llvm-project/llvm/lib/MC/MCParser/AsmParser.cpp

6416 lines
206 KiB
C++

//===- AsmParser.cpp - Parser for Assembly Files --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This class implements a parser for assembly files similar to gas syntax.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/DebugInfo/CodeView/SymbolRecord.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCCodeView.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDirectives.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCParser/AsmCond.h"
#include "llvm/MC/MCParser/AsmLexer.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCParser/MCAsmParserExtension.h"
#include "llvm/MC/MCParser/MCAsmParserUtils.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/SMLoc.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cctype>
#include <climits>
#include <cstddef>
#include <cstdint>
#include <deque>
#include <memory>
#include <sstream>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
using namespace llvm;
MCAsmParserSemaCallback::~MCAsmParserSemaCallback() = default;
extern cl::opt<unsigned> AsmMacroMaxNestingDepth;
namespace {
/// Helper types for tracking macro definitions.
typedef std::vector<AsmToken> MCAsmMacroArgument;
typedef std::vector<MCAsmMacroArgument> MCAsmMacroArguments;
/// Helper class for storing information about an active macro
/// instantiation.
struct MacroInstantiation {
/// The location of the instantiation.
SMLoc InstantiationLoc;
/// The buffer where parsing should resume upon instantiation completion.
unsigned ExitBuffer;
/// The location where parsing should resume upon instantiation completion.
SMLoc ExitLoc;
/// The depth of TheCondStack at the start of the instantiation.
size_t CondStackDepth;
};
struct ParseStatementInfo {
/// The parsed operands from the last parsed statement.
SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> ParsedOperands;
/// The opcode from the last parsed instruction.
unsigned Opcode = ~0U;
/// Was there an error parsing the inline assembly?
bool ParseError = false;
SmallVectorImpl<AsmRewrite> *AsmRewrites = nullptr;
ParseStatementInfo() = delete;
ParseStatementInfo(SmallVectorImpl<AsmRewrite> *rewrites)
: AsmRewrites(rewrites) {}
};
/// The concrete assembly parser instance.
class AsmParser : public MCAsmParser {
private:
AsmLexer Lexer;
MCContext &Ctx;
MCStreamer &Out;
const MCAsmInfo &MAI;
SourceMgr &SrcMgr;
SourceMgr::DiagHandlerTy SavedDiagHandler;
void *SavedDiagContext;
std::unique_ptr<MCAsmParserExtension> PlatformParser;
SMLoc StartTokLoc;
/// This is the current buffer index we're lexing from as managed by the
/// SourceMgr object.
unsigned CurBuffer;
AsmCond TheCondState;
std::vector<AsmCond> TheCondStack;
/// maps directive names to handler methods in parser
/// extensions. Extensions register themselves in this map by calling
/// addDirectiveHandler.
StringMap<ExtensionDirectiveHandler> ExtensionDirectiveMap;
/// Stack of active macro instantiations.
std::vector<MacroInstantiation*> ActiveMacros;
/// List of bodies of anonymous macros.
std::deque<MCAsmMacro> MacroLikeBodies;
/// Boolean tracking whether macro substitution is enabled.
unsigned MacrosEnabledFlag : 1;
/// Keeps track of how many .macro's have been instantiated.
unsigned NumOfMacroInstantiations;
/// The values from the last parsed cpp hash file line comment if any.
struct CppHashInfoTy {
StringRef Filename;
int64_t LineNumber;
SMLoc Loc;
unsigned Buf;
CppHashInfoTy() : Filename(), LineNumber(0), Loc(), Buf(0) {}
};
CppHashInfoTy CppHashInfo;
/// The filename from the first cpp hash file line comment, if any.
StringRef FirstCppHashFilename;
/// List of forward directional labels for diagnosis at the end.
SmallVector<std::tuple<SMLoc, CppHashInfoTy, MCSymbol *>, 4> DirLabels;
SmallSet<StringRef, 2> LTODiscardSymbols;
/// AssemblerDialect. ~OU means unset value and use value provided by MAI.
unsigned AssemblerDialect = ~0U;
/// is Darwin compatibility enabled?
bool IsDarwin = false;
/// Are we parsing ms-style inline assembly?
bool ParsingMSInlineAsm = false;
/// Did we already inform the user about inconsistent MD5 usage?
bool ReportedInconsistentMD5 = false;
// Is alt macro mode enabled.
bool AltMacroMode = false;
protected:
virtual bool parseStatement(ParseStatementInfo &Info,
MCAsmParserSemaCallback *SI);
/// This routine uses the target specific ParseInstruction function to
/// parse an instruction into Operands, and then call the target specific
/// MatchAndEmit function to match and emit the instruction.
bool parseAndMatchAndEmitTargetInstruction(ParseStatementInfo &Info,
StringRef IDVal, AsmToken ID,
SMLoc IDLoc);
/// Should we emit DWARF describing this assembler source? (Returns false if
/// the source has .file directives, which means we don't want to generate
/// info describing the assembler source itself.)
bool enabledGenDwarfForAssembly();
public:
AsmParser(SourceMgr &SM, MCContext &Ctx, MCStreamer &Out,
const MCAsmInfo &MAI, unsigned CB);
AsmParser(const AsmParser &) = delete;
AsmParser &operator=(const AsmParser &) = delete;
~AsmParser() override;
bool Run(bool NoInitialTextSection, bool NoFinalize = false) override;
void addDirectiveHandler(StringRef Directive,
ExtensionDirectiveHandler Handler) override {
ExtensionDirectiveMap[Directive] = Handler;
}
void addAliasForDirective(StringRef Directive, StringRef Alias) override {
DirectiveKindMap[Directive.lower()] = DirectiveKindMap[Alias.lower()];
}
/// @name MCAsmParser Interface
/// {
SourceMgr &getSourceManager() override { return SrcMgr; }
MCAsmLexer &getLexer() override { return Lexer; }
MCContext &getContext() override { return Ctx; }
MCStreamer &getStreamer() override { return Out; }
CodeViewContext &getCVContext() { return Ctx.getCVContext(); }
unsigned getAssemblerDialect() override {
if (AssemblerDialect == ~0U)
return MAI.getAssemblerDialect();
else
return AssemblerDialect;
}
void setAssemblerDialect(unsigned i) override {
AssemblerDialect = i;
}
void Note(SMLoc L, const Twine &Msg, SMRange Range = None) override;
bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) override;
bool printError(SMLoc L, const Twine &Msg, SMRange Range = None) override;
const AsmToken &Lex() override;
void setParsingMSInlineAsm(bool V) override {
ParsingMSInlineAsm = V;
// When parsing MS inline asm, we must lex 0b1101 and 0ABCH as binary and
// hex integer literals.
Lexer.setLexMasmIntegers(V);
}
bool isParsingMSInlineAsm() override { return ParsingMSInlineAsm; }
bool discardLTOSymbol(StringRef Name) const override {
return LTODiscardSymbols.contains(Name);
}
bool parseMSInlineAsm(std::string &AsmString, unsigned &NumOutputs,
unsigned &NumInputs,
SmallVectorImpl<std::pair<void *, bool>> &OpDecls,
SmallVectorImpl<std::string> &Constraints,
SmallVectorImpl<std::string> &Clobbers,
const MCInstrInfo *MII, const MCInstPrinter *IP,
MCAsmParserSemaCallback &SI) override;
bool parseExpression(const MCExpr *&Res);
bool parseExpression(const MCExpr *&Res, SMLoc &EndLoc) override;
bool parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc,
AsmTypeInfo *TypeInfo) override;
bool parseParenExpression(const MCExpr *&Res, SMLoc &EndLoc) override;
bool parseParenExprOfDepth(unsigned ParenDepth, const MCExpr *&Res,
SMLoc &EndLoc) override;
bool parseAbsoluteExpression(int64_t &Res) override;
/// Parse a floating point expression using the float \p Semantics
/// and set \p Res to the value.
bool parseRealValue(const fltSemantics &Semantics, APInt &Res);
/// Parse an identifier or string (as a quoted identifier)
/// and set \p Res to the identifier contents.
bool parseIdentifier(StringRef &Res) override;
void eatToEndOfStatement() override;
bool checkForValidSection() override;
/// }
private:
bool parseCurlyBlockScope(SmallVectorImpl<AsmRewrite>& AsmStrRewrites);
bool parseCppHashLineFilenameComment(SMLoc L, bool SaveLocInfo = true);
void checkForBadMacro(SMLoc DirectiveLoc, StringRef Name, StringRef Body,
ArrayRef<MCAsmMacroParameter> Parameters);
bool expandMacro(raw_svector_ostream &OS, StringRef Body,
ArrayRef<MCAsmMacroParameter> Parameters,
ArrayRef<MCAsmMacroArgument> A, bool EnableAtPseudoVariable,
SMLoc L);
/// Are macros enabled in the parser?
bool areMacrosEnabled() {return MacrosEnabledFlag;}
/// Control a flag in the parser that enables or disables macros.
void setMacrosEnabled(bool Flag) {MacrosEnabledFlag = Flag;}
/// Are we inside a macro instantiation?
bool isInsideMacroInstantiation() {return !ActiveMacros.empty();}
/// Handle entry to macro instantiation.
///
/// \param M The macro.
/// \param NameLoc Instantiation location.
bool handleMacroEntry(const MCAsmMacro *M, SMLoc NameLoc);
/// Handle exit from macro instantiation.
void handleMacroExit();
/// Extract AsmTokens for a macro argument.
bool parseMacroArgument(MCAsmMacroArgument &MA, bool Vararg);
/// Parse all macro arguments for a given macro.
bool parseMacroArguments(const MCAsmMacro *M, MCAsmMacroArguments &A);
void printMacroInstantiations();
void printMessage(SMLoc Loc, SourceMgr::DiagKind Kind, const Twine &Msg,
SMRange Range = None) const {
ArrayRef<SMRange> Ranges(Range);
SrcMgr.PrintMessage(Loc, Kind, Msg, Ranges);
}
static void DiagHandler(const SMDiagnostic &Diag, void *Context);
/// Enter the specified file. This returns true on failure.
bool enterIncludeFile(const std::string &Filename);
/// Process the specified file for the .incbin directive.
/// This returns true on failure.
bool processIncbinFile(const std::string &Filename, int64_t Skip = 0,
const MCExpr *Count = nullptr, SMLoc Loc = SMLoc());
/// Reset the current lexer position to that given by \p Loc. The
/// current token is not set; clients should ensure Lex() is called
/// subsequently.
///
/// \param InBuffer If not 0, should be the known buffer id that contains the
/// location.
void jumpToLoc(SMLoc Loc, unsigned InBuffer = 0);
/// Parse up to the end of statement and a return the contents from the
/// current token until the end of the statement; the current token on exit
/// will be either the EndOfStatement or EOF.
StringRef parseStringToEndOfStatement() override;
/// Parse until the end of a statement or a comma is encountered,
/// return the contents from the current token up to the end or comma.
StringRef parseStringToComma();
bool parseAssignment(StringRef Name, bool allow_redef,
bool NoDeadStrip = false);
unsigned getBinOpPrecedence(AsmToken::TokenKind K,
MCBinaryExpr::Opcode &Kind);
bool parseBinOpRHS(unsigned Precedence, const MCExpr *&Res, SMLoc &EndLoc);
bool parseParenExpr(const MCExpr *&Res, SMLoc &EndLoc);
bool parseBracketExpr(const MCExpr *&Res, SMLoc &EndLoc);
bool parseRegisterOrRegisterNumber(int64_t &Register, SMLoc DirectiveLoc);
bool parseCVFunctionId(int64_t &FunctionId, StringRef DirectiveName);
bool parseCVFileId(int64_t &FileId, StringRef DirectiveName);
// Generic (target and platform independent) directive parsing.
enum DirectiveKind {
DK_NO_DIRECTIVE, // Placeholder
DK_SET,
DK_EQU,
DK_EQUIV,
DK_ASCII,
DK_ASCIZ,
DK_STRING,
DK_BYTE,
DK_SHORT,
DK_RELOC,
DK_VALUE,
DK_2BYTE,
DK_LONG,
DK_INT,
DK_4BYTE,
DK_QUAD,
DK_8BYTE,
DK_OCTA,
DK_DC,
DK_DC_A,
DK_DC_B,
DK_DC_D,
DK_DC_L,
DK_DC_S,
DK_DC_W,
DK_DC_X,
DK_DCB,
DK_DCB_B,
DK_DCB_D,
DK_DCB_L,
DK_DCB_S,
DK_DCB_W,
DK_DCB_X,
DK_DS,
DK_DS_B,
DK_DS_D,
DK_DS_L,
DK_DS_P,
DK_DS_S,
DK_DS_W,
DK_DS_X,
DK_SINGLE,
DK_FLOAT,
DK_DOUBLE,
DK_ALIGN,
DK_ALIGN32,
DK_BALIGN,
DK_BALIGNW,
DK_BALIGNL,
DK_P2ALIGN,
DK_P2ALIGNW,
DK_P2ALIGNL,
DK_ORG,
DK_FILL,
DK_ENDR,
DK_BUNDLE_ALIGN_MODE,
DK_BUNDLE_LOCK,
DK_BUNDLE_UNLOCK,
DK_ZERO,
DK_EXTERN,
DK_GLOBL,
DK_GLOBAL,
DK_LAZY_REFERENCE,
DK_NO_DEAD_STRIP,
DK_SYMBOL_RESOLVER,
DK_PRIVATE_EXTERN,
DK_REFERENCE,
DK_WEAK_DEFINITION,
DK_WEAK_REFERENCE,
DK_WEAK_DEF_CAN_BE_HIDDEN,
DK_COLD,
DK_COMM,
DK_COMMON,
DK_LCOMM,
DK_ABORT,
DK_INCLUDE,
DK_INCBIN,
DK_CODE16,
DK_CODE16GCC,
DK_REPT,
DK_IRP,
DK_IRPC,
DK_IF,
DK_IFEQ,
DK_IFGE,
DK_IFGT,
DK_IFLE,
DK_IFLT,
DK_IFNE,
DK_IFB,
DK_IFNB,
DK_IFC,
DK_IFEQS,
DK_IFNC,
DK_IFNES,
DK_IFDEF,
DK_IFNDEF,
DK_IFNOTDEF,
DK_ELSEIF,
DK_ELSE,
DK_ENDIF,
DK_SPACE,
DK_SKIP,
DK_FILE,
DK_LINE,
DK_LOC,
DK_STABS,
DK_CV_FILE,
DK_CV_FUNC_ID,
DK_CV_INLINE_SITE_ID,
DK_CV_LOC,
DK_CV_LINETABLE,
DK_CV_INLINE_LINETABLE,
DK_CV_DEF_RANGE,
DK_CV_STRINGTABLE,
DK_CV_STRING,
DK_CV_FILECHECKSUMS,
DK_CV_FILECHECKSUM_OFFSET,
DK_CV_FPO_DATA,
DK_CFI_SECTIONS,
DK_CFI_STARTPROC,
DK_CFI_ENDPROC,
DK_CFI_DEF_CFA,
DK_CFI_DEF_CFA_OFFSET,
DK_CFI_ADJUST_CFA_OFFSET,
DK_CFI_DEF_CFA_REGISTER,
DK_CFI_LLVM_DEF_ASPACE_CFA,
DK_CFI_OFFSET,
DK_CFI_REL_OFFSET,
DK_CFI_PERSONALITY,
DK_CFI_LSDA,
DK_CFI_REMEMBER_STATE,
DK_CFI_RESTORE_STATE,
DK_CFI_SAME_VALUE,
DK_CFI_RESTORE,
DK_CFI_ESCAPE,
DK_CFI_RETURN_COLUMN,
DK_CFI_SIGNAL_FRAME,
DK_CFI_UNDEFINED,
DK_CFI_REGISTER,
DK_CFI_WINDOW_SAVE,
DK_CFI_B_KEY_FRAME,
DK_MACROS_ON,
DK_MACROS_OFF,
DK_ALTMACRO,
DK_NOALTMACRO,
DK_MACRO,
DK_EXITM,
DK_ENDM,
DK_ENDMACRO,
DK_PURGEM,
DK_SLEB128,
DK_ULEB128,
DK_ERR,
DK_ERROR,
DK_WARNING,
DK_PRINT,
DK_ADDRSIG,
DK_ADDRSIG_SYM,
DK_PSEUDO_PROBE,
DK_LTO_DISCARD,
DK_END
};
/// Maps directive name --> DirectiveKind enum, for
/// directives parsed by this class.
StringMap<DirectiveKind> DirectiveKindMap;
// Codeview def_range type parsing.
enum CVDefRangeType {
CVDR_DEFRANGE = 0, // Placeholder
CVDR_DEFRANGE_REGISTER,
CVDR_DEFRANGE_FRAMEPOINTER_REL,
CVDR_DEFRANGE_SUBFIELD_REGISTER,
CVDR_DEFRANGE_REGISTER_REL
};
/// Maps Codeview def_range types --> CVDefRangeType enum, for
/// Codeview def_range types parsed by this class.
StringMap<CVDefRangeType> CVDefRangeTypeMap;
// ".ascii", ".asciz", ".string"
bool parseDirectiveAscii(StringRef IDVal, bool ZeroTerminated);
bool parseDirectiveReloc(SMLoc DirectiveLoc); // ".reloc"
bool parseDirectiveValue(StringRef IDVal,
unsigned Size); // ".byte", ".long", ...
bool parseDirectiveOctaValue(StringRef IDVal); // ".octa", ...
bool parseDirectiveRealValue(StringRef IDVal,
const fltSemantics &); // ".single", ...
bool parseDirectiveFill(); // ".fill"
bool parseDirectiveZero(); // ".zero"
// ".set", ".equ", ".equiv"
bool parseDirectiveSet(StringRef IDVal, bool allow_redef);
bool parseDirectiveOrg(); // ".org"
// ".align{,32}", ".p2align{,w,l}"
bool parseDirectiveAlign(bool IsPow2, unsigned ValueSize);
// ".file", ".line", ".loc", ".stabs"
bool parseDirectiveFile(SMLoc DirectiveLoc);
bool parseDirectiveLine();
bool parseDirectiveLoc();
bool parseDirectiveStabs();
// ".cv_file", ".cv_func_id", ".cv_inline_site_id", ".cv_loc", ".cv_linetable",
// ".cv_inline_linetable", ".cv_def_range", ".cv_string"
bool parseDirectiveCVFile();
bool parseDirectiveCVFuncId();
bool parseDirectiveCVInlineSiteId();
bool parseDirectiveCVLoc();
bool parseDirectiveCVLinetable();
bool parseDirectiveCVInlineLinetable();
bool parseDirectiveCVDefRange();
bool parseDirectiveCVString();
bool parseDirectiveCVStringTable();
bool parseDirectiveCVFileChecksums();
bool parseDirectiveCVFileChecksumOffset();
bool parseDirectiveCVFPOData();
// .cfi directives
bool parseDirectiveCFIRegister(SMLoc DirectiveLoc);
bool parseDirectiveCFIWindowSave();
bool parseDirectiveCFISections();
bool parseDirectiveCFIStartProc();
bool parseDirectiveCFIEndProc();
bool parseDirectiveCFIDefCfaOffset();
bool parseDirectiveCFIDefCfa(SMLoc DirectiveLoc);
bool parseDirectiveCFIAdjustCfaOffset();
bool parseDirectiveCFIDefCfaRegister(SMLoc DirectiveLoc);
bool parseDirectiveCFILLVMDefAspaceCfa(SMLoc DirectiveLoc);
bool parseDirectiveCFIOffset(SMLoc DirectiveLoc);
bool parseDirectiveCFIRelOffset(SMLoc DirectiveLoc);
bool parseDirectiveCFIPersonalityOrLsda(bool IsPersonality);
bool parseDirectiveCFIRememberState();
bool parseDirectiveCFIRestoreState();
bool parseDirectiveCFISameValue(SMLoc DirectiveLoc);
bool parseDirectiveCFIRestore(SMLoc DirectiveLoc);
bool parseDirectiveCFIEscape();
bool parseDirectiveCFIReturnColumn(SMLoc DirectiveLoc);
bool parseDirectiveCFISignalFrame();
bool parseDirectiveCFIUndefined(SMLoc DirectiveLoc);
// macro directives
bool parseDirectivePurgeMacro(SMLoc DirectiveLoc);
bool parseDirectiveExitMacro(StringRef Directive);
bool parseDirectiveEndMacro(StringRef Directive);
bool parseDirectiveMacro(SMLoc DirectiveLoc);
bool parseDirectiveMacrosOnOff(StringRef Directive);
// alternate macro mode directives
bool parseDirectiveAltmacro(StringRef Directive);
// ".bundle_align_mode"
bool parseDirectiveBundleAlignMode();
// ".bundle_lock"
bool parseDirectiveBundleLock();
// ".bundle_unlock"
bool parseDirectiveBundleUnlock();
// ".space", ".skip"
bool parseDirectiveSpace(StringRef IDVal);
// ".dcb"
bool parseDirectiveDCB(StringRef IDVal, unsigned Size);
bool parseDirectiveRealDCB(StringRef IDVal, const fltSemantics &);
// ".ds"
bool parseDirectiveDS(StringRef IDVal, unsigned Size);
// .sleb128 (Signed=true) and .uleb128 (Signed=false)
bool parseDirectiveLEB128(bool Signed);
/// Parse a directive like ".globl" which
/// accepts a single symbol (which should be a label or an external).
bool parseDirectiveSymbolAttribute(MCSymbolAttr Attr);
bool parseDirectiveComm(bool IsLocal); // ".comm" and ".lcomm"
bool parseDirectiveAbort(); // ".abort"
bool parseDirectiveInclude(); // ".include"
bool parseDirectiveIncbin(); // ".incbin"
// ".if", ".ifeq", ".ifge", ".ifgt" , ".ifle", ".iflt" or ".ifne"
bool parseDirectiveIf(SMLoc DirectiveLoc, DirectiveKind DirKind);
// ".ifb" or ".ifnb", depending on ExpectBlank.
bool parseDirectiveIfb(SMLoc DirectiveLoc, bool ExpectBlank);
// ".ifc" or ".ifnc", depending on ExpectEqual.
bool parseDirectiveIfc(SMLoc DirectiveLoc, bool ExpectEqual);
// ".ifeqs" or ".ifnes", depending on ExpectEqual.
bool parseDirectiveIfeqs(SMLoc DirectiveLoc, bool ExpectEqual);
// ".ifdef" or ".ifndef", depending on expect_defined
bool parseDirectiveIfdef(SMLoc DirectiveLoc, bool expect_defined);
bool parseDirectiveElseIf(SMLoc DirectiveLoc); // ".elseif"
bool parseDirectiveElse(SMLoc DirectiveLoc); // ".else"
bool parseDirectiveEndIf(SMLoc DirectiveLoc); // .endif
bool parseEscapedString(std::string &Data) override;
bool parseAngleBracketString(std::string &Data) override;
const MCExpr *applyModifierToExpr(const MCExpr *E,
MCSymbolRefExpr::VariantKind Variant);
// Macro-like directives
MCAsmMacro *parseMacroLikeBody(SMLoc DirectiveLoc);
void instantiateMacroLikeBody(MCAsmMacro *M, SMLoc DirectiveLoc,
raw_svector_ostream &OS);
bool parseDirectiveRept(SMLoc DirectiveLoc, StringRef Directive);
bool parseDirectiveIrp(SMLoc DirectiveLoc); // ".irp"
bool parseDirectiveIrpc(SMLoc DirectiveLoc); // ".irpc"
bool parseDirectiveEndr(SMLoc DirectiveLoc); // ".endr"
// "_emit" or "__emit"
bool parseDirectiveMSEmit(SMLoc DirectiveLoc, ParseStatementInfo &Info,
size_t Len);
// "align"
bool parseDirectiveMSAlign(SMLoc DirectiveLoc, ParseStatementInfo &Info);
// "end"
bool parseDirectiveEnd(SMLoc DirectiveLoc);
// ".err" or ".error"
bool parseDirectiveError(SMLoc DirectiveLoc, bool WithMessage);
// ".warning"
bool parseDirectiveWarning(SMLoc DirectiveLoc);
// .print <double-quotes-string>
bool parseDirectivePrint(SMLoc DirectiveLoc);
// .pseudoprobe
bool parseDirectivePseudoProbe();
// ".lto_discard"
bool parseDirectiveLTODiscard();
// Directives to support address-significance tables.
bool parseDirectiveAddrsig();
bool parseDirectiveAddrsigSym();
void initializeDirectiveKindMap();
void initializeCVDefRangeTypeMap();
};
class HLASMAsmParser final : public AsmParser {
private:
MCAsmLexer &Lexer;
MCStreamer &Out;
void lexLeadingSpaces() {
while (Lexer.is(AsmToken::Space))
Lexer.Lex();
}
bool parseAsHLASMLabel(ParseStatementInfo &Info, MCAsmParserSemaCallback *SI);
bool parseAsMachineInstruction(ParseStatementInfo &Info,
MCAsmParserSemaCallback *SI);
public:
HLASMAsmParser(SourceMgr &SM, MCContext &Ctx, MCStreamer &Out,
const MCAsmInfo &MAI, unsigned CB = 0)
: AsmParser(SM, Ctx, Out, MAI, CB), Lexer(getLexer()), Out(Out) {
Lexer.setSkipSpace(false);
Lexer.setAllowHashInIdentifier(true);
Lexer.setLexHLASMIntegers(true);
Lexer.setLexHLASMStrings(true);
}
~HLASMAsmParser() { Lexer.setSkipSpace(true); }
bool parseStatement(ParseStatementInfo &Info,
MCAsmParserSemaCallback *SI) override;
};
} // end anonymous namespace
namespace llvm {
extern MCAsmParserExtension *createDarwinAsmParser();
extern MCAsmParserExtension *createELFAsmParser();
extern MCAsmParserExtension *createCOFFAsmParser();
extern MCAsmParserExtension *createGOFFAsmParser();
extern MCAsmParserExtension *createXCOFFAsmParser();
extern MCAsmParserExtension *createWasmAsmParser();
} // end namespace llvm
enum { DEFAULT_ADDRSPACE = 0 };
AsmParser::AsmParser(SourceMgr &SM, MCContext &Ctx, MCStreamer &Out,
const MCAsmInfo &MAI, unsigned CB = 0)
: Lexer(MAI), Ctx(Ctx), Out(Out), MAI(MAI), SrcMgr(SM),
CurBuffer(CB ? CB : SM.getMainFileID()), MacrosEnabledFlag(true) {
HadError = false;
// Save the old handler.
SavedDiagHandler = SrcMgr.getDiagHandler();
SavedDiagContext = SrcMgr.getDiagContext();
// Set our own handler which calls the saved handler.
SrcMgr.setDiagHandler(DiagHandler, this);
Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer());
// Make MCStreamer aware of the StartTokLoc for locations in diagnostics.
Out.setStartTokLocPtr(&StartTokLoc);
// Initialize the platform / file format parser.
switch (Ctx.getObjectFileType()) {
case MCContext::IsCOFF:
PlatformParser.reset(createCOFFAsmParser());
break;
case MCContext::IsMachO:
PlatformParser.reset(createDarwinAsmParser());
IsDarwin = true;
break;
case MCContext::IsELF:
PlatformParser.reset(createELFAsmParser());
break;
case MCContext::IsGOFF:
PlatformParser.reset(createGOFFAsmParser());
break;
case MCContext::IsWasm:
PlatformParser.reset(createWasmAsmParser());
break;
case MCContext::IsXCOFF:
PlatformParser.reset(createXCOFFAsmParser());
break;
}
PlatformParser->Initialize(*this);
initializeDirectiveKindMap();
initializeCVDefRangeTypeMap();
NumOfMacroInstantiations = 0;
}
AsmParser::~AsmParser() {
assert((HadError || ActiveMacros.empty()) &&
"Unexpected active macro instantiation!");
// Remove MCStreamer's reference to the parser SMLoc.
Out.setStartTokLocPtr(nullptr);
// Restore the saved diagnostics handler and context for use during
// finalization.
SrcMgr.setDiagHandler(SavedDiagHandler, SavedDiagContext);
}
void AsmParser::printMacroInstantiations() {
// Print the active macro instantiation stack.
for (std::vector<MacroInstantiation *>::const_reverse_iterator
it = ActiveMacros.rbegin(),
ie = ActiveMacros.rend();
it != ie; ++it)
printMessage((*it)->InstantiationLoc, SourceMgr::DK_Note,
"while in macro instantiation");
}
void AsmParser::Note(SMLoc L, const Twine &Msg, SMRange Range) {
printPendingErrors();
printMessage(L, SourceMgr::DK_Note, Msg, Range);
printMacroInstantiations();
}
bool AsmParser::Warning(SMLoc L, const Twine &Msg, SMRange Range) {
if(getTargetParser().getTargetOptions().MCNoWarn)
return false;
if (getTargetParser().getTargetOptions().MCFatalWarnings)
return Error(L, Msg, Range);
printMessage(L, SourceMgr::DK_Warning, Msg, Range);
printMacroInstantiations();
return false;
}
bool AsmParser::printError(SMLoc L, const Twine &Msg, SMRange Range) {
HadError = true;
printMessage(L, SourceMgr::DK_Error, Msg, Range);
printMacroInstantiations();
return true;
}
bool AsmParser::enterIncludeFile(const std::string &Filename) {
std::string IncludedFile;
unsigned NewBuf =
SrcMgr.AddIncludeFile(Filename, Lexer.getLoc(), IncludedFile);
if (!NewBuf)
return true;
CurBuffer = NewBuf;
Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer());
return false;
}
/// Process the specified .incbin file by searching for it in the include paths
/// then just emitting the byte contents of the file to the streamer. This
/// returns true on failure.
bool AsmParser::processIncbinFile(const std::string &Filename, int64_t Skip,
const MCExpr *Count, SMLoc Loc) {
std::string IncludedFile;
unsigned NewBuf =
SrcMgr.AddIncludeFile(Filename, Lexer.getLoc(), IncludedFile);
if (!NewBuf)
return true;
// Pick up the bytes from the file and emit them.
StringRef Bytes = SrcMgr.getMemoryBuffer(NewBuf)->getBuffer();
Bytes = Bytes.drop_front(Skip);
if (Count) {
int64_t Res;
if (!Count->evaluateAsAbsolute(Res, getStreamer().getAssemblerPtr()))
return Error(Loc, "expected absolute expression");
if (Res < 0)
return Warning(Loc, "negative count has no effect");
Bytes = Bytes.take_front(Res);
}
getStreamer().emitBytes(Bytes);
return false;
}
void AsmParser::jumpToLoc(SMLoc Loc, unsigned InBuffer) {
CurBuffer = InBuffer ? InBuffer : SrcMgr.FindBufferContainingLoc(Loc);
Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer(),
Loc.getPointer());
}
const AsmToken &AsmParser::Lex() {
if (Lexer.getTok().is(AsmToken::Error))
Error(Lexer.getErrLoc(), Lexer.getErr());
// if it's a end of statement with a comment in it
if (getTok().is(AsmToken::EndOfStatement)) {
// if this is a line comment output it.
if (!getTok().getString().empty() && getTok().getString().front() != '\n' &&
getTok().getString().front() != '\r' && MAI.preserveAsmComments())
Out.addExplicitComment(Twine(getTok().getString()));
}
const AsmToken *tok = &Lexer.Lex();
// Parse comments here to be deferred until end of next statement.
while (tok->is(AsmToken::Comment)) {
if (MAI.preserveAsmComments())
Out.addExplicitComment(Twine(tok->getString()));
tok = &Lexer.Lex();
}
if (tok->is(AsmToken::Eof)) {
// If this is the end of an included file, pop the parent file off the
// include stack.
SMLoc ParentIncludeLoc = SrcMgr.getParentIncludeLoc(CurBuffer);
if (ParentIncludeLoc != SMLoc()) {
jumpToLoc(ParentIncludeLoc);
return Lex();
}
}
return *tok;
}
bool AsmParser::enabledGenDwarfForAssembly() {
// Check whether the user specified -g.
if (!getContext().getGenDwarfForAssembly())
return false;
// If we haven't encountered any .file directives (which would imply that
// the assembler source was produced with debug info already) then emit one
// describing the assembler source file itself.
if (getContext().getGenDwarfFileNumber() == 0) {
// Use the first #line directive for this, if any. It's preprocessed, so
// there is no checksum, and of course no source directive.
if (!FirstCppHashFilename.empty())
getContext().setMCLineTableRootFile(/*CUID=*/0,
getContext().getCompilationDir(),
FirstCppHashFilename,
/*Cksum=*/None, /*Source=*/None);
const MCDwarfFile &RootFile =
getContext().getMCDwarfLineTable(/*CUID=*/0).getRootFile();
getContext().setGenDwarfFileNumber(getStreamer().emitDwarfFileDirective(
/*CUID=*/0, getContext().getCompilationDir(), RootFile.Name,
RootFile.Checksum, RootFile.Source));
}
return true;
}
bool AsmParser::Run(bool NoInitialTextSection, bool NoFinalize) {
LTODiscardSymbols.clear();
// Create the initial section, if requested.
if (!NoInitialTextSection)
Out.initSections(false, getTargetParser().getSTI());
// Prime the lexer.
Lex();
HadError = false;
AsmCond StartingCondState = TheCondState;
SmallVector<AsmRewrite, 4> AsmStrRewrites;
// If we are generating dwarf for assembly source files save the initial text
// section. (Don't use enabledGenDwarfForAssembly() here, as we aren't
// emitting any actual debug info yet and haven't had a chance to parse any
// embedded .file directives.)
if (getContext().getGenDwarfForAssembly()) {
MCSection *Sec = getStreamer().getCurrentSectionOnly();
if (!Sec->getBeginSymbol()) {
MCSymbol *SectionStartSym = getContext().createTempSymbol();
getStreamer().emitLabel(SectionStartSym);
Sec->setBeginSymbol(SectionStartSym);
}
bool InsertResult = getContext().addGenDwarfSection(Sec);
assert(InsertResult && ".text section should not have debug info yet");
(void)InsertResult;
}
getTargetParser().onBeginOfFile();
// While we have input, parse each statement.
while (Lexer.isNot(AsmToken::Eof)) {
ParseStatementInfo Info(&AsmStrRewrites);
bool Parsed = parseStatement(Info, nullptr);
// If we have a Lexer Error we are on an Error Token. Load in Lexer Error
// for printing ErrMsg via Lex() only if no (presumably better) parser error
// exists.
if (Parsed && !hasPendingError() && Lexer.getTok().is(AsmToken::Error)) {
Lex();
}
// parseStatement returned true so may need to emit an error.
printPendingErrors();
// Skipping to the next line if needed.
if (Parsed && !getLexer().isAtStartOfStatement())
eatToEndOfStatement();
}
getTargetParser().onEndOfFile();
printPendingErrors();
// All errors should have been emitted.
assert(!hasPendingError() && "unexpected error from parseStatement");
getTargetParser().flushPendingInstructions(getStreamer());
if (TheCondState.TheCond != StartingCondState.TheCond ||
TheCondState.Ignore != StartingCondState.Ignore)
printError(getTok().getLoc(), "unmatched .ifs or .elses");
// Check to see there are no empty DwarfFile slots.
const auto &LineTables = getContext().getMCDwarfLineTables();
if (!LineTables.empty()) {
unsigned Index = 0;
for (const auto &File : LineTables.begin()->second.getMCDwarfFiles()) {
if (File.Name.empty() && Index != 0)
printError(getTok().getLoc(), "unassigned file number: " +
Twine(Index) +
" for .file directives");
++Index;
}
}
// Check to see that all assembler local symbols were actually defined.
// Targets that don't do subsections via symbols may not want this, though,
// so conservatively exclude them. Only do this if we're finalizing, though,
// as otherwise we won't necessarilly have seen everything yet.
if (!NoFinalize) {
if (MAI.hasSubsectionsViaSymbols()) {
for (const auto &TableEntry : getContext().getSymbols()) {
MCSymbol *Sym = TableEntry.getValue();
// Variable symbols may not be marked as defined, so check those
// explicitly. If we know it's a variable, we have a definition for
// the purposes of this check.
if (Sym->isTemporary() && !Sym->isVariable() && !Sym->isDefined())
// FIXME: We would really like to refer back to where the symbol was
// first referenced for a source location. We need to add something
// to track that. Currently, we just point to the end of the file.
printError(getTok().getLoc(), "assembler local symbol '" +
Sym->getName() + "' not defined");
}
}
// Temporary symbols like the ones for directional jumps don't go in the
// symbol table. They also need to be diagnosed in all (final) cases.
for (std::tuple<SMLoc, CppHashInfoTy, MCSymbol *> &LocSym : DirLabels) {
if (std::get<2>(LocSym)->isUndefined()) {
// Reset the state of any "# line file" directives we've seen to the
// context as it was at the diagnostic site.
CppHashInfo = std::get<1>(LocSym);
printError(std::get<0>(LocSym), "directional label undefined");
}
}
}
// Finalize the output stream if there are no errors and if the client wants
// us to.
if (!HadError && !NoFinalize) {
if (auto *TS = Out.getTargetStreamer())
TS->emitConstantPools();
Out.Finish(Lexer.getLoc());
}
return HadError || getContext().hadError();
}
bool AsmParser::checkForValidSection() {
if (!ParsingMSInlineAsm && !getStreamer().getCurrentSectionOnly()) {
Out.initSections(false, getTargetParser().getSTI());
return Error(getTok().getLoc(),
"expected section directive before assembly directive");
}
return false;
}
/// Throw away the rest of the line for testing purposes.
void AsmParser::eatToEndOfStatement() {
while (Lexer.isNot(AsmToken::EndOfStatement) && Lexer.isNot(AsmToken::Eof))
Lexer.Lex();
// Eat EOL.
if (Lexer.is(AsmToken::EndOfStatement))
Lexer.Lex();
}
StringRef AsmParser::parseStringToEndOfStatement() {
const char *Start = getTok().getLoc().getPointer();
while (Lexer.isNot(AsmToken::EndOfStatement) && Lexer.isNot(AsmToken::Eof))
Lexer.Lex();
const char *End = getTok().getLoc().getPointer();
return StringRef(Start, End - Start);
}
StringRef AsmParser::parseStringToComma() {
const char *Start = getTok().getLoc().getPointer();
while (Lexer.isNot(AsmToken::EndOfStatement) &&
Lexer.isNot(AsmToken::Comma) && Lexer.isNot(AsmToken::Eof))
Lexer.Lex();
const char *End = getTok().getLoc().getPointer();
return StringRef(Start, End - Start);
}
/// Parse a paren expression and return it.
/// NOTE: This assumes the leading '(' has already been consumed.
///
/// parenexpr ::= expr)
///
bool AsmParser::parseParenExpr(const MCExpr *&Res, SMLoc &EndLoc) {
if (parseExpression(Res))
return true;
if (Lexer.isNot(AsmToken::RParen))
return TokError("expected ')' in parentheses expression");
EndLoc = Lexer.getTok().getEndLoc();
Lex();
return false;
}
/// Parse a bracket expression and return it.
/// NOTE: This assumes the leading '[' has already been consumed.
///
/// bracketexpr ::= expr]
///
bool AsmParser::parseBracketExpr(const MCExpr *&Res, SMLoc &EndLoc) {
if (parseExpression(Res))
return true;
EndLoc = getTok().getEndLoc();
if (parseToken(AsmToken::RBrac, "expected ']' in brackets expression"))
return true;
return false;
}
/// Parse a primary expression and return it.
/// primaryexpr ::= (parenexpr
/// primaryexpr ::= symbol
/// primaryexpr ::= number
/// primaryexpr ::= '.'
/// primaryexpr ::= ~,+,- primaryexpr
bool AsmParser::parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc,
AsmTypeInfo *TypeInfo) {
SMLoc FirstTokenLoc = getLexer().getLoc();
AsmToken::TokenKind FirstTokenKind = Lexer.getKind();
switch (FirstTokenKind) {
default:
return TokError("unknown token in expression");
// If we have an error assume that we've already handled it.
case AsmToken::Error:
return true;
case AsmToken::Exclaim:
Lex(); // Eat the operator.
if (parsePrimaryExpr(Res, EndLoc, TypeInfo))
return true;
Res = MCUnaryExpr::createLNot(Res, getContext(), FirstTokenLoc);
return false;
case AsmToken::Dollar:
case AsmToken::Star:
case AsmToken::At:
case AsmToken::String:
case AsmToken::Identifier: {
StringRef Identifier;
if (parseIdentifier(Identifier)) {
// We may have failed but '$'|'*' may be a valid token in context of
// the current PC.
if (getTok().is(AsmToken::Dollar) || getTok().is(AsmToken::Star)) {
bool ShouldGenerateTempSymbol = false;
if ((getTok().is(AsmToken::Dollar) && MAI.getDollarIsPC()) ||
(getTok().is(AsmToken::Star) && MAI.getStarIsPC()))
ShouldGenerateTempSymbol = true;
if (!ShouldGenerateTempSymbol)
return Error(FirstTokenLoc, "invalid token in expression");
// Eat the '$'|'*' token.
Lex();
// This is either a '$'|'*' reference, which references the current PC.
// Emit a temporary label to the streamer and refer to it.
MCSymbol *Sym = Ctx.createTempSymbol();
Out.emitLabel(Sym);
Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None,
getContext());
EndLoc = FirstTokenLoc;
return false;
}
}
// Parse symbol variant
std::pair<StringRef, StringRef> Split;
if (!MAI.useParensForSymbolVariant()) {
if (FirstTokenKind == AsmToken::String) {
if (Lexer.is(AsmToken::At)) {
Lex(); // eat @
SMLoc AtLoc = getLexer().getLoc();
StringRef VName;
if (parseIdentifier(VName))
return Error(AtLoc, "expected symbol variant after '@'");
Split = std::make_pair(Identifier, VName);
}
} else {
Split = Identifier.split('@');
}
} else if (Lexer.is(AsmToken::LParen)) {
Lex(); // eat '('.
StringRef VName;
parseIdentifier(VName);
// eat ')'.
if (parseToken(AsmToken::RParen,
"unexpected token in variant, expected ')'"))
return true;
Split = std::make_pair(Identifier, VName);
}
EndLoc = SMLoc::getFromPointer(Identifier.end());
// This is a symbol reference.
StringRef SymbolName = Identifier;
if (SymbolName.empty())
return Error(getLexer().getLoc(), "expected a symbol reference");
MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
// Lookup the symbol variant if used.
if (!Split.second.empty()) {
Variant = MCSymbolRefExpr::getVariantKindForName(Split.second);
if (Variant != MCSymbolRefExpr::VK_Invalid) {
SymbolName = Split.first;
} else if (MAI.doesAllowAtInName() && !MAI.useParensForSymbolVariant()) {
Variant = MCSymbolRefExpr::VK_None;
} else {
return Error(SMLoc::getFromPointer(Split.second.begin()),
"invalid variant '" + Split.second + "'");
}
}
MCSymbol *Sym = getContext().getInlineAsmLabel(SymbolName);
if (!Sym)
Sym = getContext().getOrCreateSymbol(
MAI.shouldEmitLabelsInUpperCase() ? SymbolName.upper() : SymbolName);
// If this is an absolute variable reference, substitute it now to preserve
// semantics in the face of reassignment.
if (Sym->isVariable()) {
auto V = Sym->getVariableValue(/*SetUsed*/ false);
bool DoInline = isa<MCConstantExpr>(V) && !Variant;
if (auto TV = dyn_cast<MCTargetExpr>(V))
DoInline = TV->inlineAssignedExpr();
if (DoInline) {
if (Variant)
return Error(EndLoc, "unexpected modifier on variable reference");
Res = Sym->getVariableValue(/*SetUsed*/ false);
return false;
}
}
// Otherwise create a symbol ref.
Res = MCSymbolRefExpr::create(Sym, Variant, getContext(), FirstTokenLoc);
return false;
}
case AsmToken::BigNum:
return TokError("literal value out of range for directive");
case AsmToken::Integer: {
SMLoc Loc = getTok().getLoc();
int64_t IntVal = getTok().getIntVal();
Res = MCConstantExpr::create(IntVal, getContext());
EndLoc = Lexer.getTok().getEndLoc();
Lex(); // Eat token.
// Look for 'b' or 'f' following an Integer as a directional label
if (Lexer.getKind() == AsmToken::Identifier) {
StringRef IDVal = getTok().getString();
// Lookup the symbol variant if used.
std::pair<StringRef, StringRef> Split = IDVal.split('@');
MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
if (Split.first.size() != IDVal.size()) {
Variant = MCSymbolRefExpr::getVariantKindForName(Split.second);
if (Variant == MCSymbolRefExpr::VK_Invalid)
return TokError("invalid variant '" + Split.second + "'");
IDVal = Split.first;
}
if (IDVal == "f" || IDVal == "b") {
MCSymbol *Sym =
Ctx.getDirectionalLocalSymbol(IntVal, IDVal == "b");
Res = MCSymbolRefExpr::create(Sym, Variant, getContext());
if (IDVal == "b" && Sym->isUndefined())
return Error(Loc, "directional label undefined");
DirLabels.push_back(std::make_tuple(Loc, CppHashInfo, Sym));
EndLoc = Lexer.getTok().getEndLoc();
Lex(); // Eat identifier.
}
}
return false;
}
case AsmToken::Real: {
APFloat RealVal(APFloat::IEEEdouble(), getTok().getString());
uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
Res = MCConstantExpr::create(IntVal, getContext());
EndLoc = Lexer.getTok().getEndLoc();
Lex(); // Eat token.
return false;
}
case AsmToken::Dot: {
if (!MAI.getDotIsPC())
return TokError("cannot use . as current PC");
// This is a '.' reference, which references the current PC. Emit a
// temporary label to the streamer and refer to it.
MCSymbol *Sym = Ctx.createTempSymbol();
Out.emitLabel(Sym);
Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
EndLoc = Lexer.getTok().getEndLoc();
Lex(); // Eat identifier.
return false;
}
case AsmToken::LParen:
Lex(); // Eat the '('.
return parseParenExpr(Res, EndLoc);
case AsmToken::LBrac:
if (!PlatformParser->HasBracketExpressions())
return TokError("brackets expression not supported on this target");
Lex(); // Eat the '['.
return parseBracketExpr(Res, EndLoc);
case AsmToken::Minus:
Lex(); // Eat the operator.
if (parsePrimaryExpr(Res, EndLoc, TypeInfo))
return true;
Res = MCUnaryExpr::createMinus(Res, getContext(), FirstTokenLoc);
return false;
case AsmToken::Plus:
Lex(); // Eat the operator.
if (parsePrimaryExpr(Res, EndLoc, TypeInfo))
return true;
Res = MCUnaryExpr::createPlus(Res, getContext(), FirstTokenLoc);
return false;
case AsmToken::Tilde:
Lex(); // Eat the operator.
if (parsePrimaryExpr(Res, EndLoc, TypeInfo))
return true;
Res = MCUnaryExpr::createNot(Res, getContext(), FirstTokenLoc);
return false;
// MIPS unary expression operators. The lexer won't generate these tokens if
// MCAsmInfo::HasMipsExpressions is false for the target.
case AsmToken::PercentCall16:
case AsmToken::PercentCall_Hi:
case AsmToken::PercentCall_Lo:
case AsmToken::PercentDtprel_Hi:
case AsmToken::PercentDtprel_Lo:
case AsmToken::PercentGot:
case AsmToken::PercentGot_Disp:
case AsmToken::PercentGot_Hi:
case AsmToken::PercentGot_Lo:
case AsmToken::PercentGot_Ofst:
case AsmToken::PercentGot_Page:
case AsmToken::PercentGottprel:
case AsmToken::PercentGp_Rel:
case AsmToken::PercentHi:
case AsmToken::PercentHigher:
case AsmToken::PercentHighest:
case AsmToken::PercentLo:
case AsmToken::PercentNeg:
case AsmToken::PercentPcrel_Hi:
case AsmToken::PercentPcrel_Lo:
case AsmToken::PercentTlsgd:
case AsmToken::PercentTlsldm:
case AsmToken::PercentTprel_Hi:
case AsmToken::PercentTprel_Lo:
Lex(); // Eat the operator.
if (Lexer.isNot(AsmToken::LParen))
return TokError("expected '(' after operator");
Lex(); // Eat the operator.
if (parseExpression(Res, EndLoc))
return true;
if (Lexer.isNot(AsmToken::RParen))
return TokError("expected ')'");
Lex(); // Eat the operator.
Res = getTargetParser().createTargetUnaryExpr(Res, FirstTokenKind, Ctx);
return !Res;
}
}
bool AsmParser::parseExpression(const MCExpr *&Res) {
SMLoc EndLoc;
return parseExpression(Res, EndLoc);
}
const MCExpr *
AsmParser::applyModifierToExpr(const MCExpr *E,
MCSymbolRefExpr::VariantKind Variant) {
// Ask the target implementation about this expression first.
const MCExpr *NewE = getTargetParser().applyModifierToExpr(E, Variant, Ctx);
if (NewE)
return NewE;
// Recurse over the given expression, rebuilding it to apply the given variant
// if there is exactly one symbol.
switch (E->getKind()) {
case MCExpr::Target:
case MCExpr::Constant:
return nullptr;
case MCExpr::SymbolRef: {
const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E);
if (SRE->getKind() != MCSymbolRefExpr::VK_None) {
TokError("invalid variant on expression '" + getTok().getIdentifier() +
"' (already modified)");
return E;
}
return MCSymbolRefExpr::create(&SRE->getSymbol(), Variant, getContext());
}
case MCExpr::Unary: {
const MCUnaryExpr *UE = cast<MCUnaryExpr>(E);
const MCExpr *Sub = applyModifierToExpr(UE->getSubExpr(), Variant);
if (!Sub)
return nullptr;
return MCUnaryExpr::create(UE->getOpcode(), Sub, getContext());
}
case MCExpr::Binary: {
const MCBinaryExpr *BE = cast<MCBinaryExpr>(E);
const MCExpr *LHS = applyModifierToExpr(BE->getLHS(), Variant);
const MCExpr *RHS = applyModifierToExpr(BE->getRHS(), Variant);
if (!LHS && !RHS)
return nullptr;
if (!LHS)
LHS = BE->getLHS();
if (!RHS)
RHS = BE->getRHS();
return MCBinaryExpr::create(BE->getOpcode(), LHS, RHS, getContext());
}
}
llvm_unreachable("Invalid expression kind!");
}
/// This function checks if the next token is <string> type or arithmetic.
/// string that begin with character '<' must end with character '>'.
/// otherwise it is arithmetics.
/// If the function returns a 'true' value,
/// the End argument will be filled with the last location pointed to the '>'
/// character.
/// There is a gap between the AltMacro's documentation and the single quote
/// implementation. GCC does not fully support this feature and so we will not
/// support it.
/// TODO: Adding single quote as a string.
static bool isAngleBracketString(SMLoc &StrLoc, SMLoc &EndLoc) {
assert((StrLoc.getPointer() != nullptr) &&
"Argument to the function cannot be a NULL value");
const char *CharPtr = StrLoc.getPointer();
while ((*CharPtr != '>') && (*CharPtr != '\n') && (*CharPtr != '\r') &&
(*CharPtr != '\0')) {
if (*CharPtr == '!')
CharPtr++;
CharPtr++;
}
if (*CharPtr == '>') {
EndLoc = StrLoc.getFromPointer(CharPtr + 1);
return true;
}
return false;
}
/// creating a string without the escape characters '!'.
static std::string angleBracketString(StringRef AltMacroStr) {
std::string Res;
for (size_t Pos = 0; Pos < AltMacroStr.size(); Pos++) {
if (AltMacroStr[Pos] == '!')
Pos++;
Res += AltMacroStr[Pos];
}
return Res;
}
/// Parse an expression and return it.
///
/// expr ::= expr &&,|| expr -> lowest.
/// expr ::= expr |,^,&,! expr
/// expr ::= expr ==,!=,<>,<,<=,>,>= expr
/// expr ::= expr <<,>> expr
/// expr ::= expr +,- expr
/// expr ::= expr *,/,% expr -> highest.
/// expr ::= primaryexpr
///
bool AsmParser::parseExpression(const MCExpr *&Res, SMLoc &EndLoc) {
// Parse the expression.
Res = nullptr;
if (getTargetParser().parsePrimaryExpr(Res, EndLoc) ||
parseBinOpRHS(1, Res, EndLoc))
return true;
// As a special case, we support 'a op b @ modifier' by rewriting the
// expression to include the modifier. This is inefficient, but in general we
// expect users to use 'a@modifier op b'.
if (Lexer.getKind() == AsmToken::At) {
Lex();
if (Lexer.isNot(AsmToken::Identifier))
return TokError("unexpected symbol modifier following '@'");
MCSymbolRefExpr::VariantKind Variant =
MCSymbolRefExpr::getVariantKindForName(getTok().getIdentifier());
if (Variant == MCSymbolRefExpr::VK_Invalid)
return TokError("invalid variant '" + getTok().getIdentifier() + "'");
const MCExpr *ModifiedRes = applyModifierToExpr(Res, Variant);
if (!ModifiedRes) {
return TokError("invalid modifier '" + getTok().getIdentifier() +
"' (no symbols present)");
}
Res = ModifiedRes;
Lex();
}
// Try to constant fold it up front, if possible. Do not exploit
// assembler here.
int64_t Value;
if (Res->evaluateAsAbsolute(Value))
Res = MCConstantExpr::create(Value, getContext());
return false;
}
bool AsmParser::parseParenExpression(const MCExpr *&Res, SMLoc &EndLoc) {
Res = nullptr;
return parseParenExpr(Res, EndLoc) || parseBinOpRHS(1, Res, EndLoc);
}
bool AsmParser::parseParenExprOfDepth(unsigned ParenDepth, const MCExpr *&Res,
SMLoc &EndLoc) {
if (parseParenExpr(Res, EndLoc))
return true;
for (; ParenDepth > 0; --ParenDepth) {
if (parseBinOpRHS(1, Res, EndLoc))
return true;
// We don't Lex() the last RParen.
// This is the same behavior as parseParenExpression().
if (ParenDepth - 1 > 0) {
EndLoc = getTok().getEndLoc();
if (parseToken(AsmToken::RParen,
"expected ')' in parentheses expression"))
return true;
}
}
return false;
}
bool AsmParser::parseAbsoluteExpression(int64_t &Res) {
const MCExpr *Expr;
SMLoc StartLoc = Lexer.getLoc();
if (parseExpression(Expr))
return true;
if (!Expr->evaluateAsAbsolute(Res, getStreamer().getAssemblerPtr()))
return Error(StartLoc, "expected absolute expression");
return false;
}
static unsigned getDarwinBinOpPrecedence(AsmToken::TokenKind K,
MCBinaryExpr::Opcode &Kind,
bool ShouldUseLogicalShr) {
switch (K) {
default:
return 0; // not a binop.
// Lowest Precedence: &&, ||
case AsmToken::AmpAmp:
Kind = MCBinaryExpr::LAnd;
return 1;
case AsmToken::PipePipe:
Kind = MCBinaryExpr::LOr;
return 1;
// Low Precedence: |, &, ^
case AsmToken::Pipe:
Kind = MCBinaryExpr::Or;
return 2;
case AsmToken::Caret:
Kind = MCBinaryExpr::Xor;
return 2;
case AsmToken::Amp:
Kind = MCBinaryExpr::And;
return 2;
// Low Intermediate Precedence: ==, !=, <>, <, <=, >, >=
case AsmToken::EqualEqual:
Kind = MCBinaryExpr::EQ;
return 3;
case AsmToken::ExclaimEqual:
case AsmToken::LessGreater:
Kind = MCBinaryExpr::NE;
return 3;
case AsmToken::Less:
Kind = MCBinaryExpr::LT;
return 3;
case AsmToken::LessEqual:
Kind = MCBinaryExpr::LTE;
return 3;
case AsmToken::Greater:
Kind = MCBinaryExpr::GT;
return 3;
case AsmToken::GreaterEqual:
Kind = MCBinaryExpr::GTE;
return 3;
// Intermediate Precedence: <<, >>
case AsmToken::LessLess:
Kind = MCBinaryExpr::Shl;
return 4;
case AsmToken::GreaterGreater:
Kind = ShouldUseLogicalShr ? MCBinaryExpr::LShr : MCBinaryExpr::AShr;
return 4;
// High Intermediate Precedence: +, -
case AsmToken::Plus:
Kind = MCBinaryExpr::Add;
return 5;
case AsmToken::Minus:
Kind = MCBinaryExpr::Sub;
return 5;
// Highest Precedence: *, /, %
case AsmToken::Star:
Kind = MCBinaryExpr::Mul;
return 6;
case AsmToken::Slash:
Kind = MCBinaryExpr::Div;
return 6;
case AsmToken::Percent:
Kind = MCBinaryExpr::Mod;
return 6;
}
}
static unsigned getGNUBinOpPrecedence(const MCAsmInfo &MAI,
AsmToken::TokenKind K,
MCBinaryExpr::Opcode &Kind,
bool ShouldUseLogicalShr) {
switch (K) {
default:
return 0; // not a binop.
// Lowest Precedence: &&, ||
case AsmToken::AmpAmp:
Kind = MCBinaryExpr::LAnd;
return 2;
case AsmToken::PipePipe:
Kind = MCBinaryExpr::LOr;
return 1;
// Low Precedence: ==, !=, <>, <, <=, >, >=
case AsmToken::EqualEqual:
Kind = MCBinaryExpr::EQ;
return 3;
case AsmToken::ExclaimEqual:
case AsmToken::LessGreater:
Kind = MCBinaryExpr::NE;
return 3;
case AsmToken::Less:
Kind = MCBinaryExpr::LT;
return 3;
case AsmToken::LessEqual:
Kind = MCBinaryExpr::LTE;
return 3;
case AsmToken::Greater:
Kind = MCBinaryExpr::GT;
return 3;
case AsmToken::GreaterEqual:
Kind = MCBinaryExpr::GTE;
return 3;
// Low Intermediate Precedence: +, -
case AsmToken::Plus:
Kind = MCBinaryExpr::Add;
return 4;
case AsmToken::Minus:
Kind = MCBinaryExpr::Sub;
return 4;
// High Intermediate Precedence: |, !, &, ^
//
case AsmToken::Pipe:
Kind = MCBinaryExpr::Or;
return 5;
case AsmToken::Exclaim:
// Hack to support ARM compatible aliases (implied 'sp' operand in 'srs*'
// instructions like 'srsda #31!') and not parse ! as an infix operator.
if (MAI.getCommentString() == "@")
return 0;
Kind = MCBinaryExpr::OrNot;
return 5;
case AsmToken::Caret:
Kind = MCBinaryExpr::Xor;
return 5;
case AsmToken::Amp:
Kind = MCBinaryExpr::And;
return 5;
// Highest Precedence: *, /, %, <<, >>
case AsmToken::Star:
Kind = MCBinaryExpr::Mul;
return 6;
case AsmToken::Slash:
Kind = MCBinaryExpr::Div;
return 6;
case AsmToken::Percent:
Kind = MCBinaryExpr::Mod;
return 6;
case AsmToken::LessLess:
Kind = MCBinaryExpr::Shl;
return 6;
case AsmToken::GreaterGreater:
Kind = ShouldUseLogicalShr ? MCBinaryExpr::LShr : MCBinaryExpr::AShr;
return 6;
}
}
unsigned AsmParser::getBinOpPrecedence(AsmToken::TokenKind K,
MCBinaryExpr::Opcode &Kind) {
bool ShouldUseLogicalShr = MAI.shouldUseLogicalShr();
return IsDarwin ? getDarwinBinOpPrecedence(K, Kind, ShouldUseLogicalShr)
: getGNUBinOpPrecedence(MAI, K, Kind, ShouldUseLogicalShr);
}
/// Parse all binary operators with precedence >= 'Precedence'.
/// Res contains the LHS of the expression on input.
bool AsmParser::parseBinOpRHS(unsigned Precedence, const MCExpr *&Res,
SMLoc &EndLoc) {
SMLoc StartLoc = Lexer.getLoc();
while (true) {
MCBinaryExpr::Opcode Kind = MCBinaryExpr::Add;
unsigned TokPrec = getBinOpPrecedence(Lexer.getKind(), Kind);
// If the next token is lower precedence than we are allowed to eat, return
// successfully with what we ate already.
if (TokPrec < Precedence)
return false;
Lex();
// Eat the next primary expression.
const MCExpr *RHS;
if (getTargetParser().parsePrimaryExpr(RHS, EndLoc))
return true;
// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
MCBinaryExpr::Opcode Dummy;
unsigned NextTokPrec = getBinOpPrecedence(Lexer.getKind(), Dummy);
if (TokPrec < NextTokPrec && parseBinOpRHS(TokPrec + 1, RHS, EndLoc))
return true;
// Merge LHS and RHS according to operator.
Res = MCBinaryExpr::create(Kind, Res, RHS, getContext(), StartLoc);
}
}
/// ParseStatement:
/// ::= EndOfStatement
/// ::= Label* Directive ...Operands... EndOfStatement
/// ::= Label* Identifier OperandList* EndOfStatement
bool AsmParser::parseStatement(ParseStatementInfo &Info,
MCAsmParserSemaCallback *SI) {
assert(!hasPendingError() && "parseStatement started with pending error");
// Eat initial spaces and comments
while (Lexer.is(AsmToken::Space))
Lex();
if (Lexer.is(AsmToken::EndOfStatement)) {
// if this is a line comment we can drop it safely
if (getTok().getString().empty() || getTok().getString().front() == '\r' ||
getTok().getString().front() == '\n')
Out.AddBlankLine();
Lex();
return false;
}
// Statements always start with an identifier.
AsmToken ID = getTok();
SMLoc IDLoc = ID.getLoc();
StringRef IDVal;
int64_t LocalLabelVal = -1;
StartTokLoc = ID.getLoc();
if (Lexer.is(AsmToken::HashDirective))
return parseCppHashLineFilenameComment(IDLoc,
!isInsideMacroInstantiation());
// Allow an integer followed by a ':' as a directional local label.
if (Lexer.is(AsmToken::Integer)) {
LocalLabelVal = getTok().getIntVal();
if (LocalLabelVal < 0) {
if (!TheCondState.Ignore) {
Lex(); // always eat a token
return Error(IDLoc, "unexpected token at start of statement");
}
IDVal = "";
} else {
IDVal = getTok().getString();
Lex(); // Consume the integer token to be used as an identifier token.
if (Lexer.getKind() != AsmToken::Colon) {
if (!TheCondState.Ignore) {
Lex(); // always eat a token
return Error(IDLoc, "unexpected token at start of statement");
}
}
}
} else if (Lexer.is(AsmToken::Dot)) {
// Treat '.' as a valid identifier in this context.
Lex();
IDVal = ".";
} else if (Lexer.is(AsmToken::LCurly)) {
// Treat '{' as a valid identifier in this context.
Lex();
IDVal = "{";
} else if (Lexer.is(AsmToken::RCurly)) {
// Treat '}' as a valid identifier in this context.
Lex();
IDVal = "}";
} else if (Lexer.is(AsmToken::Star) &&
getTargetParser().starIsStartOfStatement()) {
// Accept '*' as a valid start of statement.
Lex();
IDVal = "*";
} else if (parseIdentifier(IDVal)) {
if (!TheCondState.Ignore) {
Lex(); // always eat a token
return Error(IDLoc, "unexpected token at start of statement");
}
IDVal = "";
}
// Handle conditional assembly here before checking for skipping. We
// have to do this so that .endif isn't skipped in a ".if 0" block for
// example.
StringMap<DirectiveKind>::const_iterator DirKindIt =
DirectiveKindMap.find(IDVal.lower());
DirectiveKind DirKind = (DirKindIt == DirectiveKindMap.end())
? DK_NO_DIRECTIVE
: DirKindIt->getValue();
switch (DirKind) {
default:
break;
case DK_IF:
case DK_IFEQ:
case DK_IFGE:
case DK_IFGT:
case DK_IFLE:
case DK_IFLT:
case DK_IFNE:
return parseDirectiveIf(IDLoc, DirKind);
case DK_IFB:
return parseDirectiveIfb(IDLoc, true);
case DK_IFNB:
return parseDirectiveIfb(IDLoc, false);
case DK_IFC:
return parseDirectiveIfc(IDLoc, true);
case DK_IFEQS:
return parseDirectiveIfeqs(IDLoc, true);
case DK_IFNC:
return parseDirectiveIfc(IDLoc, false);
case DK_IFNES:
return parseDirectiveIfeqs(IDLoc, false);
case DK_IFDEF:
return parseDirectiveIfdef(IDLoc, true);
case DK_IFNDEF:
case DK_IFNOTDEF:
return parseDirectiveIfdef(IDLoc, false);
case DK_ELSEIF:
return parseDirectiveElseIf(IDLoc);
case DK_ELSE:
return parseDirectiveElse(IDLoc);
case DK_ENDIF:
return parseDirectiveEndIf(IDLoc);
}
// Ignore the statement if in the middle of inactive conditional
// (e.g. ".if 0").
if (TheCondState.Ignore) {
eatToEndOfStatement();
return false;
}
// FIXME: Recurse on local labels?
// See what kind of statement we have.
switch (Lexer.getKind()) {
case AsmToken::Colon: {
if (!getTargetParser().isLabel(ID))
break;
if (checkForValidSection())
return true;
// identifier ':' -> Label.
Lex();
// Diagnose attempt to use '.' as a label.
if (IDVal == ".")
return Error(IDLoc, "invalid use of pseudo-symbol '.' as a label");
// Diagnose attempt to use a variable as a label.
//
// FIXME: Diagnostics. Note the location of the definition as a label.
// FIXME: This doesn't diagnose assignment to a symbol which has been
// implicitly marked as external.
MCSymbol *Sym;
if (LocalLabelVal == -1) {
if (ParsingMSInlineAsm && SI) {
StringRef RewrittenLabel =
SI->LookupInlineAsmLabel(IDVal, getSourceManager(), IDLoc, true);
assert(!RewrittenLabel.empty() &&
"We should have an internal name here.");
Info.AsmRewrites->emplace_back(AOK_Label, IDLoc, IDVal.size(),
RewrittenLabel);
IDVal = RewrittenLabel;
}
Sym = getContext().getOrCreateSymbol(IDVal);
} else
Sym = Ctx.createDirectionalLocalSymbol(LocalLabelVal);
// End of Labels should be treated as end of line for lexing
// purposes but that information is not available to the Lexer who
// does not understand Labels. This may cause us to see a Hash
// here instead of a preprocessor line comment.
if (getTok().is(AsmToken::Hash)) {
StringRef CommentStr = parseStringToEndOfStatement();
Lexer.Lex();
Lexer.UnLex(AsmToken(AsmToken::EndOfStatement, CommentStr));
}
// Consume any end of statement token, if present, to avoid spurious
// AddBlankLine calls().
if (getTok().is(AsmToken::EndOfStatement)) {
Lex();
}
if (discardLTOSymbol(IDVal))
return false;
getTargetParser().doBeforeLabelEmit(Sym);
// Emit the label.
if (!getTargetParser().isParsingMSInlineAsm())
Out.emitLabel(Sym, IDLoc);
// If we are generating dwarf for assembly source files then gather the
// info to make a dwarf label entry for this label if needed.
if (enabledGenDwarfForAssembly())
MCGenDwarfLabelEntry::Make(Sym, &getStreamer(), getSourceManager(),
IDLoc);
getTargetParser().onLabelParsed(Sym);
return false;
}
case AsmToken::Equal:
if (!getTargetParser().equalIsAsmAssignment())
break;
// identifier '=' ... -> assignment statement
Lex();
return parseAssignment(IDVal, true);
default: // Normal instruction or directive.
break;
}
// If macros are enabled, check to see if this is a macro instantiation.
if (areMacrosEnabled())
if (const MCAsmMacro *M = getContext().lookupMacro(IDVal)) {
return handleMacroEntry(M, IDLoc);
}
// Otherwise, we have a normal instruction or directive.
// Directives start with "."
if (IDVal.startswith(".") && IDVal != ".") {
// There are several entities interested in parsing directives:
//
// 1. The target-specific assembly parser. Some directives are target
// specific or may potentially behave differently on certain targets.
// 2. Asm parser extensions. For example, platform-specific parsers
// (like the ELF parser) register themselves as extensions.
// 3. The generic directive parser implemented by this class. These are
// all the directives that behave in a target and platform independent
// manner, or at least have a default behavior that's shared between
// all targets and platforms.
getTargetParser().flushPendingInstructions(getStreamer());
SMLoc StartTokLoc = getTok().getLoc();
bool TPDirectiveReturn = getTargetParser().ParseDirective(ID);
if (hasPendingError())
return true;
// Currently the return value should be true if we are
// uninterested but as this is at odds with the standard parsing
// convention (return true = error) we have instances of a parsed
// directive that fails returning true as an error. Catch these
// cases as best as possible errors here.
if (TPDirectiveReturn && StartTokLoc != getTok().getLoc())
return true;
// Return if we did some parsing or believe we succeeded.
if (!TPDirectiveReturn || StartTokLoc != getTok().getLoc())
return false;
// Next, check the extension directive map to see if any extension has
// registered itself to parse this directive.
std::pair<MCAsmParserExtension *, DirectiveHandler> Handler =
ExtensionDirectiveMap.lookup(IDVal);
if (Handler.first)
return (*Handler.second)(Handler.first, IDVal, IDLoc);
// Finally, if no one else is interested in this directive, it must be
// generic and familiar to this class.
switch (DirKind) {
default:
break;
case DK_SET:
case DK_EQU:
return parseDirectiveSet(IDVal, true);
case DK_EQUIV:
return parseDirectiveSet(IDVal, false);
case DK_ASCII:
return parseDirectiveAscii(IDVal, false);
case DK_ASCIZ:
case DK_STRING:
return parseDirectiveAscii(IDVal, true);
case DK_BYTE:
case DK_DC_B:
return parseDirectiveValue(IDVal, 1);
case DK_DC:
case DK_DC_W:
case DK_SHORT:
case DK_VALUE:
case DK_2BYTE:
return parseDirectiveValue(IDVal, 2);
case DK_LONG:
case DK_INT:
case DK_4BYTE:
case DK_DC_L:
return parseDirectiveValue(IDVal, 4);
case DK_QUAD:
case DK_8BYTE:
return parseDirectiveValue(IDVal, 8);
case DK_DC_A:
return parseDirectiveValue(
IDVal, getContext().getAsmInfo()->getCodePointerSize());
case DK_OCTA:
return parseDirectiveOctaValue(IDVal);
case DK_SINGLE:
case DK_FLOAT:
case DK_DC_S:
return parseDirectiveRealValue(IDVal, APFloat::IEEEsingle());
case DK_DOUBLE:
case DK_DC_D:
return parseDirectiveRealValue(IDVal, APFloat::IEEEdouble());
case DK_ALIGN: {
bool IsPow2 = !getContext().getAsmInfo()->getAlignmentIsInBytes();
return parseDirectiveAlign(IsPow2, /*ExprSize=*/1);
}
case DK_ALIGN32: {
bool IsPow2 = !getContext().getAsmInfo()->getAlignmentIsInBytes();
return parseDirectiveAlign(IsPow2, /*ExprSize=*/4);
}
case DK_BALIGN:
return parseDirectiveAlign(/*IsPow2=*/false, /*ExprSize=*/1);
case DK_BALIGNW:
return parseDirectiveAlign(/*IsPow2=*/false, /*ExprSize=*/2);
case DK_BALIGNL:
return parseDirectiveAlign(/*IsPow2=*/false, /*ExprSize=*/4);
case DK_P2ALIGN:
return parseDirectiveAlign(/*IsPow2=*/true, /*ExprSize=*/1);
case DK_P2ALIGNW:
return parseDirectiveAlign(/*IsPow2=*/true, /*ExprSize=*/2);
case DK_P2ALIGNL:
return parseDirectiveAlign(/*IsPow2=*/true, /*ExprSize=*/4);
case DK_ORG:
return parseDirectiveOrg();
case DK_FILL:
return parseDirectiveFill();
case DK_ZERO:
return parseDirectiveZero();
case DK_EXTERN:
eatToEndOfStatement(); // .extern is the default, ignore it.
return false;
case DK_GLOBL:
case DK_GLOBAL:
return parseDirectiveSymbolAttribute(MCSA_Global);
case DK_LAZY_REFERENCE:
return parseDirectiveSymbolAttribute(MCSA_LazyReference);
case DK_NO_DEAD_STRIP:
return parseDirectiveSymbolAttribute(MCSA_NoDeadStrip);
case DK_SYMBOL_RESOLVER:
return parseDirectiveSymbolAttribute(MCSA_SymbolResolver);
case DK_PRIVATE_EXTERN:
return parseDirectiveSymbolAttribute(MCSA_PrivateExtern);
case DK_REFERENCE:
return parseDirectiveSymbolAttribute(MCSA_Reference);
case DK_WEAK_DEFINITION:
return parseDirectiveSymbolAttribute(MCSA_WeakDefinition);
case DK_WEAK_REFERENCE:
return parseDirectiveSymbolAttribute(MCSA_WeakReference);
case DK_WEAK_DEF_CAN_BE_HIDDEN:
return parseDirectiveSymbolAttribute(MCSA_WeakDefAutoPrivate);
case DK_COLD:
return parseDirectiveSymbolAttribute(MCSA_Cold);
case DK_COMM:
case DK_COMMON:
return parseDirectiveComm(/*IsLocal=*/false);
case DK_LCOMM:
return parseDirectiveComm(/*IsLocal=*/true);
case DK_ABORT:
return parseDirectiveAbort();
case DK_INCLUDE:
return parseDirectiveInclude();
case DK_INCBIN:
return parseDirectiveIncbin();
case DK_CODE16:
case DK_CODE16GCC:
return TokError(Twine(IDVal) +
" not currently supported for this target");
case DK_REPT:
return parseDirectiveRept(IDLoc, IDVal);
case DK_IRP:
return parseDirectiveIrp(IDLoc);
case DK_IRPC:
return parseDirectiveIrpc(IDLoc);
case DK_ENDR:
return parseDirectiveEndr(IDLoc);
case DK_BUNDLE_ALIGN_MODE:
return parseDirectiveBundleAlignMode();
case DK_BUNDLE_LOCK:
return parseDirectiveBundleLock();
case DK_BUNDLE_UNLOCK:
return parseDirectiveBundleUnlock();
case DK_SLEB128:
return parseDirectiveLEB128(true);
case DK_ULEB128:
return parseDirectiveLEB128(false);
case DK_SPACE:
case DK_SKIP:
return parseDirectiveSpace(IDVal);
case DK_FILE:
return parseDirectiveFile(IDLoc);
case DK_LINE:
return parseDirectiveLine();
case DK_LOC:
return parseDirectiveLoc();
case DK_STABS:
return parseDirectiveStabs();
case DK_CV_FILE:
return parseDirectiveCVFile();
case DK_CV_FUNC_ID:
return parseDirectiveCVFuncId();
case DK_CV_INLINE_SITE_ID:
return parseDirectiveCVInlineSiteId();
case DK_CV_LOC:
return parseDirectiveCVLoc();
case DK_CV_LINETABLE:
return parseDirectiveCVLinetable();
case DK_CV_INLINE_LINETABLE:
return parseDirectiveCVInlineLinetable();
case DK_CV_DEF_RANGE:
return parseDirectiveCVDefRange();
case DK_CV_STRING:
return parseDirectiveCVString();
case DK_CV_STRINGTABLE:
return parseDirectiveCVStringTable();
case DK_CV_FILECHECKSUMS:
return parseDirectiveCVFileChecksums();
case DK_CV_FILECHECKSUM_OFFSET:
return parseDirectiveCVFileChecksumOffset();
case DK_CV_FPO_DATA:
return parseDirectiveCVFPOData();
case DK_CFI_SECTIONS:
return parseDirectiveCFISections();
case DK_CFI_STARTPROC:
return parseDirectiveCFIStartProc();
case DK_CFI_ENDPROC:
return parseDirectiveCFIEndProc();
case DK_CFI_DEF_CFA:
return parseDirectiveCFIDefCfa(IDLoc);
case DK_CFI_DEF_CFA_OFFSET:
return parseDirectiveCFIDefCfaOffset();
case DK_CFI_ADJUST_CFA_OFFSET:
return parseDirectiveCFIAdjustCfaOffset();
case DK_CFI_DEF_CFA_REGISTER:
return parseDirectiveCFIDefCfaRegister(IDLoc);
case DK_CFI_LLVM_DEF_ASPACE_CFA:
return parseDirectiveCFILLVMDefAspaceCfa(IDLoc);
case DK_CFI_OFFSET:
return parseDirectiveCFIOffset(IDLoc);
case DK_CFI_REL_OFFSET:
return parseDirectiveCFIRelOffset(IDLoc);
case DK_CFI_PERSONALITY:
return parseDirectiveCFIPersonalityOrLsda(true);
case DK_CFI_LSDA:
return parseDirectiveCFIPersonalityOrLsda(false);
case DK_CFI_REMEMBER_STATE:
return parseDirectiveCFIRememberState();
case DK_CFI_RESTORE_STATE:
return parseDirectiveCFIRestoreState();
case DK_CFI_SAME_VALUE:
return parseDirectiveCFISameValue(IDLoc);
case DK_CFI_RESTORE:
return parseDirectiveCFIRestore(IDLoc);
case DK_CFI_ESCAPE:
return parseDirectiveCFIEscape();
case DK_CFI_RETURN_COLUMN:
return parseDirectiveCFIReturnColumn(IDLoc);
case DK_CFI_SIGNAL_FRAME:
return parseDirectiveCFISignalFrame();
case DK_CFI_UNDEFINED:
return parseDirectiveCFIUndefined(IDLoc);
case DK_CFI_REGISTER:
return parseDirectiveCFIRegister(IDLoc);
case DK_CFI_WINDOW_SAVE:
return parseDirectiveCFIWindowSave();
case DK_MACROS_ON:
case DK_MACROS_OFF:
return parseDirectiveMacrosOnOff(IDVal);
case DK_MACRO:
return parseDirectiveMacro(IDLoc);
case DK_ALTMACRO:
case DK_NOALTMACRO:
return parseDirectiveAltmacro(IDVal);
case DK_EXITM:
return parseDirectiveExitMacro(IDVal);
case DK_ENDM:
case DK_ENDMACRO:
return parseDirectiveEndMacro(IDVal);
case DK_PURGEM:
return parseDirectivePurgeMacro(IDLoc);
case DK_END:
return parseDirectiveEnd(IDLoc);
case DK_ERR:
return parseDirectiveError(IDLoc, false);
case DK_ERROR:
return parseDirectiveError(IDLoc, true);
case DK_WARNING:
return parseDirectiveWarning(IDLoc);
case DK_RELOC:
return parseDirectiveReloc(IDLoc);
case DK_DCB:
case DK_DCB_W:
return parseDirectiveDCB(IDVal, 2);
case DK_DCB_B:
return parseDirectiveDCB(IDVal, 1);
case DK_DCB_D:
return parseDirectiveRealDCB(IDVal, APFloat::IEEEdouble());
case DK_DCB_L:
return parseDirectiveDCB(IDVal, 4);
case DK_DCB_S:
return parseDirectiveRealDCB(IDVal, APFloat::IEEEsingle());
case DK_DC_X:
case DK_DCB_X:
return TokError(Twine(IDVal) +
" not currently supported for this target");
case DK_DS:
case DK_DS_W:
return parseDirectiveDS(IDVal, 2);
case DK_DS_B:
return parseDirectiveDS(IDVal, 1);
case DK_DS_D:
return parseDirectiveDS(IDVal, 8);
case DK_DS_L:
case DK_DS_S:
return parseDirectiveDS(IDVal, 4);
case DK_DS_P:
case DK_DS_X:
return parseDirectiveDS(IDVal, 12);
case DK_PRINT:
return parseDirectivePrint(IDLoc);
case DK_ADDRSIG:
return parseDirectiveAddrsig();
case DK_ADDRSIG_SYM:
return parseDirectiveAddrsigSym();
case DK_PSEUDO_PROBE:
return parseDirectivePseudoProbe();
case DK_LTO_DISCARD:
return parseDirectiveLTODiscard();
}
return Error(IDLoc, "unknown directive");
}
// __asm _emit or __asm __emit
if (ParsingMSInlineAsm && (IDVal == "_emit" || IDVal == "__emit" ||
IDVal == "_EMIT" || IDVal == "__EMIT"))
return parseDirectiveMSEmit(IDLoc, Info, IDVal.size());
// __asm align
if (ParsingMSInlineAsm && (IDVal == "align" || IDVal == "ALIGN"))
return parseDirectiveMSAlign(IDLoc, Info);
if (ParsingMSInlineAsm && (IDVal == "even" || IDVal == "EVEN"))
Info.AsmRewrites->emplace_back(AOK_EVEN, IDLoc, 4);
if (checkForValidSection())
return true;
return parseAndMatchAndEmitTargetInstruction(Info, IDVal, ID, IDLoc);
}
bool AsmParser::parseAndMatchAndEmitTargetInstruction(ParseStatementInfo &Info,
StringRef IDVal,
AsmToken ID,
SMLoc IDLoc) {
// Canonicalize the opcode to lower case.
std::string OpcodeStr = IDVal.lower();
ParseInstructionInfo IInfo(Info.AsmRewrites);
bool ParseHadError = getTargetParser().ParseInstruction(IInfo, OpcodeStr, ID,
Info.ParsedOperands);
Info.ParseError = ParseHadError;
// Dump the parsed representation, if requested.
if (getShowParsedOperands()) {
SmallString<256> Str;
raw_svector_ostream OS(Str);
OS << "parsed instruction: [";
for (unsigned i = 0; i != Info.ParsedOperands.size(); ++i) {
if (i != 0)
OS << ", ";
Info.ParsedOperands[i]->print(OS);
}
OS << "]";
printMessage(IDLoc, SourceMgr::DK_Note, OS.str());
}
// Fail even if ParseInstruction erroneously returns false.
if (hasPendingError() || ParseHadError)
return true;
// If we are generating dwarf for the current section then generate a .loc
// directive for the instruction.
if (!ParseHadError && enabledGenDwarfForAssembly() &&
getContext().getGenDwarfSectionSyms().count(
getStreamer().getCurrentSectionOnly())) {
unsigned Line;
if (ActiveMacros.empty())
Line = SrcMgr.FindLineNumber(IDLoc, CurBuffer);
else
Line = SrcMgr.FindLineNumber(ActiveMacros.front()->InstantiationLoc,
ActiveMacros.front()->ExitBuffer);
// If we previously parsed a cpp hash file line comment then make sure the
// current Dwarf File is for the CppHashFilename if not then emit the
// Dwarf File table for it and adjust the line number for the .loc.
if (!CppHashInfo.Filename.empty()) {
unsigned FileNumber = getStreamer().emitDwarfFileDirective(
0, StringRef(), CppHashInfo.Filename);
getContext().setGenDwarfFileNumber(FileNumber);
unsigned CppHashLocLineNo =
SrcMgr.FindLineNumber(CppHashInfo.Loc, CppHashInfo.Buf);
Line = CppHashInfo.LineNumber - 1 + (Line - CppHashLocLineNo);
}
getStreamer().emitDwarfLocDirective(
getContext().getGenDwarfFileNumber(), Line, 0,
DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0, 0, 0,
StringRef());
}
// If parsing succeeded, match the instruction.
if (!ParseHadError) {
uint64_t ErrorInfo;
if (getTargetParser().MatchAndEmitInstruction(
IDLoc, Info.Opcode, Info.ParsedOperands, Out, ErrorInfo,
getTargetParser().isParsingMSInlineAsm()))
return true;
}
return false;
}
// Parse and erase curly braces marking block start/end
bool
AsmParser::parseCurlyBlockScope(SmallVectorImpl<AsmRewrite> &AsmStrRewrites) {
// Identify curly brace marking block start/end
if (Lexer.isNot(AsmToken::LCurly) && Lexer.isNot(AsmToken::RCurly))
return false;
SMLoc StartLoc = Lexer.getLoc();
Lex(); // Eat the brace
if (Lexer.is(AsmToken::EndOfStatement))
Lex(); // Eat EndOfStatement following the brace
// Erase the block start/end brace from the output asm string
AsmStrRewrites.emplace_back(AOK_Skip, StartLoc, Lexer.getLoc().getPointer() -
StartLoc.getPointer());
return true;
}
/// parseCppHashLineFilenameComment as this:
/// ::= # number "filename"
bool AsmParser::parseCppHashLineFilenameComment(SMLoc L, bool SaveLocInfo) {
Lex(); // Eat the hash token.
// Lexer only ever emits HashDirective if it fully formed if it's
// done the checking already so this is an internal error.
assert(getTok().is(AsmToken::Integer) &&
"Lexing Cpp line comment: Expected Integer");
int64_t LineNumber = getTok().getIntVal();
Lex();
assert(getTok().is(AsmToken::String) &&
"Lexing Cpp line comment: Expected String");
StringRef Filename = getTok().getString();
Lex();
if (!SaveLocInfo)
return false;
// Get rid of the enclosing quotes.
Filename = Filename.substr(1, Filename.size() - 2);
// Save the SMLoc, Filename and LineNumber for later use by diagnostics
// and possibly DWARF file info.
CppHashInfo.Loc = L;
CppHashInfo.Filename = Filename;
CppHashInfo.LineNumber = LineNumber;
CppHashInfo.Buf = CurBuffer;
if (FirstCppHashFilename.empty())
FirstCppHashFilename = Filename;
return false;
}
/// will use the last parsed cpp hash line filename comment
/// for the Filename and LineNo if any in the diagnostic.
void AsmParser::DiagHandler(const SMDiagnostic &Diag, void *Context) {
auto *Parser = static_cast<AsmParser *>(Context);
raw_ostream &OS = errs();
const SourceMgr &DiagSrcMgr = *Diag.getSourceMgr();
SMLoc DiagLoc = Diag.getLoc();
unsigned DiagBuf = DiagSrcMgr.FindBufferContainingLoc(DiagLoc);
unsigned CppHashBuf =
Parser->SrcMgr.FindBufferContainingLoc(Parser->CppHashInfo.Loc);
// Like SourceMgr::printMessage() we need to print the include stack if any
// before printing the message.
unsigned DiagCurBuffer = DiagSrcMgr.FindBufferContainingLoc(DiagLoc);
if (!Parser->SavedDiagHandler && DiagCurBuffer &&
DiagCurBuffer != DiagSrcMgr.getMainFileID()) {
SMLoc ParentIncludeLoc = DiagSrcMgr.getParentIncludeLoc(DiagCurBuffer);
DiagSrcMgr.PrintIncludeStack(ParentIncludeLoc, OS);
}
// If we have not parsed a cpp hash line filename comment or the source
// manager changed or buffer changed (like in a nested include) then just
// print the normal diagnostic using its Filename and LineNo.
if (!Parser->CppHashInfo.LineNumber || DiagBuf != CppHashBuf) {
if (Parser->SavedDiagHandler)
Parser->SavedDiagHandler(Diag, Parser->SavedDiagContext);
else
Parser->getContext().diagnose(Diag);
return;
}
// Use the CppHashFilename and calculate a line number based on the
// CppHashInfo.Loc and CppHashInfo.LineNumber relative to this Diag's SMLoc
// for the diagnostic.
const std::string &Filename = std::string(Parser->CppHashInfo.Filename);
int DiagLocLineNo = DiagSrcMgr.FindLineNumber(DiagLoc, DiagBuf);
int CppHashLocLineNo =
Parser->SrcMgr.FindLineNumber(Parser->CppHashInfo.Loc, CppHashBuf);
int LineNo =
Parser->CppHashInfo.LineNumber - 1 + (DiagLocLineNo - CppHashLocLineNo);
SMDiagnostic NewDiag(*Diag.getSourceMgr(), Diag.getLoc(), Filename, LineNo,
Diag.getColumnNo(), Diag.getKind(), Diag.getMessage(),
Diag.getLineContents(), Diag.getRanges());
if (Parser->SavedDiagHandler)
Parser->SavedDiagHandler(Diag, Parser->SavedDiagContext);
else
Parser->getContext().diagnose(NewDiag);
}
// FIXME: This is mostly duplicated from the function in AsmLexer.cpp. The
// difference being that that function accepts '@' as part of identifiers and
// we can't do that. AsmLexer.cpp should probably be changed to handle
// '@' as a special case when needed.
static bool isIdentifierChar(char c) {
return isalnum(static_cast<unsigned char>(c)) || c == '_' || c == '$' ||
c == '.';
}
bool AsmParser::expandMacro(raw_svector_ostream &OS, StringRef Body,
ArrayRef<MCAsmMacroParameter> Parameters,
ArrayRef<MCAsmMacroArgument> A,
bool EnableAtPseudoVariable, SMLoc L) {
unsigned NParameters = Parameters.size();
bool HasVararg = NParameters ? Parameters.back().Vararg : false;
if ((!IsDarwin || NParameters != 0) && NParameters != A.size())
return Error(L, "Wrong number of arguments");
// A macro without parameters is handled differently on Darwin:
// gas accepts no arguments and does no substitutions
while (!Body.empty()) {
// Scan for the next substitution.
std::size_t End = Body.size(), Pos = 0;
for (; Pos != End; ++Pos) {
// Check for a substitution or escape.
if (IsDarwin && !NParameters) {
// This macro has no parameters, look for $0, $1, etc.
if (Body[Pos] != '$' || Pos + 1 == End)
continue;
char Next = Body[Pos + 1];
if (Next == '$' || Next == 'n' ||
isdigit(static_cast<unsigned char>(Next)))
break;
} else {
// This macro has parameters, look for \foo, \bar, etc.
if (Body[Pos] == '\\' && Pos + 1 != End)
break;
}
}
// Add the prefix.
OS << Body.slice(0, Pos);
// Check if we reached the end.
if (Pos == End)
break;
if (IsDarwin && !NParameters) {
switch (Body[Pos + 1]) {
// $$ => $
case '$':
OS << '$';
break;
// $n => number of arguments
case 'n':
OS << A.size();
break;
// $[0-9] => argument
default: {
// Missing arguments are ignored.
unsigned Index = Body[Pos + 1] - '0';
if (Index >= A.size())
break;
// Otherwise substitute with the token values, with spaces eliminated.
for (const AsmToken &Token : A[Index])
OS << Token.getString();
break;
}
}
Pos += 2;
} else {
unsigned I = Pos + 1;
// Check for the \@ pseudo-variable.
if (EnableAtPseudoVariable && Body[I] == '@' && I + 1 != End)
++I;
else
while (isIdentifierChar(Body[I]) && I + 1 != End)
++I;
const char *Begin = Body.data() + Pos + 1;
StringRef Argument(Begin, I - (Pos + 1));
unsigned Index = 0;
if (Argument == "@") {
OS << NumOfMacroInstantiations;
Pos += 2;
} else {
for (; Index < NParameters; ++Index)
if (Parameters[Index].Name == Argument)
break;
if (Index == NParameters) {
if (Body[Pos + 1] == '(' && Body[Pos + 2] == ')')
Pos += 3;
else {
OS << '\\' << Argument;
Pos = I;
}
} else {
bool VarargParameter = HasVararg && Index == (NParameters - 1);
for (const AsmToken &Token : A[Index])
// For altmacro mode, you can write '%expr'.
// The prefix '%' evaluates the expression 'expr'
// and uses the result as a string (e.g. replace %(1+2) with the
// string "3").
// Here, we identify the integer token which is the result of the
// absolute expression evaluation and replace it with its string
// representation.
if (AltMacroMode && Token.getString().front() == '%' &&
Token.is(AsmToken::Integer))
// Emit an integer value to the buffer.
OS << Token.getIntVal();
// Only Token that was validated as a string and begins with '<'
// is considered altMacroString!!!
else if (AltMacroMode && Token.getString().front() == '<' &&
Token.is(AsmToken::String)) {
OS << angleBracketString(Token.getStringContents());
}
// We expect no quotes around the string's contents when
// parsing for varargs.
else if (Token.isNot(AsmToken::String) || VarargParameter)
OS << Token.getString();
else
OS << Token.getStringContents();
Pos += 1 + Argument.size();
}
}
}
// Update the scan point.
Body = Body.substr(Pos);
}
return false;
}
static bool isOperator(AsmToken::TokenKind kind) {
switch (kind) {
default:
return false;
case AsmToken::Plus:
case AsmToken::Minus:
case AsmToken::Tilde:
case AsmToken::Slash:
case AsmToken::Star:
case AsmToken::Dot:
case AsmToken::Equal:
case AsmToken::EqualEqual:
case AsmToken::Pipe:
case AsmToken::PipePipe:
case AsmToken::Caret:
case AsmToken::Amp:
case AsmToken::AmpAmp:
case AsmToken::Exclaim:
case AsmToken::ExclaimEqual:
case AsmToken::Less:
case AsmToken::LessEqual:
case AsmToken::LessLess:
case AsmToken::LessGreater:
case AsmToken::Greater:
case AsmToken::GreaterEqual:
case AsmToken::GreaterGreater:
return true;
}
}
namespace {
class AsmLexerSkipSpaceRAII {
public:
AsmLexerSkipSpaceRAII(AsmLexer &Lexer, bool SkipSpace) : Lexer(Lexer) {
Lexer.setSkipSpace(SkipSpace);
}
~AsmLexerSkipSpaceRAII() {
Lexer.setSkipSpace(true);
}
private:
AsmLexer &Lexer;
};
} // end anonymous namespace
bool AsmParser::parseMacroArgument(MCAsmMacroArgument &MA, bool Vararg) {
if (Vararg) {
if (Lexer.isNot(AsmToken::EndOfStatement)) {
StringRef Str = parseStringToEndOfStatement();
MA.emplace_back(AsmToken::String, Str);
}
return false;
}
unsigned ParenLevel = 0;
// Darwin doesn't use spaces to delmit arguments.
AsmLexerSkipSpaceRAII ScopedSkipSpace(Lexer, IsDarwin);
bool SpaceEaten;
while (true) {
SpaceEaten = false;
if (Lexer.is(AsmToken::Eof) || Lexer.is(AsmToken::Equal))
return TokError("unexpected token in macro instantiation");
if (ParenLevel == 0) {
if (Lexer.is(AsmToken::Comma))
break;
if (Lexer.is(AsmToken::Space)) {
SpaceEaten = true;
Lexer.Lex(); // Eat spaces
}
// Spaces can delimit parameters, but could also be part an expression.
// If the token after a space is an operator, add the token and the next
// one into this argument
if (!IsDarwin) {
if (isOperator(Lexer.getKind())) {
MA.push_back(getTok());
Lexer.Lex();
// Whitespace after an operator can be ignored.
if (Lexer.is(AsmToken::Space))
Lexer.Lex();
continue;
}
}
if (SpaceEaten)
break;
}
// handleMacroEntry relies on not advancing the lexer here
// to be able to fill in the remaining default parameter values
if (Lexer.is(AsmToken::EndOfStatement))
break;
// Adjust the current parentheses level.
if (Lexer.is(AsmToken::LParen))
++ParenLevel;
else if (Lexer.is(AsmToken::RParen) && ParenLevel)
--ParenLevel;
// Append the token to the current argument list.
MA.push_back(getTok());
Lexer.Lex();
}
if (ParenLevel != 0)
return TokError("unbalanced parentheses in macro argument");
return false;
}
// Parse the macro instantiation arguments.
bool AsmParser::parseMacroArguments(const MCAsmMacro *M,
MCAsmMacroArguments &A) {
const unsigned NParameters = M ? M->Parameters.size() : 0;
bool NamedParametersFound = false;
SmallVector<SMLoc, 4> FALocs;
A.resize(NParameters);
FALocs.resize(NParameters);
// Parse two kinds of macro invocations:
// - macros defined without any parameters accept an arbitrary number of them
// - macros defined with parameters accept at most that many of them
bool HasVararg = NParameters ? M->Parameters.back().Vararg : false;
for (unsigned Parameter = 0; !NParameters || Parameter < NParameters;
++Parameter) {
SMLoc IDLoc = Lexer.getLoc();
MCAsmMacroParameter FA;
if (Lexer.is(AsmToken::Identifier) && Lexer.peekTok().is(AsmToken::Equal)) {
if (parseIdentifier(FA.Name))
return Error(IDLoc, "invalid argument identifier for formal argument");
if (Lexer.isNot(AsmToken::Equal))
return TokError("expected '=' after formal parameter identifier");
Lex();
NamedParametersFound = true;
}
bool Vararg = HasVararg && Parameter == (NParameters - 1);
if (NamedParametersFound && FA.Name.empty())
return Error(IDLoc, "cannot mix positional and keyword arguments");
SMLoc StrLoc = Lexer.getLoc();
SMLoc EndLoc;
if (AltMacroMode && Lexer.is(AsmToken::Percent)) {
const MCExpr *AbsoluteExp;
int64_t Value;
/// Eat '%'
Lex();
if (parseExpression(AbsoluteExp, EndLoc))
return false;
if (!AbsoluteExp->evaluateAsAbsolute(Value,
getStreamer().getAssemblerPtr()))
return Error(StrLoc, "expected absolute expression");
const char *StrChar = StrLoc.getPointer();
const char *EndChar = EndLoc.getPointer();
AsmToken newToken(AsmToken::Integer,
StringRef(StrChar, EndChar - StrChar), Value);
FA.Value.push_back(newToken);
} else if (AltMacroMode && Lexer.is(AsmToken::Less) &&
isAngleBracketString(StrLoc, EndLoc)) {
const char *StrChar = StrLoc.getPointer();
const char *EndChar = EndLoc.getPointer();
jumpToLoc(EndLoc, CurBuffer);
/// Eat from '<' to '>'
Lex();
AsmToken newToken(AsmToken::String,
StringRef(StrChar, EndChar - StrChar));
FA.Value.push_back(newToken);
} else if(parseMacroArgument(FA.Value, Vararg))
return true;
unsigned PI = Parameter;
if (!FA.Name.empty()) {
unsigned FAI = 0;
for (FAI = 0; FAI < NParameters; ++FAI)
if (M->Parameters[FAI].Name == FA.Name)
break;
if (FAI >= NParameters) {
assert(M && "expected macro to be defined");
return Error(IDLoc, "parameter named '" + FA.Name +
"' does not exist for macro '" + M->Name + "'");
}
PI = FAI;
}
if (!FA.Value.empty()) {
if (A.size() <= PI)
A.resize(PI + 1);
A[PI] = FA.Value;
if (FALocs.size() <= PI)
FALocs.resize(PI + 1);
FALocs[PI] = Lexer.getLoc();
}
// At the end of the statement, fill in remaining arguments that have
// default values. If there aren't any, then the next argument is
// required but missing
if (Lexer.is(AsmToken::EndOfStatement)) {
bool Failure = false;
for (unsigned FAI = 0; FAI < NParameters; ++FAI) {
if (A[FAI].empty()) {
if (M->Parameters[FAI].Required) {
Error(FALocs[FAI].isValid() ? FALocs[FAI] : Lexer.getLoc(),
"missing value for required parameter "
"'" + M->Parameters[FAI].Name + "' in macro '" + M->Name + "'");
Failure = true;
}
if (!M->Parameters[FAI].Value.empty())
A[FAI] = M->Parameters[FAI].Value;
}
}
return Failure;
}
if (Lexer.is(AsmToken::Comma))
Lex();
}
return TokError("too many positional arguments");
}
bool AsmParser::handleMacroEntry(const MCAsmMacro *M, SMLoc NameLoc) {
// Arbitrarily limit macro nesting depth (default matches 'as'). We can
// eliminate this, although we should protect against infinite loops.
unsigned MaxNestingDepth = AsmMacroMaxNestingDepth;
if (ActiveMacros.size() == MaxNestingDepth) {
std::ostringstream MaxNestingDepthError;
MaxNestingDepthError << "macros cannot be nested more than "
<< MaxNestingDepth << " levels deep."
<< " Use -asm-macro-max-nesting-depth to increase "
"this limit.";
return TokError(MaxNestingDepthError.str());
}
MCAsmMacroArguments A;
if (parseMacroArguments(M, A))
return true;
// Macro instantiation is lexical, unfortunately. We construct a new buffer
// to hold the macro body with substitutions.
SmallString<256> Buf;
StringRef Body = M->Body;
raw_svector_ostream OS(Buf);
if (expandMacro(OS, Body, M->Parameters, A, true, getTok().getLoc()))
return true;
// We include the .endmacro in the buffer as our cue to exit the macro
// instantiation.
OS << ".endmacro\n";
std::unique_ptr<MemoryBuffer> Instantiation =
MemoryBuffer::getMemBufferCopy(OS.str(), "<instantiation>");
// Create the macro instantiation object and add to the current macro
// instantiation stack.
MacroInstantiation *MI = new MacroInstantiation{
NameLoc, CurBuffer, getTok().getLoc(), TheCondStack.size()};
ActiveMacros.push_back(MI);
++NumOfMacroInstantiations;
// Jump to the macro instantiation and prime the lexer.
CurBuffer = SrcMgr.AddNewSourceBuffer(std::move(Instantiation), SMLoc());
Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer());
Lex();
return false;
}
void AsmParser::handleMacroExit() {
// Jump to the EndOfStatement we should return to, and consume it.
jumpToLoc(ActiveMacros.back()->ExitLoc, ActiveMacros.back()->ExitBuffer);
Lex();
// Pop the instantiation entry.
delete ActiveMacros.back();
ActiveMacros.pop_back();
}
bool AsmParser::parseAssignment(StringRef Name, bool allow_redef,
bool NoDeadStrip) {
MCSymbol *Sym;
const MCExpr *Value;
if (MCParserUtils::parseAssignmentExpression(Name, allow_redef, *this, Sym,
Value))
return true;
if (!Sym) {
// In the case where we parse an expression starting with a '.', we will
// not generate an error, nor will we create a symbol. In this case we
// should just return out.
return false;
}
if (discardLTOSymbol(Name))
return false;
// Do the assignment.
Out.emitAssignment(Sym, Value);
if (NoDeadStrip)
Out.emitSymbolAttribute(Sym, MCSA_NoDeadStrip);
return false;
}
/// parseIdentifier:
/// ::= identifier
/// ::= string
bool AsmParser::parseIdentifier(StringRef &Res) {
// The assembler has relaxed rules for accepting identifiers, in particular we
// allow things like '.globl $foo' and '.def @feat.00', which would normally be
// separate tokens. At this level, we have already lexed so we cannot (currently)
// handle this as a context dependent token, instead we detect adjacent tokens
// and return the combined identifier.
if (Lexer.is(AsmToken::Dollar) || Lexer.is(AsmToken::At)) {
SMLoc PrefixLoc = getLexer().getLoc();
// Consume the prefix character, and check for a following identifier.
AsmToken Buf[1];
Lexer.peekTokens(Buf, false);
if (Buf[0].isNot(AsmToken::Identifier) && Buf[0].isNot(AsmToken::Integer))
return true;
// We have a '$' or '@' followed by an identifier or integer token, make
// sure they are adjacent.
if (PrefixLoc.getPointer() + 1 != Buf[0].getLoc().getPointer())
return true;
// eat $ or @
Lexer.Lex(); // Lexer's Lex guarantees consecutive token.
// Construct the joined identifier and consume the token.
Res = StringRef(PrefixLoc.getPointer(), getTok().getString().size() + 1);
Lex(); // Parser Lex to maintain invariants.
return false;
}
if (Lexer.isNot(AsmToken::Identifier) && Lexer.isNot(AsmToken::String))
return true;
Res = getTok().getIdentifier();
Lex(); // Consume the identifier token.
return false;
}
/// parseDirectiveSet:
/// ::= .equ identifier ',' expression
/// ::= .equiv identifier ',' expression
/// ::= .set identifier ',' expression
bool AsmParser::parseDirectiveSet(StringRef IDVal, bool allow_redef) {
StringRef Name;
if (check(parseIdentifier(Name), "expected identifier") || parseComma() ||
parseAssignment(Name, allow_redef, true))
return true;
return false;
}
bool AsmParser::parseEscapedString(std::string &Data) {
if (check(getTok().isNot(AsmToken::String), "expected string"))
return true;
Data = "";
StringRef Str = getTok().getStringContents();
for (unsigned i = 0, e = Str.size(); i != e; ++i) {
if (Str[i] != '\\') {
Data += Str[i];
continue;
}
// Recognize escaped characters. Note that this escape semantics currently
// loosely follows Darwin 'as'.
++i;
if (i == e)
return TokError("unexpected backslash at end of string");
// Recognize hex sequences similarly to GNU 'as'.
if (Str[i] == 'x' || Str[i] == 'X') {
size_t length = Str.size();
if (i + 1 >= length || !isHexDigit(Str[i + 1]))
return TokError("invalid hexadecimal escape sequence");
// Consume hex characters. GNU 'as' reads all hexadecimal characters and
// then truncates to the lower 16 bits. Seems reasonable.
unsigned Value = 0;
while (i + 1 < length && isHexDigit(Str[i + 1]))
Value = Value * 16 + hexDigitValue(Str[++i]);
Data += (unsigned char)(Value & 0xFF);
continue;
}
// Recognize octal sequences.
if ((unsigned)(Str[i] - '0') <= 7) {
// Consume up to three octal characters.
unsigned Value = Str[i] - '0';
if (i + 1 != e && ((unsigned)(Str[i + 1] - '0')) <= 7) {
++i;
Value = Value * 8 + (Str[i] - '0');
if (i + 1 != e && ((unsigned)(Str[i + 1] - '0')) <= 7) {
++i;
Value = Value * 8 + (Str[i] - '0');
}
}
if (Value > 255)
return TokError("invalid octal escape sequence (out of range)");
Data += (unsigned char)Value;
continue;
}
// Otherwise recognize individual escapes.
switch (Str[i]) {
default:
// Just reject invalid escape sequences for now.
return TokError("invalid escape sequence (unrecognized character)");
case 'b': Data += '\b'; break;
case 'f': Data += '\f'; break;
case 'n': Data += '\n'; break;
case 'r': Data += '\r'; break;
case 't': Data += '\t'; break;
case '"': Data += '"'; break;
case '\\': Data += '\\'; break;
}
}
Lex();
return false;
}
bool AsmParser::parseAngleBracketString(std::string &Data) {
SMLoc EndLoc, StartLoc = getTok().getLoc();
if (isAngleBracketString(StartLoc, EndLoc)) {
const char *StartChar = StartLoc.getPointer() + 1;
const char *EndChar = EndLoc.getPointer() - 1;
jumpToLoc(EndLoc, CurBuffer);
/// Eat from '<' to '>'
Lex();
Data = angleBracketString(StringRef(StartChar, EndChar - StartChar));
return false;
}
return true;
}
/// parseDirectiveAscii:
// ::= .ascii [ "string"+ ( , "string"+ )* ]
/// ::= ( .asciz | .string ) [ "string" ( , "string" )* ]
bool AsmParser::parseDirectiveAscii(StringRef IDVal, bool ZeroTerminated) {
auto parseOp = [&]() -> bool {
std::string Data;
if (checkForValidSection())
return true;
// Only support spaces as separators for .ascii directive for now. See the
// discusssion at https://reviews.llvm.org/D91460 for more details.
do {
if (parseEscapedString(Data))
return true;
getStreamer().emitBytes(Data);
} while (!ZeroTerminated && getTok().is(AsmToken::String));
if (ZeroTerminated)
getStreamer().emitBytes(StringRef("\0", 1));
return false;
};
return parseMany(parseOp);
}
/// parseDirectiveReloc
/// ::= .reloc expression , identifier [ , expression ]
bool AsmParser::parseDirectiveReloc(SMLoc DirectiveLoc) {
const MCExpr *Offset;
const MCExpr *Expr = nullptr;
SMLoc OffsetLoc = Lexer.getTok().getLoc();
if (parseExpression(Offset))
return true;
if (parseComma() ||
check(getTok().isNot(AsmToken::Identifier), "expected relocation name"))
return true;
SMLoc NameLoc = Lexer.getTok().getLoc();
StringRef Name = Lexer.getTok().getIdentifier();
Lex();
if (Lexer.is(AsmToken::Comma)) {
Lex();
SMLoc ExprLoc = Lexer.getLoc();
if (parseExpression(Expr))
return true;
MCValue Value;
if (!Expr->evaluateAsRelocatable(Value, nullptr, nullptr))
return Error(ExprLoc, "expression must be relocatable");
}
if (parseEOL())
return true;
const MCTargetAsmParser &MCT = getTargetParser();
const MCSubtargetInfo &STI = MCT.getSTI();
if (Optional<std::pair<bool, std::string>> Err =
getStreamer().emitRelocDirective(*Offset, Name, Expr, DirectiveLoc,
STI))
return Error(Err->first ? NameLoc : OffsetLoc, Err->second);
return false;
}
/// parseDirectiveValue
/// ::= (.byte | .short | ... ) [ expression (, expression)* ]
bool AsmParser::parseDirectiveValue(StringRef IDVal, unsigned Size) {
auto parseOp = [&]() -> bool {
const MCExpr *Value;
SMLoc ExprLoc = getLexer().getLoc();
if (checkForValidSection() || parseExpression(Value))
return true;
// Special case constant expressions to match code generator.
if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) {
assert(Size <= 8 && "Invalid size");
uint64_t IntValue = MCE->getValue();
if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue))
return Error(ExprLoc, "out of range literal value");
getStreamer().emitIntValue(IntValue, Size);
} else
getStreamer().emitValue(Value, Size, ExprLoc);
return false;
};
return parseMany(parseOp);
}
static bool parseHexOcta(AsmParser &Asm, uint64_t &hi, uint64_t &lo) {
if (Asm.getTok().isNot(AsmToken::Integer) &&
Asm.getTok().isNot(AsmToken::BigNum))
return Asm.TokError("unknown token in expression");
SMLoc ExprLoc = Asm.getTok().getLoc();
APInt IntValue = Asm.getTok().getAPIntVal();
Asm.Lex();
if (!IntValue.isIntN(128))
return Asm.Error(ExprLoc, "out of range literal value");
if (!IntValue.isIntN(64)) {
hi = IntValue.getHiBits(IntValue.getBitWidth() - 64).getZExtValue();
lo = IntValue.getLoBits(64).getZExtValue();
} else {
hi = 0;
lo = IntValue.getZExtValue();
}
return false;
}
/// ParseDirectiveOctaValue
/// ::= .octa [ hexconstant (, hexconstant)* ]
bool AsmParser::parseDirectiveOctaValue(StringRef IDVal) {
auto parseOp = [&]() -> bool {
if (checkForValidSection())
return true;
uint64_t hi, lo;
if (parseHexOcta(*this, hi, lo))
return true;
if (MAI.isLittleEndian()) {
getStreamer().emitInt64(lo);
getStreamer().emitInt64(hi);
} else {
getStreamer().emitInt64(hi);
getStreamer().emitInt64(lo);
}
return false;
};
return parseMany(parseOp);
}
bool AsmParser::parseRealValue(const fltSemantics &Semantics, APInt &Res) {
// We don't truly support arithmetic on floating point expressions, so we
// have to manually parse unary prefixes.
bool IsNeg = false;
if (getLexer().is(AsmToken::Minus)) {
Lexer.Lex();
IsNeg = true;
} else if (getLexer().is(AsmToken::Plus))
Lexer.Lex();
if (Lexer.is(AsmToken::Error))
return TokError(Lexer.getErr());
if (Lexer.isNot(AsmToken::Integer) && Lexer.isNot(AsmToken::Real) &&
Lexer.isNot(AsmToken::Identifier))
return TokError("unexpected token in directive");
// Convert to an APFloat.
APFloat Value(Semantics);
StringRef IDVal = getTok().getString();
if (getLexer().is(AsmToken::Identifier)) {
if (!IDVal.compare_insensitive("infinity") ||
!IDVal.compare_insensitive("inf"))
Value = APFloat::getInf(Semantics);
else if (!IDVal.compare_insensitive("nan"))
Value = APFloat::getNaN(Semantics, false, ~0);
else
return TokError("invalid floating point literal");
} else if (errorToBool(
Value.convertFromString(IDVal, APFloat::rmNearestTiesToEven)
.takeError()))
return TokError("invalid floating point literal");
if (IsNeg)
Value.changeSign();
// Consume the numeric token.
Lex();
Res = Value.bitcastToAPInt();
return false;
}
/// parseDirectiveRealValue
/// ::= (.single | .double) [ expression (, expression)* ]
bool AsmParser::parseDirectiveRealValue(StringRef IDVal,
const fltSemantics &Semantics) {
auto parseOp = [&]() -> bool {
APInt AsInt;
if (checkForValidSection() || parseRealValue(Semantics, AsInt))
return true;
getStreamer().emitIntValue(AsInt.getLimitedValue(),
AsInt.getBitWidth() / 8);
return false;
};
return parseMany(parseOp);
}
/// parseDirectiveZero
/// ::= .zero expression
bool AsmParser::parseDirectiveZero() {
SMLoc NumBytesLoc = Lexer.getLoc();
const MCExpr *NumBytes;
if (checkForValidSection() || parseExpression(NumBytes))
return true;
int64_t Val = 0;
if (getLexer().is(AsmToken::Comma)) {
Lex();
if (parseAbsoluteExpression(Val))
return true;
}
if (parseEOL())
return true;
getStreamer().emitFill(*NumBytes, Val, NumBytesLoc);
return false;
}
/// parseDirectiveFill
/// ::= .fill expression [ , expression [ , expression ] ]
bool AsmParser::parseDirectiveFill() {
SMLoc NumValuesLoc = Lexer.getLoc();
const MCExpr *NumValues;
if (checkForValidSection() || parseExpression(NumValues))
return true;
int64_t FillSize = 1;
int64_t FillExpr = 0;
SMLoc SizeLoc, ExprLoc;
if (parseOptionalToken(AsmToken::Comma)) {
SizeLoc = getTok().getLoc();
if (parseAbsoluteExpression(FillSize))
return true;
if (parseOptionalToken(AsmToken::Comma)) {
ExprLoc = getTok().getLoc();
if (parseAbsoluteExpression(FillExpr))
return true;
}
}
if (parseEOL())
return true;
if (FillSize < 0) {
Warning(SizeLoc, "'.fill' directive with negative size has no effect");
return false;
}
if (FillSize > 8) {
Warning(SizeLoc, "'.fill' directive with size greater than 8 has been truncated to 8");
FillSize = 8;
}
if (!isUInt<32>(FillExpr) && FillSize > 4)
Warning(ExprLoc, "'.fill' directive pattern has been truncated to 32-bits");
getStreamer().emitFill(*NumValues, FillSize, FillExpr, NumValuesLoc);
return false;
}
/// parseDirectiveOrg
/// ::= .org expression [ , expression ]
bool AsmParser::parseDirectiveOrg() {
const MCExpr *Offset;
SMLoc OffsetLoc = Lexer.getLoc();
if (checkForValidSection() || parseExpression(Offset))
return true;
// Parse optional fill expression.
int64_t FillExpr = 0;
if (parseOptionalToken(AsmToken::Comma))
if (parseAbsoluteExpression(FillExpr))
return true;
if (parseEOL())
return true;
getStreamer().emitValueToOffset(Offset, FillExpr, OffsetLoc);
return false;
}
/// parseDirectiveAlign
/// ::= {.align, ...} expression [ , expression [ , expression ]]
bool AsmParser::parseDirectiveAlign(bool IsPow2, unsigned ValueSize) {
SMLoc AlignmentLoc = getLexer().getLoc();
int64_t Alignment;
SMLoc MaxBytesLoc;
bool HasFillExpr = false;
int64_t FillExpr = 0;
int64_t MaxBytesToFill = 0;
auto parseAlign = [&]() -> bool {
if (parseAbsoluteExpression(Alignment))
return true;
if (parseOptionalToken(AsmToken::Comma)) {
// The fill expression can be omitted while specifying a maximum number of
// alignment bytes, e.g:
// .align 3,,4
if (getTok().isNot(AsmToken::Comma)) {
HasFillExpr = true;
if (parseAbsoluteExpression(FillExpr))
return true;
}
if (parseOptionalToken(AsmToken::Comma))
if (parseTokenLoc(MaxBytesLoc) ||
parseAbsoluteExpression(MaxBytesToFill))
return true;
}
return parseEOL();
};
if (checkForValidSection())
return true;
// Ignore empty '.p2align' directives for GNU-as compatibility
if (IsPow2 && (ValueSize == 1) && getTok().is(AsmToken::EndOfStatement)) {
Warning(AlignmentLoc, "p2align directive with no operand(s) is ignored");
return parseEOL();
}
if (parseAlign())
return true;
// Always emit an alignment here even if we thrown an error.
bool ReturnVal = false;
// Compute alignment in bytes.
if (IsPow2) {
// FIXME: Diagnose overflow.
if (Alignment >= 32) {
ReturnVal |= Error(AlignmentLoc, "invalid alignment value");
Alignment = 31;
}
Alignment = 1ULL << Alignment;
} else {
// Reject alignments that aren't either a power of two or zero,
// for gas compatibility. Alignment of zero is silently rounded
// up to one.
if (Alignment == 0)
Alignment = 1;
if (!isPowerOf2_64(Alignment))
ReturnVal |= Error(AlignmentLoc, "alignment must be a power of 2");
if (!isUInt<32>(Alignment))
ReturnVal |= Error(AlignmentLoc, "alignment must be smaller than 2**32");
}
// Diagnose non-sensical max bytes to align.
if (MaxBytesLoc.isValid()) {
if (MaxBytesToFill < 1) {
ReturnVal |= Error(MaxBytesLoc,
"alignment directive can never be satisfied in this "
"many bytes, ignoring maximum bytes expression");
MaxBytesToFill = 0;
}
if (MaxBytesToFill >= Alignment) {
Warning(MaxBytesLoc, "maximum bytes expression exceeds alignment and "
"has no effect");
MaxBytesToFill = 0;
}
}
// Check whether we should use optimal code alignment for this .align
// directive.
const MCSection *Section = getStreamer().getCurrentSectionOnly();
assert(Section && "must have section to emit alignment");
bool UseCodeAlign = Section->UseCodeAlign();
if ((!HasFillExpr || Lexer.getMAI().getTextAlignFillValue() == FillExpr) &&
ValueSize == 1 && UseCodeAlign) {
getStreamer().emitCodeAlignment(Alignment, &getTargetParser().getSTI(),
MaxBytesToFill);
} else {
// FIXME: Target specific behavior about how the "extra" bytes are filled.
getStreamer().emitValueToAlignment(Alignment, FillExpr, ValueSize,
MaxBytesToFill);
}
return ReturnVal;
}
/// parseDirectiveFile
/// ::= .file filename
/// ::= .file number [directory] filename [md5 checksum] [source source-text]
bool AsmParser::parseDirectiveFile(SMLoc DirectiveLoc) {
// FIXME: I'm not sure what this is.
int64_t FileNumber = -1;
if (getLexer().is(AsmToken::Integer)) {
FileNumber = getTok().getIntVal();
Lex();
if (FileNumber < 0)
return TokError("negative file number");
}
std::string Path;
// Usually the directory and filename together, otherwise just the directory.
// Allow the strings to have escaped octal character sequence.
if (parseEscapedString(Path))
return true;
StringRef Directory;
StringRef Filename;
std::string FilenameData;
if (getLexer().is(AsmToken::String)) {
if (check(FileNumber == -1,
"explicit path specified, but no file number") ||
parseEscapedString(FilenameData))
return true;
Filename = FilenameData;
Directory = Path;
} else {
Filename = Path;
}
uint64_t MD5Hi, MD5Lo;
bool HasMD5 = false;
Optional<StringRef> Source;
bool HasSource = false;
std::string SourceString;
while (!parseOptionalToken(AsmToken::EndOfStatement)) {
StringRef Keyword;
if (check(getTok().isNot(AsmToken::Identifier),
"unexpected token in '.file' directive") ||
parseIdentifier(Keyword))
return true;
if (Keyword == "md5") {
HasMD5 = true;
if (check(FileNumber == -1,
"MD5 checksum specified, but no file number") ||
parseHexOcta(*this, MD5Hi, MD5Lo))
return true;
} else if (Keyword == "source") {
HasSource = true;
if (check(FileNumber == -1,
"source specified, but no file number") ||
check(getTok().isNot(AsmToken::String),
"unexpected token in '.file' directive") ||
parseEscapedString(SourceString))
return true;
} else {
return TokError("unexpected token in '.file' directive");
}
}
if (FileNumber == -1) {
// Ignore the directive if there is no number and the target doesn't support
// numberless .file directives. This allows some portability of assembler
// between different object file formats.
if (getContext().getAsmInfo()->hasSingleParameterDotFile())
getStreamer().emitFileDirective(Filename);
} else {
// In case there is a -g option as well as debug info from directive .file,
// we turn off the -g option, directly use the existing debug info instead.
// Throw away any implicit file table for the assembler source.
if (Ctx.getGenDwarfForAssembly()) {
Ctx.getMCDwarfLineTable(0).resetFileTable();
Ctx.setGenDwarfForAssembly(false);
}
Optional<MD5::MD5Result> CKMem;
if (HasMD5) {
MD5::MD5Result Sum;
for (unsigned i = 0; i != 8; ++i) {
Sum.Bytes[i] = uint8_t(MD5Hi >> ((7 - i) * 8));
Sum.Bytes[i + 8] = uint8_t(MD5Lo >> ((7 - i) * 8));
}
CKMem = Sum;
}
if (HasSource) {
char *SourceBuf = static_cast<char *>(Ctx.allocate(SourceString.size()));
memcpy(SourceBuf, SourceString.data(), SourceString.size());
Source = StringRef(SourceBuf, SourceString.size());
}
if (FileNumber == 0) {
// Upgrade to Version 5 for assembly actions like clang -c a.s.
if (Ctx.getDwarfVersion() < 5)
Ctx.setDwarfVersion(5);
getStreamer().emitDwarfFile0Directive(Directory, Filename, CKMem, Source);
} else {
Expected<unsigned> FileNumOrErr = getStreamer().tryEmitDwarfFileDirective(
FileNumber, Directory, Filename, CKMem, Source);
if (!FileNumOrErr)
return Error(DirectiveLoc, toString(FileNumOrErr.takeError()));
}
// Alert the user if there are some .file directives with MD5 and some not.
// But only do that once.
if (!ReportedInconsistentMD5 && !Ctx.isDwarfMD5UsageConsistent(0)) {
ReportedInconsistentMD5 = true;
return Warning(DirectiveLoc, "inconsistent use of MD5 checksums");
}
}
return false;
}
/// parseDirectiveLine
/// ::= .line [number]
bool AsmParser::parseDirectiveLine() {
int64_t LineNumber;
if (getLexer().is(AsmToken::Integer)) {
if (parseIntToken(LineNumber, "unexpected token in '.line' directive"))
return true;
(void)LineNumber;
// FIXME: Do something with the .line.
}
return parseEOL();
}
/// parseDirectiveLoc
/// ::= .loc FileNumber [LineNumber] [ColumnPos] [basic_block] [prologue_end]
/// [epilogue_begin] [is_stmt VALUE] [isa VALUE]
/// The first number is a file number, must have been previously assigned with
/// a .file directive, the second number is the line number and optionally the
/// third number is a column position (zero if not specified). The remaining
/// optional items are .loc sub-directives.
bool AsmParser::parseDirectiveLoc() {
int64_t FileNumber = 0, LineNumber = 0;
SMLoc Loc = getTok().getLoc();
if (parseIntToken(FileNumber, "unexpected token in '.loc' directive") ||
check(FileNumber < 1 && Ctx.getDwarfVersion() < 5, Loc,
"file number less than one in '.loc' directive") ||
check(!getContext().isValidDwarfFileNumber(FileNumber), Loc,
"unassigned file number in '.loc' directive"))
return true;
// optional
if (getLexer().is(AsmToken::Integer)) {
LineNumber = getTok().getIntVal();
if (LineNumber < 0)
return TokError("line number less than zero in '.loc' directive");
Lex();
}
int64_t ColumnPos = 0;
if (getLexer().is(AsmToken::Integer)) {
ColumnPos = getTok().getIntVal();
if (ColumnPos < 0)
return TokError("column position less than zero in '.loc' directive");
Lex();
}
auto PrevFlags = getContext().getCurrentDwarfLoc().getFlags();
unsigned Flags = PrevFlags & DWARF2_FLAG_IS_STMT;
unsigned Isa = 0;
int64_t Discriminator = 0;
auto parseLocOp = [&]() -> bool {
StringRef Name;
SMLoc Loc = getTok().getLoc();
if (parseIdentifier(Name))
return TokError("unexpected token in '.loc' directive");
if (Name == "basic_block")
Flags |= DWARF2_FLAG_BASIC_BLOCK;
else if (Name == "prologue_end")
Flags |= DWARF2_FLAG_PROLOGUE_END;
else if (Name == "epilogue_begin")
Flags |= DWARF2_FLAG_EPILOGUE_BEGIN;
else if (Name == "is_stmt") {
Loc = getTok().getLoc();
const MCExpr *Value;
if (parseExpression(Value))
return true;
// The expression must be the constant 0 or 1.
if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) {
int Value = MCE->getValue();
if (Value == 0)
Flags &= ~DWARF2_FLAG_IS_STMT;
else if (Value == 1)
Flags |= DWARF2_FLAG_IS_STMT;
else
return Error(Loc, "is_stmt value not 0 or 1");
} else {
return Error(Loc, "is_stmt value not the constant value of 0 or 1");
}
} else if (Name == "isa") {
Loc = getTok().getLoc();
const MCExpr *Value;
if (parseExpression(Value))
return true;
// The expression must be a constant greater or equal to 0.
if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) {
int Value = MCE->getValue();
if (Value < 0)
return Error(Loc, "isa number less than zero");
Isa = Value;
} else {
return Error(Loc, "isa number not a constant value");
}
} else if (Name == "discriminator") {
if (parseAbsoluteExpression(Discriminator))
return true;
} else {
return Error(Loc, "unknown sub-directive in '.loc' directive");
}
return false;
};
if (parseMany(parseLocOp, false /*hasComma*/))
return true;
getStreamer().emitDwarfLocDirective(FileNumber, LineNumber, ColumnPos, Flags,
Isa, Discriminator, StringRef());
return false;
}
/// parseDirectiveStabs
/// ::= .stabs string, number, number, number
bool AsmParser::parseDirectiveStabs() {
return TokError("unsupported directive '.stabs'");
}
/// parseDirectiveCVFile
/// ::= .cv_file number filename [checksum] [checksumkind]
bool AsmParser::parseDirectiveCVFile() {
SMLoc FileNumberLoc = getTok().getLoc();
int64_t FileNumber;
std::string Filename;
std::string Checksum;
int64_t ChecksumKind = 0;
if (parseIntToken(FileNumber,
"expected file number in '.cv_file' directive") ||
check(FileNumber < 1, FileNumberLoc, "file number less than one") ||
check(getTok().isNot(AsmToken::String),
"unexpected token in '.cv_file' directive") ||
parseEscapedString(Filename))
return true;
if (!parseOptionalToken(AsmToken::EndOfStatement)) {
if (check(getTok().isNot(AsmToken::String),
"unexpected token in '.cv_file' directive") ||
parseEscapedString(Checksum) ||
parseIntToken(ChecksumKind,
"expected checksum kind in '.cv_file' directive") ||
parseToken(AsmToken::EndOfStatement,
"unexpected token in '.cv_file' directive"))
return true;
}
Checksum = fromHex(Checksum);
void *CKMem = Ctx.allocate(Checksum.size(), 1);
memcpy(CKMem, Checksum.data(), Checksum.size());
ArrayRef<uint8_t> ChecksumAsBytes(reinterpret_cast<const uint8_t *>(CKMem),
Checksum.size());
if (!getStreamer().EmitCVFileDirective(FileNumber, Filename, ChecksumAsBytes,
static_cast<uint8_t>(ChecksumKind)))
return Error(FileNumberLoc, "file number already allocated");
return false;
}
bool AsmParser::parseCVFunctionId(int64_t &FunctionId,
StringRef DirectiveName) {
SMLoc Loc;
return parseTokenLoc(Loc) ||
parseIntToken(FunctionId, "expected function id in '" + DirectiveName +
"' directive") ||
check(FunctionId < 0 || FunctionId >= UINT_MAX, Loc,
"expected function id within range [0, UINT_MAX)");
}
bool AsmParser::parseCVFileId(int64_t &FileNumber, StringRef DirectiveName) {
SMLoc Loc;
return parseTokenLoc(Loc) ||
parseIntToken(FileNumber, "expected integer in '" + DirectiveName +
"' directive") ||
check(FileNumber < 1, Loc, "file number less than one in '" +
DirectiveName + "' directive") ||
check(!getCVContext().isValidFileNumber(FileNumber), Loc,
"unassigned file number in '" + DirectiveName + "' directive");
}
/// parseDirectiveCVFuncId
/// ::= .cv_func_id FunctionId
///
/// Introduces a function ID that can be used with .cv_loc.
bool AsmParser::parseDirectiveCVFuncId() {
SMLoc FunctionIdLoc = getTok().getLoc();
int64_t FunctionId;
if (parseCVFunctionId(FunctionId, ".cv_func_id") ||
parseToken(AsmToken::EndOfStatement,
"unexpected token in '.cv_func_id' directive"))
return true;
if (!getStreamer().EmitCVFuncIdDirective(FunctionId))
return Error(FunctionIdLoc, "function id already allocated");
return false;
}
/// parseDirectiveCVInlineSiteId
/// ::= .cv_inline_site_id FunctionId
/// "within" IAFunc
/// "inlined_at" IAFile IALine [IACol]
///
/// Introduces a function ID that can be used with .cv_loc. Includes "inlined
/// at" source location information for use in the line table of the caller,
/// whether the caller is a real function or another inlined call site.
bool AsmParser::parseDirectiveCVInlineSiteId() {
SMLoc FunctionIdLoc = getTok().getLoc();
int64_t FunctionId;
int64_t IAFunc;
int64_t IAFile;
int64_t IALine;
int64_t IACol = 0;
// FunctionId
if (parseCVFunctionId(FunctionId, ".cv_inline_site_id"))
return true;
// "within"
if (check((getLexer().isNot(AsmToken::Identifier) ||
getTok().getIdentifier() != "within"),
"expected 'within' identifier in '.cv_inline_site_id' directive"))
return true;
Lex();
// IAFunc
if (parseCVFunctionId(IAFunc, ".cv_inline_site_id"))
return true;
// "inlined_at"
if (check((getLexer().isNot(AsmToken::Identifier) ||
getTok().getIdentifier() != "inlined_at"),
"expected 'inlined_at' identifier in '.cv_inline_site_id' "
"directive") )
return true;
Lex();
// IAFile IALine
if (parseCVFileId(IAFile, ".cv_inline_site_id") ||
parseIntToken(IALine, "expected line number after 'inlined_at'"))
return true;
// [IACol]
if (getLexer().is(AsmToken::Integer)) {
IACol = getTok().getIntVal();
Lex();
}
if (parseToken(AsmToken::EndOfStatement,
"unexpected token in '.cv_inline_site_id' directive"))
return true;
if (!getStreamer().EmitCVInlineSiteIdDirective(FunctionId, IAFunc, IAFile,
IALine, IACol, FunctionIdLoc))
return Error(FunctionIdLoc, "function id already allocated");
return false;
}
/// parseDirectiveCVLoc
/// ::= .cv_loc FunctionId FileNumber [LineNumber] [ColumnPos] [prologue_end]
/// [is_stmt VALUE]
/// The first number is a file number, must have been previously assigned with
/// a .file directive, the second number is the line number and optionally the
/// third number is a column position (zero if not specified). The remaining
/// optional items are .loc sub-directives.
bool AsmParser::parseDirectiveCVLoc() {
SMLoc DirectiveLoc = getTok().getLoc();
int64_t FunctionId, FileNumber;
if (parseCVFunctionId(FunctionId, ".cv_loc") ||
parseCVFileId(FileNumber, ".cv_loc"))
return true;
int64_t LineNumber = 0;
if (getLexer().is(AsmToken::Integer)) {
LineNumber = getTok().getIntVal();
if (LineNumber < 0)
return TokError("line number less than zero in '.cv_loc' directive");
Lex();
}
int64_t ColumnPos = 0;
if (getLexer().is(AsmToken::Integer)) {
ColumnPos = getTok().getIntVal();
if (ColumnPos < 0)
return TokError("column position less than zero in '.cv_loc' directive");
Lex();
}
bool PrologueEnd = false;
uint64_t IsStmt = 0;
auto parseOp = [&]() -> bool {
StringRef Name;
SMLoc Loc = getTok().getLoc();
if (parseIdentifier(Name))
return TokError("unexpected token in '.cv_loc' directive");
if (Name == "prologue_end")
PrologueEnd = true;
else if (Name == "is_stmt") {
Loc = getTok().getLoc();
const MCExpr *Value;
if (parseExpression(Value))
return true;
// The expression must be the constant 0 or 1.
IsStmt = ~0ULL;
if (const auto *MCE = dyn_cast<MCConstantExpr>(Value))
IsStmt = MCE->getValue();
if (IsStmt > 1)
return Error(Loc, "is_stmt value not 0 or 1");
} else {
return Error(Loc, "unknown sub-directive in '.cv_loc' directive");
}
return false;
};
if (parseMany(parseOp, false /*hasComma*/))
return true;
getStreamer().emitCVLocDirective(FunctionId, FileNumber, LineNumber,
ColumnPos, PrologueEnd, IsStmt, StringRef(),
DirectiveLoc);
return false;
}
/// parseDirectiveCVLinetable
/// ::= .cv_linetable FunctionId, FnStart, FnEnd
bool AsmParser::parseDirectiveCVLinetable() {
int64_t FunctionId;
StringRef FnStartName, FnEndName;
SMLoc Loc = getTok().getLoc();
if (parseCVFunctionId(FunctionId, ".cv_linetable") || parseComma() ||
parseTokenLoc(Loc) ||
check(parseIdentifier(FnStartName), Loc,
"expected identifier in directive") ||
parseComma() || parseTokenLoc(Loc) ||
check(parseIdentifier(FnEndName), Loc,
"expected identifier in directive"))
return true;
MCSymbol *FnStartSym = getContext().getOrCreateSymbol(FnStartName);
MCSymbol *FnEndSym = getContext().getOrCreateSymbol(FnEndName);
getStreamer().emitCVLinetableDirective(FunctionId, FnStartSym, FnEndSym);
return false;
}
/// parseDirectiveCVInlineLinetable
/// ::= .cv_inline_linetable PrimaryFunctionId FileId LineNum FnStart FnEnd
bool AsmParser::parseDirectiveCVInlineLinetable() {
int64_t PrimaryFunctionId, SourceFileId, SourceLineNum;
StringRef FnStartName, FnEndName;
SMLoc Loc = getTok().getLoc();
if (parseCVFunctionId(PrimaryFunctionId, ".cv_inline_linetable") ||
parseTokenLoc(Loc) ||
parseIntToken(
SourceFileId,
"expected SourceField in '.cv_inline_linetable' directive") ||
check(SourceFileId <= 0, Loc,
"File id less than zero in '.cv_inline_linetable' directive") ||
parseTokenLoc(Loc) ||
parseIntToken(
SourceLineNum,
"expected SourceLineNum in '.cv_inline_linetable' directive") ||
check(SourceLineNum < 0, Loc,
"Line number less than zero in '.cv_inline_linetable' directive") ||
parseTokenLoc(Loc) || check(parseIdentifier(FnStartName), Loc,
"expected identifier in directive") ||
parseTokenLoc(Loc) || check(parseIdentifier(FnEndName), Loc,
"expected identifier in directive"))
return true;
if (parseToken(AsmToken::EndOfStatement, "Expected End of Statement"))
return true;
MCSymbol *FnStartSym = getContext().getOrCreateSymbol(FnStartName);
MCSymbol *FnEndSym = getContext().getOrCreateSymbol(FnEndName);
getStreamer().emitCVInlineLinetableDirective(PrimaryFunctionId, SourceFileId,
SourceLineNum, FnStartSym,
FnEndSym);
return false;
}
void AsmParser::initializeCVDefRangeTypeMap() {
CVDefRangeTypeMap["reg"] = CVDR_DEFRANGE_REGISTER;
CVDefRangeTypeMap["frame_ptr_rel"] = CVDR_DEFRANGE_FRAMEPOINTER_REL;
CVDefRangeTypeMap["subfield_reg"] = CVDR_DEFRANGE_SUBFIELD_REGISTER;
CVDefRangeTypeMap["reg_rel"] = CVDR_DEFRANGE_REGISTER_REL;
}
/// parseDirectiveCVDefRange
/// ::= .cv_def_range RangeStart RangeEnd (GapStart GapEnd)*, bytes*
bool AsmParser::parseDirectiveCVDefRange() {
SMLoc Loc;
std::vector<std::pair<const MCSymbol *, const MCSymbol *>> Ranges;
while (getLexer().is(AsmToken::Identifier)) {
Loc = getLexer().getLoc();
StringRef GapStartName;
if (parseIdentifier(GapStartName))
return Error(Loc, "expected identifier in directive");
MCSymbol *GapStartSym = getContext().getOrCreateSymbol(GapStartName);
Loc = getLexer().getLoc();
StringRef GapEndName;
if (parseIdentifier(GapEndName))
return Error(Loc, "expected identifier in directive");
MCSymbol *GapEndSym = getContext().getOrCreateSymbol(GapEndName);
Ranges.push_back({GapStartSym, GapEndSym});
}
StringRef CVDefRangeTypeStr;
if (parseToken(
AsmToken::Comma,
"expected comma before def_range type in .cv_def_range directive") ||
parseIdentifier(CVDefRangeTypeStr))
return Error(Loc, "expected def_range type in directive");
StringMap<CVDefRangeType>::const_iterator CVTypeIt =
CVDefRangeTypeMap.find(CVDefRangeTypeStr);
CVDefRangeType CVDRType = (CVTypeIt == CVDefRangeTypeMap.end())
? CVDR_DEFRANGE
: CVTypeIt->getValue();
switch (CVDRType) {
case CVDR_DEFRANGE_REGISTER: {
int64_t DRRegister;
if (parseToken(AsmToken::Comma, "expected comma before register number in "
".cv_def_range directive") ||
parseAbsoluteExpression(DRRegister))
return Error(Loc, "expected register number");
codeview::DefRangeRegisterHeader DRHdr;
DRHdr.Register = DRRegister;
DRHdr.MayHaveNoName = 0;
getStreamer().emitCVDefRangeDirective(Ranges, DRHdr);
break;
}
case CVDR_DEFRANGE_FRAMEPOINTER_REL: {
int64_t DROffset;
if (parseToken(AsmToken::Comma,
"expected comma before offset in .cv_def_range directive") ||
parseAbsoluteExpression(DROffset))
return Error(Loc, "expected offset value");
codeview::DefRangeFramePointerRelHeader DRHdr;
DRHdr.Offset = DROffset;
getStreamer().emitCVDefRangeDirective(Ranges, DRHdr);
break;
}
case CVDR_DEFRANGE_SUBFIELD_REGISTER: {
int64_t DRRegister;
int64_t DROffsetInParent;
if (parseToken(AsmToken::Comma, "expected comma before register number in "
".cv_def_range directive") ||
parseAbsoluteExpression(DRRegister))
return Error(Loc, "expected register number");
if (parseToken(AsmToken::Comma,
"expected comma before offset in .cv_def_range directive") ||
parseAbsoluteExpression(DROffsetInParent))
return Error(Loc, "expected offset value");
codeview::DefRangeSubfieldRegisterHeader DRHdr;
DRHdr.Register = DRRegister;
DRHdr.MayHaveNoName = 0;
DRHdr.OffsetInParent = DROffsetInParent;
getStreamer().emitCVDefRangeDirective(Ranges, DRHdr);
break;
}
case CVDR_DEFRANGE_REGISTER_REL: {
int64_t DRRegister;
int64_t DRFlags;
int64_t DRBasePointerOffset;
if (parseToken(AsmToken::Comma, "expected comma before register number in "
".cv_def_range directive") ||
parseAbsoluteExpression(DRRegister))
return Error(Loc, "expected register value");
if (parseToken(
AsmToken::Comma,
"expected comma before flag value in .cv_def_range directive") ||
parseAbsoluteExpression(DRFlags))
return Error(Loc, "expected flag value");
if (parseToken(AsmToken::Comma, "expected comma before base pointer offset "
"in .cv_def_range directive") ||
parseAbsoluteExpression(DRBasePointerOffset))
return Error(Loc, "expected base pointer offset value");
codeview::DefRangeRegisterRelHeader DRHdr;
DRHdr.Register = DRRegister;
DRHdr.Flags = DRFlags;
DRHdr.BasePointerOffset = DRBasePointerOffset;
getStreamer().emitCVDefRangeDirective(Ranges, DRHdr);
break;
}
default:
return Error(Loc, "unexpected def_range type in .cv_def_range directive");
}
return true;
}
/// parseDirectiveCVString
/// ::= .cv_stringtable "string"
bool AsmParser::parseDirectiveCVString() {
std::string Data;
if (checkForValidSection() || parseEscapedString(Data))
return true;
// Put the string in the table and emit the offset.
std::pair<StringRef, unsigned> Insertion =
getCVContext().addToStringTable(Data);
getStreamer().emitInt32(Insertion.second);
return false;
}
/// parseDirectiveCVStringTable
/// ::= .cv_stringtable
bool AsmParser::parseDirectiveCVStringTable() {
getStreamer().emitCVStringTableDirective();
return false;
}
/// parseDirectiveCVFileChecksums
/// ::= .cv_filechecksums
bool AsmParser::parseDirectiveCVFileChecksums() {
getStreamer().emitCVFileChecksumsDirective();
return false;
}
/// parseDirectiveCVFileChecksumOffset
/// ::= .cv_filechecksumoffset fileno
bool AsmParser::parseDirectiveCVFileChecksumOffset() {
int64_t FileNo;
if (parseIntToken(FileNo, "expected identifier in directive"))
return true;
if (parseToken(AsmToken::EndOfStatement, "Expected End of Statement"))
return true;
getStreamer().emitCVFileChecksumOffsetDirective(FileNo);
return false;
}
/// parseDirectiveCVFPOData
/// ::= .cv_fpo_data procsym
bool AsmParser::parseDirectiveCVFPOData() {
SMLoc DirLoc = getLexer().getLoc();
StringRef ProcName;
if (parseIdentifier(ProcName))
return TokError("expected symbol name");
if (parseEOL())
return true;
MCSymbol *ProcSym = getContext().getOrCreateSymbol(ProcName);
getStreamer().EmitCVFPOData(ProcSym, DirLoc);
return false;
}
/// parseDirectiveCFISections
/// ::= .cfi_sections section [, section]
bool AsmParser::parseDirectiveCFISections() {
StringRef Name;
bool EH = false;
bool Debug = false;
if (!parseOptionalToken(AsmToken::EndOfStatement)) {
for (;;) {
if (parseIdentifier(Name))
return TokError("expected .eh_frame or .debug_frame");
if (Name == ".eh_frame")
EH = true;
else if (Name == ".debug_frame")
Debug = true;
if (parseOptionalToken(AsmToken::EndOfStatement))
break;
if (parseComma())
return true;
}
}
getStreamer().emitCFISections(EH, Debug);
return false;
}
/// parseDirectiveCFIStartProc
/// ::= .cfi_startproc [simple]
bool AsmParser::parseDirectiveCFIStartProc() {
StringRef Simple;
if (!parseOptionalToken(AsmToken::EndOfStatement)) {
if (check(parseIdentifier(Simple) || Simple != "simple",
"unexpected token") ||
parseEOL())
return true;
}
// TODO(kristina): Deal with a corner case of incorrect diagnostic context
// being produced if this directive is emitted as part of preprocessor macro
// expansion which can *ONLY* happen if Clang's cc1as is the API consumer.
// Tools like llvm-mc on the other hand are not affected by it, and report
// correct context information.
getStreamer().emitCFIStartProc(!Simple.empty(), Lexer.getLoc());
return false;
}
/// parseDirectiveCFIEndProc
/// ::= .cfi_endproc
bool AsmParser::parseDirectiveCFIEndProc() {
if (parseEOL())
return true;
getStreamer().emitCFIEndProc();
return false;
}
/// parse register name or number.
bool AsmParser::parseRegisterOrRegisterNumber(int64_t &Register,
SMLoc DirectiveLoc) {
unsigned RegNo;
if (getLexer().isNot(AsmToken::Integer)) {
if (getTargetParser().ParseRegister(RegNo, DirectiveLoc, DirectiveLoc))
return true;
Register = getContext().getRegisterInfo()->getDwarfRegNum(RegNo, true);
} else
return parseAbsoluteExpression(Register);
return false;
}
/// parseDirectiveCFIDefCfa
/// ::= .cfi_def_cfa register, offset
bool AsmParser::parseDirectiveCFIDefCfa(SMLoc DirectiveLoc) {
int64_t Register = 0, Offset = 0;
if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseComma() ||
parseAbsoluteExpression(Offset) || parseEOL())
return true;
getStreamer().emitCFIDefCfa(Register, Offset);
return false;
}
/// parseDirectiveCFIDefCfaOffset
/// ::= .cfi_def_cfa_offset offset
bool AsmParser::parseDirectiveCFIDefCfaOffset() {
int64_t Offset = 0;
if (parseAbsoluteExpression(Offset) || parseEOL())
return true;
getStreamer().emitCFIDefCfaOffset(Offset);
return false;
}
/// parseDirectiveCFIRegister
/// ::= .cfi_register register, register
bool AsmParser::parseDirectiveCFIRegister(SMLoc DirectiveLoc) {
int64_t Register1 = 0, Register2 = 0;
if (parseRegisterOrRegisterNumber(Register1, DirectiveLoc) || parseComma() ||
parseRegisterOrRegisterNumber(Register2, DirectiveLoc) || parseEOL())
return true;
getStreamer().emitCFIRegister(Register1, Register2);
return false;
}
/// parseDirectiveCFIWindowSave
/// ::= .cfi_window_save
bool AsmParser::parseDirectiveCFIWindowSave() {
if (parseEOL())
return true;
getStreamer().emitCFIWindowSave();
return false;
}
/// parseDirectiveCFIAdjustCfaOffset
/// ::= .cfi_adjust_cfa_offset adjustment
bool AsmParser::parseDirectiveCFIAdjustCfaOffset() {
int64_t Adjustment = 0;
if (parseAbsoluteExpression(Adjustment) || parseEOL())
return true;
getStreamer().emitCFIAdjustCfaOffset(Adjustment);
return false;
}
/// parseDirectiveCFIDefCfaRegister
/// ::= .cfi_def_cfa_register register
bool AsmParser::parseDirectiveCFIDefCfaRegister(SMLoc DirectiveLoc) {
int64_t Register = 0;
if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL())
return true;
getStreamer().emitCFIDefCfaRegister(Register);
return false;
}
/// parseDirectiveCFILLVMDefAspaceCfa
/// ::= .cfi_llvm_def_aspace_cfa register, offset, address_space
bool AsmParser::parseDirectiveCFILLVMDefAspaceCfa(SMLoc DirectiveLoc) {
int64_t Register = 0, Offset = 0, AddressSpace = 0;
if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseComma() ||
parseAbsoluteExpression(Offset) || parseComma() ||
parseAbsoluteExpression(AddressSpace) || parseEOL())
return true;
getStreamer().emitCFILLVMDefAspaceCfa(Register, Offset, AddressSpace);
return false;
}
/// parseDirectiveCFIOffset
/// ::= .cfi_offset register, offset
bool AsmParser::parseDirectiveCFIOffset(SMLoc DirectiveLoc) {
int64_t Register = 0;
int64_t Offset = 0;
if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseComma() ||
parseAbsoluteExpression(Offset) || parseEOL())
return true;
getStreamer().emitCFIOffset(Register, Offset);
return false;
}
/// parseDirectiveCFIRelOffset
/// ::= .cfi_rel_offset register, offset
bool AsmParser::parseDirectiveCFIRelOffset(SMLoc DirectiveLoc) {
int64_t Register = 0, Offset = 0;
if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseComma() ||
parseAbsoluteExpression(Offset) || parseEOL())
return true;
getStreamer().emitCFIRelOffset(Register, Offset);
return false;
}
static bool isValidEncoding(int64_t Encoding) {
if (Encoding & ~0xff)
return false;
if (Encoding == dwarf::DW_EH_PE_omit)
return true;
const unsigned Format = Encoding & 0xf;
if (Format != dwarf::DW_EH_PE_absptr && Format != dwarf::DW_EH_PE_udata2 &&
Format != dwarf::DW_EH_PE_udata4 && Format != dwarf::DW_EH_PE_udata8 &&
Format != dwarf::DW_EH_PE_sdata2 && Format != dwarf::DW_EH_PE_sdata4 &&
Format != dwarf::DW_EH_PE_sdata8 && Format != dwarf::DW_EH_PE_signed)
return false;
const unsigned Application = Encoding & 0x70;
if (Application != dwarf::DW_EH_PE_absptr &&
Application != dwarf::DW_EH_PE_pcrel)
return false;
return true;
}
/// parseDirectiveCFIPersonalityOrLsda
/// IsPersonality true for cfi_personality, false for cfi_lsda
/// ::= .cfi_personality encoding, [symbol_name]
/// ::= .cfi_lsda encoding, [symbol_name]
bool AsmParser::parseDirectiveCFIPersonalityOrLsda(bool IsPersonality) {
int64_t Encoding = 0;
if (parseAbsoluteExpression(Encoding))
return true;
if (Encoding == dwarf::DW_EH_PE_omit)
return false;
StringRef Name;
if (check(!isValidEncoding(Encoding), "unsupported encoding.") ||
parseComma() ||
check(parseIdentifier(Name), "expected identifier in directive") ||
parseEOL())
return true;
MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
if (IsPersonality)
getStreamer().emitCFIPersonality(Sym, Encoding);
else
getStreamer().emitCFILsda(Sym, Encoding);
return false;
}
/// parseDirectiveCFIRememberState
/// ::= .cfi_remember_state
bool AsmParser::parseDirectiveCFIRememberState() {
if (parseEOL())
return true;
getStreamer().emitCFIRememberState();
return false;
}
/// parseDirectiveCFIRestoreState
/// ::= .cfi_remember_state
bool AsmParser::parseDirectiveCFIRestoreState() {
if (parseEOL())
return true;
getStreamer().emitCFIRestoreState();
return false;
}
/// parseDirectiveCFISameValue
/// ::= .cfi_same_value register
bool AsmParser::parseDirectiveCFISameValue(SMLoc DirectiveLoc) {
int64_t Register = 0;
if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL())
return true;
getStreamer().emitCFISameValue(Register);
return false;
}
/// parseDirectiveCFIRestore
/// ::= .cfi_restore register
bool AsmParser::parseDirectiveCFIRestore(SMLoc DirectiveLoc) {
int64_t Register = 0;
if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL())
return true;
getStreamer().emitCFIRestore(Register);
return false;
}
/// parseDirectiveCFIEscape
/// ::= .cfi_escape expression[,...]
bool AsmParser::parseDirectiveCFIEscape() {
std::string Values;
int64_t CurrValue;
if (parseAbsoluteExpression(CurrValue))
return true;
Values.push_back((uint8_t)CurrValue);
while (getLexer().is(AsmToken::Comma)) {
Lex();
if (parseAbsoluteExpression(CurrValue))
return true;
Values.push_back((uint8_t)CurrValue);
}
getStreamer().emitCFIEscape(Values);
return false;
}
/// parseDirectiveCFIReturnColumn
/// ::= .cfi_return_column register
bool AsmParser::parseDirectiveCFIReturnColumn(SMLoc DirectiveLoc) {
int64_t Register = 0;
if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL())
return true;
getStreamer().emitCFIReturnColumn(Register);
return false;
}
/// parseDirectiveCFISignalFrame
/// ::= .cfi_signal_frame
bool AsmParser::parseDirectiveCFISignalFrame() {
if (parseEOL())
return true;
getStreamer().emitCFISignalFrame();
return false;
}
/// parseDirectiveCFIUndefined
/// ::= .cfi_undefined register
bool AsmParser::parseDirectiveCFIUndefined(SMLoc DirectiveLoc) {
int64_t Register = 0;
if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL())
return true;
getStreamer().emitCFIUndefined(Register);
return false;
}
/// parseDirectiveAltmacro
/// ::= .altmacro
/// ::= .noaltmacro
bool AsmParser::parseDirectiveAltmacro(StringRef Directive) {
if (parseEOL())
return true;
AltMacroMode = (Directive == ".altmacro");
return false;
}
/// parseDirectiveMacrosOnOff
/// ::= .macros_on
/// ::= .macros_off
bool AsmParser::parseDirectiveMacrosOnOff(StringRef Directive) {
if (parseEOL())
return true;
setMacrosEnabled(Directive == ".macros_on");
return false;
}
/// parseDirectiveMacro
/// ::= .macro name[,] [parameters]
bool AsmParser::parseDirectiveMacro(SMLoc DirectiveLoc) {
StringRef Name;
if (parseIdentifier(Name))
return TokError("expected identifier in '.macro' directive");
if (getLexer().is(AsmToken::Comma))
Lex();
MCAsmMacroParameters Parameters;
while (getLexer().isNot(AsmToken::EndOfStatement)) {
if (!Parameters.empty() && Parameters.back().Vararg)
return Error(Lexer.getLoc(), "vararg parameter '" +
Parameters.back().Name +
"' should be the last parameter");
MCAsmMacroParameter Parameter;
if (parseIdentifier(Parameter.Name))
return TokError("expected identifier in '.macro' directive");
// Emit an error if two (or more) named parameters share the same name
for (const MCAsmMacroParameter& CurrParam : Parameters)
if (CurrParam.Name.equals(Parameter.Name))
return TokError("macro '" + Name + "' has multiple parameters"
" named '" + Parameter.Name + "'");
if (Lexer.is(AsmToken::Colon)) {
Lex(); // consume ':'
SMLoc QualLoc;
StringRef Qualifier;
QualLoc = Lexer.getLoc();
if (parseIdentifier(Qualifier))
return Error(QualLoc, "missing parameter qualifier for "
"'" + Parameter.Name + "' in macro '" + Name + "'");
if (Qualifier == "req")
Parameter.Required = true;
else if (Qualifier == "vararg")
Parameter.Vararg = true;
else
return Error(QualLoc, Qualifier + " is not a valid parameter qualifier "
"for '" + Parameter.Name + "' in macro '" + Name + "'");
}
if (getLexer().is(AsmToken::Equal)) {
Lex();
SMLoc ParamLoc;
ParamLoc = Lexer.getLoc();
if (parseMacroArgument(Parameter.Value, /*Vararg=*/false ))
return true;
if (Parameter.Required)
Warning(ParamLoc, "pointless default value for required parameter "
"'" + Parameter.Name + "' in macro '" + Name + "'");
}
Parameters.push_back(std::move(Parameter));
if (getLexer().is(AsmToken::Comma))
Lex();
}
// Eat just the end of statement.
Lexer.Lex();
// Consuming deferred text, so use Lexer.Lex to ignore Lexing Errors
AsmToken EndToken, StartToken = getTok();
unsigned MacroDepth = 0;
// Lex the macro definition.
while (true) {
// Ignore Lexing errors in macros.
while (Lexer.is(AsmToken::Error)) {
Lexer.Lex();
}
// Check whether we have reached the end of the file.
if (getLexer().is(AsmToken::Eof))
return Error(DirectiveLoc, "no matching '.endmacro' in definition");
// Otherwise, check whether we have reach the .endmacro or the start of a
// preprocessor line marker.
if (getLexer().is(AsmToken::Identifier)) {
if (getTok().getIdentifier() == ".endm" ||
getTok().getIdentifier() == ".endmacro") {
if (MacroDepth == 0) { // Outermost macro.
EndToken = getTok();
Lexer.Lex();
if (getLexer().isNot(AsmToken::EndOfStatement))
return TokError("unexpected token in '" + EndToken.getIdentifier() +
"' directive");
break;
} else {
// Otherwise we just found the end of an inner macro.
--MacroDepth;
}
} else if (getTok().getIdentifier() == ".macro") {
// We allow nested macros. Those aren't instantiated until the outermost
// macro is expanded so just ignore them for now.
++MacroDepth;
}
} else if (Lexer.is(AsmToken::HashDirective)) {
(void)parseCppHashLineFilenameComment(getLexer().getLoc());
}
// Otherwise, scan til the end of the statement.
eatToEndOfStatement();
}
if (getContext().lookupMacro(Name)) {
return Error(DirectiveLoc, "macro '" + Name + "' is already defined");
}
const char *BodyStart = StartToken.getLoc().getPointer();
const char *BodyEnd = EndToken.getLoc().getPointer();
StringRef Body = StringRef(BodyStart, BodyEnd - BodyStart);
checkForBadMacro(DirectiveLoc, Name, Body, Parameters);
MCAsmMacro Macro(Name, Body, std::move(Parameters));
DEBUG_WITH_TYPE("asm-macros", dbgs() << "Defining new macro:\n";
Macro.dump());
getContext().defineMacro(Name, std::move(Macro));
return false;
}
/// checkForBadMacro
///
/// With the support added for named parameters there may be code out there that
/// is transitioning from positional parameters. In versions of gas that did
/// not support named parameters they would be ignored on the macro definition.
/// But to support both styles of parameters this is not possible so if a macro
/// definition has named parameters but does not use them and has what appears
/// to be positional parameters, strings like $1, $2, ... and $n, then issue a
/// warning that the positional parameter found in body which have no effect.
/// Hoping the developer will either remove the named parameters from the macro
/// definition so the positional parameters get used if that was what was
/// intended or change the macro to use the named parameters. It is possible
/// this warning will trigger when the none of the named parameters are used
/// and the strings like $1 are infact to simply to be passed trough unchanged.
void AsmParser::checkForBadMacro(SMLoc DirectiveLoc, StringRef Name,
StringRef Body,
ArrayRef<MCAsmMacroParameter> Parameters) {
// If this macro is not defined with named parameters the warning we are
// checking for here doesn't apply.
unsigned NParameters = Parameters.size();
if (NParameters == 0)
return;
bool NamedParametersFound = false;
bool PositionalParametersFound = false;
// Look at the body of the macro for use of both the named parameters and what
// are likely to be positional parameters. This is what expandMacro() is
// doing when it finds the parameters in the body.
while (!Body.empty()) {
// Scan for the next possible parameter.
std::size_t End = Body.size(), Pos = 0;
for (; Pos != End; ++Pos) {
// Check for a substitution or escape.
// This macro is defined with parameters, look for \foo, \bar, etc.
if (Body[Pos] == '\\' && Pos + 1 != End)
break;
// This macro should have parameters, but look for $0, $1, ..., $n too.
if (Body[Pos] != '$' || Pos + 1 == End)
continue;
char Next = Body[Pos + 1];
if (Next == '$' || Next == 'n' ||
isdigit(static_cast<unsigned char>(Next)))
break;
}
// Check if we reached the end.
if (Pos == End)
break;
if (Body[Pos] == '$') {
switch (Body[Pos + 1]) {
// $$ => $
case '$':
break;
// $n => number of arguments
case 'n':
PositionalParametersFound = true;
break;
// $[0-9] => argument
default: {
PositionalParametersFound = true;
break;
}
}
Pos += 2;
} else {
unsigned I = Pos + 1;
while (isIdentifierChar(Body[I]) && I + 1 != End)
++I;
const char *Begin = Body.data() + Pos + 1;
StringRef Argument(Begin, I - (Pos + 1));
unsigned Index = 0;
for (; Index < NParameters; ++Index)
if (Parameters[Index].Name == Argument)
break;
if (Index == NParameters) {
if (Body[Pos + 1] == '(' && Body[Pos + 2] == ')')
Pos += 3;
else {
Pos = I;
}
} else {
NamedParametersFound = true;
Pos += 1 + Argument.size();
}
}
// Update the scan point.
Body = Body.substr(Pos);
}
if (!NamedParametersFound && PositionalParametersFound)
Warning(DirectiveLoc, "macro defined with named parameters which are not "
"used in macro body, possible positional parameter "
"found in body which will have no effect");
}
/// parseDirectiveExitMacro
/// ::= .exitm
bool AsmParser::parseDirectiveExitMacro(StringRef Directive) {
if (parseEOL())
return true;
if (!isInsideMacroInstantiation())
return TokError("unexpected '" + Directive + "' in file, "
"no current macro definition");
// Exit all conditionals that are active in the current macro.
while (TheCondStack.size() != ActiveMacros.back()->CondStackDepth) {
TheCondState = TheCondStack.back();
TheCondStack.pop_back();
}
handleMacroExit();
return false;
}
/// parseDirectiveEndMacro
/// ::= .endm
/// ::= .endmacro
bool AsmParser::parseDirectiveEndMacro(StringRef Directive) {
if (getLexer().isNot(AsmToken::EndOfStatement))
return TokError("unexpected token in '" + Directive + "' directive");
// If we are inside a macro instantiation, terminate the current
// instantiation.
if (isInsideMacroInstantiation()) {
handleMacroExit();
return false;
}
// Otherwise, this .endmacro is a stray entry in the file; well formed
// .endmacro directives are handled during the macro definition parsing.
return TokError("unexpected '" + Directive + "' in file, "
"no current macro definition");
}
/// parseDirectivePurgeMacro
/// ::= .purgem name
bool AsmParser::parseDirectivePurgeMacro(SMLoc DirectiveLoc) {
StringRef Name;
SMLoc Loc;
if (parseTokenLoc(Loc) ||
check(parseIdentifier(Name), Loc,
"expected identifier in '.purgem' directive") ||
parseEOL())
return true;
if (!getContext().lookupMacro(Name))
return Error(DirectiveLoc, "macro '" + Name + "' is not defined");
getContext().undefineMacro(Name);
DEBUG_WITH_TYPE("asm-macros", dbgs()
<< "Un-defining macro: " << Name << "\n");
return false;
}
/// parseDirectiveBundleAlignMode
/// ::= {.bundle_align_mode} expression
bool AsmParser::parseDirectiveBundleAlignMode() {
// Expect a single argument: an expression that evaluates to a constant
// in the inclusive range 0-30.
SMLoc ExprLoc = getLexer().getLoc();
int64_t AlignSizePow2;
if (checkForValidSection() || parseAbsoluteExpression(AlignSizePow2) ||
parseEOL() ||
check(AlignSizePow2 < 0 || AlignSizePow2 > 30, ExprLoc,
"invalid bundle alignment size (expected between 0 and 30)"))
return true;
// Because of AlignSizePow2's verified range we can safely truncate it to
// unsigned.
getStreamer().emitBundleAlignMode(static_cast<unsigned>(AlignSizePow2));
return false;
}
/// parseDirectiveBundleLock
/// ::= {.bundle_lock} [align_to_end]
bool AsmParser::parseDirectiveBundleLock() {
if (checkForValidSection())
return true;
bool AlignToEnd = false;
StringRef Option;
SMLoc Loc = getTok().getLoc();
const char *kInvalidOptionError =
"invalid option for '.bundle_lock' directive";
if (!parseOptionalToken(AsmToken::EndOfStatement)) {
if (check(parseIdentifier(Option), Loc, kInvalidOptionError) ||
check(Option != "align_to_end", Loc, kInvalidOptionError) || parseEOL())
return true;
AlignToEnd = true;
}
getStreamer().emitBundleLock(AlignToEnd);
return false;
}
/// parseDirectiveBundleLock
/// ::= {.bundle_lock}
bool AsmParser::parseDirectiveBundleUnlock() {
if (checkForValidSection() || parseEOL())
return true;
getStreamer().emitBundleUnlock();
return false;
}
/// parseDirectiveSpace
/// ::= (.skip | .space) expression [ , expression ]
bool AsmParser::parseDirectiveSpace(StringRef IDVal) {
SMLoc NumBytesLoc = Lexer.getLoc();
const MCExpr *NumBytes;
if (checkForValidSection() || parseExpression(NumBytes))
return true;
int64_t FillExpr = 0;
if (parseOptionalToken(AsmToken::Comma))
if (parseAbsoluteExpression(FillExpr))
return true;
if (parseEOL())
return true;
// FIXME: Sometimes the fill expr is 'nop' if it isn't supplied, instead of 0.
getStreamer().emitFill(*NumBytes, FillExpr, NumBytesLoc);
return false;
}
/// parseDirectiveDCB
/// ::= .dcb.{b, l, w} expression, expression
bool AsmParser::parseDirectiveDCB(StringRef IDVal, unsigned Size) {
SMLoc NumValuesLoc = Lexer.getLoc();
int64_t NumValues;
if (checkForValidSection() || parseAbsoluteExpression(NumValues))
return true;
if (NumValues < 0) {
Warning(NumValuesLoc, "'" + Twine(IDVal) + "' directive with negative repeat count has no effect");
return false;
}
if (parseComma())
return true;
const MCExpr *Value;
SMLoc ExprLoc = getLexer().getLoc();
if (parseExpression(Value))
return true;
// Special case constant expressions to match code generator.
if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) {
assert(Size <= 8 && "Invalid size");
uint64_t IntValue = MCE->getValue();
if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue))
return Error(ExprLoc, "literal value out of range for directive");
for (uint64_t i = 0, e = NumValues; i != e; ++i)
getStreamer().emitIntValue(IntValue, Size);
} else {
for (uint64_t i = 0, e = NumValues; i != e; ++i)
getStreamer().emitValue(Value, Size, ExprLoc);
}
return parseEOL();
}
/// parseDirectiveRealDCB
/// ::= .dcb.{d, s} expression, expression
bool AsmParser::parseDirectiveRealDCB(StringRef IDVal, const fltSemantics &Semantics) {
SMLoc NumValuesLoc = Lexer.getLoc();
int64_t NumValues;
if (checkForValidSection() || parseAbsoluteExpression(NumValues))
return true;
if (NumValues < 0) {
Warning(NumValuesLoc, "'" + Twine(IDVal) + "' directive with negative repeat count has no effect");
return false;
}
if (parseComma())
return true;
APInt AsInt;
if (parseRealValue(Semantics, AsInt) || parseEOL())
return true;
for (uint64_t i = 0, e = NumValues; i != e; ++i)
getStreamer().emitIntValue(AsInt.getLimitedValue(),
AsInt.getBitWidth() / 8);
return false;
}
/// parseDirectiveDS
/// ::= .ds.{b, d, l, p, s, w, x} expression
bool AsmParser::parseDirectiveDS(StringRef IDVal, unsigned Size) {
SMLoc NumValuesLoc = Lexer.getLoc();
int64_t NumValues;
if (checkForValidSection() || parseAbsoluteExpression(NumValues) ||
parseEOL())
return true;
if (NumValues < 0) {
Warning(NumValuesLoc, "'" + Twine(IDVal) + "' directive with negative repeat count has no effect");
return false;
}
for (uint64_t i = 0, e = NumValues; i != e; ++i)
getStreamer().emitFill(Size, 0);
return false;
}
/// parseDirectiveLEB128
/// ::= (.sleb128 | .uleb128) [ expression (, expression)* ]
bool AsmParser::parseDirectiveLEB128(bool Signed) {
if (checkForValidSection())
return true;
auto parseOp = [&]() -> bool {
const MCExpr *Value;
if (parseExpression(Value))
return true;
if (Signed)
getStreamer().emitSLEB128Value(Value);
else
getStreamer().emitULEB128Value(Value);
return false;
};
return parseMany(parseOp);
}
/// parseDirectiveSymbolAttribute
/// ::= { ".globl", ".weak", ... } [ identifier ( , identifier )* ]
bool AsmParser::parseDirectiveSymbolAttribute(MCSymbolAttr Attr) {
auto parseOp = [&]() -> bool {
StringRef Name;
SMLoc Loc = getTok().getLoc();
if (parseIdentifier(Name))
return Error(Loc, "expected identifier");
if (discardLTOSymbol(Name))
return false;
MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
// Assembler local symbols don't make any sense here. Complain loudly.
if (Sym->isTemporary())
return Error(Loc, "non-local symbol required");
if (!getStreamer().emitSymbolAttribute(Sym, Attr))
return Error(Loc, "unable to emit symbol attribute");
return false;
};
return parseMany(parseOp);
}
/// parseDirectiveComm
/// ::= ( .comm | .lcomm ) identifier , size_expression [ , align_expression ]
bool AsmParser::parseDirectiveComm(bool IsLocal) {
if (checkForValidSection())
return true;
SMLoc IDLoc = getLexer().getLoc();
StringRef Name;
if (parseIdentifier(Name))
return TokError("expected identifier in directive");
// Handle the identifier as the key symbol.
MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
if (parseComma())
return true;
int64_t Size;
SMLoc SizeLoc = getLexer().getLoc();
if (parseAbsoluteExpression(Size))
return true;
int64_t Pow2Alignment = 0;
SMLoc Pow2AlignmentLoc;
if (getLexer().is(AsmToken::Comma)) {
Lex();
Pow2AlignmentLoc = getLexer().getLoc();
if (parseAbsoluteExpression(Pow2Alignment))
return true;
LCOMM::LCOMMType LCOMM = Lexer.getMAI().getLCOMMDirectiveAlignmentType();
if (IsLocal && LCOMM == LCOMM::NoAlignment)
return Error(Pow2AlignmentLoc, "alignment not supported on this target");
// If this target takes alignments in bytes (not log) validate and convert.
if ((!IsLocal && Lexer.getMAI().getCOMMDirectiveAlignmentIsInBytes()) ||
(IsLocal && LCOMM == LCOMM::ByteAlignment)) {
if (!isPowerOf2_64(Pow2Alignment))
return Error(Pow2AlignmentLoc, "alignment must be a power of 2");
Pow2Alignment = Log2_64(Pow2Alignment);
}
}
if (parseEOL())
return true;
// NOTE: a size of zero for a .comm should create a undefined symbol
// but a size of .lcomm creates a bss symbol of size zero.
if (Size < 0)
return Error(SizeLoc, "invalid '.comm' or '.lcomm' directive size, can't "
"be less than zero");
// NOTE: The alignment in the directive is a power of 2 value, the assembler
// may internally end up wanting an alignment in bytes.
// FIXME: Diagnose overflow.
if (Pow2Alignment < 0)
return Error(Pow2AlignmentLoc, "invalid '.comm' or '.lcomm' directive "
"alignment, can't be less than zero");
Sym->redefineIfPossible();
if (!Sym->isUndefined())
return Error(IDLoc, "invalid symbol redefinition");
// Create the Symbol as a common or local common with Size and Pow2Alignment
if (IsLocal) {
getStreamer().emitLocalCommonSymbol(Sym, Size, 1 << Pow2Alignment);
return false;
}
getStreamer().emitCommonSymbol(Sym, Size, 1 << Pow2Alignment);
return false;
}
/// parseDirectiveAbort
/// ::= .abort [... message ...]
bool AsmParser::parseDirectiveAbort() {
// FIXME: Use loc from directive.
SMLoc Loc = getLexer().getLoc();
StringRef Str = parseStringToEndOfStatement();
if (parseEOL())
return true;
if (Str.empty())
return Error(Loc, ".abort detected. Assembly stopping.");
else
return Error(Loc, ".abort '" + Str + "' detected. Assembly stopping.");
// FIXME: Actually abort assembly here.
return false;
}
/// parseDirectiveInclude
/// ::= .include "filename"
bool AsmParser::parseDirectiveInclude() {
// Allow the strings to have escaped octal character sequence.
std::string Filename;
SMLoc IncludeLoc = getTok().getLoc();
if (check(getTok().isNot(AsmToken::String),
"expected string in '.include' directive") ||
parseEscapedString(Filename) ||
check(getTok().isNot(AsmToken::EndOfStatement),
"unexpected token in '.include' directive") ||
// Attempt to switch the lexer to the included file before consuming the
// end of statement to avoid losing it when we switch.
check(enterIncludeFile(Filename), IncludeLoc,
"Could not find include file '" + Filename + "'"))
return true;
return false;
}
/// parseDirectiveIncbin
/// ::= .incbin "filename" [ , skip [ , count ] ]
bool AsmParser::parseDirectiveIncbin() {
// Allow the strings to have escaped octal character sequence.
std::string Filename;
SMLoc IncbinLoc = getTok().getLoc();
if (check(getTok().isNot(AsmToken::String),
"expected string in '.incbin' directive") ||
parseEscapedString(Filename))
return true;
int64_t Skip = 0;
const MCExpr *Count = nullptr;
SMLoc SkipLoc, CountLoc;
if (parseOptionalToken(AsmToken::Comma)) {
// The skip expression can be omitted while specifying the count, e.g:
// .incbin "filename",,4
if (getTok().isNot(AsmToken::Comma)) {
if (parseTokenLoc(SkipLoc) || parseAbsoluteExpression(Skip))
return true;
}
if (parseOptionalToken(AsmToken::Comma)) {
CountLoc = getTok().getLoc();
if (parseExpression(Count))
return true;
}
}
if (parseEOL())
return true;
if (check(Skip < 0, SkipLoc, "skip is negative"))
return true;
// Attempt to process the included file.
if (processIncbinFile(Filename, Skip, Count, CountLoc))
return Error(IncbinLoc, "Could not find incbin file '" + Filename + "'");
return false;
}
/// parseDirectiveIf
/// ::= .if{,eq,ge,gt,le,lt,ne} expression
bool AsmParser::parseDirectiveIf(SMLoc DirectiveLoc, DirectiveKind DirKind) {
TheCondStack.push_back(TheCondState);
TheCondState.TheCond = AsmCond::IfCond;
if (TheCondState.Ignore) {
eatToEndOfStatement();
} else {
int64_t ExprValue;
if (parseAbsoluteExpression(ExprValue) || parseEOL())
return true;
switch (DirKind) {
default:
llvm_unreachable("unsupported directive");
case DK_IF:
case DK_IFNE:
break;
case DK_IFEQ:
ExprValue = ExprValue == 0;
break;
case DK_IFGE:
ExprValue = ExprValue >= 0;
break;
case DK_IFGT:
ExprValue = ExprValue > 0;
break;
case DK_IFLE:
ExprValue = ExprValue <= 0;
break;
case DK_IFLT:
ExprValue = ExprValue < 0;
break;
}
TheCondState.CondMet = ExprValue;
TheCondState.Ignore = !TheCondState.CondMet;
}
return false;
}
/// parseDirectiveIfb
/// ::= .ifb string
bool AsmParser::parseDirectiveIfb(SMLoc DirectiveLoc, bool ExpectBlank) {
TheCondStack.push_back(TheCondState);
TheCondState.TheCond = AsmCond::IfCond;
if (TheCondState.Ignore) {
eatToEndOfStatement();
} else {
StringRef Str = parseStringToEndOfStatement();
if (parseEOL())
return true;
TheCondState.CondMet = ExpectBlank == Str.empty();
TheCondState.Ignore = !TheCondState.CondMet;
}
return false;
}
/// parseDirectiveIfc
/// ::= .ifc string1, string2
/// ::= .ifnc string1, string2
bool AsmParser::parseDirectiveIfc(SMLoc DirectiveLoc, bool ExpectEqual) {
TheCondStack.push_back(TheCondState);
TheCondState.TheCond = AsmCond::IfCond;
if (TheCondState.Ignore) {
eatToEndOfStatement();
} else {
StringRef Str1 = parseStringToComma();
if (parseComma())
return true;
StringRef Str2 = parseStringToEndOfStatement();
if (parseEOL())
return true;
TheCondState.CondMet = ExpectEqual == (Str1.trim() == Str2.trim());
TheCondState.Ignore = !TheCondState.CondMet;
}
return false;
}
/// parseDirectiveIfeqs
/// ::= .ifeqs string1, string2
bool AsmParser::parseDirectiveIfeqs(SMLoc DirectiveLoc, bool ExpectEqual) {
if (Lexer.isNot(AsmToken::String)) {
if (ExpectEqual)
return TokError("expected string parameter for '.ifeqs' directive");
return TokError("expected string parameter for '.ifnes' directive");
}
StringRef String1 = getTok().getStringContents();
Lex();
if (Lexer.isNot(AsmToken::Comma)) {
if (ExpectEqual)
return TokError(
"expected comma after first string for '.ifeqs' directive");
return TokError("expected comma after first string for '.ifnes' directive");
}
Lex();
if (Lexer.isNot(AsmToken::String)) {
if (ExpectEqual)
return TokError("expected string parameter for '.ifeqs' directive");
return TokError("expected string parameter for '.ifnes' directive");
}
StringRef String2 = getTok().getStringContents();
Lex();
TheCondStack.push_back(TheCondState);
TheCondState.TheCond = AsmCond::IfCond;
TheCondState.CondMet = ExpectEqual == (String1 == String2);
TheCondState.Ignore = !TheCondState.CondMet;
return false;
}
/// parseDirectiveIfdef
/// ::= .ifdef symbol
bool AsmParser::parseDirectiveIfdef(SMLoc DirectiveLoc, bool expect_defined) {
StringRef Name;
TheCondStack.push_back(TheCondState);
TheCondState.TheCond = AsmCond::IfCond;
if (TheCondState.Ignore) {
eatToEndOfStatement();
} else {
if (check(parseIdentifier(Name), "expected identifier after '.ifdef'") ||
parseEOL())
return true;
MCSymbol *Sym = getContext().lookupSymbol(Name);
if (expect_defined)
TheCondState.CondMet = (Sym && !Sym->isUndefined(false));
else
TheCondState.CondMet = (!Sym || Sym->isUndefined(false));
TheCondState.Ignore = !TheCondState.CondMet;
}
return false;
}
/// parseDirectiveElseIf
/// ::= .elseif expression
bool AsmParser::parseDirectiveElseIf(SMLoc DirectiveLoc) {
if (TheCondState.TheCond != AsmCond::IfCond &&
TheCondState.TheCond != AsmCond::ElseIfCond)
return Error(DirectiveLoc, "Encountered a .elseif that doesn't follow an"
" .if or an .elseif");
TheCondState.TheCond = AsmCond::ElseIfCond;
bool LastIgnoreState = false;
if (!TheCondStack.empty())
LastIgnoreState = TheCondStack.back().Ignore;
if (LastIgnoreState || TheCondState.CondMet) {
TheCondState.Ignore = true;
eatToEndOfStatement();
} else {
int64_t ExprValue;
if (parseAbsoluteExpression(ExprValue))
return true;
if (parseEOL())
return true;
TheCondState.CondMet = ExprValue;
TheCondState.Ignore = !TheCondState.CondMet;
}
return false;
}
/// parseDirectiveElse
/// ::= .else
bool AsmParser::parseDirectiveElse(SMLoc DirectiveLoc) {
if (parseEOL())
return true;
if (TheCondState.TheCond != AsmCond::IfCond &&
TheCondState.TheCond != AsmCond::ElseIfCond)
return Error(DirectiveLoc, "Encountered a .else that doesn't follow "
" an .if or an .elseif");
TheCondState.TheCond = AsmCond::ElseCond;
bool LastIgnoreState = false;
if (!TheCondStack.empty())
LastIgnoreState = TheCondStack.back().Ignore;
if (LastIgnoreState || TheCondState.CondMet)
TheCondState.Ignore = true;
else
TheCondState.Ignore = false;
return false;
}
/// parseDirectiveEnd
/// ::= .end
bool AsmParser::parseDirectiveEnd(SMLoc DirectiveLoc) {
if (parseEOL())
return true;
while (Lexer.isNot(AsmToken::Eof))
Lexer.Lex();
return false;
}
/// parseDirectiveError
/// ::= .err
/// ::= .error [string]
bool AsmParser::parseDirectiveError(SMLoc L, bool WithMessage) {
if (!TheCondStack.empty()) {
if (TheCondStack.back().Ignore) {
eatToEndOfStatement();
return false;
}
}
if (!WithMessage)
return Error(L, ".err encountered");
StringRef Message = ".error directive invoked in source file";
if (Lexer.isNot(AsmToken::EndOfStatement)) {
if (Lexer.isNot(AsmToken::String))
return TokError(".error argument must be a string");
Message = getTok().getStringContents();
Lex();
}
return Error(L, Message);
}
/// parseDirectiveWarning
/// ::= .warning [string]
bool AsmParser::parseDirectiveWarning(SMLoc L) {
if (!TheCondStack.empty()) {
if (TheCondStack.back().Ignore) {
eatToEndOfStatement();
return false;
}
}
StringRef Message = ".warning directive invoked in source file";
if (!parseOptionalToken(AsmToken::EndOfStatement)) {
if (Lexer.isNot(AsmToken::String))
return TokError(".warning argument must be a string");
Message = getTok().getStringContents();
Lex();
if (parseEOL())
return true;
}
return Warning(L, Message);
}
/// parseDirectiveEndIf
/// ::= .endif
bool AsmParser::parseDirectiveEndIf(SMLoc DirectiveLoc) {
if (parseEOL())
return true;
if ((TheCondState.TheCond == AsmCond::NoCond) || TheCondStack.empty())
return Error(DirectiveLoc, "Encountered a .endif that doesn't follow "
"an .if or .else");
if (!TheCondStack.empty()) {
TheCondState = TheCondStack.back();
TheCondStack.pop_back();
}
return false;
}
void AsmParser::initializeDirectiveKindMap() {
/* Lookup will be done with the directive
* converted to lower case, so all these
* keys should be lower case.
* (target specific directives are handled
* elsewhere)
*/
DirectiveKindMap[".set"] = DK_SET;
DirectiveKindMap[".equ"] = DK_EQU;
DirectiveKindMap[".equiv"] = DK_EQUIV;
DirectiveKindMap[".ascii"] = DK_ASCII;
DirectiveKindMap[".asciz"] = DK_ASCIZ;
DirectiveKindMap[".string"] = DK_STRING;
DirectiveKindMap[".byte"] = DK_BYTE;
DirectiveKindMap[".short"] = DK_SHORT;
DirectiveKindMap[".value"] = DK_VALUE;
DirectiveKindMap[".2byte"] = DK_2BYTE;
DirectiveKindMap[".long"] = DK_LONG;
DirectiveKindMap[".int"] = DK_INT;
DirectiveKindMap[".4byte"] = DK_4BYTE;
DirectiveKindMap[".quad"] = DK_QUAD;
DirectiveKindMap[".8byte"] = DK_8BYTE;
DirectiveKindMap[".octa"] = DK_OCTA;
DirectiveKindMap[".single"] = DK_SINGLE;
DirectiveKindMap[".float"] = DK_FLOAT;
DirectiveKindMap[".double"] = DK_DOUBLE;
DirectiveKindMap[".align"] = DK_ALIGN;
DirectiveKindMap[".align32"] = DK_ALIGN32;
DirectiveKindMap[".balign"] = DK_BALIGN;
DirectiveKindMap[".balignw"] = DK_BALIGNW;
DirectiveKindMap[".balignl"] = DK_BALIGNL;
DirectiveKindMap[".p2align"] = DK_P2ALIGN;
DirectiveKindMap[".p2alignw"] = DK_P2ALIGNW;
DirectiveKindMap[".p2alignl"] = DK_P2ALIGNL;
DirectiveKindMap[".org"] = DK_ORG;
DirectiveKindMap[".fill"] = DK_FILL;
DirectiveKindMap[".zero"] = DK_ZERO;
DirectiveKindMap[".extern"] = DK_EXTERN;
DirectiveKindMap[".globl"] = DK_GLOBL;
DirectiveKindMap[".global"] = DK_GLOBAL;
DirectiveKindMap[".lazy_reference"] = DK_LAZY_REFERENCE;
DirectiveKindMap[".no_dead_strip"] = DK_NO_DEAD_STRIP;
DirectiveKindMap[".symbol_resolver"] = DK_SYMBOL_RESOLVER;
DirectiveKindMap[".private_extern"] = DK_PRIVATE_EXTERN;
DirectiveKindMap[".reference"] = DK_REFERENCE;
DirectiveKindMap[".weak_definition"] = DK_WEAK_DEFINITION;
DirectiveKindMap[".weak_reference"] = DK_WEAK_REFERENCE;
DirectiveKindMap[".weak_def_can_be_hidden"] = DK_WEAK_DEF_CAN_BE_HIDDEN;
DirectiveKindMap[".cold"] = DK_COLD;
DirectiveKindMap[".comm"] = DK_COMM;
DirectiveKindMap[".common"] = DK_COMMON;
DirectiveKindMap[".lcomm"] = DK_LCOMM;
DirectiveKindMap[".abort"] = DK_ABORT;
DirectiveKindMap[".include"] = DK_INCLUDE;
DirectiveKindMap[".incbin"] = DK_INCBIN;
DirectiveKindMap[".code16"] = DK_CODE16;
DirectiveKindMap[".code16gcc"] = DK_CODE16GCC;
DirectiveKindMap[".rept"] = DK_REPT;
DirectiveKindMap[".rep"] = DK_REPT;
DirectiveKindMap[".irp"] = DK_IRP;
DirectiveKindMap[".irpc"] = DK_IRPC;
DirectiveKindMap[".endr"] = DK_ENDR;
DirectiveKindMap[".bundle_align_mode"] = DK_BUNDLE_ALIGN_MODE;
DirectiveKindMap[".bundle_lock"] = DK_BUNDLE_LOCK;
DirectiveKindMap[".bundle_unlock"] = DK_BUNDLE_UNLOCK;
DirectiveKindMap[".if"] = DK_IF;
DirectiveKindMap[".ifeq"] = DK_IFEQ;
DirectiveKindMap[".ifge"] = DK_IFGE;
DirectiveKindMap[".ifgt"] = DK_IFGT;
DirectiveKindMap[".ifle"] = DK_IFLE;
DirectiveKindMap[".iflt"] = DK_IFLT;
DirectiveKindMap[".ifne"] = DK_IFNE;
DirectiveKindMap[".ifb"] = DK_IFB;
DirectiveKindMap[".ifnb"] = DK_IFNB;
DirectiveKindMap[".ifc"] = DK_IFC;
DirectiveKindMap[".ifeqs"] = DK_IFEQS;
DirectiveKindMap[".ifnc"] = DK_IFNC;
DirectiveKindMap[".ifnes"] = DK_IFNES;
DirectiveKindMap[".ifdef"] = DK_IFDEF;
DirectiveKindMap[".ifndef"] = DK_IFNDEF;
DirectiveKindMap[".ifnotdef"] = DK_IFNOTDEF;
DirectiveKindMap[".elseif"] = DK_ELSEIF;
DirectiveKindMap[".else"] = DK_ELSE;
DirectiveKindMap[".end"] = DK_END;
DirectiveKindMap[".endif"] = DK_ENDIF;
DirectiveKindMap[".skip"] = DK_SKIP;
DirectiveKindMap[".space"] = DK_SPACE;
DirectiveKindMap[".file"] = DK_FILE;
DirectiveKindMap[".line"] = DK_LINE;
DirectiveKindMap[".loc"] = DK_LOC;
DirectiveKindMap[".stabs"] = DK_STABS;
DirectiveKindMap[".cv_file"] = DK_CV_FILE;
DirectiveKindMap[".cv_func_id"] = DK_CV_FUNC_ID;
DirectiveKindMap[".cv_loc"] = DK_CV_LOC;
DirectiveKindMap[".cv_linetable"] = DK_CV_LINETABLE;
DirectiveKindMap[".cv_inline_linetable"] = DK_CV_INLINE_LINETABLE;
DirectiveKindMap[".cv_inline_site_id"] = DK_CV_INLINE_SITE_ID;
DirectiveKindMap[".cv_def_range"] = DK_CV_DEF_RANGE;
DirectiveKindMap[".cv_string"] = DK_CV_STRING;
DirectiveKindMap[".cv_stringtable"] = DK_CV_STRINGTABLE;
DirectiveKindMap[".cv_filechecksums"] = DK_CV_FILECHECKSUMS;
DirectiveKindMap[".cv_filechecksumoffset"] = DK_CV_FILECHECKSUM_OFFSET;
DirectiveKindMap[".cv_fpo_data"] = DK_CV_FPO_DATA;
DirectiveKindMap[".sleb128"] = DK_SLEB128;
DirectiveKindMap[".uleb128"] = DK_ULEB128;
DirectiveKindMap[".cfi_sections"] = DK_CFI_SECTIONS;
DirectiveKindMap[".cfi_startproc"] = DK_CFI_STARTPROC;
DirectiveKindMap[".cfi_endproc"] = DK_CFI_ENDPROC;
DirectiveKindMap[".cfi_def_cfa"] = DK_CFI_DEF_CFA;
DirectiveKindMap[".cfi_def_cfa_offset"] = DK_CFI_DEF_CFA_OFFSET;
DirectiveKindMap[".cfi_adjust_cfa_offset"] = DK_CFI_ADJUST_CFA_OFFSET;
DirectiveKindMap[".cfi_def_cfa_register"] = DK_CFI_DEF_CFA_REGISTER;
DirectiveKindMap[".cfi_llvm_def_aspace_cfa"] = DK_CFI_LLVM_DEF_ASPACE_CFA;
DirectiveKindMap[".cfi_offset"] = DK_CFI_OFFSET;
DirectiveKindMap[".cfi_rel_offset"] = DK_CFI_REL_OFFSET;
DirectiveKindMap[".cfi_personality"] = DK_CFI_PERSONALITY;
DirectiveKindMap[".cfi_lsda"] = DK_CFI_LSDA;
DirectiveKindMap[".cfi_remember_state"] = DK_CFI_REMEMBER_STATE;
DirectiveKindMap[".cfi_restore_state"] = DK_CFI_RESTORE_STATE;
DirectiveKindMap[".cfi_same_value"] = DK_CFI_SAME_VALUE;
DirectiveKindMap[".cfi_restore"] = DK_CFI_RESTORE;
DirectiveKindMap[".cfi_escape"] = DK_CFI_ESCAPE;
DirectiveKindMap[".cfi_return_column"] = DK_CFI_RETURN_COLUMN;
DirectiveKindMap[".cfi_signal_frame"] = DK_CFI_SIGNAL_FRAME;
DirectiveKindMap[".cfi_undefined"] = DK_CFI_UNDEFINED;
DirectiveKindMap[".cfi_register"] = DK_CFI_REGISTER;
DirectiveKindMap[".cfi_window_save"] = DK_CFI_WINDOW_SAVE;
DirectiveKindMap[".cfi_b_key_frame"] = DK_CFI_B_KEY_FRAME;
DirectiveKindMap[".macros_on"] = DK_MACROS_ON;
DirectiveKindMap[".macros_off"] = DK_MACROS_OFF;
DirectiveKindMap[".macro"] = DK_MACRO;
DirectiveKindMap[".exitm"] = DK_EXITM;
DirectiveKindMap[".endm"] = DK_ENDM;
DirectiveKindMap[".endmacro"] = DK_ENDMACRO;
DirectiveKindMap[".purgem"] = DK_PURGEM;
DirectiveKindMap[".err"] = DK_ERR;
DirectiveKindMap[".error"] = DK_ERROR;
DirectiveKindMap[".warning"] = DK_WARNING;
DirectiveKindMap[".altmacro"] = DK_ALTMACRO;
DirectiveKindMap[".noaltmacro"] = DK_NOALTMACRO;
DirectiveKindMap[".reloc"] = DK_RELOC;
DirectiveKindMap[".dc"] = DK_DC;
DirectiveKindMap[".dc.a"] = DK_DC_A;
DirectiveKindMap[".dc.b"] = DK_DC_B;
DirectiveKindMap[".dc.d"] = DK_DC_D;
DirectiveKindMap[".dc.l"] = DK_DC_L;
DirectiveKindMap[".dc.s"] = DK_DC_S;
DirectiveKindMap[".dc.w"] = DK_DC_W;
DirectiveKindMap[".dc.x"] = DK_DC_X;
DirectiveKindMap[".dcb"] = DK_DCB;
DirectiveKindMap[".dcb.b"] = DK_DCB_B;
DirectiveKindMap[".dcb.d"] = DK_DCB_D;
DirectiveKindMap[".dcb.l"] = DK_DCB_L;
DirectiveKindMap[".dcb.s"] = DK_DCB_S;
DirectiveKindMap[".dcb.w"] = DK_DCB_W;
DirectiveKindMap[".dcb.x"] = DK_DCB_X;
DirectiveKindMap[".ds"] = DK_DS;
DirectiveKindMap[".ds.b"] = DK_DS_B;
DirectiveKindMap[".ds.d"] = DK_DS_D;
DirectiveKindMap[".ds.l"] = DK_DS_L;
DirectiveKindMap[".ds.p"] = DK_DS_P;
DirectiveKindMap[".ds.s"] = DK_DS_S;
DirectiveKindMap[".ds.w"] = DK_DS_W;
DirectiveKindMap[".ds.x"] = DK_DS_X;
DirectiveKindMap[".print"] = DK_PRINT;
DirectiveKindMap[".addrsig"] = DK_ADDRSIG;
DirectiveKindMap[".addrsig_sym"] = DK_ADDRSIG_SYM;
DirectiveKindMap[".pseudoprobe"] = DK_PSEUDO_PROBE;
DirectiveKindMap[".lto_discard"] = DK_LTO_DISCARD;
}
MCAsmMacro *AsmParser::parseMacroLikeBody(SMLoc DirectiveLoc) {
AsmToken EndToken, StartToken = getTok();
unsigned NestLevel = 0;
while (true) {
// Check whether we have reached the end of the file.
if (getLexer().is(AsmToken::Eof)) {
printError(DirectiveLoc, "no matching '.endr' in definition");
return nullptr;
}
if (Lexer.is(AsmToken::Identifier) &&
(getTok().getIdentifier() == ".rep" ||
getTok().getIdentifier() == ".rept" ||
getTok().getIdentifier() == ".irp" ||
getTok().getIdentifier() == ".irpc")) {
++NestLevel;
}
// Otherwise, check whether we have reached the .endr.
if (Lexer.is(AsmToken::Identifier) && getTok().getIdentifier() == ".endr") {
if (NestLevel == 0) {
EndToken = getTok();
Lex();
if (Lexer.isNot(AsmToken::EndOfStatement)) {
printError(getTok().getLoc(),
"unexpected token in '.endr' directive");
return nullptr;
}
break;
}
--NestLevel;
}
// Otherwise, scan till the end of the statement.
eatToEndOfStatement();
}
const char *BodyStart = StartToken.getLoc().getPointer();
const char *BodyEnd = EndToken.getLoc().getPointer();
StringRef Body = StringRef(BodyStart, BodyEnd - BodyStart);
// We Are Anonymous.
MacroLikeBodies.emplace_back(StringRef(), Body, MCAsmMacroParameters());
return &MacroLikeBodies.back();
}
void AsmParser::instantiateMacroLikeBody(MCAsmMacro *M, SMLoc DirectiveLoc,
raw_svector_ostream &OS) {
OS << ".endr\n";
std::unique_ptr<MemoryBuffer> Instantiation =
MemoryBuffer::getMemBufferCopy(OS.str(), "<instantiation>");
// Create the macro instantiation object and add to the current macro
// instantiation stack.
MacroInstantiation *MI = new MacroInstantiation{
DirectiveLoc, CurBuffer, getTok().getLoc(), TheCondStack.size()};
ActiveMacros.push_back(MI);
// Jump to the macro instantiation and prime the lexer.
CurBuffer = SrcMgr.AddNewSourceBuffer(std::move(Instantiation), SMLoc());
Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer());
Lex();
}
/// parseDirectiveRept
/// ::= .rep | .rept count
bool AsmParser::parseDirectiveRept(SMLoc DirectiveLoc, StringRef Dir) {
const MCExpr *CountExpr;
SMLoc CountLoc = getTok().getLoc();
if (parseExpression(CountExpr))
return true;
int64_t Count;
if (!CountExpr->evaluateAsAbsolute(Count, getStreamer().getAssemblerPtr())) {
return Error(CountLoc, "unexpected token in '" + Dir + "' directive");
}
if (check(Count < 0, CountLoc, "Count is negative") || parseEOL())
return true;
// Lex the rept definition.
MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc);
if (!M)
return true;
// Macro instantiation is lexical, unfortunately. We construct a new buffer
// to hold the macro body with substitutions.
SmallString<256> Buf;
raw_svector_ostream OS(Buf);
while (Count--) {
// Note that the AtPseudoVariable is disabled for instantiations of .rep(t).
if (expandMacro(OS, M->Body, None, None, false, getTok().getLoc()))
return true;
}
instantiateMacroLikeBody(M, DirectiveLoc, OS);
return false;
}
/// parseDirectiveIrp
/// ::= .irp symbol,values
bool AsmParser::parseDirectiveIrp(SMLoc DirectiveLoc) {
MCAsmMacroParameter Parameter;
MCAsmMacroArguments A;
if (check(parseIdentifier(Parameter.Name),
"expected identifier in '.irp' directive") ||
parseComma() || parseMacroArguments(nullptr, A) || parseEOL())
return true;
// Lex the irp definition.
MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc);
if (!M)
return true;
// Macro instantiation is lexical, unfortunately. We construct a new buffer
// to hold the macro body with substitutions.
SmallString<256> Buf;
raw_svector_ostream OS(Buf);
for (const MCAsmMacroArgument &Arg : A) {
// Note that the AtPseudoVariable is enabled for instantiations of .irp.
// This is undocumented, but GAS seems to support it.
if (expandMacro(OS, M->Body, Parameter, Arg, true, getTok().getLoc()))
return true;
}
instantiateMacroLikeBody(M, DirectiveLoc, OS);
return false;
}
/// parseDirectiveIrpc
/// ::= .irpc symbol,values
bool AsmParser::parseDirectiveIrpc(SMLoc DirectiveLoc) {
MCAsmMacroParameter Parameter;
MCAsmMacroArguments A;
if (check(parseIdentifier(Parameter.Name),
"expected identifier in '.irpc' directive") ||
parseComma() || parseMacroArguments(nullptr, A))
return true;
if (A.size() != 1 || A.front().size() != 1)
return TokError("unexpected token in '.irpc' directive");
if (parseEOL())
return true;
// Lex the irpc definition.
MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc);
if (!M)
return true;
// Macro instantiation is lexical, unfortunately. We construct a new buffer
// to hold the macro body with substitutions.
SmallString<256> Buf;
raw_svector_ostream OS(Buf);
StringRef Values = A.front().front().getString();
for (std::size_t I = 0, End = Values.size(); I != End; ++I) {
MCAsmMacroArgument Arg;
Arg.emplace_back(AsmToken::Identifier, Values.slice(I, I + 1));
// Note that the AtPseudoVariable is enabled for instantiations of .irpc.
// This is undocumented, but GAS seems to support it.
if (expandMacro(OS, M->Body, Parameter, Arg, true, getTok().getLoc()))
return true;
}
instantiateMacroLikeBody(M, DirectiveLoc, OS);
return false;
}
bool AsmParser::parseDirectiveEndr(SMLoc DirectiveLoc) {
if (ActiveMacros.empty())
return TokError("unmatched '.endr' directive");
// The only .repl that should get here are the ones created by
// instantiateMacroLikeBody.
assert(getLexer().is(AsmToken::EndOfStatement));
handleMacroExit();
return false;
}
bool AsmParser::parseDirectiveMSEmit(SMLoc IDLoc, ParseStatementInfo &Info,
size_t Len) {
const MCExpr *Value;
SMLoc ExprLoc = getLexer().getLoc();
if (parseExpression(Value))
return true;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value);
if (!MCE)
return Error(ExprLoc, "unexpected expression in _emit");
uint64_t IntValue = MCE->getValue();
if (!isUInt<8>(IntValue) && !isInt<8>(IntValue))
return Error(ExprLoc, "literal value out of range for directive");
Info.AsmRewrites->emplace_back(AOK_Emit, IDLoc, Len);
return false;
}
bool AsmParser::parseDirectiveMSAlign(SMLoc IDLoc, ParseStatementInfo &Info) {
const MCExpr *Value;
SMLoc ExprLoc = getLexer().getLoc();
if (parseExpression(Value))
return true;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value);
if (!MCE)
return Error(ExprLoc, "unexpected expression in align");
uint64_t IntValue = MCE->getValue();
if (!isPowerOf2_64(IntValue))
return Error(ExprLoc, "literal value not a power of two greater then zero");
Info.AsmRewrites->emplace_back(AOK_Align, IDLoc, 5, Log2_64(IntValue));
return false;
}
bool AsmParser::parseDirectivePrint(SMLoc DirectiveLoc) {
const AsmToken StrTok = getTok();
Lex();
if (StrTok.isNot(AsmToken::String) || StrTok.getString().front() != '"')
return Error(DirectiveLoc, "expected double quoted string after .print");
if (parseEOL())
return true;
llvm::outs() << StrTok.getStringContents() << '\n';
return false;
}
bool AsmParser::parseDirectiveAddrsig() {
if (parseEOL())
return true;
getStreamer().emitAddrsig();
return false;
}
bool AsmParser::parseDirectiveAddrsigSym() {
StringRef Name;
if (check(parseIdentifier(Name), "expected identifier") || parseEOL())
return true;
MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
getStreamer().emitAddrsigSym(Sym);
return false;
}
bool AsmParser::parseDirectivePseudoProbe() {
int64_t Guid;
int64_t Index;
int64_t Type;
int64_t Attr;
if (getLexer().is(AsmToken::Integer)) {
if (parseIntToken(Guid, "unexpected token in '.pseudoprobe' directive"))
return true;
}
if (getLexer().is(AsmToken::Integer)) {
if (parseIntToken(Index, "unexpected token in '.pseudoprobe' directive"))
return true;
}
if (getLexer().is(AsmToken::Integer)) {
if (parseIntToken(Type, "unexpected token in '.pseudoprobe' directive"))
return true;
}
if (getLexer().is(AsmToken::Integer)) {
if (parseIntToken(Attr, "unexpected token in '.pseudoprobe' directive"))
return true;
}
// Parse inline stack like @ GUID:11:12 @ GUID:1:11 @ GUID:3:21
MCPseudoProbeInlineStack InlineStack;
while (getLexer().is(AsmToken::At)) {
// eat @
Lex();
int64_t CallerGuid = 0;
if (getLexer().is(AsmToken::Integer)) {
if (parseIntToken(CallerGuid,
"unexpected token in '.pseudoprobe' directive"))
return true;
}
// eat colon
if (getLexer().is(AsmToken::Colon))
Lex();
int64_t CallerProbeId = 0;
if (getLexer().is(AsmToken::Integer)) {
if (parseIntToken(CallerProbeId,
"unexpected token in '.pseudoprobe' directive"))
return true;
}
InlineSite Site(CallerGuid, CallerProbeId);
InlineStack.push_back(Site);
}
if (parseEOL())
return true;
getStreamer().emitPseudoProbe(Guid, Index, Type, Attr, InlineStack);
return false;
}
/// parseDirectiveLTODiscard
/// ::= ".lto_discard" [ identifier ( , identifier )* ]
/// The LTO library emits this directive to discard non-prevailing symbols.
/// We ignore symbol assignments and attribute changes for the specified
/// symbols.
bool AsmParser::parseDirectiveLTODiscard() {
auto ParseOp = [&]() -> bool {
StringRef Name;
SMLoc Loc = getTok().getLoc();
if (parseIdentifier(Name))
return Error(Loc, "expected identifier");
LTODiscardSymbols.insert(Name);
return false;
};
LTODiscardSymbols.clear();
return parseMany(ParseOp);
}
// We are comparing pointers, but the pointers are relative to a single string.
// Thus, this should always be deterministic.
static int rewritesSort(const AsmRewrite *AsmRewriteA,
const AsmRewrite *AsmRewriteB) {
if (AsmRewriteA->Loc.getPointer() < AsmRewriteB->Loc.getPointer())
return -1;
if (AsmRewriteB->Loc.getPointer() < AsmRewriteA->Loc.getPointer())
return 1;
// It's possible to have a SizeDirective, Imm/ImmPrefix and an Input/Output
// rewrite to the same location. Make sure the SizeDirective rewrite is
// performed first, then the Imm/ImmPrefix and finally the Input/Output. This
// ensures the sort algorithm is stable.
if (AsmRewritePrecedence[AsmRewriteA->Kind] >
AsmRewritePrecedence[AsmRewriteB->Kind])
return -1;
if (AsmRewritePrecedence[AsmRewriteA->Kind] <
AsmRewritePrecedence[AsmRewriteB->Kind])
return 1;
llvm_unreachable("Unstable rewrite sort.");
}
bool AsmParser::parseMSInlineAsm(
std::string &AsmString, unsigned &NumOutputs, unsigned &NumInputs,
SmallVectorImpl<std::pair<void *, bool>> &OpDecls,
SmallVectorImpl<std::string> &Constraints,
SmallVectorImpl<std::string> &Clobbers, const MCInstrInfo *MII,
const MCInstPrinter *IP, MCAsmParserSemaCallback &SI) {
SmallVector<void *, 4> InputDecls;
SmallVector<void *, 4> OutputDecls;
SmallVector<bool, 4> InputDeclsAddressOf;
SmallVector<bool, 4> OutputDeclsAddressOf;
SmallVector<std::string, 4> InputConstraints;
SmallVector<std::string, 4> OutputConstraints;
SmallVector<unsigned, 4> ClobberRegs;
SmallVector<AsmRewrite, 4> AsmStrRewrites;
// Prime the lexer.
Lex();
// While we have input, parse each statement.
unsigned InputIdx = 0;
unsigned OutputIdx = 0;
while (getLexer().isNot(AsmToken::Eof)) {
// Parse curly braces marking block start/end
if (parseCurlyBlockScope(AsmStrRewrites))
continue;
ParseStatementInfo Info(&AsmStrRewrites);
bool StatementErr = parseStatement(Info, &SI);
if (StatementErr || Info.ParseError) {
// Emit pending errors if any exist.
printPendingErrors();
return true;
}
// No pending error should exist here.
assert(!hasPendingError() && "unexpected error from parseStatement");
if (Info.Opcode == ~0U)
continue;
const MCInstrDesc &Desc = MII->get(Info.Opcode);
// Build the list of clobbers, outputs and inputs.
for (unsigned i = 1, e = Info.ParsedOperands.size(); i != e; ++i) {
MCParsedAsmOperand &Operand = *Info.ParsedOperands[i];
// Register operand.
if (Operand.isReg() && !Operand.needAddressOf() &&
!getTargetParser().OmitRegisterFromClobberLists(Operand.getReg())) {
unsigned NumDefs = Desc.getNumDefs();
// Clobber.
if (NumDefs && Operand.getMCOperandNum() < NumDefs)
ClobberRegs.push_back(Operand.getReg());
continue;
}
// Expr/Input or Output.
StringRef SymName = Operand.getSymName();
if (SymName.empty())
continue;
void *OpDecl = Operand.getOpDecl();
if (!OpDecl)
continue;
StringRef Constraint = Operand.getConstraint();
if (Operand.isImm()) {
// Offset as immediate
if (Operand.isOffsetOfLocal())
Constraint = "r";
else
Constraint = "i";
}
bool isOutput = (i == 1) && Desc.mayStore();
SMLoc Start = SMLoc::getFromPointer(SymName.data());
if (isOutput) {
++InputIdx;
OutputDecls.push_back(OpDecl);
OutputDeclsAddressOf.push_back(Operand.needAddressOf());
OutputConstraints.push_back(("=" + Constraint).str());
AsmStrRewrites.emplace_back(AOK_Output, Start, SymName.size());
} else {
InputDecls.push_back(OpDecl);
InputDeclsAddressOf.push_back(Operand.needAddressOf());
InputConstraints.push_back(Constraint.str());
if (Desc.OpInfo[i - 1].isBranchTarget())
AsmStrRewrites.emplace_back(AOK_CallInput, Start, SymName.size());
else
AsmStrRewrites.emplace_back(AOK_Input, Start, SymName.size());
}
}
// Consider implicit defs to be clobbers. Think of cpuid and push.
ArrayRef<MCPhysReg> ImpDefs(Desc.getImplicitDefs(),
Desc.getNumImplicitDefs());
llvm::append_range(ClobberRegs, ImpDefs);
}
// Set the number of Outputs and Inputs.
NumOutputs = OutputDecls.size();
NumInputs = InputDecls.size();
// Set the unique clobbers.
array_pod_sort(ClobberRegs.begin(), ClobberRegs.end());
ClobberRegs.erase(std::unique(ClobberRegs.begin(), ClobberRegs.end()),
ClobberRegs.end());
Clobbers.assign(ClobberRegs.size(), std::string());
for (unsigned I = 0, E = ClobberRegs.size(); I != E; ++I) {
raw_string_ostream OS(Clobbers[I]);
IP->printRegName(OS, ClobberRegs[I]);
}
// Merge the various outputs and inputs. Output are expected first.
if (NumOutputs || NumInputs) {
unsigned NumExprs = NumOutputs + NumInputs;
OpDecls.resize(NumExprs);
Constraints.resize(NumExprs);
for (unsigned i = 0; i < NumOutputs; ++i) {
OpDecls[i] = std::make_pair(OutputDecls[i], OutputDeclsAddressOf[i]);
Constraints[i] = OutputConstraints[i];
}
for (unsigned i = 0, j = NumOutputs; i < NumInputs; ++i, ++j) {
OpDecls[j] = std::make_pair(InputDecls[i], InputDeclsAddressOf[i]);
Constraints[j] = InputConstraints[i];
}
}
// Build the IR assembly string.
std::string AsmStringIR;
raw_string_ostream OS(AsmStringIR);
StringRef ASMString =
SrcMgr.getMemoryBuffer(SrcMgr.getMainFileID())->getBuffer();
const char *AsmStart = ASMString.begin();
const char *AsmEnd = ASMString.end();
array_pod_sort(AsmStrRewrites.begin(), AsmStrRewrites.end(), rewritesSort);
for (auto it = AsmStrRewrites.begin(); it != AsmStrRewrites.end(); ++it) {
const AsmRewrite &AR = *it;
// Check if this has already been covered by another rewrite...
if (AR.Done)
continue;
AsmRewriteKind Kind = AR.Kind;
const char *Loc = AR.Loc.getPointer();
assert(Loc >= AsmStart && "Expected Loc to be at or after Start!");
// Emit everything up to the immediate/expression.
if (unsigned Len = Loc - AsmStart)
OS << StringRef(AsmStart, Len);
// Skip the original expression.
if (Kind == AOK_Skip) {
AsmStart = Loc + AR.Len;
continue;
}
unsigned AdditionalSkip = 0;
// Rewrite expressions in $N notation.
switch (Kind) {
default:
break;
case AOK_IntelExpr:
assert(AR.IntelExp.isValid() && "cannot write invalid intel expression");
if (AR.IntelExp.NeedBracs)
OS << "[";
if (AR.IntelExp.hasBaseReg())
OS << AR.IntelExp.BaseReg;
if (AR.IntelExp.hasIndexReg())
OS << (AR.IntelExp.hasBaseReg() ? " + " : "")
<< AR.IntelExp.IndexReg;
if (AR.IntelExp.Scale > 1)
OS << " * $$" << AR.IntelExp.Scale;
if (AR.IntelExp.hasOffset()) {
if (AR.IntelExp.hasRegs())
OS << " + ";
// Fuse this rewrite with a rewrite of the offset name, if present.
StringRef OffsetName = AR.IntelExp.OffsetName;
SMLoc OffsetLoc = SMLoc::getFromPointer(AR.IntelExp.OffsetName.data());
size_t OffsetLen = OffsetName.size();
auto rewrite_it = std::find_if(
it, AsmStrRewrites.end(), [&](const AsmRewrite &FusingAR) {
return FusingAR.Loc == OffsetLoc && FusingAR.Len == OffsetLen &&
(FusingAR.Kind == AOK_Input ||
FusingAR.Kind == AOK_CallInput);
});
if (rewrite_it == AsmStrRewrites.end()) {
OS << "offset " << OffsetName;
} else if (rewrite_it->Kind == AOK_CallInput) {
OS << "${" << InputIdx++ << ":P}";
rewrite_it->Done = true;
} else {
OS << '$' << InputIdx++;
rewrite_it->Done = true;
}
}
if (AR.IntelExp.Imm || AR.IntelExp.emitImm())
OS << (AR.IntelExp.emitImm() ? "$$" : " + $$") << AR.IntelExp.Imm;
if (AR.IntelExp.NeedBracs)
OS << "]";
break;
case AOK_Label:
OS << Ctx.getAsmInfo()->getPrivateLabelPrefix() << AR.Label;
break;
case AOK_Input:
OS << '$' << InputIdx++;
break;
case AOK_CallInput:
OS << "${" << InputIdx++ << ":P}";
break;
case AOK_Output:
OS << '$' << OutputIdx++;
break;
case AOK_SizeDirective:
switch (AR.Val) {
default: break;
case 8: OS << "byte ptr "; break;
case 16: OS << "word ptr "; break;
case 32: OS << "dword ptr "; break;
case 64: OS << "qword ptr "; break;
case 80: OS << "xword ptr "; break;
case 128: OS << "xmmword ptr "; break;
case 256: OS << "ymmword ptr "; break;
}
break;
case AOK_Emit:
OS << ".byte";
break;
case AOK_Align: {
// MS alignment directives are measured in bytes. If the native assembler
// measures alignment in bytes, we can pass it straight through.
OS << ".align";
if (getContext().getAsmInfo()->getAlignmentIsInBytes())
break;
// Alignment is in log2 form, so print that instead and skip the original
// immediate.
unsigned Val = AR.Val;
OS << ' ' << Val;
assert(Val < 10 && "Expected alignment less then 2^10.");
AdditionalSkip = (Val < 4) ? 2 : Val < 7 ? 3 : 4;
break;
}
case AOK_EVEN:
OS << ".even";
break;
case AOK_EndOfStatement:
OS << "\n\t";
break;
}
// Skip the original expression.
AsmStart = Loc + AR.Len + AdditionalSkip;
}
// Emit the remainder of the asm string.
if (AsmStart != AsmEnd)
OS << StringRef(AsmStart, AsmEnd - AsmStart);
AsmString = OS.str();
return false;
}
bool HLASMAsmParser::parseAsHLASMLabel(ParseStatementInfo &Info,
MCAsmParserSemaCallback *SI) {
AsmToken LabelTok = getTok();
SMLoc LabelLoc = LabelTok.getLoc();
StringRef LabelVal;
if (parseIdentifier(LabelVal))
return Error(LabelLoc, "The HLASM Label has to be an Identifier");
// We have validated whether the token is an Identifier.
// Now we have to validate whether the token is a
// valid HLASM Label.
if (!getTargetParser().isLabel(LabelTok) || checkForValidSection())
return true;
// Lex leading spaces to get to the next operand.
lexLeadingSpaces();
// We shouldn't emit the label if there is nothing else after the label.
// i.e asm("<token>\n")
if (getTok().is(AsmToken::EndOfStatement))
return Error(LabelLoc,
"Cannot have just a label for an HLASM inline asm statement");
MCSymbol *Sym = getContext().getOrCreateSymbol(
getContext().getAsmInfo()->shouldEmitLabelsInUpperCase()
? LabelVal.upper()
: LabelVal);
getTargetParser().doBeforeLabelEmit(Sym);
// Emit the label.
Out.emitLabel(Sym, LabelLoc);
// If we are generating dwarf for assembly source files then gather the
// info to make a dwarf label entry for this label if needed.
if (enabledGenDwarfForAssembly())
MCGenDwarfLabelEntry::Make(Sym, &getStreamer(), getSourceManager(),
LabelLoc);
getTargetParser().onLabelParsed(Sym);
return false;
}
bool HLASMAsmParser::parseAsMachineInstruction(ParseStatementInfo &Info,
MCAsmParserSemaCallback *SI) {
AsmToken OperationEntryTok = Lexer.getTok();
SMLoc OperationEntryLoc = OperationEntryTok.getLoc();
StringRef OperationEntryVal;
// Attempt to parse the first token as an Identifier
if (parseIdentifier(OperationEntryVal))
return Error(OperationEntryLoc, "unexpected token at start of statement");
// Once we've parsed the operation entry successfully, lex
// any spaces to get to the OperandEntries.
lexLeadingSpaces();
return parseAndMatchAndEmitTargetInstruction(
Info, OperationEntryVal, OperationEntryTok, OperationEntryLoc);
}
bool HLASMAsmParser::parseStatement(ParseStatementInfo &Info,
MCAsmParserSemaCallback *SI) {
assert(!hasPendingError() && "parseStatement started with pending error");
// Should the first token be interpreted as a HLASM Label.
bool ShouldParseAsHLASMLabel = false;
// If a Name Entry exists, it should occur at the very
// start of the string. In this case, we should parse the
// first non-space token as a Label.
// If the Name entry is missing (i.e. there's some other
// token), then we attempt to parse the first non-space
// token as a Machine Instruction.
if (getTok().isNot(AsmToken::Space))
ShouldParseAsHLASMLabel = true;
// If we have an EndOfStatement (which includes the target's comment
// string) we can appropriately lex it early on)
if (Lexer.is(AsmToken::EndOfStatement)) {
// if this is a line comment we can drop it safely
if (getTok().getString().empty() || getTok().getString().front() == '\r' ||
getTok().getString().front() == '\n')
Out.AddBlankLine();
Lex();
return false;
}
// We have established how to parse the inline asm statement.
// Now we can safely lex any leading spaces to get to the
// first token.
lexLeadingSpaces();
// If we see a new line or carriage return as the first operand,
// after lexing leading spaces, emit the new line and lex the
// EndOfStatement token.
if (Lexer.is(AsmToken::EndOfStatement)) {
if (getTok().getString().front() == '\n' ||
getTok().getString().front() == '\r') {
Out.AddBlankLine();
Lex();
return false;
}
}
// Handle the label first if we have to before processing the rest
// of the tokens as a machine instruction.
if (ShouldParseAsHLASMLabel) {
// If there were any errors while handling and emitting the label,
// early return.
if (parseAsHLASMLabel(Info, SI)) {
// If we know we've failed in parsing, simply eat until end of the
// statement. This ensures that we don't process any other statements.
eatToEndOfStatement();
return true;
}
}
return parseAsMachineInstruction(Info, SI);
}
namespace llvm {
namespace MCParserUtils {
/// Returns whether the given symbol is used anywhere in the given expression,
/// or subexpressions.
static bool isSymbolUsedInExpression(const MCSymbol *Sym, const MCExpr *Value) {
switch (Value->getKind()) {
case MCExpr::Binary: {
const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Value);
return isSymbolUsedInExpression(Sym, BE->getLHS()) ||
isSymbolUsedInExpression(Sym, BE->getRHS());
}
case MCExpr::Target:
case MCExpr::Constant:
return false;
case MCExpr::SymbolRef: {
const MCSymbol &S =
static_cast<const MCSymbolRefExpr *>(Value)->getSymbol();
if (S.isVariable())
return isSymbolUsedInExpression(Sym, S.getVariableValue());
return &S == Sym;
}
case MCExpr::Unary:
return isSymbolUsedInExpression(
Sym, static_cast<const MCUnaryExpr *>(Value)->getSubExpr());
}
llvm_unreachable("Unknown expr kind!");
}
bool parseAssignmentExpression(StringRef Name, bool allow_redef,
MCAsmParser &Parser, MCSymbol *&Sym,
const MCExpr *&Value) {
// FIXME: Use better location, we should use proper tokens.
SMLoc EqualLoc = Parser.getTok().getLoc();
if (Parser.parseExpression(Value))
return Parser.TokError("missing expression");
// Note: we don't count b as used in "a = b". This is to allow
// a = b
// b = c
if (Parser.parseEOL())
return true;
// Validate that the LHS is allowed to be a variable (either it has not been
// used as a symbol, or it is an absolute symbol).
Sym = Parser.getContext().lookupSymbol(Name);
if (Sym) {
// Diagnose assignment to a label.
//
// FIXME: Diagnostics. Note the location of the definition as a label.
// FIXME: Diagnose assignment to protected identifier (e.g., register name).
if (isSymbolUsedInExpression(Sym, Value))
return Parser.Error(EqualLoc, "Recursive use of '" + Name + "'");
else if (Sym->isUndefined(/*SetUsed*/ false) && !Sym->isUsed() &&
!Sym->isVariable())
; // Allow redefinitions of undefined symbols only used in directives.
else if (Sym->isVariable() && !Sym->isUsed() && allow_redef)
; // Allow redefinitions of variables that haven't yet been used.
else if (!Sym->isUndefined() && (!Sym->isVariable() || !allow_redef))
return Parser.Error(EqualLoc, "redefinition of '" + Name + "'");
else if (!Sym->isVariable())
return Parser.Error(EqualLoc, "invalid assignment to '" + Name + "'");
else if (!isa<MCConstantExpr>(Sym->getVariableValue()))
return Parser.Error(EqualLoc,
"invalid reassignment of non-absolute variable '" +
Name + "'");
} else if (Name == ".") {
Parser.getStreamer().emitValueToOffset(Value, 0, EqualLoc);
return false;
} else
Sym = Parser.getContext().getOrCreateSymbol(Name);
Sym->setRedefinable(allow_redef);
return false;
}
} // end namespace MCParserUtils
} // end namespace llvm
/// Create an MCAsmParser instance.
MCAsmParser *llvm::createMCAsmParser(SourceMgr &SM, MCContext &C,
MCStreamer &Out, const MCAsmInfo &MAI,
unsigned CB) {
if (C.getTargetTriple().isSystemZ() && C.getTargetTriple().isOSzOS())
return new HLASMAsmParser(SM, C, Out, MAI, CB);
return new AsmParser(SM, C, Out, MAI, CB);
}