndArchFlags() checks to see if the ObjectFile is a Mach-O file
// and if it is and there is a list of architecture flags is specified then
// check to make sure this Mach-O file is one of those architectures or all
// architectures were specified. If not then an error is generated and this
// routine returns false. Else it returns true.
static bool checkMachOAndArchFlags(ObjectFile *O, StringRef Filename) {
if (isa<MachOObjectFile>(O) && !ArchAll && ArchFlags.size() != 0) {
MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O);
bool ArchFound = false;
MachO::mach_header H;
MachO::mach_header_64 H_64;
Triple T;
if (MachO->is64Bit()) {
H_64 = MachO->MachOObjectFile::getHeader64();
T = MachOObjectFile::getArch(H_64.cputype, H_64.cpusubtype);
} else {
H = MachO->MachOObjectFile::getHeader();
T = MachOObjectFile::getArch(H.cputype, H.cpusubtype);
}
unsigned i;
for (i = 0; i < ArchFlags.size(); ++i) {
if (ArchFlags[i] == T.getArchName())
ArchFound = true;
break;
}
if (!ArchFound) {
errs() << "llvm-objdump: file: " + Filename + " does not contain "
<< "architecture: " + ArchFlags[i] + "\n";
return false;
}
}
return true;
}
// ProcessMachO() is passed a single opened Mach-O file, which may be an
// archive member and or in a slice of a universal file. It prints the
// the file name and header info and then processes it according to the
// command line options.
static void ProcessMachO(StringRef Filename, MachOObjectFile *MachOOF,
StringRef ArchiveMemberName = StringRef(),
StringRef ArchitectureName = StringRef()) {
// If we are doing some processing here on the Mach-O file print the header
// info. And don't print it otherwise like in the case of printing the
// UniversalHeaders or ArchiveHeaders.
if (Disassemble || PrivateHeaders || ExportsTrie || Rebase || Bind ||
LazyBind || WeakBind || IndirectSymbols || DataInCode || LinkOptHints ||
DumpSections.size() != 0) {
outs() << Filename;
if (!ArchiveMemberName.empty())
outs() << '(' << ArchiveMemberName << ')';
if (!ArchitectureName.empty())
outs() << " (architecture " << ArchitectureName << ")";
outs() << ":\n";
}
if (Disassemble)
DisassembleMachO(Filename, MachOOF, "__TEXT", "__text");
if (IndirectSymbols)
PrintIndirectSymbols(MachOOF, true);
if (DataInCode)
PrintDataInCodeTable(MachOOF, true);
if (LinkOptHints)
PrintLinkOptHints(MachOOF);
if (Relocations)
PrintRelocations(MachOOF);
if (SectionHeaders)
PrintSectionHeaders(MachOOF);
if (SectionContents)
PrintSectionContents(MachOOF);
if (DumpSections.size() != 0)
DumpSectionContents(Filename, MachOOF, true);
if (SymbolTable)
PrintSymbolTable(MachOOF);
if (UnwindInfo)
printMachOUnwindInfo(MachOOF);
if (PrivateHeaders)
printMachOFileHeader(MachOOF);
if (ExportsTrie)
printExportsTrie(MachOOF);
if (Rebase)
printRebaseTable(MachOOF);
if (Bind)
printBindTable(MachOOF);
if (LazyBind)
printLazyBindTable(MachOOF);
if (WeakBind)
printWeakBindTable(MachOOF);
}
// printUnknownCPUType() helps print_fat_headers for unknown CPU's.
static void printUnknownCPUType(uint32_t cputype, uint32_t cpusubtype) {
outs() << " cputype (" << cputype << ")\n";
outs() << " cpusubtype (" << cpusubtype << ")\n";
}
// printCPUType() helps print_fat_headers by printing the cputype and
// pusubtype (symbolically for the one's it knows about).
static void printCPUType(uint32_t cputype, uint32_t cpusubtype) {
switch (cputype) {
case MachO::CPU_TYPE_I386:
switch (cpusubtype) {
case MachO::CPU_SUBTYPE_I386_ALL:
outs() << " cputype CPU_TYPE_I386\n";
outs() << " cpusubtype CPU_SUBTYPE_I386_ALL\n";
break;
default:
printUnknownCPUType(cputype, cpusubtype);
break;
}
break;
case MachO::CPU_TYPE_X86_64:
switch (cpusubtype) {
case MachO::CPU_SUBTYPE_X86_64_ALL:
outs() << " cputype CPU_TYPE_X86_64\n";
outs() << " cpusubtype CPU_SUBTYPE_X86_64_ALL\n";
break;
case MachO::CPU_SUBTYPE_X86_64_H:
outs() << " cputype CPU_TYPE_X86_64\n";
outs() << " cpusubtype CPU_SUBTYPE_X86_64_H\n";
break;
default:
printUnknownCPUType(cputype, cpusubtype);
break;
}
break;
case MachO::CPU_TYPE_ARM:
switch (cpusubtype) {
case MachO::CPU_SUBTYPE_ARM_ALL:
outs() << " cputype CPU_TYPE_ARM\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM_ALL\n";
break;
case MachO::CPU_SUBTYPE_ARM_V4T:
outs() << " cputype CPU_TYPE_ARM\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM_V4T\n";
break;
case MachO::CPU_SUBTYPE_ARM_V5TEJ:
outs() << " cputype CPU_TYPE_ARM\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM_V5TEJ\n";
break;
case MachO::CPU_SUBTYPE_ARM_XSCALE:
outs() << " cputype CPU_TYPE_ARM\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM_XSCALE\n";
break;
case MachO::CPU_SUBTYPE_ARM_V6:
outs() << " cputype CPU_TYPE_ARM\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM_V6\n";
break;
case MachO::CPU_SUBTYPE_ARM_V6M:
outs() << " cputype CPU_TYPE_ARM\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM_V6M\n";
break;
case MachO::CPU_SUBTYPE_ARM_V7:
outs() << " cputype CPU_TYPE_ARM\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM_V7\n";
break;
case MachO::CPU_SUBTYPE_ARM_V7EM:
outs() << " cputype CPU_TYPE_ARM\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM_V7EM\n";
break;
case MachO::CPU_SUBTYPE_ARM_V7K:
outs() << " cputype CPU_TYPE_ARM\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM_V7K\n";
break;
case MachO::CPU_SUBTYPE_ARM_V7M:
outs() << " cputype CPU_TYPE_ARM\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM_V7M\n";
break;
case MachO::CPU_SUBTYPE_ARM_V7S:
outs() << " cputype CPU_TYPE_ARM\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM_V7S\n";
break;
default:
printUnknownCPUType(cputype, cpusubtype);
break;
}
break;
case MachO::CPU_TYPE_ARM64:
switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
case MachO::CPU_SUBTYPE_ARM64_ALL:
outs() << " cputype CPU_TYPE_ARM64\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM64_ALL\n";
break;
default:
printUnknownCPUType(cputype, cpusubtype);
break;
}
break;
default:
printUnknownCPUType(cputype, cpusubtype);
break;
}
}
static void printMachOUniversalHeaders(const object::MachOUniversalBinary *UB,
bool verbose) {
outs() << "Fat headers\n";
if (verbose)
outs() << "fat_magic FAT_MAGIC\n";
else
outs() << "fat_magic " << format("0x%" PRIx32, MachO::FAT_MAGIC) << "\n";
uint32_t nfat_arch = UB->getNumberOfObjects();
StringRef Buf = UB->getData();
uint64_t size = Buf.size();
uint64_t big_size = sizeof(struct MachO::fat_header) +
nfat_arch * sizeof(struct MachO::fat_arch);
outs() << "nfat_arch " << UB->getNumberOfObjects();
if (nfat_arch == 0)
outs() << " (malformed, contains zero architecture types)\n";
else if (big_size > size)
outs() << " (malformed, architectures past end of file)\n";
else
outs() << "\n";
for (uint32_t i = 0; i < nfat_arch; ++i) {
MachOUniversalBinary::ObjectForArch OFA(UB, i);
uint32_t cputype = OFA.getCPUType();
uint32_t cpusubtype = OFA.getCPUSubType();
outs() << "architecture ";
for (uint32_t j = 0; i != 0 && j <= i - 1; j++) {
MachOUniversalBinary::ObjectForArch other_OFA(UB, j);
uint32_t other_cputype = other_OFA.getCPUType();
uint32_t other_cpusubtype = other_OFA.getCPUSubType();
if (cputype != 0 && cpusubtype != 0 && cputype == other_cputype &&
(cpusubtype & ~MachO::CPU_SUBTYPE_MASK) ==
(other_cpusubtype & ~MachO::CPU_SUBTYPE_MASK)) {
outs() << "(illegal duplicate architecture) ";
break;
}
}
if (verbose) {
outs() << OFA.getArchTypeName() << "\n";
printCPUType(cputype, cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
} else {
outs() << i << "\n";
outs() << " cputype " << cputype << "\n";
outs() << " cpusubtype " << (cpusubtype & ~MachO::CPU_SUBTYPE_MASK)
<< "\n";
}
if (verbose &&
(cpusubtype & MachO::CPU_SUBTYPE_MASK) == MachO::CPU_SUBTYPE_LIB64)
outs() << " capabilities CPU_SUBTYPE_LIB64\n";
else
outs() << " capabilities "
<< format("0x%" PRIx32,
(cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24) << "\n";
outs() << " offset " << OFA.getOffset();
if (OFA.getOffset() > size)
outs() << " (past end of file)";
if (OFA.getOffset() % (1 << OFA.getAlign()) != 0)
outs() << " (not aligned on it's alignment (2^" << OFA.getAlign() << ")";
outs() << "\n";
outs() << " size " << OFA.getSize();
big_size = OFA.getOffset() + OFA.getSize();
if (big_size > size)
outs() << " (past end of file)";
outs() << "\n";
outs() << " align 2^" << OFA.getAlign() << " (" << (1 << OFA.getAlign())
<< ")\n";
}
}
static void printArchiveChild(Archive::Child &C, bool verbose,
bool print_offset) {
if (print_offset)
outs() << C.getChildOffset() << "\t";
sys::fs::perms Mode = C.getAccessMode();
if (verbose) {
// FIXME: this first dash, "-", is for (Mode & S_IFMT) == S_IFREG.
// But there is nothing in sys::fs::perms for S_IFMT or S_IFREG.
outs() << "-";
if (Mode & sys::fs::owner_read)
outs() << "r";
else
outs() << "-";
if (Mode & sys::fs::owner_write)
outs() << "w";
else
outs() << "-";
if (Mode & sys::fs::owner_exe)
outs() << "x";
else
outs() << "-";
if (Mode & sys::fs::group_read)
outs() << "r";
else
outs() << "-";
if (Mode & sys::fs::group_write)
outs() << "w";
else
outs() << "-";
if (Mode & sys::fs::group_exe)
outs() << "x";
else
outs() << "-";
if (Mode & sys::fs::others_read)
outs() << "r";
else
outs() << "-";
if (Mode & sys::fs::others_write)
outs() << "w";
else
outs() << "-";
if (Mode & sys::fs::others_exe)
outs() << "x";
else
outs() << "-";
} else {
outs() << format("0%o ", Mode);
}
unsigned UID = C.getUID();
outs() << format("%3d/", UID);
unsigned GID = C.getGID();
outs() << format("%-3d ", GID);
uint64_t Size = C.getRawSize();
outs() << format("%5" PRId64, Size) << " ";
StringRef RawLastModified = C.getRawLastModified();
if (verbose) {
unsigned Seconds;
if (RawLastModified.getAsInteger(10, Seconds))
outs() << "(date: \"%s\" contains non-decimal chars) " << RawLastModified;
else {
// Since cime(3) returns a 26 character string of the form:
// "Sun Sep 16 01:03:52 1973\n\0"
// just print 24 characters.
time_t t = Seconds;
outs() << format("%.24s ", ctime(&t));
}
} else {
outs() << RawLastModified << " ";
}
if (verbose) {
ErrorOr<StringRef> NameOrErr = C.getName();
if (NameOrErr.getError()) {
StringRef RawName = C.getRawName();
outs() << RawName << "\n";
} else {
StringRef Name = NameOrErr.get();
outs() << Name << "\n";
}
} else {
StringRef RawName = C.getRawName();
outs() << RawName << "\n";
}
}
static void printArchiveHeaders(Archive *A, bool verbose, bool print_offset) {
if (A->hasSymbolTable()) {
Archive::child_iterator S = A->getSymbolTableChild();
Archive::Child C = *S;
printArchiveChild(C, verbose, print_offset);
}
for (Archive::child_iterator I = A->child_begin(), E = A->child_end(); I != E;
++I) {
Archive::Child C = *I;
printArchiveChild(C, verbose, print_offset);
}
}
// ParseInputMachO() parses the named Mach-O file in Filename and handles the
// -arch flags selecting just those slices as specified by them and also parses
// archive files. Then for each individual Mach-O file ProcessMachO() is
// called to process the file based on the command line options.
void llvm::ParseInputMachO(StringRef Filename) {
// Check for -arch all and verifiy the -arch flags are valid.
for (unsigned i = 0; i < ArchFlags.size(); ++i) {
if (ArchFlags[i] == "all") {
ArchAll = true;
} else {
if (!MachOObjectFile::isValidArch(ArchFlags[i])) {
errs() << "llvm-objdump: Unknown architecture named '" + ArchFlags[i] +
"'for the -arch option\n";
return;
}
}
}
// Attempt to open the binary.
ErrorOr<OwningBinary<Binary>> BinaryOrErr = createBinary(Filename);
if (std::error_code EC = BinaryOrErr.getError()) {
errs() << "llvm-objdump: '" << Filename << "': " << EC.message() << ".\n";
return;
}
Binary &Bin = *BinaryOrErr.get().getBinary();
if (Archive *A = dyn_cast<Archive>(&Bin)) {
outs() << "Archive : " << Filename << "\n";
if (ArchiveHeaders)
printArchiveHeaders(A, true, false);
for (Archive::child_iterator I = A->child_begin(), E = A->child_end();
I != E; ++I) {
ErrorOr<std::unique_ptr<Binary>> ChildOrErr = I->getAsBinary();
if (ChildOrErr.getError())
continue;
if (MachOObjectFile *O = dyn_cast<MachOObjectFile>(&*ChildOrErr.get())) {
if (!checkMachOAndArchFlags(O, Filename))
return;
ProcessMachO(Filename, O, O->getFileName());
}
}
return;
}
if (UniversalHeaders) {
if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Bin))
printMachOUniversalHeaders(UB, true);
}
if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Bin)) {
// If we have a list of architecture flags specified dump only those.
if (!ArchAll && ArchFlags.size() != 0) {
// Look for a slice in the universal binary that matches each ArchFlag.
bool ArchFound;
for (unsigned i = 0; i < ArchFlags.size(); ++i) {
ArchFound = false;
for (MachOUniversalBinary::object_iterator I = UB->begin_objects(),
E = UB->end_objects();
I != E; ++I) {
if (ArchFlags[i] == I->getArchTypeName()) {
ArchFound = true;
ErrorOr<std::unique_ptr<ObjectFile>> ObjOrErr =
I->getAsObjectFile();
std::string ArchitectureName = "";
if (ArchFlags.size() > 1)
ArchitectureName = I->getArchTypeName();
if (ObjOrErr) {
ObjectFile &O = *ObjOrErr.get();
if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&O))
ProcessMachO(Filename, MachOOF, "", ArchitectureName);
} else if (ErrorOr<std::unique_ptr<Archive>> AOrErr =
I->getAsArchive()) {
std::unique_ptr<Archive> &A = *AOrErr;
outs() << "Archive : " << Filename;
if (!ArchitectureName.empty())
outs() << " (architecture " << ArchitectureName << ")";
outs() << "\n";
if (ArchiveHeaders)
printArchiveHeaders(A.get(), true, false);
for (Archive::child_iterator AI = A->child_begin(),
AE = A->child_end();
AI != AE; ++AI) {
ErrorOr<std::unique_ptr<Binary>> ChildOrErr = AI->getAsBinary();
if (ChildOrErr.getError())
continue;
if (MachOObjectFile *O =
dyn_cast<MachOObjectFile>(&*ChildOrErr.get()))
ProcessMachO(Filename, O, O->getFileName(), ArchitectureName);
}
}
}
}
if (!ArchFound) {
errs() << "llvm-objdump: file: " + Filename + " does not contain "
<< "architecture: " + ArchFlags[i] + "\n";
return;
}
}
return;
}
// No architecture flags were specified so if this contains a slice that
// matches the host architecture dump only that.
if (!ArchAll) {
for (MachOUniversalBinary::object_iterator I = UB->begin_objects(),
E = UB->end_objects();
I != E; ++I) {
if (MachOObjectFile::getHostArch().getArchName() ==
I->getArchTypeName()) {
ErrorOr<std::unique_ptr<ObjectFile>> ObjOrErr = I->getAsObjectFile();
std::string ArchiveName;
ArchiveName.clear();
if (ObjOrErr) {
ObjectFile &O = *ObjOrErr.get();
if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&O))
ProcessMachO(Filename, MachOOF);
} else if (ErrorOr<std::unique_ptr<Archive>> AOrErr =
I->getAsArchive()) {
std::unique_ptr<Archive> &A = *AOrErr;
outs() << "Archive : " << Filename << "\n";
if (ArchiveHeaders)
printArchiveHeaders(A.get(), true, false);
for (Archive::child_iterator AI = A->child_begin(),
AE = A->child_end();
AI != AE; ++AI) {
ErrorOr<std::unique_ptr<Binary>> ChildOrErr = AI->getAsBinary();
if (ChildOrErr.getError())
continue;
if (MachOObjectFile *O =
dyn_cast<MachOObjectFile>(&*ChildOrErr.get()))
ProcessMachO(Filename, O, O->getFileName());
}
}
return;
}
}
}
// Either all architectures have been specified or none have been specified
// and this does not contain the host architecture so dump all the slices.
bool moreThanOneArch = UB->getNumberOfObjects() > 1;
for (MachOUniversalBinary::object_iterator I = UB->begin_objects(),
E = UB->end_objects();
I != E; ++I) {
ErrorOr<std::unique_ptr<ObjectFile>> ObjOrErr = I->getAsObjectFile();
std::string ArchitectureName = "";
if (moreThanOneArch)
ArchitectureName = I->getArchTypeName();
if (ObjOrErr) {
ObjectFile &Obj = *ObjOrErr.get();
if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&Obj))
ProcessMachO(Filename, MachOOF, "", ArchitectureName);
} else if (ErrorOr<std::unique_ptr<Archive>> AOrErr = I->getAsArchive()) {
std::unique_ptr<Archive> &A = *AOrErr;
outs() << "Archive : " << Filename;
if (!ArchitectureName.empty())
outs() << " (architecture " << ArchitectureName << ")";
outs() << "\n";
if (ArchiveHeaders)
printArchiveHeaders(A.get(), true, false);
for (Archive::child_iterator AI = A->child_begin(), AE = A->child_end();
AI != AE; ++AI) {
ErrorOr<std::unique_ptr<Binary>> ChildOrErr = AI->getAsBinary();
if (ChildOrErr.getError())
continue;
if (MachOObjectFile *O =
dyn_cast<MachOObjectFile>(&*ChildOrErr.get())) {
if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(O))
ProcessMachO(Filename, MachOOF, MachOOF->getFileName(),
ArchitectureName);
}
}
}
}
return;
}
if (ObjectFile *O = dyn_cast<ObjectFile>(&Bin)) {
if (!checkMachOAndArchFlags(O, Filename))
return;
if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*O)) {
ProcessMachO(Filename, MachOOF);
} else
errs() << "llvm-objdump: '" << Filename << "': "
<< "Object is not a Mach-O file type.\n";
} else
errs() << "llvm-objdump: '" << Filename << "': "
<< "Unrecognized file type.\n";
}
typedef std::pair<uint64_t, const char *> BindInfoEntry;
typedef std::vector<BindInfoEntry> BindTable;
typedef BindTable::iterator bind_table_iterator;
// The block of info used by the Symbolizer call backs.
struct DisassembleInfo {
bool verbose;
MachOObjectFile *O;
SectionRef S;
SymbolAddressMap *AddrMap;
std::vector<SectionRef> *Sections;
const char *class_name;
const char *selector_name;
char *method;
char *demangled_name;
uint64_t adrp_addr;
uint32_t adrp_inst;
BindTable *bindtable;
};
// SymbolizerGetOpInfo() is the operand information call back function.
// This is called to get the symbolic information for operand(s) of an
// instruction when it is being done. This routine does this from
// the relocation information, symbol table, etc. That block of information
// is a pointer to the struct DisassembleInfo that was passed when the
// disassembler context was created and passed to back to here when
// called back by the disassembler for instruction operands that could have
// relocation information. The address of the instruction containing operand is
// at the Pc parameter. The immediate value the operand has is passed in
// op_info->Value and is at Offset past the start of the instruction and has a
// byte Size of 1, 2 or 4. The symbolc information is returned in TagBuf is the
// LLVMOpInfo1 struct defined in the header "llvm-c/Disassembler.h" as symbol
// names and addends of the symbolic expression to add for the operand. The
// value of TagType is currently 1 (for the LLVMOpInfo1 struct). If symbolic
// information is returned then this function returns 1 else it returns 0.
int SymbolizerGetOpInfo(void *DisInfo, uint64_t Pc, uint64_t Offset,
uint64_t Size, int TagType, void *TagBuf) {
struct DisassembleInfo *info = (struct DisassembleInfo *)DisInfo;
struct LLVMOpInfo1 *op_info = (struct LLVMOpInfo1 *)TagBuf;
uint64_t value = op_info->Value;
// Make sure all fields returned are zero if we don't set them.
memset((void *)op_info, '\0', sizeof(struct LLVMOpInfo1));
op_info->Value = value;
// If the TagType is not the value 1 which it code knows about or if no
// verbose symbolic information is wanted then just return 0, indicating no
// information is being returned.
if (TagType != 1 || info->verbose == false)
return 0;
unsigned int Arch = info->O->getArch();
if (Arch == Triple::x86) {
if (Size != 1 && Size != 2 && Size != 4 && Size != 0)
return 0;
// First search the section's relocation entries (if any) for an entry
// for this section offset.
uint32_t sect_addr = info->S.getAddress();
uint32_t sect_offset = (Pc + Offset) - sect_addr;
bool reloc_found = false;
DataRefImpl Rel;
MachO::any_relocation_info RE;
bool isExtern = false;
SymbolRef Symbol;
bool r_scattered = false;
uint32_t r_value, pair_r_value, r_type;
for (const RelocationRef &Reloc : info->S.relocations()) {
uint64_t RelocOffset;
Reloc.getOffset(RelocOffset);
if (RelocOffset == sect_offset) {
Rel = Reloc.getRawDataRefImpl();
RE = info->O->getRelocation(Rel);
r_type = info->O->getAnyRelocationType(RE);
r_scattered = info->O->isRelocationScattered(RE);
if (r_scattered) {
r_value = info->O->getScatteredRelocationValue(RE);
if (r_type == MachO::GENERIC_RELOC_SECTDIFF ||
r_type == MachO::GENERIC_RELOC_LOCAL_SECTDIFF) {
DataRefImpl RelNext = Rel;
info->O->moveRelocationNext(RelNext);
MachO::any_relocation_info RENext;
RENext = info->O->getRelocation(RelNext);
if (info->O->isRelocationScattered(RENext))
pair_r_value = info->O->getScatteredRelocationValue(RENext);
else
return 0;
}
} else {
isExtern = info->O->getPlainRelocationExternal(RE);
if (isExtern) {
symbol_iterator RelocSym = Reloc.getSymbol();
Symbol = *RelocSym;
}
}
reloc_found = true;
break;
}
}
if (reloc_found && isExtern) {
StringRef SymName;
Symbol.getName(SymName);
const char *name = SymName.data();
op_info->AddSymbol.Present = 1;
op_info->AddSymbol.Name = name;
// For i386 extern relocation entries the value in the instruction is
// the offset from the symbol, and value is already set in op_info->Value.
return 1;
}
if (reloc_found && (r_type == MachO::GENERIC_RELOC_SECTDIFF ||
r_type == MachO::GENERIC_RELOC_LOCAL_SECTDIFF)) {
const char *add = GuessSymbolName(r_value, info->AddrMap);
const char *sub = GuessSymbolName(pair_r_value, info->AddrMap);
uint32_t offset = value - (r_value - pair_r_value);
op_info->AddSymbol.Present = 1;
if (add != nullptr)
op_info->AddSymbol.Name = add;
else
op_info->AddSymbol.Value = r_value;
op_info->SubtractSymbol.Present = 1;
if (sub != nullptr)
op_info->SubtractSymbol.Name = sub;
else
op_info->SubtractSymbol.Value = pair_r_value;
op_info->Value = offset;
return 1;
}
// TODO:
// Second search the external relocation entries of a fully linked image
// (if any) for an entry that matches this segment offset.
// uint32_t seg_offset = (Pc + Offset);
return 0;
} else if (Arch == Triple::x86_64) {
if (Size != 1 && Size != 2 && Size != 4 && Size != 0)
return 0;
// First search the section's relocation entries (if any) for an entry
// for this section offset.
uint64_t sect_addr = info->S.getAddress();
uint64_t sect_offset = (Pc + Offset) - sect_addr;
bool reloc_found = false;
DataRefImpl Rel;
MachO::any_relocation_info RE;
bool isExtern = false;
SymbolRef Symbol;
for (const RelocationRef &Reloc : info->S.relocations()) {
uint64_t RelocOffset;
Reloc.getOffset(RelocOffset);
if (RelocOffset == sect_offset) {
Rel = Reloc.getRawDataRefImpl();
RE = info->O->getRelocation(Rel);
// NOTE: Scattered relocations don't exist on x86_64.
isExtern = info->O->getPlainRelocationExternal(RE);
if (isExtern) {
symbol_iterator RelocSym = Reloc.getSymbol();
Symbol = *RelocSym;
}
reloc_found = true;
break;
}
}
if (reloc_found && isExtern) {
// The Value passed in will be adjusted by the Pc if the instruction
// adds the Pc. But for x86_64 external relocation entries the Value
// is the offset from the external symbol.
if (info->O->getAnyRelocationPCRel(RE))
op_info->Value -= Pc + Offset + Size;
StringRef SymName;
Symbol.getName(SymName);
const char *name = SymName.data();
unsigned Type = info->O->getAnyRelocationType(RE);
if (Type == MachO::X86_64_RELOC_SUBTRACTOR) {
DataRefImpl RelNext = Rel;
info->O->moveRelocationNext(RelNext);
MachO::any_relocation_info RENext = info->O->getRelocation(RelNext);
unsigned TypeNext = info->O->getAnyRelocationType(RENext);
bool isExternNext = info->O->getPlainRelocationExternal(RENext);
unsigned SymbolNum = info->O->getPlainRelocationSymbolNum(RENext);
if (TypeNext == MachO::X86_64_RELOC_UNSIGNED && isExternNext) {
op_info->SubtractSymbol.Present = 1;
op_info->SubtractSymbol.Name = name;
symbol_iterator RelocSymNext = info->O->getSymbolByIndex(SymbolNum);
Symbol = *RelocSymNext;
StringRef SymNameNext;
Symbol.getName(SymNameNext);
name = SymNameNext.data();
}
}
// TODO: add the VariantKinds to op_info->VariantKind for relocation types
// like: X86_64_RELOC_TLV, X86_64_RELOC_GOT_LOAD and X86_64_RELOC_GOT.
op_info->AddSymbol.Present = 1;
op_info->AddSymbol.Name = name;
return 1;
}
// TODO:
// Second search the external relocation entries of a fully linked image
// (if any) for an entry that matches this segment offset.
// uint64_t seg_offset = (Pc + Offset);
return 0;
} else if (Arch == Triple::arm) {
if (Offset != 0 || (Size != 4 && Size != 2))
return 0;
// First search the section's relocation entries (if any) for an entry
// for this section offset.
uint32_t sect_addr = info->S.getAddress();
uint32_t sect_offset = (Pc + Offset) - sect_addr;
bool reloc_found = false;
DataRefImpl Rel;
MachO::any_relocation_info RE;
bool isExtern = false;
SymbolRef Symbol;
bool r_scattered = false;
uint32_t r_value, pair_r_value, r_type, r_length, other_half;
for (const RelocationRef &Reloc : info->S.relocations()) {
uint64_t RelocOffset;
Reloc.getOffset(RelocOffset);
if (RelocOffset == sect_offset) {
Rel = Reloc.getRawDataRefImpl();
RE = info->O->getRelocation(Rel);
r_length = info->O->getAnyRelocationLength(RE);
r_scattered = info->O->isRelocationScattered(RE);
if (r_scattered) {
r_value = info->O->getScatteredRelocationValue(RE);
r_type = info->O->getScatteredRelocationType(RE);
} else {
r_type = info->O->getAnyRelocationType(RE);
isExtern = info->O->getPlainRelocationExternal(RE);
if (isExtern) {
symbol_iterator RelocSym = Reloc.getSymbol();
Symbol = *RelocSym;
}
}
if (r_type == MachO::ARM_RELOC_HALF ||
r_type == MachO::ARM_RELOC_SECTDIFF ||
r_type == MachO::ARM_RELOC_LOCAL_SECTDIFF ||
r_type == MachO::ARM_RELOC_HALF_SECTDIFF) {
DataRefImpl RelNext = Rel;
info->O->moveRelocationNext(RelNext);
MachO::any_relocation_info RENext;
RENext = info->O->getRelocation(RelNext);
other_half = info->O->getAnyRelocationAddress(RENext) & 0xffff;
if (info->O->isRelocationScattered(RENext))
pair_r_value = info->O->getScatteredRelocationValue(RENext);
}
reloc_found = true;
break;
}
}
if (reloc_found && isExtern) {
StringRef SymName;
Symbol.getName(SymName);
const char *name = SymName.data();
op_info->AddSymbol.Present = 1;
op_info->AddSymbol.Name = name;
switch (r_type) {
case MachO::ARM_RELOC_HALF:
if ((r_length & 0x1) == 1) {
op_info->Value = value << 16 | other_half;
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_HI16;
} else {
op_info->Value = other_half << 16 | value;
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_LO16;
}
break;
default:
break;
}
return 1;
}
// If we have a branch that is not an external relocation entry then
// return 0 so the code in tryAddingSymbolicOperand() can use the
// SymbolLookUp call back with the branch target address to look up the
// symbol and possiblity add an annotation for a symbol stub.
if (reloc_found && isExtern == 0 && (r_type == MachO::ARM_RELOC_BR24 ||
r_type == MachO::ARM_THUMB_RELOC_BR22))
return 0;
uint32_t offset = 0;
if (reloc_found) {
if (r_type == MachO::ARM_RELOC_HALF ||
r_type == MachO::ARM_RELOC_HALF_SECTDIFF) {
if ((r_length & 0x1) == 1)
value = value << 16 | other_half;
else
value = other_half << 16 | value;
}
if (r_scattered && (r_type != MachO::ARM_RELOC_HALF &&
r_type != MachO::ARM_RELOC_HALF_SECTDIFF)) {
offset = value - r_value;
value = r_value;
}
}
if (reloc_found && r_type == MachO::ARM_RELOC_HALF_SECTDIFF) {
if ((r_length & 0x1) == 1)
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_HI16;
else
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_LO16;
const char *add = GuessSymbolName(r_value, info->AddrMap);
const char *sub = GuessSymbolName(pair_r_value, info->AddrMap);
int32_t offset = value - (r_value - pair_r_value);
op_info->AddSymbol.Present = 1;
if (add != nullptr)
op_info->AddSymbol.Name = add;
else
op_info->AddSymbol.Value = r_value;
op_info->SubtractSymbol.Present = 1;
if (sub != nullptr)
op_info->SubtractSymbol.Name = sub;
else
op_info->SubtractSymbol.Value = pair_r_value;
op_info->Value = offset;
return 1;
}
if (reloc_found == false)
return 0;
op_info->AddSymbol.Present = 1;
op_info->Value = offset;
if (reloc_found) {
if (r_type == MachO::ARM_RELOC_HALF) {
if ((r_length & 0x1) == 1)
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_HI16;
else
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_LO16;
}
}
const char *add = GuessSymbolName(value, info->AddrMap);
if (add != nullptr) {
op_info->AddSymbol.Name = add;
return 1;
}
op_info->AddSymbol.Value = value;
return 1;
} else if (Arch == Triple::aarch64) {
if (Offset != 0 || Size != 4)
return 0;
// First search the section's relocation entries (if any) for an entry
// for this section offset.
uint64_t sect_addr = info->S.getAddress();
uint64_t sect_offset = (Pc + Offset) - sect_addr;
bool reloc_found = false;
DataRefImpl Rel;
MachO::any_relocation_info RE;
bool isExtern = false;
SymbolRef Symbol;
uint32_t r_type = 0;
for (const RelocationRef &Reloc : info->S.relocations()) {
uint64_t RelocOffset;
Reloc.getOffset(RelocOffset);
if (RelocOffset == sect_offset) {
Rel = Reloc.getRawDataRefImpl();
RE = info->O->getRelocation(Rel);
r_type = info->O->getAnyRelocationType(RE);
if (r_type == MachO::ARM64_RELOC_ADDEND) {
DataRefImpl RelNext = Rel;
info->O->moveRelocationNext(RelNext);
MachO::any_relocation_info RENext = info->O->getRelocation(RelNext);
if (value == 0) {
value = info->O->getPlainRelocationSymbolNum(RENext);
op_info->Value = value;
}
}
// NOTE: Scattered relocations don't exist on arm64.
isExtern = info->O->getPlainRelocationExternal(RE);
if (isExtern) {
symbol_iterator RelocSym = Reloc.getSymbol();
Symbol = *RelocSym;
}
reloc_found = true;
break;
}
}
if (reloc_found && isExtern) {
StringRef SymName;
Symbol.getName(SymName);
const char *name = SymName.data();
op_info->AddSymbol.Present = 1;
op_info->AddSymbol.Name = name;
switch (r_type) {
case MachO::ARM64_RELOC_PAGE21:
/* @page */
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_PAGE;
break;
case MachO::ARM64_RELOC_PAGEOFF12:
/* @pageoff */
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_PAGEOFF;
break;
case MachO::ARM64_RELOC_GOT_LOAD_PAGE21:
/* @gotpage */
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_GOTPAGE;
break;
case MachO::ARM64_RELOC_GOT_LOAD_PAGEOFF12:
/* @gotpageoff */
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_GOTPAGEOFF;
break;
case MachO::ARM64_RELOC_TLVP_LOAD_PAGE21:
/* @tvlppage is not implemented in llvm-mc */
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_TLVP;
break;
case MachO::ARM64_RELOC_TLVP_LOAD_PAGEOFF12:
/* @tvlppageoff is not implemented in llvm-mc */
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_TLVOFF;
break;
default:
case MachO::ARM64_RELOC_BRANCH26:
op_info->VariantKind = LLVMDisassembler_VariantKind_None;
break;
}
return 1;
}
return 0;
} else {
return 0;
}
}
// GuessCstringPointer is passed the address of what might be a pointer to a
// literal string in a cstring section. If that address is in a cstring section
// it returns a pointer to that string. Else it returns nullptr.
const char *GuessCstringPointer(uint64_t ReferenceValue,
struct DisassembleInfo *info) {
uint32_t LoadCommandCount = info->O->getHeader().ncmds;
MachOObjectFile::LoadCommandInfo Load = info->O->getFirstLoadCommandInfo();
for (unsigned I = 0;; ++I) {
if (Load.C.cmd == MachO::LC_SEGMENT_64) {
MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load);
for (unsigned J = 0; J < Seg.nsects; ++J) {
MachO::section_64 Sec = info->O->getSection64(Load, J);
uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
if (section_type == MachO::S_CSTRING_LITERALS &&
ReferenceValue >= Sec.addr &&
ReferenceValue < Sec.addr + Sec.size) {
uint64_t sect_offset = ReferenceValue - Sec.addr;
uint64_t object_offset = Sec.offset + sect_offset;
StringRef MachOContents = info->O->getData();
uint64_t object_size = MachOContents.size();
const char *object_addr = (const char *)MachOContents.data();
if (object_offset < object_size) {
const char *name = object_addr + object_offset;
return name;
} else {
return nullptr;
}
}
}
} else if (Load.C.cmd == MachO::LC_SEGMENT) {
MachO::segment_command Seg = info->O->getSegmentLoadCommand(Load);
for (unsigned J = 0; J < Seg.nsects; ++J) {
MachO::section Sec = info->O->getSection(Load, J);
uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
if (section_type == MachO::S_CSTRING_LITERALS &&
ReferenceValue >= Sec.addr &&
ReferenceValue < Sec.addr + Sec.size) {
uint64_t sect_offset = ReferenceValue - Sec.addr;
uint64_t object_offset = Sec.offset + sect_offset;
StringRef MachOContents = info->O->getData();
uint64_t object_size = MachOContents.size();
const char *object_addr = (const char *)MachOContents.data();
if (object_offset < object_size) {
const char *name = object_addr + object_offset;
return name;
} else {
return nullptr;
}
}
}
}
if (I == LoadCommandCount - 1)
break;
else
Load = info->O->getNextLoadCommandInfo(Load);
}
return nullptr;
}
// GuessIndirectSymbol returns the name of the indirect symbol for the
// ReferenceValue passed in or nullptr. This is used when ReferenceValue maybe
// an address of a symbol stub or a lazy or non-lazy pointer to associate the
// symbol name being referenced by the stub or pointer.
static const char *GuessIndirectSymbol(uint64_t ReferenceValue,
struct DisassembleInfo *info) {
uint32_t LoadCommandCount = info->O->getHeader().ncmds;
MachOObjectFile::LoadCommandInfo Load = info->O->getFirstLoadCommandInfo();
MachO::dysymtab_command Dysymtab = info->O->getDysymtabLoadCommand();
MachO::symtab_command Symtab = info->O->getSymtabLoadCommand();
for (unsigned I = 0;; ++I) {
if (Load.C.cmd == MachO::LC_SEGMENT_64) {
MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load);
for (unsigned J = 0; J < Seg.nsects; ++J) {
MachO::section_64 Sec = info->O->getSection64(Load, J);
uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
if ((section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
section_type == MachO::S_SYMBOL_STUBS) &&
ReferenceValue >= Sec.addr &&
ReferenceValue < Sec.addr + Sec.size) {
uint32_t stride;
if (section_type == MachO::S_SYMBOL_STUBS)
stride = Sec.reserved2;
else
stride = 8;
if (stride == 0)
return nullptr;
uint32_t index = Sec.reserved1 + (ReferenceValue - Sec.addr) / stride;
if (index < Dysymtab.nindirectsyms) {
uint32_t indirect_symbol =
info->O->getIndirectSymbolTableEntry(Dysymtab, index);
if (indirect_symbol < Symtab.nsyms) {
symbol_iterator Sym = info->O->getSymbolByIndex(indirect_symbol);
SymbolRef Symbol = *Sym;
StringRef SymName;
Symbol.getName(SymName);
const char *name = SymName.data();
return name;
}
}
}
}
} else if (Load.C.cmd == MachO::LC_SEGMENT) {
MachO::segment_command Seg = info->O->getSegmentLoadCommand(Load);
for (unsigned J = 0; J < Seg.nsects; ++J) {
MachO::section Sec = info->O->getSection(Load, J);
uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
if ((section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
section_type == MachO::S_SYMBOL_STUBS) &&
ReferenceValue >= Sec.addr &&
ReferenceValue < Sec.addr + Sec.size) {
uint32_t stride;
if (section_type == MachO::S_SYMBOL_STUBS)
stride = Sec.reserved2;
else
stride = 4;
if (stride == 0)
return nullptr;
uint32_t index = Sec.reserved1 + (ReferenceValue - Sec.addr) / stride;
if (index < Dysymtab.nindirectsyms) {
uint32_t indirect_symbol =
info->O->getIndirectSymbolTableEntry(Dysymtab, index);
if (indirect_symbol < Symtab.nsyms) {
symbol_iterator Sym = info->O->getSymbolByIndex(indirect_symbol);
SymbolRef Symbol = *Sym;
StringRef SymName;
Symbol.getName(SymName);
const char *name = SymName.data();
return name;
}
}
}
}
}
if (I == LoadCommandCount - 1)
break;
else
Load = info->O->getNextLoadCommandInfo(Load);
}
return nullptr;
}
// method_reference() is called passing it the ReferenceName that might be
// a reference it to an Objective-C method call. If so then it allocates and
// assembles a method call string with the values last seen and saved in
// the DisassembleInfo's class_name and selector_name fields. This is saved
// into the method field of the info and any previous string is free'ed.
// Then the class_name field in the info is set to nullptr. The method call
// string is set into ReferenceName and ReferenceType is set to
// LLVMDisassembler_ReferenceType_Out_Objc_Message. If this not a method call
// then both ReferenceType and ReferenceName are left unchanged.
static void method_reference(struct DisassembleInfo *info,
uint64_t *ReferenceType,
const char **ReferenceName) {
unsigned int Arch = info->O->getArch();
if (*ReferenceName != nullptr) {
if (strcmp(*ReferenceName, "_objc_msgSend") == 0) {
if (info->selector_name != nullptr) {
if (info->method != nullptr)
free(info->method);
if (info->class_name != nullptr) {
info->method = (char *)malloc(5 + strlen(info->class_name) +
strlen(info->selector_name));
if (info->method != nullptr) {
strcpy(info->method, "+[");
strcat(info->method, info->class_name);
strcat(info->method, " ");
strcat(info->method, info->selector_name);
strcat(info->method, "]");
*ReferenceName = info->method;
*ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message;
}
} else {
info->method = (char *)malloc(9 + strlen(info->selector_name));
if (info->method != nullptr) {
if (Arch == Triple::x86_64)
strcpy(info->method, "-[%rdi ");
else if (Arch == Triple::aarch64)
strcpy(info->method, "-[x0 ");
else
strcpy(info->method, "-[r? ");
strcat(info->method, info->selector_name);
strcat(info->method, "]");
*ReferenceName = info->method;
*ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message;
}
}
info->class_name = nullptr;
}
} else if (strcmp(*ReferenceName, "_objc_msgSendSuper2") == 0) {
if (info->selector_name != nullptr) {
if (info->method != nullptr)
free(info->method);
info->method = (char *)malloc(17 + strlen(info->selector_name));
if (info->method != nullptr) {
if (Arch == Triple::x86_64)
strcpy(info->method, "-[[%rdi super] ");
else if (Arch == Triple::aarch64)
strcpy(info->method, "-[[x0 super] ");
else
strcpy(info->method, "-[[r? super] ");
strcat(info->method, info->selector_name);
strcat(info->method, "]");
*ReferenceName = info->method;
*ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message;
}
info->class_name = nullptr;
}
}
}
}
// GuessPointerPointer() is passed the address of what might be a pointer to
// a reference to an Objective-C class, selector, message ref or cfstring.
// If so the value of the pointer is returned and one of the booleans are set
// to true. If not zero is returned and all the booleans are set to false.
static uint64_t GuessPointerPointer(uint64_t ReferenceValue,
struct DisassembleInfo *info,
bool &classref, bool &selref, bool &msgref,
bool &cfstring) {
classref = false;
selref = false;
msgref = false;
cfstring = false;
uint32_t LoadCommandCount = info->O->getHeader().ncmds;
MachOObjectFile::LoadCommandInfo Load = info->O->getFirstLoadCommandInfo();
for (unsigned I = 0;; ++I) {
if (Load.C.cmd == MachO::LC_SEGMENT_64) {
MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load);
for (unsigned J = 0; J < Seg.nsects; ++J) {
MachO::section_64 Sec = info->O->getSection64(Load, J);
if ((strncmp(Sec.sectname, "__objc_selrefs", 16) == 0 ||
strncmp(Sec.sectname, "__objc_classrefs", 16) == 0 ||
strncmp(Sec.sectname, "__objc_superrefs", 16) == 0 ||
strncmp(Sec.sectname, "__objc_msgrefs", 16) == 0 ||
strncmp(Sec.sectname, "__cfstring", 16) == 0) &&
ReferenceValue >= Sec.addr &&
ReferenceValue < Sec.addr + Sec.size) {
uint64_t sect_offset = ReferenceValue - Sec.addr;
uint64_t object_offset = Sec.offset + sect_offset;
StringRef MachOContents = info->O->getData();
uint64_t object_size = MachOContents.size();
const char *object_addr = (const char *)MachOContents.data();
if (object_offset < object_size) {
uint64_t pointer_value;
memcpy(&pointer_value, object_addr + object_offset,
sizeof(uint64_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(pointer_value);
if (strncmp(Sec.sectname, "__objc_selrefs", 16) == 0)
selref = true;
else if (strncmp(Sec.sectname, "__objc_classrefs", 16) == 0 ||
strncmp(Sec.sectname, "__objc_superrefs", 16) == 0)
classref = true;
else if (strncmp(Sec.sectname, "__objc_msgrefs", 16) == 0 &&
ReferenceValue + 8 < Sec.addr + Sec.size) {
msgref = true;
memcpy(&pointer_value, object_addr + object_offset + 8,
sizeof(uint64_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(pointer_value);
} else if (strncmp(Sec.sectname, "__cfstring", 16) == 0)
cfstring = true;
return pointer_value;
} else {
return 0;
}
}
}
}
// TODO: Look for LC_SEGMENT for 32-bit Mach-O files.
if (I == LoadCommandCount - 1)
break;
else
Load = info->O->getNextLoadCommandInfo(Load);
}
return 0;
}
// get_pointer_64 returns a pointer to the bytes in the object file at the
// Address from a section in the Mach-O file. And indirectly returns the
// offset into the section, number of bytes left in the section past the offset
// and which section is was being referenced. If the Address is not in a
// section nullptr is returned.
const char *get_pointer_64(uint64_t Address, uint32_t &offset, uint32_t &left,
SectionRef &S, DisassembleInfo *info) {
offset = 0;
left = 0;
S = SectionRef();
for (unsigned SectIdx = 0; SectIdx != info->Sections->size(); SectIdx++) {
uint64_t SectAddress = ((*(info->Sections))[SectIdx]).getAddress();
uint64_t SectSize = ((*(info->Sections))[SectIdx]).getSize();
if (Address >= SectAddress && Address < SectAddress + SectSize) {
S = (*(info->Sections))[SectIdx];
offset = Address - SectAddress;
left = SectSize - offset;
StringRef SectContents;
((*(info->Sections))[SectIdx]).getContents(SectContents);
return SectContents.data() + offset;
}
}
return nullptr;
}
// get_symbol_64() returns the name of a symbol (or nullptr) and the address of
// the symbol indirectly through n_value. Based on the relocation information
// for the specified section offset in the specified section reference.
const char *get_symbol_64(uint32_t sect_offset, SectionRef S,
DisassembleInfo *info, uint64_t &n_value) {
n_value = 0;
if (info->verbose == false)
return nullptr;
// See if there is an external relocation entry at the sect_offset.
bool reloc_found = false;
DataRefImpl Rel;
MachO::any_relocation_info RE;
bool isExtern = false;
SymbolRef Symbol;
for (const RelocationRef &Reloc : S.relocations()) {
uint64_t RelocOffset;
Reloc.getOffset(RelocOffset);
if (RelocOffset == sect_offset) {
Rel = Reloc.getRawDataRefImpl();
RE = info->O->getRelocation(Rel);
if (info->O->isRelocationScattered(RE))
continue;
isExtern = info->O->getPlainRelocationExternal(RE);
if (isExtern) {
symbol_iterator RelocSym = Reloc.getSymbol();
Symbol = *RelocSym;
}
reloc_found = true;
break;
}
}
// If there is an external relocation entry for a symbol in this section
// at this section_offset then use that symbol's value for the n_value
// and return its name.
const char *SymbolName = nullptr;
if (reloc_found && isExtern) {
Symbol.getAddress(n_value);
StringRef name;
Symbol.getName(name);
if (!name.empty()) {
SymbolName = name.data();
return SymbolName;
}
}
// TODO: For fully linked images, look through the external relocation
// entries off the dynamic symtab command. For these the r_offset is from the
// start of the first writeable segment in the Mach-O file. So the offset
// to this section from that segment is passed to this routine by the caller,
// as the database_offset. Which is the difference of the section's starting
// address and the first writable segment.
//
// NOTE: need add passing the database_offset to this routine.
// TODO: We did not find an external relocation entry so look up the
// ReferenceValue as an address of a symbol and if found return that symbol's
// name.
//
// NOTE: need add passing the ReferenceValue to this routine. Then that code
// would simply be this:
// SymbolName = GuessSymbolName(ReferenceValue, info->AddrMap);
return SymbolName;
}
// These are structs in the Objective-C meta data and read to produce the
// comments for disassembly. While these are part of the ABI they are no
// public defintions. So the are here not in include/llvm/Support/MachO.h .
// The cfstring object in a 64-bit Mach-O file.
struct cfstring64_t {
uint64_t isa; // class64_t * (64-bit pointer)
uint64_t flags; // flag bits
uint64_t characters; // char * (64-bit pointer)
uint64_t length; // number of non-NULL characters in above
};
// The class object in a 64-bit Mach-O file.
struct class64_t {
uint64_t isa; // class64_t * (64-bit pointer)
uint64_t superclass; // class64_t * (64-bit pointer)
uint64_t cache; // Cache (64-bit pointer)
uint64_t vtable; // IMP * (64-bit pointer)
uint64_t data; // class_ro64_t * (64-bit pointer)
};
struct class_ro64_t {
uint32_t flags;
uint32_t instanceStart;
uint32_t instanceSize;
uint32_t reserved;
uint64_t ivarLayout; // const uint8_t * (64-bit pointer)
uint64_t name; // const char * (64-bit pointer)
uint64_t baseMethods; // const method_list_t * (64-bit pointer)
uint64_t baseProtocols; // const protocol_list_t * (64-bit pointer)
uint64_t ivars; // const ivar_list_t * (64-bit pointer)
uint64_t weakIvarLayout; // const uint8_t * (64-bit pointer)
uint64_t baseProperties; // const struct objc_property_list (64-bit pointer)
};
inline void swapStruct(struct cfstring64_t &cfs) {
sys::swapByteOrder(cfs.isa);
sys::swapByteOrder(cfs.flags);
sys::swapByteOrder(cfs.characters);
sys::swapByteOrder(cfs.length);
}
inline void swapStruct(struct class64_t &c) {
sys::swapByteOrder(c.isa);
sys::swapByteOrder(c.superclass);
sys::swapByteOrder(c.cache);
sys::swapByteOrder(c.vtable);
sys::swapByteOrder(c.data);
}
inline void swapStruct(struct class_ro64_t &cro) {
sys::swapByteOrder(cro.flags);
sys::swapByteOrder(cro.instanceStart);
sys::swapByteOrder(cro.instanceSize);
sys::swapByteOrder(cro.reserved);
sys::swapByteOrder(cro.ivarLayout);
sys::swapByteOrder(cro.name);
sys::swapByteOrder(cro.baseMethods);
sys::swapByteOrder(cro.baseProtocols);
sys::swapByteOrder(cro.ivars);
sys::swapByteOrder(cro.weakIvarLayout);
sys::swapByteOrder(cro.baseProperties);
}
static const char *get_dyld_bind_info_symbolname(uint64_t ReferenceValue,
struct DisassembleInfo *info);
// get_objc2_64bit_class_name() is used for disassembly and is passed a pointer
// to an Objective-C class and returns the class name. It is also passed the
// address of the pointer, so when the pointer is zero as it can be in an .o
// file, that is used to look for an external relocation entry with a symbol
// name.
const char *get_objc2_64bit_class_name(uint64_t pointer_value,
uint64_t ReferenceValue,
struct DisassembleInfo *info) {
const char *r;
uint32_t offset, left;
SectionRef S;
// The pointer_value can be 0 in an object file and have a relocation
// entry for the class symbol at the ReferenceValue (the address of the
// pointer).
if (pointer_value == 0) {
r = get_pointer_64(ReferenceValue, offset, left, S, info);
if (r == nullptr || left < sizeof(uint64_t))
return nullptr;
uint64_t n_value;
const char *symbol_name = get_symbol_64(offset, S, info, n_value);
if (symbol_name == nullptr)
return nullptr;
const char *class_name = strrchr(symbol_name, '$');
if (class_name != nullptr && class_name[1] == '_' && class_name[2] != '\0')
return class_name + 2;
else
return nullptr;
}
// The case were the pointer_value is non-zero and points to a class defined
// in this Mach-O file.
r = get_pointer_64(pointer_value, offset, left, S, info);
if (r == nullptr || left < sizeof(struct class64_t))
return nullptr;
struct class64_t c;
memcpy(&c, r, sizeof(struct class64_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(c);
if (c.data == 0)
return nullptr;
r = get_pointer_64(c.data, offset, left, S, info);
if (r == nullptr || left < sizeof(struct class_ro64_t))
return nullptr;
struct class_ro64_t cro;
memcpy(&cro, r, sizeof(struct class_ro64_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(cro);
if (cro.name == 0)
return nullptr;
const char *name = get_pointer_64(cro.name, offset, left, S, info);
return name;
}
// get_objc2_64bit_cfstring_name is used for disassembly and is passed a
// pointer to a cfstring and returns its name or nullptr.
const char *get_objc2_64bit_cfstring_name(uint64_t ReferenceValue,
struct DisassembleInfo *info) {
const char *r, *name;
uint32_t offset, left;
SectionRef S;
struct cfstring64_t cfs;
uint64_t cfs_characters;
r = get_pointer_64(ReferenceValue, offset, left, S, info);
if (r == nullptr || left < sizeof(struct cfstring64_t))
return nullptr;
memcpy(&cfs, r, sizeof(struct cfstring64_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(cfs);
if (cfs.characters == 0) {
uint64_t n_value;
const char *symbol_name = get_symbol_64(
offset + offsetof(struct cfstring64_t, characters), S, info, n_value);
if (symbol_name == nullptr)
return nullptr;
cfs_characters = n_value;
} else
cfs_characters = cfs.characters;
name = get_pointer_64(cfs_characters, offset, left, S, info);
return name;
}
// get_objc2_64bit_selref() is used for disassembly and is passed a the address
// of a pointer to an Objective-C selector reference when the pointer value is
// zero as in a .o file and is likely to have a external relocation entry with
// who's symbol's n_value is the real pointer to the selector name. If that is
// the case the real pointer to the selector name is returned else 0 is
// returned
uint64_t get_objc2_64bit_selref(uint64_t ReferenceValue,
struct DisassembleInfo *info) {
uint32_t offset, left;
SectionRef S;
const char *r = get_pointer_64(ReferenceValue, offset, left, S, info);
if (r == nullptr || left < sizeof(uint64_t))
return 0;
uint64_t n_value;
const char *symbol_name = get_symbol_64(offset, S, info, n_value);
if (symbol_name == nullptr)
return 0;
return n_value;
}
// GuessLiteralPointer returns a string which for the item in the Mach-O file
// for the address passed in as ReferenceValue for printing as a comment with
// the instruction and also returns the corresponding type of that item
// indirectly through ReferenceType.
//
// If ReferenceValue is an address of literal cstring then a pointer to the
// cstring is returned and ReferenceType is set to
// LLVMDisassembler_ReferenceType_Out_LitPool_CstrAddr .
//
// If ReferenceValue is an address of an Objective-C CFString, Selector ref or
// Class ref that name is returned and the ReferenceType is set accordingly.
//
// Lastly, literals which are Symbol address in a literal pool are looked for
// and if found the symbol name is returned and ReferenceType is set to
// LLVMDisassembler_ReferenceType_Out_LitPool_SymAddr .
//
// If there is no item in the Mach-O file for the address passed in as
// ReferenceValue nullptr is returned and ReferenceType is unchanged.
const char *GuessLiteralPointer(uint64_t ReferenceValue, uint64_t ReferencePC,
uint64_t *ReferenceType,
struct DisassembleInfo *info) {
// First see if there is an external relocation entry at the ReferencePC.
uint64_t sect_addr = info->S.getAddress();
uint64_t sect_offset = ReferencePC - sect_addr;
bool reloc_found = false;
DataRefImpl Rel;
MachO::any_relocation_info RE;
bool isExtern = false;
SymbolRef Symbol;
for (const RelocationRef &Reloc : info->S.relocations()) {
uint64_t RelocOffset;
Reloc.getOffset(RelocOffset);
if (RelocOffset == sect_offset) {
Rel = Reloc.getRawDataRefImpl();
RE = info->O->getRelocation(Rel);
if (info->O->isRelocationScattered(RE))
continue;
isExtern = info->O->getPlainRelocationExternal(RE);
if (isExtern) {
symbol_iterator RelocSym = Reloc.getSymbol();
Symbol = *RelocSym;
}
reloc_found = true;
break;
}
}
// If there is an external relocation entry for a symbol in a section
// then used that symbol's value for the value of the reference.
if (reloc_found && isExtern) {
if (info->O->getAnyRelocationPCRel(RE)) {
unsigned Type = info->O->getAnyRelocationType(RE);
if (Type == MachO::X86_64_RELOC_SIGNED) {
Symbol.getAddress(ReferenceValue);
}
}
}
// Look for literals such as Objective-C CFStrings refs, Selector refs,
// Message refs and Class refs.
bool classref, selref, msgref, cfstring;
uint64_t pointer_value = GuessPointerPointer(ReferenceValue, info, classref,
selref, msgref, cfstring);
if (classref == true && pointer_value == 0) {
// Note the ReferenceValue is a pointer into the __objc_classrefs section.
// And the pointer_value in that section is typically zero as it will be
// set by dyld as part of the "bind information".
const char *name = get_dyld_bind_info_symbolname(ReferenceValue, info);
if (name != nullptr) {
*ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Class_Ref;
const char *class_name = strrchr(name, '$');
if (class_name != nullptr && class_name[1] == '_' &&
class_name[2] != '\0') {
info->class_name = class_name + 2;
return name;
}
}
}
if (classref == true) {
*ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Class_Ref;
const char *name =
get_objc2_64bit_class_name(pointer_value, ReferenceValue, info);
if (name != nullptr)
info->class_name = name;
else
name = "bad class ref";
return name;
}
if (cfstring == true) {
*ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_CFString_Ref;
const char *name = get_objc2_64bit_cfstring_name(ReferenceValue, info);
return name;
}
if (selref == true && pointer_value == 0)
pointer_value = get_objc2_64bit_selref(ReferenceValue, info);
if (pointer_value != 0)
ReferenceValue = pointer_value;
const char *name = GuessCstringPointer(ReferenceValue, info);
if (name) {
if (pointer_value != 0 && selref == true) {
*ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Selector_Ref;
info->selector_name = name;
} else if (pointer_value != 0 && msgref == true) {
info->class_name = nullptr;
*ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message_Ref;
info->selector_name = name;
} else
*ReferenceType = LLVMDisassembler_ReferenceType_Out_LitPool_CstrAddr;
return name;
}
// Lastly look for an indirect symbol with this ReferenceValue which is in
// a literal pool. If found return that symbol name.
name = GuessIndirectSymbol(ReferenceValue, info);
if (name) {
*ReferenceType = LLVMDisassembler_ReferenceType_Out_LitPool_SymAddr;
return name;
}
return nullptr;
}
// SymbolizerSymbolLookUp is the symbol lookup function passed when creating
// the Symbolizer. It looks up the ReferenceValue using the info passed via the
// pointer to the struct DisassembleInfo that was passed when MCSymbolizer
// is created and returns the symbol name that matches the ReferenceValue or
// nullptr if none. The ReferenceType is passed in for the IN type of
// reference the instruction is making from the values in defined in the header
// "llvm-c/Disassembler.h". On return the ReferenceType can set to a specific
// Out type and the ReferenceName will also be set which is added as a comment
// to the disassembled instruction.
//
#if HAVE_CXXABI_H
// If the symbol name is a C++ mangled name then the demangled name is
// returned through ReferenceName and ReferenceType is set to
// LLVMDisassembler_ReferenceType_DeMangled_Name .
#endif
//
// When this is called to get a symbol name for a branch target then the
// ReferenceType will be LLVMDisassembler_ReferenceType_In_Branch and then
// SymbolValue will be looked for in the indirect symbol table to determine if
// it is an address for a symbol stub. If so then the symbol name for that
// stub is returned indirectly through ReferenceName and then ReferenceType is
// set to LLVMDisassembler_ReferenceType_Out_SymbolStub.
//
// When this is called with an value loaded via a PC relative load then
// ReferenceType will be LLVMDisassembler_ReferenceType_In_PCrel_Load then the
// SymbolValue is checked to be an address of literal pointer, symbol pointer,
// or an Objective-C meta data reference. If so the output ReferenceType is
// set to correspond to that as well as setting the ReferenceName.
const char *SymbolizerSymbolLookUp(void *DisInfo, uint64_t ReferenceValue,
uint64_t *ReferenceType,
uint64_t ReferencePC,
const char **ReferenceName) {
struct DisassembleInfo *info = (struct DisassembleInfo *)DisInfo;
// If no verbose symbolic information is wanted then just return nullptr.
if (info->verbose == false) {
*ReferenceName = nullptr;
*ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
return nullptr;
}
const char *SymbolName = GuessSymbolName(ReferenceValue, info->AddrMap);
if (*ReferenceType == LLVMDisassembler_ReferenceType_In_Branch) {
*ReferenceName = GuessIndirectSymbol(ReferenceValue, info);
if (*ReferenceName != nullptr) {
method_reference(info, ReferenceType, ReferenceName);
if (*ReferenceType != LLVMDisassembler_ReferenceType_Out_Objc_Message)
*ReferenceType = LLVMDisassembler_ReferenceType_Out_SymbolStub;
} else
#if HAVE_CXXABI_H
if (SymbolName != nullptr && strncmp(SymbolName, "__Z", 3) == 0) {
if (info->demangled_name != nullptr)
free(info->demangled_name);
int status;
info->demangled_name =
abi::__cxa_demangle(SymbolName + 1, nullptr, nullptr, &status);
if (info->demangled_name != nullptr) {
*ReferenceName = info->demangled_name;
*ReferenceType = LLVMDisassembler_ReferenceType_DeMangled_Name;
} else
*ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
} else
#endif
*ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
} else if (*ReferenceType == LLVMDisassembler_ReferenceType_In_PCrel_Load) {
*ReferenceName =
GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
if (*ReferenceName)
method_reference(info, ReferenceType, ReferenceName);
else
*ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
// If this is arm64 and the reference is an adrp instruction save the
// instruction, passed in ReferenceValue and the address of the instruction
// for use later if we see and add immediate instruction.
} else if (info->O->getArch() == Triple::aarch64 &&
*ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_ADRP) {
info->adrp_inst = ReferenceValue;
info->adrp_addr = ReferencePC;
SymbolName = nullptr;
*ReferenceName = nullptr;
*ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
// If this is arm64 and reference is an add immediate instruction and we
// have
// seen an adrp instruction just before it and the adrp's Xd register
// matches
// this add's Xn register reconstruct the value being referenced and look to
// see if it is a literal pointer. Note the add immediate instruction is
// passed in ReferenceValue.
} else if (info->O->getArch() == Triple::aarch64 &&
*ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_ADDXri &&
ReferencePC - 4 == info->adrp_addr &&
(info->adrp_inst & 0x9f000000) == 0x90000000 &&
(info->adrp_inst & 0x1f) == ((ReferenceValue >> 5) & 0x1f)) {
uint32_t addxri_inst;
uint64_t adrp_imm, addxri_imm;
adrp_imm =
((info->adrp_inst & 0x00ffffe0) >> 3) | ((info->adrp_inst >> 29) & 0x3);
if (info->adrp_inst & 0x0200000)
adrp_imm |= 0xfffffffffc000000LL;
addxri_inst = ReferenceValue;
addxri_imm = (addxri_inst >> 10) & 0xfff;
if (((addxri_inst >> 22) & 0x3) == 1)
addxri_imm <<= 12;
ReferenceValue = (info->adrp_addr & 0xfffffffffffff000LL) +
(adrp_imm << 12) + addxri_imm;
*ReferenceName =
GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
if (*ReferenceName == nullptr)
*ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
// If this is arm64 and the reference is a load register instruction and we
// have seen an adrp instruction just before it and the adrp's Xd register
// matches this add's Xn register reconstruct the value being referenced and
// look to see if it is a literal pointer. Note the load register
// instruction is passed in ReferenceValue.
} else if (info->O->getArch() == Triple::aarch64 &&
*ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_LDRXui &&
ReferencePC - 4 == info->adrp_addr &&
(info->adrp_inst & 0x9f000000) == 0x90000000 &&
(info->adrp_inst & 0x1f) == ((ReferenceValue >> 5) & 0x1f)) {
uint32_t ldrxui_inst;
uint64_t adrp_imm, ldrxui_imm;
adrp_imm =
((info->adrp_inst & 0x00ffffe0) >> 3) | ((info->adrp_inst >> 29) & 0x3);
if (info->adrp_inst & 0x0200000)
adrp_imm |= 0xfffffffffc000000LL;
ldrxui_inst = ReferenceValue;
ldrxui_imm = (ldrxui_inst >> 10) & 0xfff;
ReferenceValue = (info->adrp_addr & 0xfffffffffffff000LL) +
(adrp_imm << 12) + (ldrxui_imm << 3);
*ReferenceName =
GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
if (*ReferenceName == nullptr)
*ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
}
// If this arm64 and is an load register (PC-relative) instruction the
// ReferenceValue is the PC plus the immediate value.
else if (info->O->getArch() == Triple::aarch64 &&
(*ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_LDRXl ||
*ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_ADR)) {
*ReferenceName =
GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
if (*ReferenceName == nullptr)
*ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
}
#if HAVE_CXXABI_H
else if (SymbolName != nullptr && strncmp(SymbolName, "__Z", 3) == 0) {
if (info->demangled_name != nullptr)
free(info->demangled_name);
int status;
info->demangled_name =
abi::__cxa_demangle(SymbolName + 1, nullptr, nullptr, &status);
if (info->demangled_name != nullptr) {
*ReferenceName = info->demangled_name;
*ReferenceType = LLVMDisassembler_ReferenceType_DeMangled_Name;
}
}
#endif
else {
*ReferenceName = nullptr;
*ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
}
return SymbolName;
}
/// \brief Emits the comments that are stored in the CommentStream.
/// Each comment in the CommentStream must end with a newline.
static void emitComments(raw_svector_ostream &CommentStream,
SmallString<128> &CommentsToEmit,
formatted_raw_ostream &FormattedOS,
const MCAsmInfo &MAI) {
// Flush the stream before taking its content.
CommentStream.flush();
StringRef Comments = CommentsToEmit.str();
// Get the default information for printing a comment.
const char *CommentBegin = MAI.getCommentString();
unsigned CommentColumn = MAI.getCommentColumn();
bool IsFirst = true;
while (!Comments.empty()) {
if (!IsFirst)
FormattedOS << '\n';
// Emit a line of comments.
FormattedOS.PadToColumn(CommentColumn);
size_t Position = Comments.find('\n');
FormattedOS << CommentBegin << ' ' << Comments.substr(0, Position);
// Move after the newline character.
Comments = Comments.substr(Position + 1);
IsFirst = false;
}
FormattedOS.flush();
// Tell the comment stream that the vector changed underneath it.
CommentsToEmit.clear();
CommentStream.resync();
}
static void DisassembleMachO(StringRef Filename, MachOObjectFile *MachOOF,
StringRef DisSegName, StringRef DisSectName) {
const char *McpuDefault = nullptr;
const Target *ThumbTarget = nullptr;
const Target *TheTarget = GetTarget(MachOOF, &McpuDefault, &ThumbTarget);
if (!TheTarget) {
// GetTarget prints out stuff.
return;
}
if (MCPU.empty() && McpuDefault)
MCPU = McpuDefault;
std::unique_ptr<const MCInstrInfo> InstrInfo(TheTarget->createMCInstrInfo());
std::unique_ptr<const MCInstrInfo> ThumbInstrInfo;
if (ThumbTarget)
ThumbInstrInfo.reset(ThumbTarget->createMCInstrInfo());
// Package up features to be passed to target/subtarget
std::string FeaturesStr;
if (MAttrs.size()) {
SubtargetFeatures Features;
for (unsigned i = 0; i != MAttrs.size(); ++i)
Features.AddFeature(MAttrs[i]);
FeaturesStr = Features.getString();
}
// Set up disassembler.
std::unique_ptr<const MCRegisterInfo> MRI(
TheTarget->createMCRegInfo(TripleName));
std::unique_ptr<const MCAsmInfo> AsmInfo(
TheTarget->createMCAsmInfo(*MRI, TripleName));
std::unique_ptr<const MCSubtargetInfo> STI(
TheTarget->createMCSubtargetInfo(TripleName, MCPU, FeaturesStr));
MCContext Ctx(AsmInfo.get(), MRI.get(), nullptr);
std::unique_ptr<MCDisassembler> DisAsm(
TheTarget->createMCDisassembler(*STI, Ctx));
std::unique_ptr<MCSymbolizer> Symbolizer;
struct DisassembleInfo SymbolizerInfo;
std::unique_ptr<MCRelocationInfo> RelInfo(
TheTarget->createMCRelocationInfo(TripleName, Ctx));
if (RelInfo) {
Symbolizer.reset(TheTarget->createMCSymbolizer(
TripleName, SymbolizerGetOpInfo, SymbolizerSymbolLookUp,
&SymbolizerInfo, &Ctx, std::move(RelInfo)));
DisAsm->setSymbolizer(std::move(Symbolizer));
}
int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
AsmPrinterVariant, *AsmInfo, *InstrInfo, *MRI, *STI));
// Set the display preference for hex vs. decimal immediates.
IP->setPrintImmHex(PrintImmHex);
// Comment stream and backing vector.
SmallString<128> CommentsToEmit;
raw_svector_ostream CommentStream(CommentsToEmit);
// FIXME: Setting the CommentStream in the InstPrinter is problematic in that
// if it is done then arm64 comments for string literals don't get printed
// and some constant get printed instead and not setting it causes intel
// (32-bit and 64-bit) comments printed with different spacing before the
// comment causing different diffs with the 'C' disassembler library API.
// IP->setCommentStream(CommentStream);
if (!AsmInfo || !STI || !DisAsm || !IP) {
errs() << "error: couldn't initialize disassembler for target "
<< TripleName << '\n';
return;
}
// Set up thumb disassembler.
std::unique_ptr<const MCRegisterInfo> ThumbMRI;
std::unique_ptr<const MCAsmInfo> ThumbAsmInfo;
std::unique_ptr<const MCSubtargetInfo> ThumbSTI;
std::unique_ptr<MCDisassembler> ThumbDisAsm;
std::unique_ptr<MCInstPrinter> ThumbIP;
std::unique_ptr<MCContext> ThumbCtx;
std::unique_ptr<MCSymbolizer> ThumbSymbolizer;
struct DisassembleInfo ThumbSymbolizerInfo;
std::unique_ptr<MCRelocationInfo> ThumbRelInfo;
if (ThumbTarget) {
ThumbMRI.reset(ThumbTarget->createMCRegInfo(ThumbTripleName));
ThumbAsmInfo.reset(
ThumbTarget->createMCAsmInfo(*ThumbMRI, ThumbTripleName));
ThumbSTI.reset(
ThumbTarget->createMCSubtargetInfo(ThumbTripleName, MCPU, FeaturesStr));
ThumbCtx.reset(new MCContext(ThumbAsmInfo.get(), ThumbMRI.get(), nullptr));
ThumbDisAsm.reset(ThumbTarget->createMCDisassembler(*ThumbSTI, *ThumbCtx));
MCContext *PtrThumbCtx = ThumbCtx.get();
ThumbRelInfo.reset(
ThumbTarget->createMCRelocationInfo(ThumbTripleName, *PtrThumbCtx));
if (ThumbRelInfo) {
ThumbSymbolizer.reset(ThumbTarget->createMCSymbolizer(
ThumbTripleName, SymbolizerGetOpInfo, SymbolizerSymbolLookUp,
&ThumbSymbolizerInfo, PtrThumbCtx, std::move(ThumbRelInfo)));
ThumbDisAsm->setSymbolizer(std::move(ThumbSymbolizer));
}
int ThumbAsmPrinterVariant = ThumbAsmInfo->getAssemblerDialect();
ThumbIP.reset(ThumbTarget->createMCInstPrinter(
ThumbAsmPrinterVariant, *ThumbAsmInfo, *ThumbInstrInfo, *ThumbMRI,
*ThumbSTI));
// Set the display preference for hex vs. decimal immediates.
ThumbIP->setPrintImmHex(PrintImmHex);
}
if (ThumbTarget && (!ThumbAsmInfo || !ThumbSTI || !ThumbDisAsm || !ThumbIP)) {
errs() << "error: couldn't initialize disassembler for target "
<< ThumbTripleName << '\n';
return;
}
MachO::mach_header Header = MachOOF->getHeader();
// FIXME: Using the -cfg command line option, this code used to be able to
// annotate relocations with the referenced symbol's name, and if this was
// inside a __[cf]string section, the data it points to. This is now replaced
// by the upcoming MCSymbolizer, which needs the appropriate setup done above.
std::vector<SectionRef> Sections;
std::vector<SymbolRef> Symbols;
SmallVector<uint64_t, 8> FoundFns;
uint64_t BaseSegmentAddress;
getSectionsAndSymbols(Header, MachOOF, Sections, Symbols, FoundFns,
BaseSegmentAddress);
// Sort the symbols by address, just in case they didn't come in that way.
std::sort(Symbols.begin(), Symbols.end(), SymbolSorter());
// Build a data in code table that is sorted on by the address of each entry.
uint64_t BaseAddress = 0;
if (Header.filetype == MachO::MH_OBJECT)
BaseAddress = Sections[0].getAddress();
else
BaseAddress = BaseSegmentAddress;
DiceTable Dices;
for (dice_iterator DI = MachOOF->begin_dices(), DE = MachOOF->end_dices();
DI != DE; ++DI) {
uint32_t Offset;
DI->getOffset(Offset);
Dices.push_back(std::make_pair(BaseAddress + Offset, *DI));
}
array_pod_sort(Dices.begin(), Dices.end());
#ifndef NDEBUG
raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
#else
raw_ostream &DebugOut = nulls();
#endif
std::unique_ptr<DIContext> diContext;
ObjectFile *DbgObj = MachOOF;
// Try to find debug info and set up the DIContext for it.
if (UseDbg) {
// A separate DSym file path was specified, parse it as a macho file,
// get the sections and supply it to the section name parsing machinery.
if (!DSYMFile.empty()) {
ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr =
MemoryBuffer::getFileOrSTDIN(DSYMFile);
if (std::error_code EC = BufOrErr.getError()) {
errs() << "llvm-objdump: " << Filename << ": " << EC.message() << '\n';
return;
}
DbgObj =
ObjectFile::createMachOObjectFile(BufOrErr.get()->getMemBufferRef())
.get()
.release();
}
// Setup the DIContext
diContext.reset(DIContext::getDWARFContext(*DbgObj));
}
if (DumpSections.size() == 0)
outs() << "(" << DisSegName << "," << DisSectName << ") section\n";
for (unsigned SectIdx = 0; SectIdx != Sections.size(); SectIdx++) {
StringRef SectName;
if (Sections[SectIdx].getName(SectName) || SectName != DisSectName)
continue;
DataRefImpl DR = Sections[SectIdx].getRawDataRefImpl();
StringRef SegmentName = MachOOF->getSectionFinalSegmentName(DR);
if (SegmentName != DisSegName)
continue;
StringRef BytesStr;
Sections[SectIdx].getContents(BytesStr);
ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()),
BytesStr.size());
uint64_t SectAddress = Sections[SectIdx].getAddress();
bool symbolTableWorked = false;
// Parse relocations.
std::vector<std::pair<uint64_t, SymbolRef>> Relocs;
for (const RelocationRef &Reloc : Sections[SectIdx].relocations()) {
uint64_t RelocOffset;
Reloc.getOffset(RelocOffset);
uint64_t SectionAddress = Sections[SectIdx].getAddress();
RelocOffset -= SectionAddress;
symbol_iterator RelocSym = Reloc.getSymbol();
Relocs.push_back(std::make_pair(RelocOffset, *RelocSym));
}
array_pod_sort(Relocs.begin(), Relocs.end());
// Create a map of symbol addresses to symbol names for use by
// the SymbolizerSymbolLookUp() routine.
SymbolAddressMap AddrMap;
for (const SymbolRef &Symbol : MachOOF->symbols()) {
SymbolRef::Type ST;
Symbol.getType(ST);
if (ST == SymbolRef::ST_Function || ST == SymbolRef::ST_Data ||
ST == SymbolRef::ST_Other) {
uint64_t Address;
Symbol.getAddress(Address);
StringRef SymName;
Symbol.getName(SymName);
AddrMap[Address] = SymName;
}
}
// Set up the block of info used by the Symbolizer call backs.
SymbolizerInfo.verbose = true;
SymbolizerInfo.O = MachOOF;
SymbolizerInfo.S = Sections[SectIdx];
SymbolizerInfo.AddrMap = &AddrMap;
SymbolizerInfo.Sections = &Sections;
SymbolizerInfo.class_name = nullptr;
SymbolizerInfo.selector_name = nullptr;
SymbolizerInfo.method = nullptr;
SymbolizerInfo.demangled_name = nullptr;
SymbolizerInfo.bindtable = nullptr;
SymbolizerInfo.adrp_addr = 0;
SymbolizerInfo.adrp_inst = 0;
// Same for the ThumbSymbolizer
ThumbSymbolizerInfo.verbose = true;
ThumbSymbolizerInfo.O = MachOOF;
ThumbSymbolizerInfo.S = Sections[SectIdx];
ThumbSymbolizerInfo.AddrMap = &AddrMap;
ThumbSymbolizerInfo.Sections = &Sections;
ThumbSymbolizerInfo.class_name = nullptr;
ThumbSymbolizerInfo.selector_name = nullptr;
ThumbSymbolizerInfo.method = nullptr;
ThumbSymbolizerInfo.demangled_name = nullptr;
ThumbSymbolizerInfo.bindtable = nullptr;
ThumbSymbolizerInfo.adrp_addr = 0;
ThumbSymbolizerInfo.adrp_inst = 0;
// Disassemble symbol by symbol.
for (unsigned SymIdx = 0; SymIdx != Symbols.size(); SymIdx++) {
StringRef SymName;
Symbols[SymIdx].getName(SymName);
SymbolRef::Type ST;
Symbols[SymIdx].getType(ST);
if (ST != SymbolRef::ST_Function)
continue;
// Make sure the symbol is defined in this section.
bool containsSym = Sections[SectIdx].containsSymbol(Symbols[SymIdx]);
if (!containsSym)
continue;
// Start at the address of the symbol relative to the section's address.
uint64_t Start = 0;
uint64_t SectionAddress = Sections[SectIdx].getAddress();
Symbols[SymIdx].getAddress(Start);
Start -= SectionAddress;
// Stop disassembling either at the beginning of the next symbol or at
// the end of the section.
bool containsNextSym = false;
uint64_t NextSym = 0;
uint64_t NextSymIdx = SymIdx + 1;
while (Symbols.size() > NextSymIdx) {
SymbolRef::Type NextSymType;
Symbols[NextSymIdx].getType(NextSymType);
if (NextSymType == SymbolRef::ST_Function) {
containsNextSym =
Sections[SectIdx].containsSymbol(Symbols[NextSymIdx]);
Symbols[NextSymIdx].getAddress(NextSym);
NextSym -= SectionAddress;
break;
}
++NextSymIdx;
}
uint64_t SectSize = Sections[SectIdx].getSize();
uint64_t End = containsNextSym ? NextSym : SectSize;
uint64_t Size;
symbolTableWorked = true;
DataRefImpl Symb = Symbols[SymIdx].getRawDataRefImpl();
bool isThumb =
(MachOOF->getSymbolFlags(Symb) & SymbolRef::SF_Thumb) && ThumbTarget;
outs() << SymName << ":\n";
DILineInfo lastLine;
for (uint64_t Index = Start; Index < End; Index += Size) {
MCInst Inst;
uint64_t PC = SectAddress + Index;
if (FullLeadingAddr) {
if (MachOOF->is64Bit())
outs() << format("%016" PRIx64, PC);
else
outs() << format("%08" PRIx64, PC);
} else {
outs() << format("%8" PRIx64 ":", PC);
}
if (!NoShowRawInsn)
outs() << "\t";
// Check the data in code table here to see if this is data not an
// instruction to be disassembled.
DiceTable Dice;
Dice.push_back(std::make_pair(PC, DiceRef()));
dice_table_iterator DTI =
std::search(Dices.begin(), Dices.end(), Dice.begin(), Dice.end(),
compareDiceTableEntries);
if (DTI != Dices.end()) {
uint16_t Length;
DTI->second.getLength(Length);
uint16_t Kind;
DTI->second.getKind(Kind);
Size = DumpDataInCode(reinterpret_cast<const char *>(Bytes.data()) +
Index,
Length, Kind);
if ((Kind == MachO::DICE_KIND_JUMP_TABLE8) &&
(PC == (DTI->first + Length - 1)) && (Length & 1))
Size++;
continue;
}
SmallVector<char, 64> AnnotationsBytes;
raw_svector_ostream Annotations(AnnotationsBytes);
bool gotInst;
if (isThumb)
gotInst = ThumbDisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
PC, DebugOut, Annotations);
else
gotInst = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index), PC,
DebugOut, Annotations);
if (gotInst) {
if (!NoShowRawInsn) {
DumpBytes(StringRef(
reinterpret_cast<const char *>(Bytes.data()) + Index, Size));
}
formatted_raw_ostream FormattedOS(outs());
Annotations.flush();
StringRef AnnotationsStr = Annotations.str();
if (isThumb)
ThumbIP->printInst(&Inst, FormattedOS, AnnotationsStr);
else
IP->printInst(&Inst, FormattedOS, AnnotationsStr);
emitComments(CommentStream, CommentsToEmit, FormattedOS, *AsmInfo);
// Print debug info.
if (diContext) {
DILineInfo dli = diContext->getLineInfoForAddress(PC);
// Print valid line info if it changed.
if (dli != lastLine && dli.Line != 0)
outs() << "\t## " << dli.FileName << ':' << dli.Line << ':'
<< dli.Column;
lastLine = dli;
}
outs() << "\n";
} else {
unsigned int Arch = MachOOF->getArch();
if (Arch == Triple::x86_64 || Arch == Triple::x86) {
outs() << format("\t.byte 0x%02x #bad opcode\n",
*(Bytes.data() + Index) & 0xff);
Size = 1; // skip exactly one illegible byte and move on.
} else if (Arch == Triple::aarch64) {
uint32_t opcode = (*(Bytes.data() + Index) & 0xff) |
(*(Bytes.data() + Index + 1) & 0xff) << 8 |
(*(Bytes.data() + Index + 2) & 0xff) << 16 |
(*(Bytes.data() + Index + 3) & 0xff) << 24;
outs() << format("\t.long\t0x%08x\n", opcode);
Size = 4;
} else {
errs() << "llvm-objdump: warning: invalid instruction encoding\n";
if (Size == 0)
Size = 1; // skip illegible bytes
}
}
}
}
if (!symbolTableWorked) {
// Reading the symbol table didn't work, disassemble the whole section.
uint64_t SectAddress = Sections[SectIdx].getAddress();
uint64_t SectSize = Sections[SectIdx].getSize();
uint64_t InstSize;
for (uint64_t Index = 0; Index < SectSize; Index += InstSize) {
MCInst Inst;
uint64_t PC = SectAddress + Index;
if (DisAsm->getInstruction(Inst, InstSize, Bytes.slice(Index), PC,
DebugOut, nulls())) {
if (FullLeadingAddr) {
if (MachOOF->is64Bit())
outs() << format("%016" PRIx64, PC);
else
outs() << format("%08" PRIx64, PC);
} else {
outs() << format("%8" PRIx64 ":", PC);
}
if (!NoShowRawInsn) {
outs() << "\t";
DumpBytes(
StringRef(reinterpret_cast<const char *>(Bytes.data()) + Index,
InstSize));
}
IP->printInst(&Inst, outs(), "");
outs() << "\n";
} else {
unsigned int Arch = MachOOF->getArch();
if (Arch == Triple::x86_64 || Arch == Triple::x86) {
outs() << format("\t.byte 0x%02x #bad opcode\n",
*(Bytes.data() + Index) & 0xff);
InstSize = 1; // skip exactly one illegible byte and move on.
} else {
errs() << "llvm-objdump: warning: invalid instruction encoding\n";
if (InstSize == 0)
InstSize = 1; // skip illegible bytes
}
}
}
}
// The TripleName's need to be reset if we are called again for a different
// archtecture.
TripleName = "";
ThumbTripleName = "";
if (SymbolizerInfo.method != nullptr)
free(SymbolizerInfo.method);
if (SymbolizerInfo.demangled_name != nullptr)
free(SymbolizerInfo.demangled_name);
if (SymbolizerInfo.bindtable != nullptr)
delete SymbolizerInfo.bindtable;
if (ThumbSymbolizerInfo.method != nullptr)
free(ThumbSymbolizerInfo.method);
if (ThumbSymbolizerInfo.demangled_name != nullptr)
free(ThumbSymbolizerInfo.demangled_name);
if (ThumbSymbolizerInfo.bindtable != nullptr)
delete ThumbSymbolizerInfo.bindtable;
}
}
//===----------------------------------------------------------------------===//
// __compact_unwind section dumping
//===----------------------------------------------------------------------===//
namespace {
template <typename T> static uint64_t readNext(const char *&Buf) {
using llvm::support::little;
using llvm::support::unaligned;
uint64_t Val = support::endian::read<T, little, unaligned>(Buf);
Buf += sizeof(T);
return Val;
}
struct CompactUnwindEntry {
uint32_t OffsetInSection;
uint64_t FunctionAddr;
uint32_t Length;
uint32_t CompactEncoding;
uint64_t PersonalityAddr;
uint64_t LSDAAddr;
RelocationRef FunctionReloc;
RelocationRef PersonalityReloc;
RelocationRef LSDAReloc;
CompactUnwindEntry(StringRef Contents, unsigned Offset, bool Is64)
: OffsetInSection(Offset) {
if (Is64)
read<uint64_t>(Contents.data() + Offset);
else
read<uint32_t>(Contents.data() + Offset);
}
private:
template <typename UIntPtr> void read(const char *Buf) {
FunctionAddr = readNext<UIntPtr>(Buf);
Length = readNext<uint32_t>(Buf);
CompactEncoding = readNext<uint32_t>(Buf);
PersonalityAddr = readNext<UIntPtr>(Buf);
LSDAAddr = readNext<UIntPtr>(Buf);
}
};
}
/// Given a relocation from __compact_unwind, consisting of the RelocationRef
/// and data being relocated, determine the best base Name and Addend to use for
/// display purposes.
///
/// 1. An Extern relocation will directly reference a symbol (and the data is
/// then already an addend), so use that.
/// 2. Otherwise the data is an offset in the object file's layout; try to find
// a symbol before it in the same section, and use the offset from there.
/// 3. Finally, if all that fails, fall back to an offset from the start of the
/// referenced section.
static void findUnwindRelocNameAddend(const MachOObjectFile *Obj,
std::map<uint64_t, SymbolRef> &Symbols,
const RelocationRef &Reloc, uint64_t Addr,
StringRef &Name, uint64_t &Addend) {
if (Reloc.getSymbol() != Obj->symbol_end()) {
Reloc.getSymbol()->getName(Name);
Addend = Addr;
return;
}
auto RE = Obj->getRelocation(Reloc.getRawDataRefImpl());
SectionRef RelocSection = Obj->getRelocationSection(RE);
uint64_t SectionAddr = RelocSection.getAddress();
auto Sym = Symbols.upper_bound(Addr);
if (Sym == Symbols.begin()) {
// The first symbol in the object is after this reference, the best we can
// do is section-relative notation.
RelocSection.getName(Name);
Addend = Addr - SectionAddr;
return;
}
// Go back one so that SymbolAddress <= Addr.
--Sym;
section_iterator SymSection = Obj->section_end();
Sym->second.getSection(SymSection);
if (RelocSection == *SymSection) {
// There's a valid symbol in the same section before this reference.
Sym->second.getName(Name);
Addend = Addr - Sym->first;
return;
}
// There is a symbol before this reference, but it's in a different
// section. Probably not helpful to mention it, so use the section name.
RelocSection.getName(Name);
Addend = Addr - SectionAddr;
}
static void printUnwindRelocDest(const MachOObjectFile *Obj,
std::map<uint64_t, SymbolRef> &Symbols,
const RelocationRef &Reloc, uint64_t Addr) {
StringRef Name;
uint64_t Addend;
if (!Reloc.getObjectFile())
return;
findUnwindRelocNameAddend(Obj, Symbols, Reloc, Addr, Name, Addend);
outs() << Name;
if (Addend)
outs() << " + " << format("0x%" PRIx64, Addend);
}
static void
printMachOCompactUnwindSection(const MachOObjectFile *Obj,
std::map<uint64_t, SymbolRef> &Symbols,
const SectionRef &CompactUnwind) {
assert(Obj->isLittleEndian() &&
"There should not be a big-endian .o with __compact_unwind");
bool Is64 = Obj->is64Bit();
uint32_t PointerSize = Is64 ? sizeof(uint64_t) : sizeof(uint32_t);
uint32_t EntrySize = 3 * PointerSize + 2 * sizeof(uint32_t);
StringRef Contents;
CompactUnwind.getContents(Contents);
SmallVector<CompactUnwindEntry, 4> CompactUnwinds;
// First populate the initial raw offsets, encodings and so on from the entry.
for (unsigned Offset = 0; Offset < Contents.size(); Offset += EntrySize) {
CompactUnwindEntry Entry(Contents.data(), Offset, Is64);
CompactUnwinds.push_back(Entry);
}
// Next we need to look at the relocations to find out what objects are
// actually being referred to.
for (const RelocationRef &Reloc : CompactUnwind.relocations()) {
uint64_t RelocAddress;
Reloc.getOffset(RelocAddress);
uint32_t EntryIdx = RelocAddress / EntrySize;
uint32_t OffsetInEntry = RelocAddress - EntryIdx * EntrySize;
CompactUnwindEntry &Entry = CompactUnwinds[EntryIdx];
if (OffsetInEntry == 0)
Entry.FunctionReloc = Reloc;
else if (OffsetInEntry == PointerSize + 2 * sizeof(uint32_t))
Entry.PersonalityReloc = Reloc;
else if (OffsetInEntry == 2 * PointerSize + 2 * sizeof(uint32_t))
Entry.LSDAReloc = Reloc;
else
llvm_unreachable("Unexpected relocation in __compact_unwind section");
}
// Finally, we're ready to print the data we've gathered.
outs() << "Contents of __compact_unwind section:\n";
for (auto &Entry : CompactUnwinds) {
outs() << " Entry at offset "
<< format("0x%" PRIx32, Entry.OffsetInSection) << ":\n";
// 1. Start of the region this entry applies to.
outs() << " start: " << format("0x%" PRIx64,
Entry.FunctionAddr) << ' ';
printUnwindRelocDest(Obj, Symbols, Entry.FunctionReloc, Entry.FunctionAddr);
outs() << '\n';
// 2. Length of the region this entry applies to.
outs() << " length: " << format("0x%" PRIx32, Entry.Length)
<< '\n';
// 3. The 32-bit compact encoding.
outs() << " compact encoding: "
<< format("0x%08" PRIx32, Entry.CompactEncoding) << '\n';
// 4. The personality function, if present.
if (Entry.PersonalityReloc.getObjectFile()) {
outs() << " personality function: "
<< format("0x%" PRIx64, Entry.PersonalityAddr) << ' ';
printUnwindRelocDest(Obj, Symbols, Entry.PersonalityReloc,
Entry.PersonalityAddr);
outs() << '\n';
}
// 5. This entry's language-specific data area.
if (Entry.LSDAReloc.getObjectFile()) {
outs() << " LSDA: " << format("0x%" PRIx64,
Entry.LSDAAddr) << ' ';
printUnwindRelocDest(Obj, Symbols, Entry.LSDAReloc, Entry.LSDAAddr);
outs() << '\n';
}
}
}
//===----------------------------------------------------------------------===//
// __unwind_info section dumping
//===----------------------------------------------------------------------===//
static void printRegularSecondLevelUnwindPage(const char *PageStart) {
const char *Pos = PageStart;
uint32_t Kind = readNext<uint32_t>(Pos);
(void)Kind;
assert(Kind == 2 && "kind for a regular 2nd level index should be 2");
uint16_t EntriesStart = readNext<uint16_t>(Pos);
uint16_t NumEntries = readNext<uint16_t>(Pos);
Pos = PageStart + EntriesStart;
for (unsigned i = 0; i < NumEntries; ++i) {
uint32_t FunctionOffset = readNext<uint32_t>(Pos);
uint32_t Encoding = readNext<uint32_t>(Pos);
outs() << " [" << i << "]: "
<< "function offset=" << format("0x%08" PRIx32, FunctionOffset)
<< ", "
<< "encoding=" << format("0x%08" PRIx32, Encoding) << '\n';
}
}
static void printCompressedSecondLevelUnwindPage(
const char *PageStart, uint32_t FunctionBase,
const SmallVectorImpl<uint32_t> &CommonEncodings) {
const char *Pos = PageStart;
uint32_t Kind = readNext<uint32_t>(Pos);
(void)Kind;
assert(Kind == 3 && "kind for a compressed 2nd level index should be 3");
uint16_t EntriesStart = readNext<uint16_t>(Pos);
uint16_t NumEntries = readNext<uint16_t>(Pos);
uint16_t EncodingsStart = readNext<uint16_t>(Pos);
readNext<uint16_t>(Pos);
const auto *PageEncodings = reinterpret_cast<const support::ulittle32_t *>(
PageStart + EncodingsStart);
Pos = PageStart + EntriesStart;
for (unsigned i = 0; i < NumEntries; ++i) {
uint32_t Entry = readNext<uint32_t>(Pos);
uint32_t FunctionOffset = FunctionBase + (Entry & 0xffffff);
uint32_t EncodingIdx = Entry >> 24;
uint32_t Encoding;
if (EncodingIdx < CommonEncodings.size())
Encoding = CommonEncodings[EncodingIdx];
else
Encoding = PageEncodings[EncodingIdx - CommonEncodings.size()];
outs() << " [" << i << "]: "
<< "function offset=" << format("0x%08" PRIx32, FunctionOffset)
<< ", "
<< "encoding[" << EncodingIdx
<< "]=" << format("0x%08" PRIx32, Encoding) << '\n';
}
}
static void printMachOUnwindInfoSection(const MachOObjectFile *Obj,
std::map<uint64_t, SymbolRef> &Symbols,
const SectionRef &UnwindInfo) {
assert(Obj->isLittleEndian() &&
"There should not be a big-endian .o with __unwind_info");
outs() << "Contents of __unwind_info section:\n";
StringRef Contents;
UnwindInfo.getContents(Contents);
const char *Pos = Contents.data();
//===----------------------------------
// Section header
//===----------------------------------
uint32_t Version = readNext<uint32_t>(Pos);
outs() << " Version: "
<< format("0x%" PRIx32, Version) << '\n';
assert(Version == 1 && "only understand version 1");
uint32_t CommonEncodingsStart = readNext<uint32_t>(Pos);
outs() << " Common encodings array section offset: "
<< format("0x%" PRIx32, CommonEncodingsStart) << '\n';
uint32_t NumCommonEncodings = readNext<uint32_t>(Pos);
outs() << " Number of common encodings in array: "
<< format("0x%" PRIx32, NumCommonEncodings) << '\n';
uint32_t PersonalitiesStart = readNext<uint32_t>(Pos);
outs() << " Personality function array section offset: "
<< format("0x%" PRIx32, PersonalitiesStart) << '\n';
uint32_t NumPersonalities = readNext<uint32_t>(Pos);
outs() << " Number of personality functions in array: "
<< format("0x%" PRIx32, NumPersonalities) << '\n';
uint32_t IndicesStart = readNext<uint32_t>(Pos);
outs() << " Index array section offset: "
<< format("0x%" PRIx32, IndicesStart) << '\n';
uint32_t NumIndices = readNext<uint32_t>(Pos);
outs() << " Number of indices in array: "
<< format("0x%" PRIx32, NumIndices) << '\n';
//===----------------------------------
// A shared list of common encodings
//===----------------------------------
// These occupy indices in the range [0, N] whenever an encoding is referenced
// from a compressed 2nd level index table. In practice the linker only
// creates ~128 of these, so that indices are available to embed encodings in
// the 2nd level index.
SmallVector<uint32_t, 64> CommonEncodings;
outs() << " Common encodings: (count = " << NumCommonEncodings << ")\n";
Pos = Contents.data() + CommonEncodingsStart;
for (unsigned i = 0; i < NumCommonEncodings; ++i) {
uint32_t Encoding = readNext<uint32_t>(Pos);
CommonEncodings.push_back(Encoding);
outs() << " encoding[" << i << "]: " << format("0x%08" PRIx32, Encoding)
<< '\n';
}
//===----------------------------------
// Personality functions used in this executable
//===----------------------------------
// There should be only a handful of these (one per source language,
// roughly). Particularly since they only get 2 bits in the compact encoding.
outs() << " Personality functions: (count = " << NumPersonalities << ")\n";
Pos = Contents.data() + PersonalitiesStart;
for (unsigned i = 0; i < NumPersonalities; ++i) {
uint32_t PersonalityFn = readNext<uint32_t>(Pos);
outs() << " personality[" << i + 1
<< "]: " << format("0x%08" PRIx32, PersonalityFn) << '\n';
}
//===----------------------------------
// The level 1 index entries
//===----------------------------------
// These specify an approximate place to start searching for the more detailed
// information, sorted by PC.
struct IndexEntry {
uint32_t FunctionOffset;
uint32_t SecondLevelPageStart;
uint32_t LSDAStart;
};
SmallVector<IndexEntry, 4> IndexEntries;
outs() << " Top level indices: (count = " << NumIndices << ")\n";
Pos = Contents.data() + IndicesStart;
for (unsigned i = 0; i < NumIndices; ++i) {
IndexEntry Entry;
Entry.FunctionOffset = readNext<uint32_t>(Pos);
Entry.SecondLevelPageStart = readNext<uint32_t>(Pos);
Entry.LSDAStart = readNext<uint32_t>(Pos);
IndexEntries.push_back(Entry);
outs() << " [" << i << "]: "
<< "function offset=" << format("0x%08" PRIx32, Entry.FunctionOffset)
<< ", "
<< "2nd level page offset="
<< format("0x%08" PRIx32, Entry.SecondLevelPageStart) << ", "
<< "LSDA offset=" << format("0x%08" PRIx32, Entry.LSDAStart) << '\n';
}
//===----------------------------------
// Next come the LSDA tables
//===----------------------------------
// The LSDA layout is rather implicit: it's a contiguous array of entries from
// the first top-level index's LSDAOffset to the last (sentinel).
outs() << " LSDA descriptors:\n";
Pos = Contents.data() + IndexEntries[0].LSDAStart;
int NumLSDAs = (IndexEntries.back().LSDAStart - IndexEntries[0].LSDAStart) /
(2 * sizeof(uint32_t));
for (int i = 0; i < NumLSDAs; ++i) {
uint32_t FunctionOffset = readNext<uint32_t>(Pos);
uint32_t LSDAOffset = readNext<uint32_t>(Pos);
outs() << " [" << i << "]: "
<< "function offset=" << format("0x%08" PRIx32, FunctionOffset)
<< ", "
<< "LSDA offset=" << format("0x%08" PRIx32, LSDAOffset) << '\n';
}
//===----------------------------------
// Finally, the 2nd level indices
//===----------------------------------
// Generally these are 4K in size, and have 2 possible forms:
// + Regular stores up to 511 entries with disparate encodings
// + Compressed stores up to 1021 entries if few enough compact encoding
// values are used.
outs() << " Second level indices:\n";
for (unsigned i = 0; i < IndexEntries.size() - 1; ++i) {
// The final sentinel top-level index has no associated 2nd level page
if (IndexEntries[i].SecondLevelPageStart == 0)
break;
outs() << " Second level index[" << i << "]: "
<< "offset in section="
<< format("0x%08" PRIx32, IndexEntries[i].SecondLevelPageStart)
<< ", "
<< "base function offset="
<< format("0x%08" PRIx32, IndexEntries[i].FunctionOffset) << '\n';
Pos = Contents.data() + IndexEntries[i].SecondLevelPageStart;
uint32_t Kind = *reinterpret_cast<const support::ulittle32_t *>(Pos);
if (Kind == 2)
printRegularSecondLevelUnwindPage(Pos);
else if (Kind == 3)
printCompressedSecondLevelUnwindPage(Pos, IndexEntries[i].FunctionOffset,
CommonEncodings);
else
llvm_unreachable("Do not know how to print this kind of 2nd level page");
}
}
void llvm::printMachOUnwindInfo(const MachOObjectFile *Obj) {
std::map<uint64_t, SymbolRef> Symbols;
for (const SymbolRef &SymRef : Obj->symbols()) {
// Discard any undefined or absolute symbols. They're not going to take part
// in the convenience lookup for unwind info and just take up resources.
section_iterator Section = Obj->section_end();
SymRef.getSection(Section);
if (Section == Obj->section_end())
continue;
uint64_t Addr;
SymRef.getAddress(Addr);
Symbols.insert(std::make_pair(Addr, SymRef));
}
for (const SectionRef &Section : Obj->sections()) {
StringRef SectName;
Section.getName(SectName);
if (SectName == "__compact_unwind")
printMachOCompactUnwindSection(Obj, Symbols, Section);
else if (SectName == "__unwind_info")
printMachOUnwindInfoSection(Obj, Symbols, Section);
else if (SectName == "__eh_frame")
outs() << "llvm-objdump: warning: unhandled __eh_frame section\n";
}
}
static void PrintMachHeader(uint32_t magic, uint32_t cputype,
uint32_t cpusubtype, uint32_t filetype,
uint32_t ncmds, uint32_t sizeofcmds, uint32_t flags,
bool verbose) {
outs() << "Mach header\n";
outs() << " magic cputype cpusubtype caps filetype ncmds "
"sizeofcmds flags\n";
if (verbose) {
if (magic == MachO::MH_MAGIC)
outs() << " MH_MAGIC";
else if (magic == MachO::MH_MAGIC_64)
outs() << "MH_MAGIC_64";
else
outs() << format(" 0x%08" PRIx32, magic);
switch (cputype) {
case MachO::CPU_TYPE_I386:
outs() << " I386";
switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
case MachO::CPU_SUBTYPE_I386_ALL:
outs() << " ALL";
break;
default:
outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
break;
}
break;
case MachO::CPU_TYPE_X86_64:
outs() << " X86_64";
switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
case MachO::CPU_SUBTYPE_X86_64_ALL:
outs() << " ALL";
break;
case MachO::CPU_SUBTYPE_X86_64_H:
outs() << " Haswell";
break;
default:
outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
break;
}
break;
case MachO::CPU_TYPE_ARM:
outs() << " ARM";
switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
case MachO::CPU_SUBTYPE_ARM_ALL:
outs() << " ALL";
break;
case MachO::CPU_SUBTYPE_ARM_V4T:
outs() << " V4T";
break;
case MachO::CPU_SUBTYPE_ARM_V5TEJ:
outs() << " V5TEJ";
break;
case MachO::CPU_SUBTYPE_ARM_XSCALE:
outs() << " XSCALE";
break;
case MachO::CPU_SUBTYPE_ARM_V6:
outs() << " V6";
break;
case MachO::CPU_SUBTYPE_ARM_V6M:
outs() << " V6M";
break;
case MachO::CPU_SUBTYPE_ARM_V7:
outs() << " V7";
break;
case MachO::CPU_SUBTYPE_ARM_V7EM:
outs() << " V7EM";
break;
case MachO::CPU_SUBTYPE_ARM_V7K:
outs() << " V7K";
break;
case MachO::CPU_SUBTYPE_ARM_V7M:
outs() << " V7M";
break;
case MachO::CPU_SUBTYPE_ARM_V7S:
outs() << " V7S";
break;
default:
outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
break;
}
break;
case MachO::CPU_TYPE_ARM64:
outs() << " ARM64";
switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
case MachO::CPU_SUBTYPE_ARM64_ALL:
outs() << " ALL";
break;
default:
outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
break;
}
break;
case MachO::CPU_TYPE_POWERPC:
outs() << " PPC";
switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
case MachO::CPU_SUBTYPE_POWERPC_ALL:
outs() << " ALL";
break;
default:
outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
break;
}
break;
case MachO::CPU_TYPE_POWERPC64:
outs() << " PPC64";
switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
case MachO::CPU_SUBTYPE_POWERPC_ALL:
outs() << " ALL";
break;
default:
outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
break;
}
break;
}
if ((cpusubtype & MachO::CPU_SUBTYPE_MASK) == MachO::CPU_SUBTYPE_LIB64) {
outs() << " LIB64";
} else {
outs() << format(" 0x%02" PRIx32,
(cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24);
}
switch (filetype) {
case MachO::MH_OBJECT:
outs() << " OBJECT";
break;
case MachO::MH_EXECUTE:
outs() << " EXECUTE";
break;
case MachO::MH_FVMLIB:
outs() << " FVMLIB";
break;
case MachO::MH_CORE:
outs() << " CORE";
break;
case MachO::MH_PRELOAD:
outs() << " PRELOAD";
break;
case MachO::MH_DYLIB:
outs() << " DYLIB";
break;
case MachO::MH_DYLIB_STUB:
outs() << " DYLIB_STUB";
break;
case MachO::MH_DYLINKER:
outs() << " DYLINKER";
break;
case MachO::MH_BUNDLE:
outs() << " BUNDLE";
break;
case MachO::MH_DSYM:
outs() << " DSYM";
break;
case MachO::MH_KEXT_BUNDLE:
outs() << " KEXTBUNDLE";
break;
default:
outs() << format(" %10u", filetype);
break;
}
outs() << format(" %5u", ncmds);
outs() << format(" %10u", sizeofcmds);
uint32_t f = flags;
if (f & MachO::MH_NOUNDEFS) {
outs() << " NOUNDEFS";
f &= ~MachO::MH_NOUNDEFS;
}
if (f & MachO::MH_INCRLINK) {
outs() << " INCRLINK";
f &= ~MachO::MH_INCRLINK;
}
if (f & MachO::MH_DYLDLINK) {
outs() << " DYLDLINK";
f &= ~MachO::MH_DYLDLINK;
}
if (f & MachO::MH_BINDATLOAD) {
outs() << " BINDATLOAD";
f &= ~MachO::MH_BINDATLOAD;
}
if (f & MachO::MH_PREBOUND) {
outs() << " PREBOUND";
f &= ~MachO::MH_PREBOUND;
}
if (f & MachO::MH_SPLIT_SEGS) {
outs() << " SPLIT_SEGS";
f &= ~MachO::MH_SPLIT_SEGS;
}
if (f & MachO::MH_LAZY_INIT) {
outs() << " LAZY_INIT";
f &= ~MachO::MH_LAZY_INIT;
}
if (f & MachO::MH_TWOLEVEL) {
outs() << " TWOLEVEL";
f &= ~MachO::MH_TWOLEVEL;
}
if (f & MachO::MH_FORCE_FLAT) {
outs() << " FORCE_FLAT";
f &= ~MachO::MH_FORCE_FLAT;
}
if (f & MachO::MH_NOMULTIDEFS) {
outs() << " NOMULTIDEFS";
f &= ~MachO::MH_NOMULTIDEFS;
}
if (f & MachO::MH_NOFIXPREBINDING) {
outs() << " NOFIXPREBINDING";
f &= ~MachO::MH_NOFIXPREBINDING;
}
if (f & MachO::MH_PREBINDABLE) {
outs() << " PREBINDABLE";
f &= ~MachO::MH_PREBINDABLE;
}
if (f & MachO::MH_ALLMODSBOUND) {
outs() << " ALLMODSBOUND";
f &= ~MachO::MH_ALLMODSBOUND;
}
if (f & MachO::MH_SUBSECTIONS_VIA_SYMBOLS) {
outs() << " SUBSECTIONS_VIA_SYMBOLS";
f &= ~MachO::MH_SUBSECTIONS_VIA_SYMBOLS;
}
if (f & MachO::MH_CANONICAL) {
outs() << " CANONICAL";
f &= ~MachO::MH_CANONICAL;
}
if (f & MachO::MH_WEAK_DEFINES) {
outs() << " WEAK_DEFINES";
f &= ~MachO::MH_WEAK_DEFINES;
}
if (f & MachO::MH_BINDS_TO_WEAK) {
outs() << " BINDS_TO_WEAK";
f &= ~MachO::MH_BINDS_TO_WEAK;
}
if (f & MachO::MH_ALLOW_STACK_EXECUTION) {
outs() << " ALLOW_STACK_EXECUTION";
f &= ~MachO::MH_ALLOW_STACK_EXECUTION;
}
if (f & MachO::MH_DEAD_STRIPPABLE_DYLIB) {
outs() << " DEAD_STRIPPABLE_DYLIB";
f &= ~MachO::MH_DEAD_STRIPPABLE_DYLIB;
}
if (f & MachO::MH_PIE) {
outs() << " PIE";
f &= ~MachO::MH_PIE;
}
if (f & MachO::MH_NO_REEXPORTED_DYLIBS) {
outs() << " NO_REEXPORTED_DYLIBS";
f &= ~MachO::MH_NO_REEXPORTED_DYLIBS;
}
if (f & MachO::MH_HAS_TLV_DESCRIPTORS) {
outs() << " MH_HAS_TLV_DESCRIPTORS";
f &= ~MachO::MH_HAS_TLV_DESCRIPTORS;
}
if (f & MachO::MH_NO_HEAP_EXECUTION) {
outs() << " MH_NO_HEAP_EXECUTION";
f &= ~MachO::MH_NO_HEAP_EXECUTION;
}
if (f & MachO::MH_APP_EXTENSION_SAFE) {
outs() << " APP_EXTENSION_SAFE";
f &= ~MachO::MH_APP_EXTENSION_SAFE;
}
if (f != 0 || flags == 0)
outs() << format(" 0x%08" PRIx32, f);
} else {
outs() << format(" 0x%08" PRIx32, magic);
outs() << format(" %7d", cputype);
outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
outs() << format(" 0x%02" PRIx32,
(cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24);
outs() << format(" %10u", filetype);
outs() << format(" %5u", ncmds);
outs() << format(" %10u", sizeofcmds);
outs() << format(" 0x%08" PRIx32, flags);
}
outs() << "\n";
}
static void PrintSegmentCommand(uint32_t cmd, uint32_t cmdsize,
StringRef SegName, uint64_t vmaddr,
uint64_t vmsize, uint64_t fileoff,
uint64_t filesize, uint32_t maxprot,
uint32_t initprot, uint32_t nsects,
uint32_t flags, uint32_t object_size,
bool verbose) {
uint64_t expected_cmdsize;
if (cmd == MachO::LC_SEGMENT) {
outs() << " cmd LC_SEGMENT\n";
expected_cmdsize = nsects;
expected_cmdsize *= sizeof(struct MachO::section);
expected_cmdsize += sizeof(struct MachO::segment_command);
} else {
outs() << " cmd LC_SEGMENT_64\n";
expected_cmdsize = nsects;
expected_cmdsize *= sizeof(struct MachO::section_64);
expected_cmdsize += sizeof(struct MachO::segment_command_64);
}
outs() << " cmdsize " << cmdsize;
if (cmdsize != expected_cmdsize)
outs() << " Inconsistent size\n";
else
outs() << "\n";
outs() << " segname " << SegName << "\n";
if (cmd == MachO::LC_SEGMENT_64) {
outs() << " vmaddr " << format("0x%016" PRIx64, vmaddr) << "\n";
outs() << " vmsize " << format("0x%016" PRIx64, vmsize) << "\n";
} else {
outs() << " vmaddr " << format("0x%08" PRIx64, vmaddr) << "\n";
outs() << " vmsize " << format("0x%08" PRIx64, vmsize) << "\n";
}
outs() << " fileoff " << fileoff;
if (fileoff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " filesize " << filesize;
if (fileoff + filesize > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
if (verbose) {
if ((maxprot &
~(MachO::VM_PROT_READ | MachO::VM_PROT_WRITE |
MachO::VM_PROT_EXECUTE)) != 0)
outs() << " maxprot ?" << format("0x%08" PRIx32, maxprot) << "\n";
else {
if (maxprot & MachO::VM_PROT_READ)
outs() << " maxprot r";
else
outs() << " maxprot -";
if (maxprot & MachO::VM_PROT_WRITE)
outs() << "w";
else
outs() << "-";
if (maxprot & MachO::VM_PROT_EXECUTE)
outs() << "x\n";
else
outs() << "-\n";
}
if ((initprot &
~(MachO::VM_PROT_READ | MachO::VM_PROT_WRITE |
MachO::VM_PROT_EXECUTE)) != 0)
outs() << " initprot ?" << format("0x%08" PRIx32, initprot) << "\n";
else {
if (initprot & MachO::VM_PROT_READ)
outs() << " initprot r";
else
outs() << " initprot -";
if (initprot & MachO::VM_PROT_WRITE)
outs() << "w";
else
outs() << "-";
if (initprot & MachO::VM_PROT_EXECUTE)
outs() << "x\n";
else
outs() << "-\n";
}
} else {
outs() << " maxprot " << format("0x%08" PRIx32, maxprot) << "\n";
outs() << " initprot " << format("0x%08" PRIx32, initprot) << "\n";
}
outs() << " nsects " << nsects << "\n";
if (verbose) {
outs() << " flags";
if (flags == 0)
outs() << " (none)\n";
else {
if (flags & MachO::SG_HIGHVM) {
outs() << " HIGHVM";
flags &= ~MachO::SG_HIGHVM;
}
if (flags & MachO::SG_FVMLIB) {
outs() << " FVMLIB";
flags &= ~MachO::SG_FVMLIB;
}
if (flags & MachO::SG_NORELOC) {
outs() << " NORELOC";
flags &= ~MachO::SG_NORELOC;
}
if (flags & MachO::SG_PROTECTED_VERSION_1) {
outs() << " PROTECTED_VERSION_1";
flags &= ~MachO::SG_PROTECTED_VERSION_1;
}
if (flags)
outs() << format(" 0x%08" PRIx32, flags) << " (unknown flags)\n";
else
outs() << "\n";
}
} else {
outs() << " flags " << format("0x%" PRIx32, flags) << "\n";
}
}
static void PrintSection(const char *sectname, const char *segname,
uint64_t addr, uint64_t size, uint32_t offset,
uint32_t align, uint32_t reloff, uint32_t nreloc,
uint32_t flags, uint32_t reserved1, uint32_t reserved2,
uint32_t cmd, const char *sg_segname,
uint32_t filetype, uint32_t object_size,
bool verbose) {
outs() << "Section\n";
outs() << " sectname " << format("%.16s\n", sectname);
outs() << " segname " << format("%.16s", segname);
if (filetype != MachO::MH_OBJECT && strncmp(sg_segname, segname, 16) != 0)
outs() << " (does not match segment)\n";
else
outs() << "\n";
if (cmd == MachO::LC_SEGMENT_64) {
outs() << " addr " << format("0x%016" PRIx64, addr) << "\n";
outs() << " size " << format("0x%016" PRIx64, size);
} else {
outs() << " addr " << format("0x%08" PRIx64, addr) << "\n";
outs() << " size " << format("0x%08" PRIx64, size);
}
if ((flags & MachO::S_ZEROFILL) != 0 && offset + size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " offset " << offset;
if (offset > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
uint32_t align_shifted = 1 << align;
outs() << " align 2^" << align << " (" << align_shifted << ")\n";
outs() << " reloff " << reloff;
if (reloff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " nreloc " << nreloc;
if (reloff + nreloc * sizeof(struct MachO::relocation_info) > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
uint32_t section_type = flags & MachO::SECTION_TYPE;
if (verbose) {
outs() << " type";
if (section_type == MachO::S_REGULAR)
outs() << " S_REGULAR\n";
else if (section_type == MachO::S_ZEROFILL)
outs() << " S_ZEROFILL\n";
else if (section_type == MachO::S_CSTRING_LITERALS)
outs() << " S_CSTRING_LITERALS\n";
else if (section_type == MachO::S_4BYTE_LITERALS)
outs() << " S_4BYTE_LITERALS\n";
else if (section_type == MachO::S_8BYTE_LITERALS)
outs() << " S_8BYTE_LITERALS\n";
else if (section_type == MachO::S_16BYTE_LITERALS)
outs() << " S_16BYTE_LITERALS\n";
else if (section_type == MachO::S_LITERAL_POINTERS)
outs() << " S_LITERAL_POINTERS\n";
else if (section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS)
outs() << " S_NON_LAZY_SYMBOL_POINTERS\n";
else if (section_type == MachO::S_LAZY_SYMBOL_POINTERS)
outs() << " S_LAZY_SYMBOL_POINTERS\n";
else if (section_type == MachO::S_SYMBOL_STUBS)
outs() << " S_SYMBOL_STUBS\n";
else if (section_type == MachO::S_MOD_INIT_FUNC_POINTERS)
outs() << " S_MOD_INIT_FUNC_POINTERS\n";
else if (section_type == MachO::S_MOD_TERM_FUNC_POINTERS)
outs() << " S_MOD_TERM_FUNC_POINTERS\n";
else if (section_type == MachO::S_COALESCED)
outs() << " S_COALESCED\n";
else if (section_type == MachO::S_INTERPOSING)
outs() << " S_INTERPOSING\n";
else if (section_type == MachO::S_DTRACE_DOF)
outs() << " S_DTRACE_DOF\n";
else if (section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS)
outs() << " S_LAZY_DYLIB_SYMBOL_POINTERS\n";
else if (section_type == MachO::S_THREAD_LOCAL_REGULAR)
outs() << " S_THREAD_LOCAL_REGULAR\n";
else if (section_type == MachO::S_THREAD_LOCAL_ZEROFILL)
outs() << " S_THREAD_LOCAL_ZEROFILL\n";
else if (section_type == MachO::S_THREAD_LOCAL_VARIABLES)
outs() << " S_THREAD_LOCAL_VARIABLES\n";
else if (section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS)
outs() << " S_THREAD_LOCAL_VARIABLE_POINTERS\n";
else if (section_type == MachO::S_THREAD_LOCAL_INIT_FUNCTION_POINTERS)
outs() << " S_THREAD_LOCAL_INIT_FUNCTION_POINTERS\n";
else
outs() << format("0x%08" PRIx32, section_type) << "\n";
outs() << "attributes";
uint32_t section_attributes = flags & MachO::SECTION_ATTRIBUTES;
if (section_attributes & MachO::S_ATTR_PURE_INSTRUCTIONS)
outs() << " PURE_INSTRUCTIONS";
if (section_attributes & MachO::S_ATTR_NO_TOC)
outs() << " NO_TOC";
if (section_attributes & MachO::S_ATTR_STRIP_STATIC_SYMS)
outs() << " STRIP_STATIC_SYMS";
if (section_attributes & MachO::S_ATTR_NO_DEAD_STRIP)
outs() << " NO_DEAD_STRIP";
if (section_attributes & MachO::S_ATTR_LIVE_SUPPORT)
outs() << " LIVE_SUPPORT";
if (section_attributes & MachO::S_ATTR_SELF_MODIFYING_CODE)
outs() << " SELF_MODIFYING_CODE";
if (section_attributes & MachO::S_ATTR_DEBUG)
outs() << " DEBUG";
if (section_attributes & MachO::S_ATTR_SOME_INSTRUCTIONS)
outs() << " SOME_INSTRUCTIONS";
if (section_attributes & MachO::S_ATTR_EXT_RELOC)
outs() << " EXT_RELOC";
if (section_attributes & MachO::S_ATTR_LOC_RELOC)
outs() << " LOC_RELOC";
if (section_attributes == 0)
outs() << " (none)";
outs() << "\n";
} else
outs() << " flags " << format("0x%08" PRIx32, flags) << "\n";
outs() << " reserved1 " << reserved1;
if (section_type == MachO::S_SYMBOL_STUBS ||
section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS)
outs() << " (index into indirect symbol table)\n";
else
outs() << "\n";
outs() << " reserved2 " << reserved2;
if (section_type == MachO::S_SYMBOL_STUBS)
outs() << " (size of stubs)\n";
else
outs() << "\n";
}
static void PrintSymtabLoadCommand(MachO::symtab_command st, bool Is64Bit,
uint32_t object_size) {
outs() << " cmd LC_SYMTAB\n";
outs() << " cmdsize " << st.cmdsize;
if (st.cmdsize != sizeof(struct MachO::symtab_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " symoff " << st.symoff;
if (st.symoff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " nsyms " << st.nsyms;
uint64_t big_size;
if (Is64Bit) {
big_size = st.nsyms;
big_size *= sizeof(struct MachO::nlist_64);
big_size += st.symoff;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
} else {
big_size = st.nsyms;
big_size *= sizeof(struct MachO::nlist);
big_size += st.symoff;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
}
outs() << " stroff " << st.stroff;
if (st.stroff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " strsize " << st.strsize;
big_size = st.stroff;
big_size += st.strsize;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
}
static void PrintDysymtabLoadCommand(MachO::dysymtab_command dyst,
uint32_t nsyms, uint32_t object_size,
bool Is64Bit) {
outs() << " cmd LC_DYSYMTAB\n";
outs() << " cmdsize " << dyst.cmdsize;
if (dyst.cmdsize != sizeof(struct MachO::dysymtab_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " ilocalsym " << dyst.ilocalsym;
if (dyst.ilocalsym > nsyms)
outs() << " (greater than the number of symbols)\n";
else
outs() << "\n";
outs() << " nlocalsym " << dyst.nlocalsym;
uint64_t big_size;
big_size = dyst.ilocalsym;
big_size += dyst.nlocalsym;
if (big_size > nsyms)
outs() << " (past the end of the symbol table)\n";
else
outs() << "\n";
outs() << " iextdefsym " << dyst.iextdefsym;
if (dyst.iextdefsym > nsyms)
outs() << " (greater than the number of symbols)\n";
else
outs() << "\n";
outs() << " nextdefsym " << dyst.nextdefsym;
big_size = dyst.iextdefsym;
big_size += dyst.nextdefsym;
if (big_size > nsyms)
outs() << " (past the end of the symbol table)\n";
else
outs() << "\n";
outs() << " iundefsym " << dyst.iundefsym;
if (dyst.iundefsym > nsyms)
outs() << " (greater than the number of symbols)\n";
else
outs() << "\n";
outs() << " nundefsym " << dyst.nundefsym;
big_size = dyst.iundefsym;
big_size += dyst.nundefsym;
if (big_size > nsyms)
outs() << " (past the end of the symbol table)\n";
else
outs() << "\n";
outs() << " tocoff " << dyst.tocoff;
if (dyst.tocoff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " ntoc " << dyst.ntoc;
big_size = dyst.ntoc;
big_size *= sizeof(struct MachO::dylib_table_of_contents);
big_size += dyst.tocoff;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " modtaboff " << dyst.modtaboff;
if (dyst.modtaboff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " nmodtab " << dyst.nmodtab;
uint64_t modtabend;
if (Is64Bit) {
modtabend = dyst.nmodtab;
modtabend *= sizeof(struct MachO::dylib_module_64);
modtabend += dyst.modtaboff;
} else {
modtabend = dyst.nmodtab;
modtabend *= sizeof(struct MachO::dylib_module);
modtabend += dyst.modtaboff;
}
if (modtabend > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " extrefsymoff " << dyst.extrefsymoff;
if (dyst.extrefsymoff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " nextrefsyms " << dyst.nextrefsyms;
big_size = dyst.nextrefsyms;
big_size *= sizeof(struct MachO::dylib_reference);
big_size += dyst.extrefsymoff;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " indirectsymoff " << dyst.indirectsymoff;
if (dyst.indirectsymoff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " nindirectsyms " << dyst.nindirectsyms;
big_size = dyst.nindirectsyms;
big_size *= sizeof(uint32_t);
big_size += dyst.indirectsymoff;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " extreloff " << dyst.extreloff;
if (dyst.extreloff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " nextrel " << dyst.nextrel;
big_size = dyst.nextrel;
big_size *= sizeof(struct MachO::relocation_info);
big_size += dyst.extreloff;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " locreloff " << dyst.locreloff;
if (dyst.locreloff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " nlocrel " << dyst.nlocrel;
big_size = dyst.nlocrel;
big_size *= sizeof(struct MachO::relocation_info);
big_size += dyst.locreloff;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
}
static void PrintDyldInfoLoadCommand(MachO::dyld_info_command dc,
uint32_t object_size) {
if (dc.cmd == MachO::LC_DYLD_INFO)
outs() << " cmd LC_DYLD_INFO\n";
else
outs() << " cmd LC_DYLD_INFO_ONLY\n";
outs() << " cmdsize " << dc.cmdsize;
if (dc.cmdsize != sizeof(struct MachO::dyld_info_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " rebase_off " << dc.rebase_off;
if (dc.rebase_off > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " rebase_size " << dc.rebase_size;
uint64_t big_size;
big_size = dc.rebase_off;
big_size += dc.rebase_size;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " bind_off " << dc.bind_off;
if (dc.bind_off > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " bind_size " << dc.bind_size;
big_size = dc.bind_off;
big_size += dc.bind_size;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " weak_bind_off " << dc.weak_bind_off;
if (dc.weak_bind_off > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " weak_bind_size " << dc.weak_bind_size;
big_size = dc.weak_bind_off;
big_size += dc.weak_bind_size;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " lazy_bind_off " << dc.lazy_bind_off;
if (dc.lazy_bind_off > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " lazy_bind_size " << dc.lazy_bind_size;
big_size = dc.lazy_bind_off;
big_size += dc.lazy_bind_size;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " export_off " << dc.export_off;
if (dc.export_off > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " export_size " << dc.export_size;
big_size = dc.export_off;
big_size += dc.export_size;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
}
static void PrintDyldLoadCommand(MachO::dylinker_command dyld,
const char *Ptr) {
if (dyld.cmd == MachO::LC_ID_DYLINKER)
outs() << " cmd LC_ID_DYLINKER\n";
else if (dyld.cmd == MachO::LC_LOAD_DYLINKER)
outs() << " cmd LC_LOAD_DYLINKER\n";
else if (dyld.cmd == MachO::LC_DYLD_ENVIRONMENT)
outs() << " cmd LC_DYLD_ENVIRONMENT\n";
else
outs() << " cmd ?(" << dyld.cmd << ")\n";
outs() << " cmdsize " << dyld.cmdsize;
if (dyld.cmdsize < sizeof(struct MachO::dylinker_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
if (dyld.name >= dyld.cmdsize)
outs() << " name ?(bad offset " << dyld.name << ")\n";
else {
const char *P = (const char *)(Ptr) + dyld.name;
outs() << " name " << P << " (offset " << dyld.name << ")\n";
}
}
static void PrintUuidLoadCommand(MachO::uuid_command uuid) {
outs() << " cmd LC_UUID\n";
outs() << " cmdsize " << uuid.cmdsize;
if (uuid.cmdsize != sizeof(struct MachO::uuid_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " uuid ";
outs() << format("%02" PRIX32, uuid.uuid[0]);
outs() << format("%02" PRIX32, uuid.uuid[1]);
outs() << format("%02" PRIX32, uuid.uuid[2]);
outs() << format("%02" PRIX32, uuid.uuid[3]);
outs() << "-";
outs() << format("%02" PRIX32, uuid.uuid[4]);
outs() << format("%02" PRIX32, uuid.uuid[5]);
outs() << "-";
outs() << format("%02" PRIX32, uuid.uuid[6]);
outs() << format("%02" PRIX32, uuid.uuid[7]);
outs() << "-";
outs() << format("%02" PRIX32, uuid.uuid[8]);
outs() << format("%02" PRIX32, uuid.uuid[9]);
outs() << "-";
outs() << format("%02" PRIX32, uuid.uuid[10]);
outs() << format("%02" PRIX32, uuid.uuid[11]);
outs() << format("%02" PRIX32, uuid.uuid[12]);
outs() << format("%02" PRIX32, uuid.uuid[13]);
outs() << format("%02" PRIX32, uuid.uuid[14]);
outs() << format("%02" PRIX32, uuid.uuid[15]);
outs() << "\n";
}
static void PrintRpathLoadCommand(MachO::rpath_command rpath, const char *Ptr) {
outs() << " cmd LC_RPATH\n";
outs() << " cmdsize " << rpath.cmdsize;
if (rpath.cmdsize < sizeof(struct MachO::rpath_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
if (rpath.path >= rpath.cmdsize)
outs() << " path ?(bad offset " << rpath.path << ")\n";
else {
const char *P = (const char *)(Ptr) + rpath.path;
outs() << " path " << P << " (offset " << rpath.path << ")\n";
}
}
static void PrintVersionMinLoadCommand(MachO::version_min_command vd) {
if (vd.cmd == MachO::LC_VERSION_MIN_MACOSX)
outs() << " cmd LC_VERSION_MIN_MACOSX\n";
else if (vd.cmd == MachO::LC_VERSION_MIN_IPHONEOS)
outs() << " cmd LC_VERSION_MIN_IPHONEOS\n";
else
outs() << " cmd " << vd.cmd << " (?)\n";
outs() << " cmdsize " << vd.cmdsize;
if (vd.cmdsize != sizeof(struct MachO::version_min_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " version " << ((vd.version >> 16) & 0xffff) << "."
<< ((vd.version >> 8) & 0xff);
if ((vd.version & 0xff) != 0)
outs() << "." << (vd.version & 0xff);
outs() << "\n";
if (vd.sdk == 0)
outs() << " sdk n/a";
else {
outs() << " sdk " << ((vd.sdk >> 16) & 0xffff) << "."
<< ((vd.sdk >> 8) & 0xff);
}
if ((vd.sdk & 0xff) != 0)
outs() << "." << (vd.sdk & 0xff);
outs() << "\n";
}
static void PrintSourceVersionCommand(MachO::source_version_command sd) {
outs() << " cmd LC_SOURCE_VERSION\n";
outs() << " cmdsize " << sd.cmdsize;
if (sd.cmdsize != sizeof(struct MachO::source_version_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
uint64_t a = (sd.version >> 40) & 0xffffff;
uint64_t b = (sd.version >> 30) & 0x3ff;
uint64_t c = (sd.version >> 20) & 0x3ff;
uint64_t d = (sd.version >> 10) & 0x3ff;
uint64_t e = sd.version & 0x3ff;
outs() << " version " << a << "." << b;
if (e != 0)
outs() << "." << c << "." << d << "." << e;
else if (d != 0)
outs() << "." << c << "." << d;
else if (c != 0)
outs() << "." << c;
outs() << "\n";
}
static void PrintEntryPointCommand(MachO::entry_point_command ep) {
outs() << " cmd LC_MAIN\n";
outs() << " cmdsize " << ep.cmdsize;
if (ep.cmdsize != sizeof(struct MachO::entry_point_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " entryoff " << ep.entryoff << "\n";
outs() << " stacksize " << ep.stacksize << "\n";
}
static void PrintEncryptionInfoCommand(MachO::encryption_info_command ec,
uint32_t object_size) {
outs() << " cmd LC_ENCRYPTION_INFO\n";
outs() << " cmdsize " << ec.cmdsize;
if (ec.cmdsize != sizeof(struct MachO::encryption_info_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " cryptoff " << ec.cryptoff;
if (ec.cryptoff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " cryptsize " << ec.cryptsize;
if (ec.cryptsize > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " cryptid " << ec.cryptid << "\n";
}
static void PrintEncryptionInfoCommand64(MachO::encryption_info_command_64 ec,
uint32_t object_size) {
outs() << " cmd LC_ENCRYPTION_INFO_64\n";
outs() << " cmdsize " << ec.cmdsize;
if (ec.cmdsize != sizeof(struct MachO::encryption_info_command_64))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " cryptoff " << ec.cryptoff;
if (ec.cryptoff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " cryptsize " << ec.cryptsize;
if (ec.cryptsize > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " cryptid " << ec.cryptid << "\n";
outs() << " pad " << ec.pad << "\n";
}
static void PrintLinkerOptionCommand(MachO::linker_option_command lo,
const char *Ptr) {
outs() << " cmd LC_LINKER_OPTION\n";
outs() << " cmdsize " << lo.cmdsize;
if (lo.cmdsize < sizeof(struct MachO::linker_option_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " count " << lo.count << "\n";
const char *string = Ptr + sizeof(struct MachO::linker_option_command);
uint32_t left = lo.cmdsize - sizeof(struct MachO::linker_option_command);
uint32_t i = 0;
while (left > 0) {
while (*string == '\0' && left > 0) {
string++;
left--;
}
if (left > 0) {
i++;
outs() << " string #" << i << " " << format("%.*s\n", left, string);
uint32_t NullPos = StringRef(string, left).find('\0');
uint32_t len = std::min(NullPos, left) + 1;
string += len;
left -= len;
}
}
if (lo.count != i)
outs() << " count " << lo.count << " does not match number of strings "
<< i << "\n";
}
static void PrintSubFrameworkCommand(MachO::sub_framework_command sub,
const char *Ptr) {
outs() << " cmd LC_SUB_FRAMEWORK\n";
outs() << " cmdsize " << sub.cmdsize;
if (sub.cmdsize < sizeof(struct MachO::sub_framework_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
if (sub.umbrella < sub.cmdsize) {
const char *P = Ptr + sub.umbrella;
outs() << " umbrella " << P << " (offset " << sub.umbrella << ")\n";
} else {
outs() << " umbrella ?(bad offset " << sub.umbrella << ")\n";
}
}
static void PrintSubUmbrellaCommand(MachO::sub_umbrella_command sub,
const char *Ptr) {
outs() << " cmd LC_SUB_UMBRELLA\n";
outs() << " cmdsize " << sub.cmdsize;
if (sub.cmdsize < sizeof(struct MachO::sub_umbrella_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
if (sub.sub_umbrella < sub.cmdsize) {
const char *P = Ptr + sub.sub_umbrella;
outs() << " sub_umbrella " << P << " (offset " << sub.sub_umbrella << ")\n";
} else {
outs() << " sub_umbrella ?(bad offset " << sub.sub_umbrella << ")\n";
}
}
static void PrintSubLibraryCommand(MachO::sub_library_command sub,
const char *Ptr) {
outs() << " cmd LC_SUB_LIBRARY\n";
outs() << " cmdsize " << sub.cmdsize;
if (sub.cmdsize < sizeof(struct MachO::sub_library_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
if (sub.sub_library < sub.cmdsize) {
const char *P = Ptr + sub.sub_library;
outs() << " sub_library " << P << " (offset " << sub.sub_library << ")\n";
} else {
outs() << " sub_library ?(bad offset " << sub.sub_library << ")\n";
}
}
static void PrintSubClientCommand(MachO::sub_client_command sub,
const char *Ptr) {
outs() << " cmd LC_SUB_CLIENT\n";
outs() << " cmdsize " << sub.cmdsize;
if (sub.cmdsize < sizeof(struct MachO::sub_client_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
if (sub.client < sub.cmdsize) {
const char *P = Ptr + sub.client;
outs() << " client " << P << " (offset " << sub.client << ")\n";
} else {
outs() << " client ?(bad offset " << sub.client << ")\n";
}
}
static void PrintRoutinesCommand(MachO::routines_command r) {
outs() << " cmd LC_ROUTINES\n";
outs() << " cmdsize " << r.cmdsize;
if (r.cmdsize != sizeof(struct MachO::routines_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " init_address " << format("0x%08" PRIx32, r.init_address) << "\n";
outs() << " init_module " << r.init_module << "\n";
outs() << " reserved1 " << r.reserved1 << "\n";
outs() << " reserved2 " << r.reserved2 << "\n";
outs() << " reserved3 " << r.reserved3 << "\n";
outs() << " reserved4 " << r.reserved4 << "\n";
outs() << " reserved5 " << r.reserved5 << "\n";
outs() << " reserved6 " << r.reserved6 << "\n";
}
static void PrintRoutinesCommand64(MachO::routines_command_64 r) {
outs() << " cmd LC_ROUTINES_64\n";
outs() << " cmdsize " << r.cmdsize;
if (r.cmdsize != sizeof(struct MachO::routines_command_64))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " init_address " << format("0x%016" PRIx64, r.init_address) << "\n";
outs() << " init_module " << r.init_module << "\n";
outs() << " reserved1 " << r.reserved1 << "\n";
outs() << " reserved2 " << r.reserved2 << "\n";
outs() << " reserved3 " << r.reserved3 << "\n";
outs() << " reserved4 " << r.reserved4 << "\n";
outs() << " reserved5 " << r.reserved5 << "\n";
outs() << " reserved6 " << r.reserved6 << "\n";
}
static void Print_x86_thread_state64_t(MachO::x86_thread_state64_t &cpu64) {
outs() << " rax " << format("0x%016" PRIx64, cpu64.rax);
outs() << " rbx " << format("0x%016" PRIx64, cpu64.rbx);
outs() << " rcx " << format("0x%016" PRIx64, cpu64.rcx) << "\n";
outs() << " rdx " << format("0x%016" PRIx64, cpu64.rdx);
outs() << " rdi " << format("0x%016" PRIx64, cpu64.rdi);
outs() << " rsi " << format("0x%016" PRIx64, cpu64.rsi) << "\n";
outs() << " rbp " << format("0x%016" PRIx64, cpu64.rbp);
outs() << " rsp " << format("0x%016" PRIx64, cpu64.rsp);
outs() << " r8 " << format("0x%016" PRIx64, cpu64.r8) << "\n";
outs() << " r9 " << format("0x%016" PRIx64, cpu64.r9);
outs() << " r10 " << format("0x%016" PRIx64, cpu64.r10);
outs() << " r11 " << format("0x%016" PRIx64, cpu64.r11) << "\n";
outs() << " r12 " << format("0x%016" PRIx64, cpu64.r12);
outs() << " r13 " << format("0x%016" PRIx64, cpu64.r13);
outs() << " r14 " << format("0x%016" PRIx64, cpu64.r14) << "\n";
outs() << " r15 " << format("0x%016" PRIx64, cpu64.r15);
outs() << " rip " << format("0x%016" PRIx64, cpu64.rip) << "\n";
outs() << "rflags " << format("0x%016" PRIx64, cpu64.rflags);
outs() << " cs " << format("0x%016" PRIx64, cpu64.cs);
outs() << " fs " << format("0x%016" PRIx64, cpu64.fs) << "\n";
outs() << " gs " << format("0x%016" PRIx64, cpu64.gs) << "\n";
}
static void Print_mmst_reg(MachO::mmst_reg_t &r) {
uint32_t f;
outs() << "\t mmst_reg ";
for (f = 0; f < 10; f++)
outs() << format("%02" PRIx32, (r.mmst_reg[f] & 0xff)) << " ";
outs() << "\n";
outs() << "\t mmst_rsrv ";
for (f = 0; f < 6; f++)
outs() << format("%02" PRIx32, (r.mmst_rsrv[f] & 0xff)) << " ";
outs() << "\n";
}
static void Print_xmm_reg(MachO::xmm_reg_t &r) {
uint32_t f;
outs() << "\t xmm_reg ";
for (f = 0; f < 16; f++)
outs() << format("%02" PRIx32, (r.xmm_reg[f] & 0xff)) << " ";
outs() << "\n";
}
static void Print_x86_float_state_t(MachO::x86_float_state64_t &fpu) {
outs() << "\t fpu_reserved[0] " << fpu.fpu_reserved[0];
outs() << " fpu_reserved[1] " << fpu.fpu_reserved[1] << "\n";
outs() << "\t control: invalid " << fpu.fpu_fcw.invalid;
outs() << " denorm " << fpu.fpu_fcw.denorm;
outs() << " zdiv " << fpu.fpu_fcw.zdiv;
outs() << " ovrfl " << fpu.fpu_fcw.ovrfl;
outs() << " undfl " << fpu.fpu_fcw.undfl;
outs() << " precis " << fpu.fpu_fcw.precis << "\n";
outs() << "\t\t pc ";
if (fpu.fpu_fcw.pc == MachO::x86_FP_PREC_24B)
outs() << "FP_PREC_24B ";
else if (fpu.fpu_fcw.pc == MachO::x86_FP_PREC_53B)
outs() << "FP_PREC_53B ";
else if (fpu.fpu_fcw.pc == MachO::x86_FP_PREC_64B)
outs() << "FP_PREC_64B ";
else
outs() << fpu.fpu_fcw.pc << " ";
outs() << "rc ";
if (fpu.fpu_fcw.rc == MachO::x86_FP_RND_NEAR)
outs() << "FP_RND_NEAR ";
else if (fpu.fpu_fcw.rc == MachO::x86_FP_RND_DOWN)
outs() << "FP_RND_DOWN ";
else if (fpu.fpu_fcw.rc == MachO::x86_FP_RND_UP)
outs() << "FP_RND_UP ";
else if (fpu.fpu_fcw.rc == MachO::x86_FP_CHOP)
outs() << "FP_CHOP ";
outs() << "\n";
outs() << "\t status: invalid " << fpu.fpu_fsw.invalid;
outs() << " denorm " << fpu.fpu_fsw.denorm;
outs() << " zdiv " << fpu.fpu_fsw.zdiv;
outs() << " ovrfl " << fpu.fpu_fsw.ovrfl;
outs() << " undfl " << fpu.fpu_fsw.undfl;
outs() << " precis " << fpu.fpu_fsw.precis;
outs() << " stkflt " << fpu.fpu_fsw.stkflt << "\n";
outs() << "\t errsumm " << fpu.fpu_fsw.errsumm;
outs() << " c0 " << fpu.fpu_fsw.c0;
outs() << " c1 " << fpu.fpu_fsw.c1;
outs() << " c2 " << fpu.fpu_fsw.c2;
outs() << " tos " << fpu.fpu_fsw.tos;
outs() << " c3 " << fpu.fpu_fsw.c3;
outs() << " busy " << fpu.fpu_fsw.busy << "\n";
outs() << "\t fpu_ftw " << format("0x%02" PRIx32, fpu.fpu_ftw);
outs() << " fpu_rsrv1 " << format("0x%02" PRIx32, fpu.fpu_rsrv1);
outs() << " fpu_fop " << format("0x%04" PRIx32, fpu.fpu_fop);
outs() << " fpu_ip " << format("0x%08" PRIx32, fpu.fpu_ip) << "\n";
outs() << "\t fpu_cs " << format("0x%04" PRIx32, fpu.fpu_cs);
outs() << " fpu_rsrv2 " << format("0x%04" PRIx32, fpu.fpu_rsrv2);
outs() << " fpu_dp " << format("0x%08" PRIx32, fpu.fpu_dp);
outs() << " fpu_ds " << format("0x%04" PRIx32, fpu.fpu_ds) << "\n";
outs() << "\t fpu_rsrv3 " << format("0x%04" PRIx32, fpu.fpu_rsrv3);
outs() << " fpu_mxcsr " << format("0x%08" PRIx32, fpu.fpu_mxcsr);
outs() << " fpu_mxcsrmask " << format("0x%08" PRIx32, fpu.fpu_mxcsrmask);
outs() << "\n";
outs() << "\t fpu_stmm0:\n";
Print_mmst_reg(fpu.fpu_stmm0);
outs() << "\t fpu_stmm1:\n";
Print_mmst_reg(fpu.fpu_stmm1);
outs() << "\t fpu_stmm2:\n";
Print_mmst_reg(fpu.fpu_stmm2);
outs() << "\t fpu_stmm3:\n";
Print_mmst_reg(fpu.fpu_stmm3);
outs() << "\t fpu_stmm4:\n";
Print_mmst_reg(fpu.fpu_stmm4);
outs() << "\t fpu_stmm5:\n";
Print_mmst_reg(fpu.fpu_stmm5);
outs() << "\t fpu_stmm6:\n";
Print_mmst_reg(fpu.fpu_stmm6);
outs() << "\t fpu_stmm7:\n";
Print_mmst_reg(fpu.fpu_stmm7);
outs() << "\t fpu_xmm0:\n";
Print_xmm_reg(fpu.fpu_xmm0);
outs() << "\t fpu_xmm1:\n";
Print_xmm_reg(fpu.fpu_xmm1);
outs() << "\t fpu_xmm2:\n";
Print_xmm_reg(fpu.fpu_xmm2);
outs() << "\t fpu_xmm3:\n";
Print_xmm_reg(fpu.fpu_xmm3);
outs() << "\t fpu_xmm4:\n";
Print_xmm_reg(fpu.fpu_xmm4);
outs() << "\t fpu_xmm5:\n";
Print_xmm_reg(fpu.fpu_xmm5);
outs() << "\t fpu_xmm6:\n";
Print_xmm_reg(fpu.fpu_xmm6);
outs() << "\t fpu_xmm7:\n";
Print_xmm_reg(fpu.fpu_xmm7);
outs() << "\t fpu_xmm8:\n";
Print_xmm_reg(fpu.fpu_xmm8);
outs() << "\t fpu_xmm9:\n";
Print_xmm_reg(fpu.fpu_xmm9);
outs() << "\t fpu_xmm10:\n";
Print_xmm_reg(fpu.fpu_xmm10);
outs() << "\t fpu_xmm11:\n";
Print_xmm_reg(fpu.fpu_xmm11);
outs() << "\t fpu_xmm12:\n";
Print_xmm_reg(fpu.fpu_xmm12);
outs() << "\t fpu_xmm13:\n";
Print_xmm_reg(fpu.fpu_xmm13);
outs() << "\t fpu_xmm14:\n";
Print_xmm_reg(fpu.fpu_xmm14);
outs() << "\t fpu_xmm15:\n";
Print_xmm_reg(fpu.fpu_xmm15);
outs() << "\t fpu_rsrv4:\n";
for (uint32_t f = 0; f < 6; f++) {
outs() << "\t ";
for (uint32_t g = 0; g < 16; g++)
outs() << format("%02" PRIx32, fpu.fpu_rsrv4[f * g]) << " ";
outs() << "\n";
}
outs() << "\t fpu_reserved1 " << format("0x%08" PRIx32, fpu.fpu_reserved1);
outs() << "\n";
}
static void Print_x86_exception_state_t(MachO::x86_exception_state64_t &exc64) {
outs() << "\t trapno " << format("0x%08" PRIx32, exc64.trapno);
outs() << " err " << format("0x%08" PRIx32, exc64.err);
outs() << " faultvaddr " << format("0x%016" PRIx64, exc64.faultvaddr) << "\n";
}
static void PrintThreadCommand(MachO::thread_command t, const char *Ptr,
bool isLittleEndian, uint32_t cputype) {
if (t.cmd == MachO::LC_THREAD)
outs() << " cmd LC_THREAD\n";
else if (t.cmd == MachO::LC_UNIXTHREAD)
outs() << " cmd LC_UNIXTHREAD\n";
else
outs() << " cmd " << t.cmd << " (unknown)\n";
outs() << " cmdsize " << t.cmdsize;
if (t.cmdsize < sizeof(struct MachO::thread_command) + 2 * sizeof(uint32_t))
outs() << " Incorrect size\n";
else
outs() << "\n";
const char *begin = Ptr + sizeof(struct MachO::thread_command);
const char *end = Ptr + t.cmdsize;
uint32_t flavor, count, left;
if (cputype == MachO::CPU_TYPE_X86_64) {
while (begin < end) {
if (end - begin > (ptrdiff_t)sizeof(uint32_t)) {
memcpy((char *)&flavor, begin, sizeof(uint32_t));
begin += sizeof(uint32_t);
} else {
flavor = 0;
begin = end;
}
if (isLittleEndian != sys::IsLittleEndianHost)
sys::swapByteOrder(flavor);
if (end - begin > (ptrdiff_t)sizeof(uint32_t)) {
memcpy((char *)&count, begin, sizeof(uint32_t));
begin += sizeof(uint32_t);
} else {
count = 0;
begin = end;
}
if (isLittleEndian != sys::IsLittleEndianHost)
sys::swapByteOrder(count);
if (flavor == MachO::x86_THREAD_STATE64) {
outs() << " flavor x86_THREAD_STATE64\n";
if (count == MachO::x86_THREAD_STATE64_COUNT)
outs() << " count x86_THREAD_STATE64_COUNT\n";
else
outs() << " count " << count
<< " (not x86_THREAD_STATE64_COUNT)\n";
MachO::x86_thread_state64_t cpu64;
left = end - begin;
if (left >= sizeof(MachO::x86_thread_state64_t)) {
memcpy(&cpu64, begin, sizeof(MachO::x86_thread_state64_t));
begin += sizeof(MachO::x86_thread_state64_t);
} else {
memset(&cpu64, '\0', sizeof(MachO::x86_thread_state64_t));
memcpy(&cpu64, begin, left);
begin += left;
}
if (isLittleEndian != sys::IsLittleEndianHost)
swapStruct(cpu64);
Print_x86_thread_state64_t(cpu64);
} else if (flavor == MachO::x86_THREAD_STATE) {
outs() << " flavor x86_THREAD_STATE\n";
if (count == MachO::x86_THREAD_STATE_COUNT)
outs() << " count x86_THREAD_STATE_COUNT\n";
else
outs() << " count " << count
<< " (not x86_THREAD_STATE_COUNT)\n";
struct MachO::x86_thread_state_t ts;
left = end - begin;
if (left >= sizeof(MachO::x86_thread_state_t)) {
memcpy(&ts, begin, sizeof(MachO::x86_thread_state_t));
begin += sizeof(MachO::x86_thread_state_t);
} else {
memset(&ts, '\0', sizeof(MachO::x86_thread_state_t));
memcpy(&ts, begin, left);
begin += left;
}
if (isLittleEndian != sys::IsLittleEndianHost)
swapStruct(ts);
if (ts.tsh.flavor == MachO::x86_THREAD_STATE64) {
outs() << "\t tsh.flavor x86_THREAD_STATE64 ";
if (ts.tsh.count == MachO::x86_THREAD_STATE64_COUNT)
outs() << "tsh.count x86_THREAD_STATE64_COUNT\n";
else
outs() << "tsh.count " << ts.tsh.count
<< " (not x86_THREAD_STATE64_COUNT\n";
Print_x86_thread_state64_t(ts.uts.ts64);
} else {
outs() << "\t tsh.flavor " << ts.tsh.flavor << " tsh.count "
<< ts.tsh.count << "\n";
}
} else if (flavor == MachO::x86_FLOAT_STATE) {
outs() << " flavor x86_FLOAT_STATE\n";
if (count == MachO::x86_FLOAT_STATE_COUNT)
outs() << " count x86_FLOAT_STATE_COUNT\n";
else
outs() << " count " << count << " (not x86_FLOAT_STATE_COUNT)\n";
struct MachO::x86_float_state_t fs;
left = end - begin;
if (left >= sizeof(MachO::x86_float_state_t)) {
memcpy(&fs, begin, sizeof(MachO::x86_float_state_t));
begin += sizeof(MachO::x86_float_state_t);
} else {
memset(&fs, '\0', sizeof(MachO::x86_float_state_t));
memcpy(&fs, begin, left);
begin += left;
}
if (isLittleEndian != sys::IsLittleEndianHost)
swapStruct(fs);
if (fs.fsh.flavor == MachO::x86_FLOAT_STATE64) {
outs() << "\t fsh.flavor x86_FLOAT_STATE64 ";
if (fs.fsh.count == MachO::x86_FLOAT_STATE64_COUNT)
outs() << "fsh.count x86_FLOAT_STATE64_COUNT\n";
else
outs() << "fsh.count " << fs.fsh.count
<< " (not x86_FLOAT_STATE64_COUNT\n";
Print_x86_float_state_t(fs.ufs.fs64);
} else {
outs() << "\t fsh.flavor " << fs.fsh.flavor << " fsh.count "
<< fs.fsh.count << "\n";
}
} else if (flavor == MachO::x86_EXCEPTION_STATE) {
outs() << " flavor x86_EXCEPTION_STATE\n";
if (count == MachO::x86_EXCEPTION_STATE_COUNT)
outs() << " count x86_EXCEPTION_STATE_COUNT\n";
else
outs() << " count " << count
<< " (not x86_EXCEPTION_STATE_COUNT)\n";
struct MachO::x86_exception_state_t es;
left = end - begin;
if (left >= sizeof(MachO::x86_exception_state_t)) {
memcpy(&es, begin, sizeof(MachO::x86_exception_state_t));
begin += sizeof(MachO::x86_exception_state_t);
} else {
memset(&es, '\0', sizeof(MachO::x86_exception_state_t));
memcpy(&es, begin, left);
begin += left;
}
if (isLittleEndian != sys::IsLittleEndianHost)
swapStruct(es);
if (es.esh.flavor == MachO::x86_EXCEPTION_STATE64) {
outs() << "\t esh.flavor x86_EXCEPTION_STATE64\n";
if (es.esh.count == MachO::x86_EXCEPTION_STATE64_COUNT)
outs() << "\t esh.count x86_EXCEPTION_STATE64_COUNT\n";
else
outs() << "\t esh.count " << es.esh.count
<< " (not x86_EXCEPTION_STATE64_COUNT\n";
Print_x86_exception_state_t(es.ues.es64);
} else {
outs() << "\t esh.flavor " << es.esh.flavor << " esh.count "
<< es.esh.count << "\n";
}
} else {
outs() << " flavor " << flavor << " (unknown)\n";
outs() << " count " << count << "\n";
outs() << " state (unknown)\n";
begin += count * sizeof(uint32_t);
}
}
} else {
while (begin < end) {
if (end - begin > (ptrdiff_t)sizeof(uint32_t)) {
memcpy((char *)&flavor, begin, sizeof(uint32_t));
begin += sizeof(uint32_t);
} else {
flavor = 0;
begin = end;
}
if (isLittleEndian != sys::IsLittleEndianHost)
sys::swapByteOrder(flavor);
if (end - begin > (ptrdiff_t)sizeof(uint32_t)) {
memcpy((char *)&count, begin, sizeof(uint32_t));
begin += sizeof(uint32_t);
} else {
count = 0;
begin = end;
}
if (isLittleEndian != sys::IsLittleEndianHost)
sys::swapByteOrder(count);
outs() << " flavor " << flavor << "\n";
outs() << " count " << count << "\n";
outs() << " state (Unknown cputype/cpusubtype)\n";
begin += count * sizeof(uint32_t);
}
}
}
static void PrintDylibCommand(MachO::dylib_command dl, const char *Ptr) {
if (dl.cmd == MachO::LC_ID_DYLIB)
outs() << " cmd LC_ID_DYLIB\n";
else if (dl.cmd == MachO::LC_LOAD_DYLIB)
outs() << " cmd LC_LOAD_DYLIB\n";
else if (dl.cmd == MachO::LC_LOAD_WEAK_DYLIB)
outs() << " cmd LC_LOAD_WEAK_DYLIB\n";
else if (dl.cmd == MachO::LC_REEXPORT_DYLIB)
outs() << " cmd LC_REEXPORT_DYLIB\n";
else if (dl.cmd == MachO::LC_LAZY_LOAD_DYLIB)
outs() << " cmd LC_LAZY_LOAD_DYLIB\n";
else if (dl.cmd == MachO::LC_LOAD_UPWARD_DYLIB)
outs() << " cmd LC_LOAD_UPWARD_DYLIB\n";
else
outs() << " cmd " << dl.cmd << " (unknown)\n";
outs() << " cmdsize " << dl.cmdsize;
if (dl.cmdsize < sizeof(struct MachO::dylib_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
if (dl.dylib.name < dl.cmdsize) {
const char *P = (const char *)(Ptr) + dl.dylib.name;
outs() << " name " << P << " (offset " << dl.dylib.name << ")\n";
} else {
outs() << " name ?(bad offset " << dl.dylib.name << ")\n";
}
outs() << " time stamp " << dl.dylib.timestamp << " ";
time_t t = dl.dylib.timestamp;
outs() << ctime(&t);
outs() << " current version ";
if (dl.dylib.current_version == 0xffffffff)
outs() << "n/a\n";
else
outs() << ((dl.dylib.current_version >> 16) & 0xffff) << "."
<< ((dl.dylib.current_version >> 8) & 0xff) << "."
<< (dl.dylib.current_version & 0xff) << "\n";
outs() << "compatibility version ";
if (dl.dylib.compatibility_version == 0xffffffff)
outs() << "n/a\n";
else
outs() << ((dl.dylib.compatibility_version >> 16) & 0xffff) << "."
<< ((dl.dylib.compatibility_version >> 8) & 0xff) << "."
<< (dl.dylib.compatibility_version & 0xff) << "\n";
}
static void PrintLinkEditDataCommand(MachO::linkedit_data_command ld,
uint32_t object_size) {
if (ld.cmd == MachO::LC_CODE_SIGNATURE)
outs() << " cmd LC_FUNCTION_STARTS\n";
else if (ld.cmd == MachO::LC_SEGMENT_SPLIT_INFO)
outs() << " cmd LC_SEGMENT_SPLIT_INFO\n";
else if (ld.cmd == MachO::LC_FUNCTION_STARTS)
outs() << " cmd LC_FUNCTION_STARTS\n";
else if (ld.cmd == MachO::LC_DATA_IN_CODE)
outs() << " cmd LC_DATA_IN_CODE\n";
else if (ld.cmd == MachO::LC_DYLIB_CODE_SIGN_DRS)
outs() << " cmd LC_DYLIB_CODE_SIGN_DRS\n";
else if (ld.cmd == MachO::LC_LINKER_OPTIMIZATION_HINT)
outs() << " cmd LC_LINKER_OPTIMIZATION_HINT\n";
else
outs() << " cmd " << ld.cmd << " (?)\n";
outs() << " cmdsize " << ld.cmdsize;
if (ld.cmdsize != sizeof(struct MachO::linkedit_data_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " dataoff " << ld.dataoff;
if (ld.dataoff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " datasize " << ld.datasize;
uint64_t big_size = ld.dataoff;
big_size += ld.datasize;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
}
static void PrintLoadCommands(const MachOObjectFile *Obj, uint32_t ncmds,
uint32_t filetype, uint32_t cputype,
bool verbose) {
if (ncmds == 0)
return;
StringRef Buf = Obj->getData();
MachOObjectFile::LoadCommandInfo Command = Obj->getFirstLoadCommandInfo();
for (unsigned i = 0;; ++i) {
outs() << "Load command " << i << "\n";
if (Command.C.cmd == MachO::LC_SEGMENT) {
MachO::segment_command SLC = Obj->getSegmentLoadCommand(Command);
const char *sg_segname = SLC.segname;
PrintSegmentCommand(SLC.cmd, SLC.cmdsize, SLC.segname, SLC.vmaddr,
SLC.vmsize, SLC.fileoff, SLC.filesize, SLC.maxprot,
SLC.initprot, SLC.nsects, SLC.flags, Buf.size(),
verbose);
for (unsigned j = 0; j < SLC.nsects; j++) {
MachO::section S = Obj->getSection(Command, j);
PrintSection(S.sectname, S.segname, S.addr, S.size, S.offset, S.align,
S.reloff, S.nreloc, S.flags, S.reserved1, S.reserved2,
SLC.cmd, sg_segname, filetype, Buf.size(), verbose);
}
} else if (Command.C.cmd == MachO::LC_SEGMENT_64) {
MachO::segment_command_64 SLC_64 = Obj->getSegment64LoadCommand(Command);
const char *sg_segname = SLC_64.segname;
PrintSegmentCommand(SLC_64.cmd, SLC_64.cmdsize, SLC_64.segname,
SLC_64.vmaddr, SLC_64.vmsize, SLC_64.fileoff,
SLC_64.filesize, SLC_64.maxprot, SLC_64.initprot,
SLC_64.nsects, SLC_64.flags, Buf.size(), verbose);
for (unsigned j = 0; j < SLC_64.nsects; j++) {
MachO::section_64 S_64 = Obj->getSection64(Command, j);
PrintSection(S_64.sectname, S_64.segname, S_64.addr, S_64.size,
S_64.offset, S_64.align, S_64.reloff, S_64.nreloc,
S_64.flags, S_64.reserved1, S_64.reserved2, SLC_64.cmd,
sg_segname, filetype, Buf.size(), verbose);
}
} else if (Command.C.cmd == MachO::LC_SYMTAB) {
MachO::symtab_command Symtab = Obj->getSymtabLoadCommand();
PrintSymtabLoadCommand(Symtab, Obj->is64Bit(), Buf.size());
} else if (Command.C.cmd == MachO::LC_DYSYMTAB) {
MachO::dysymtab_command Dysymtab = Obj->getDysymtabLoadCommand();
MachO::symtab_command Symtab = Obj->getSymtabLoadCommand();
PrintDysymtabLoadCommand(Dysymtab, Symtab.nsyms, Buf.size(),
Obj->is64Bit());
} else if (Command.C.cmd == MachO::LC_DYLD_INFO ||
Command.C.cmd == MachO::LC_DYLD_INFO_ONLY) {
MachO::dyld_info_command DyldInfo = Obj->getDyldInfoLoadCommand(Command);
PrintDyldInfoLoadCommand(DyldInfo, Buf.size());
} else if (Command.C.cmd == MachO::LC_LOAD_DYLINKER ||
Command.C.cmd == MachO::LC_ID_DYLINKER ||
Command.C.cmd == MachO::LC_DYLD_ENVIRONMENT) {
MachO::dylinker_command Dyld = Obj->getDylinkerCommand(Command);
PrintDyldLoadCommand(Dyld, Command.Ptr);
} else if (Command.C.cmd == MachO::LC_UUID) {
MachO::uuid_command Uuid = Obj->getUuidCommand(Command);
PrintUuidLoadCommand(Uuid);
} else if (Command.C.cmd == MachO::LC_RPATH) {
MachO::rpath_command Rpath = Obj->getRpathCommand(Command);
PrintRpathLoadCommand(Rpath, Command.Ptr);
} else if (Command.C.cmd == MachO::LC_VERSION_MIN_MACOSX ||
Command.C.cmd == MachO::LC_VERSION_MIN_IPHONEOS) {
MachO::version_min_command Vd = Obj->getVersionMinLoadCommand(Command);
PrintVersionMinLoadCommand(Vd);
} else if (Command.C.cmd == MachO::LC_SOURCE_VERSION) {
MachO::source_version_command Sd = Obj->getSourceVersionCommand(Command);
PrintSourceVersionCommand(Sd);
} else if (Command.C.cmd == MachO::LC_MAIN) {
MachO::entry_point_command Ep = Obj->getEntryPointCommand(Command);
PrintEntryPointCommand(Ep);
} else if (Command.C.cmd == MachO::LC_ENCRYPTION_INFO) {
MachO::encryption_info_command Ei =
Obj->getEncryptionInfoCommand(Command);
PrintEncryptionInfoCommand(Ei, Buf.size());
} else if (Command.C.cmd == MachO::LC_ENCRYPTION_INFO_64) {
MachO::encryption_info_command_64 Ei =
Obj->getEncryptionInfoCommand64(Command);
PrintEncryptionInfoCommand64(Ei, Buf.size());
} else if (Command.C.cmd == MachO::LC_LINKER_OPTION) {
MachO::linker_option_command Lo =
Obj->getLinkerOptionLoadCommand(Command);
PrintLinkerOptionCommand(Lo, Command.Ptr);
} else if (Command.C.cmd == MachO::LC_SUB_FRAMEWORK) {
MachO::sub_framework_command Sf = Obj->getSubFrameworkCommand(Command);
PrintSubFrameworkCommand(Sf, Command.Ptr);
} else if (Command.C.cmd == MachO::LC_SUB_UMBRELLA) {
MachO::sub_umbrella_command Sf = Obj->getSubUmbrellaCommand(Command);
PrintSubUmbrellaCommand(Sf, Command.Ptr);
} else if (Command.C.cmd == MachO::LC_SUB_LIBRARY) {
MachO::sub_library_command Sl = Obj->getSubLibraryCommand(Command);
PrintSubLibraryCommand(Sl, Command.Ptr);
} else if (Command.C.cmd == MachO::LC_SUB_CLIENT) {
MachO::sub_client_command Sc = Obj->getSubClientCommand(Command);
PrintSubClientCommand(Sc, Command.Ptr);
} else if (Command.C.cmd == MachO::LC_ROUTINES) {
MachO::routines_command Rc = Obj->getRoutinesCommand(Command);
PrintRoutinesCommand(Rc);
} else if (Command.C.cmd == MachO::LC_ROUTINES_64) {
MachO::routines_command_64 Rc = Obj->getRoutinesCommand64(Command);
PrintRoutinesCommand64(Rc);
} else if (Command.C.cmd == MachO::LC_THREAD ||
Command.C.cmd == MachO::LC_UNIXTHREAD) {
MachO::thread_command Tc = Obj->getThreadCommand(Command);
PrintThreadCommand(Tc, Command.Ptr, Obj->isLittleEndian(), cputype);
} else if (Command.C.cmd == MachO::LC_LOAD_DYLIB ||
Command.C.cmd == MachO::LC_ID_DYLIB ||
Command.C.cmd == MachO::LC_LOAD_WEAK_DYLIB ||
Command.C.cmd == MachO::LC_REEXPORT_DYLIB ||
Command.C.cmd == MachO::LC_LAZY_LOAD_DYLIB ||
Command.C.cmd == MachO::LC_LOAD_UPWARD_DYLIB) {
MachO::dylib_command Dl = Obj->getDylibIDLoadCommand(Command);
PrintDylibCommand(Dl, Command.Ptr);
} else if (Command.C.cmd == MachO::LC_CODE_SIGNATURE ||
Command.C.cmd == MachO::LC_SEGMENT_SPLIT_INFO ||
Command.C.cmd == MachO::LC_FUNCTION_STARTS ||
Command.C.cmd == MachO::LC_DATA_IN_CODE ||
Command.C.cmd == MachO::LC_DYLIB_CODE_SIGN_DRS ||
Command.C.cmd == MachO::LC_LINKER_OPTIMIZATION_HINT) {
MachO::linkedit_data_command Ld =
Obj->getLinkeditDataLoadCommand(Command);
PrintLinkEditDataCommand(Ld, Buf.size());
} else {
outs() << " cmd ?(" << format("0x%08" PRIx32, Command.C.cmd)
<< ")\n";
outs() << " cmdsize " << Command.C.cmdsize << "\n";
// TODO: get and print the raw bytes of the load command.
}
// TODO: print all the other kinds of load commands.
if (i == ncmds - 1)
break;
else
Command = Obj->getNextLoadCommandInfo(Command);
}
}
static void getAndPrintMachHeader(const MachOObjectFile *Obj, uint32_t &ncmds,
uint32_t &filetype, uint32_t &cputype,
bool verbose) {
if (Obj->is64Bit()) {
MachO::mach_header_64 H_64;
H_64 = Obj->getHeader64();
PrintMachHeader(H_64.magic, H_64.cputype, H_64.cpusubtype, H_64.filetype,
H_64.ncmds, H_64.sizeofcmds, H_64.flags, verbose);
ncmds = H_64.ncmds;
filetype = H_64.filetype;
cputype = H_64.cputype;
} else {
MachO::mach_header H;
H = Obj->getHeader();
PrintMachHeader(H.magic, H.cputype, H.cpusubtype, H.filetype, H.ncmds,
H.sizeofcmds, H.flags, verbose);
ncmds = H.ncmds;
filetype = H.filetype;
cputype = H.cputype;
}
}
void llvm::printMachOFileHeader(const object::ObjectFile *Obj) {
const MachOObjectFile *file = dyn_cast<const MachOObjectFile>(Obj);
uint32_t ncmds = 0;
uint32_t filetype = 0;
uint32_t cputype = 0;
getAndPrintMachHeader(file, ncmds, filetype, cputype, true);
PrintLoadCommands(file, ncmds, filetype, cputype, true);
}
//===----------------------------------------------------------------------===//
// export trie dumping
//===----------------------------------------------------------------------===//
void llvm::printMachOExportsTrie(const object::MachOObjectFile *Obj) {
for (const llvm::object::ExportEntry &Entry : Obj->exports()) {
uint64_t Flags = Entry.flags();
bool ReExport = (Flags & MachO::EXPORT_SYMBOL_FLAGS_REEXPORT);
bool WeakDef = (Flags & MachO::EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION);
bool ThreadLocal = ((Flags & MachO::EXPORT_SYMBOL_FLAGS_KIND_MASK) ==
MachO::EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL);
bool Abs = ((Flags & MachO::EXPORT_SYMBOL_FLAGS_KIND_MASK) ==
MachO::EXPORT_SYMBOL_FLAGS_KIND_ABSOLUTE);
bool Resolver = (Flags & MachO::EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER);
if (ReExport)
outs() << "[re-export] ";
else
outs() << format("0x%08llX ",
Entry.address()); // FIXME:add in base address
outs() << Entry.name();
if (WeakDef || ThreadLocal || Resolver || Abs) {
bool NeedsComma = false;
outs() << " [";
if (WeakDef) {
outs() << "weak_def";
NeedsComma = true;
}
if (ThreadLocal) {
if (NeedsComma)
outs() << ", ";
outs() << "per-thread";
NeedsComma = true;
}
if (Abs) {
if (NeedsComma)
outs() << ", ";
outs() << "absolute";
NeedsComma = true;
}
if (Resolver) {
if (NeedsComma)
outs() << ", ";
outs() << format("resolver=0x%08llX", Entry.other());
NeedsComma = true;
}
outs() << "]";
}
if (ReExport) {
StringRef DylibName = "unknown";
int Ordinal = Entry.other() - 1;
Obj->getLibraryShortNameByIndex(Ordinal, DylibName);
if (Entry.otherName().empty())
outs() << " (from " << DylibName << ")";
else
outs() << " (" << Entry.otherName() << " from " << DylibName << ")";
}
outs() << "\n";
}
}
//===----------------------------------------------------------------------===//
// rebase table dumping
//===----------------------------------------------------------------------===//
namespace {
class SegInfo {
public:
SegInfo(const object::MachOObjectFile *Obj);
StringRef segmentName(uint32_t SegIndex);
StringRef sectionName(uint32_t SegIndex, uint64_t SegOffset);
uint64_t address(uint32_t SegIndex, uint64_t SegOffset);
private:
struct SectionInfo {
uint64_t Address;
uint64_t Size;
StringRef SectionName;
StringRef SegmentName;
uint64_t OffsetInSegment;
uint64_t SegmentStartAddress;
uint32_t SegmentIndex;
};
const SectionInfo &findSection(uint32_t SegIndex, uint64_t SegOffset);
SmallVector<SectionInfo, 32> Sections;
};
}
SegInfo::SegInfo(const object::MachOObjectFile *Obj) {
// Build table of sections so segIndex/offset pairs can be translated.
uint32_t CurSegIndex = Obj->hasPageZeroSegment() ? 1 : 0;
StringRef CurSegName;
uint64_t CurSegAddress;
for (const SectionRef &Section : Obj->sections()) {
SectionInfo Info;
if (error(Section.getName(Info.SectionName)))
return;
Info.Address = Section.getAddress();
Info.Size = Section.getSize();
Info.SegmentName =
Obj->getSectionFinalSegmentName(Section.getRawDataRefImpl());
if (!Info.SegmentName.equals(CurSegName)) {
++CurSegIndex;
CurSegName = Info.SegmentName;
CurSegAddress = Info.Address;
}
Info.SegmentIndex = CurSegIndex - 1;
Info.OffsetInSegment = Info.Address - CurSegAddress;
Info.SegmentStartAddress = CurSegAddress;
Sections.push_back(Info);
}
}
StringRef SegInfo::segmentName(uint32_t SegIndex) {
for (const SectionInfo &SI : Sections) {
if (SI.SegmentIndex == SegIndex)
return SI.SegmentName;
}
llvm_unreachable("invalid segIndex");
}
const SegInfo::SectionInfo &SegInfo::findSection(uint32_t SegIndex,
uint64_t OffsetInSeg) {
for (const SectionInfo &SI : Sections) {
if (SI.SegmentIndex != SegIndex)
continue;
if (SI.OffsetInSegment > OffsetInSeg)
continue;
if (OffsetInSeg >= (SI.OffsetInSegment + SI.Size))
continue;
return SI;
}
llvm_unreachable("segIndex and offset not in any section");
}
StringRef SegInfo::sectionName(uint32_t SegIndex, uint64_t OffsetInSeg) {
return findSection(SegIndex, OffsetInSeg).SectionName;
}
uint64_t SegInfo::address(uint32_t SegIndex, uint64_t OffsetInSeg) {
const SectionInfo &SI = findSection(SegIndex, OffsetInSeg);
return SI.SegmentStartAddress + OffsetInSeg;
}
void llvm::printMachORebaseTable(const object::MachOObjectFile *Obj) {
// Build table of sections so names can used in final output.
SegInfo sectionTable(Obj);
outs() << "segment section address type\n";
for (const llvm::object::MachORebaseEntry &Entry : Obj->rebaseTable()) {
uint32_t SegIndex = Entry.segmentIndex();
uint64_t OffsetInSeg = Entry.segmentOffset();
StringRef SegmentName = sectionTable.segmentName(SegIndex);
StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg);
uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);
// Table lines look like: __DATA __nl_symbol_ptr 0x0000F00C pointer
outs() << format("%-8s %-18s 0x%08" PRIX64 " %s\n",
SegmentName.str().c_str(), SectionName.str().c_str(),
Address, Entry.typeName().str().c_str());
}
}
static StringRef ordinalName(const object::MachOObjectFile *Obj, int Ordinal) {
StringRef DylibName;
switch (Ordinal) {
case MachO::BIND_SPECIAL_DYLIB_SELF:
return "this-image";
case MachO::BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE:
return "main-executable";
case MachO::BIND_SPECIAL_DYLIB_FLAT_LOOKUP:
return "flat-namespace";
default:
if (Ordinal > 0) {
std::error_code EC =
Obj->getLibraryShortNameByIndex(Ordinal - 1, DylibName);
if (EC)
return "<<bad library ordinal>>";
return DylibName;
}
}
return "<<unknown special ordinal>>";
}
//===----------------------------------------------------------------------===//
// bind table dumping
//===----------------------------------------------------------------------===//
void llvm::printMachOBindTable(const object::MachOObjectFile *Obj) {
// Build table of sections so names can used in final output.
SegInfo sectionTable(Obj);
outs() << "segment section address type "
"addend dylib symbol\n";
for (const llvm::object::MachOBindEntry &Entry : Obj->bindTable()) {
uint32_t SegIndex = Entry.segmentIndex();
uint64_t OffsetInSeg = Entry.segmentOffset();
StringRef SegmentName = sectionTable.segmentName(SegIndex);
StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg);
uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);
// Table lines look like:
// __DATA __got 0x00012010 pointer 0 libSystem ___stack_chk_guard
StringRef Attr;
if (Entry.flags() & MachO::BIND_SYMBOL_FLAGS_WEAK_IMPORT)
Attr = " (weak_import)";
outs() << left_justify(SegmentName, 8) << " "
<< left_justify(SectionName, 18) << " "
<< format_hex(Address, 10, true) << " "
<< left_justify(Entry.typeName(), 8) << " "
<< format_decimal(Entry.addend(), 8) << " "
<< left_justify(ordinalName(Obj, Entry.ordinal()), 16) << " "
<< Entry.symbolName() << Attr << "\n";
}
}
//===----------------------------------------------------------------------===//
// lazy bind table dumping
//===----------------------------------------------------------------------===//
void llvm::printMachOLazyBindTable(const object::MachOObjectFile *Obj) {
// Build table of sections so names can used in final output.
SegInfo sectionTable(Obj);
outs() << "segment section address "
"dylib symbol\n";
for (const llvm::object::MachOBindEntry &Entry : Obj->lazyBindTable()) {
uint32_t SegIndex = Entry.segmentIndex();
uint64_t OffsetInSeg = Entry.segmentOffset();
StringRef SegmentName = sectionTable.segmentName(SegIndex);
StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg);
uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);
// Table lines look like:
// __DATA __got 0x00012010 libSystem ___stack_chk_guard
outs() << left_justify(SegmentName, 8) << " "
<< left_justify(SectionName, 18) << " "
<< format_hex(Address, 10, true) << " "
<< left_justify(ordinalName(Obj, Entry.ordinal()), 16) << " "
<< Entry.symbolName() << "\n";
}
}
//===----------------------------------------------------------------------===//
// weak bind table dumping
//===----------------------------------------------------------------------===//
void llvm::printMachOWeakBindTable(const object::MachOObjectFile *Obj) {
// Build table of sections so names can used in final output.
SegInfo sectionTable(Obj);
outs() << "segment section address "
"type addend symbol\n";
for (const llvm::object::MachOBindEntry &Entry : Obj->weakBindTable()) {
// Strong symbols don't have a location to update.
if (Entry.flags() & MachO::BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION) {
outs() << " strong "
<< Entry.symbolName() << "\n";
continue;
}
uint32_t SegIndex = Entry.segmentIndex();
uint64_t OffsetInSeg = Entry.segmentOffset();
StringRef SegmentName = sectionTable.segmentName(SegIndex);
StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg);
uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);
// Table lines look like:
// __DATA __data 0x00001000 pointer 0 _foo
outs() << left_justify(SegmentName, 8) << " "
<< left_justify(SectionName, 18) << " "
<< format_hex(Address, 10, true) << " "
<< left_justify(Entry.typeName(), 8) << " "
<< format_decimal(Entry.addend(), 8) << " " << Entry.symbolName()
<< "\n";
}
}
// get_dyld_bind_info_symbolname() is used for disassembly and passed an
// address, ReferenceValue, in the Mach-O file and looks in the dyld bind
// information for that address. If the address is found its binding symbol
// name is returned. If not nullptr is returned.
static const char *get_dyld_bind_info_symbolname(uint64_t ReferenceValue,
struct DisassembleInfo *info) {
if (info->bindtable == nullptr) {
info->bindtable = new (BindTable);
SegInfo sectionTable(info->O);
for (const llvm::object::MachOBindEntry &Entry : info->O->bindTable()) {
uint32_t SegIndex = Entry.segmentIndex();
uint64_t OffsetInSeg = Entry.segmentOffset();
uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);
const char *SymbolName = nullptr;
StringRef name = Entry.symbolName();
if (!name.empty())
SymbolName = name.data();
info->bindtable->push_back(std::make_pair(Address, SymbolName));
}
}
for (bind_table_iterator BI = info->bindtable->begin(),
BE = info->bindtable->end();
BI != BE; ++BI) {
uint64_t Address = BI->first;
if (ReferenceValue == Address) {
const char *SymbolName = BI->second;
return SymbolName;
}
}
return nullptr;
}