forked from OSchip/llvm-project
7699494f08
AnalyzeBranch on X86 (and, previously, SPARC, which implementation was copied from X86) tries to modify the branches based on block layout (e.g. checking isLayoutSuccessor), when AllowModify is true. The rest of the architectures leave that up to the caller, which can call InsertBranch, RemoveBranch, and ReverseBranchCondition as appropriate. That appears to be the preferred way to do it nowadays. This commit makes SPARC like the rest: replaces AnalyzeBranch with an implementation cribbed from AArch64, and adds a ReverseBranchCondition implementation. Additionally, a test-case has been added (also cribbed from AArch64) demonstrating that redundant branch sequences no longer get emitted. E.g., it used to emit code like this: bne .LBB1_2 nop ba .LBB1_1 nop .LBB1_2: And now emits: cmp %i0, 42 be .LBB1_1 nop llvm-svn: 257572 |
||
---|---|---|
.. | ||
AsmParser | ||
Disassembler | ||
InstPrinter | ||
MCTargetDesc | ||
TargetInfo | ||
CMakeLists.txt | ||
DelaySlotFiller.cpp | ||
LLVMBuild.txt | ||
Makefile | ||
README.txt | ||
Sparc.h | ||
Sparc.td | ||
SparcAsmPrinter.cpp | ||
SparcCallingConv.td | ||
SparcFrameLowering.cpp | ||
SparcFrameLowering.h | ||
SparcISelDAGToDAG.cpp | ||
SparcISelLowering.cpp | ||
SparcISelLowering.h | ||
SparcInstr64Bit.td | ||
SparcInstrAliases.td | ||
SparcInstrFormats.td | ||
SparcInstrInfo.cpp | ||
SparcInstrInfo.h | ||
SparcInstrInfo.td | ||
SparcInstrVIS.td | ||
SparcMCInstLower.cpp | ||
SparcMachineFunctionInfo.cpp | ||
SparcMachineFunctionInfo.h | ||
SparcRegisterInfo.cpp | ||
SparcRegisterInfo.h | ||
SparcRegisterInfo.td | ||
SparcSubtarget.cpp | ||
SparcSubtarget.h | ||
SparcTargetMachine.cpp | ||
SparcTargetMachine.h | ||
SparcTargetObjectFile.cpp | ||
SparcTargetObjectFile.h | ||
SparcTargetStreamer.h |
README.txt
To-do ----- * Keep the address of the constant pool in a register instead of forming its address all of the time. * We can fold small constant offsets into the %hi/%lo references to constant pool addresses as well. * When in V9 mode, register allocate %icc[0-3]. * Add support for isel'ing UMUL_LOHI instead of marking it as Expand. * Emit the 'Branch on Integer Register with Prediction' instructions. It's not clear how to write a pattern for this though: float %t1(int %a, int* %p) { %C = seteq int %a, 0 br bool %C, label %T, label %F T: store int 123, int* %p br label %F F: ret float undef } codegens to this: t1: save -96, %o6, %o6 1) subcc %i0, 0, %l0 1) bne .LBBt1_2 ! F nop .LBBt1_1: ! T or %g0, 123, %l0 st %l0, [%i1] .LBBt1_2: ! F restore %g0, %g0, %g0 retl nop 1) should be replaced with a brz in V9 mode. * Same as above, but emit conditional move on register zero (p192) in V9 mode. Testcase: int %t1(int %a, int %b) { %C = seteq int %a, 0 %D = select bool %C, int %a, int %b ret int %D } * Emit MULX/[SU]DIVX instructions in V9 mode instead of fiddling with the Y register, if they are faster. * Codegen bswap(load)/store(bswap) -> load/store ASI * Implement frame pointer elimination, e.g. eliminate save/restore for leaf fns. * Fill delay slots * Use %g0 directly to materialize 0. No instruction is required.