llvm-project/llvm/lib/Target/X86/X86PadShortFunction.cpp

213 lines
6.5 KiB
C++

//===-------- X86PadShortFunction.cpp - pad short functions -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the pass which will pad short functions to prevent
// a stall if a function returns before the return address is ready. This
// is needed for some Intel Atom processors.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "x86-pad-short-functions"
STATISTIC(NumBBsPadded, "Number of basic blocks padded");
namespace {
struct VisitedBBInfo {
// HasReturn - Whether the BB contains a return instruction
bool HasReturn;
// Cycles - Number of cycles until return if HasReturn is true, otherwise
// number of cycles until end of the BB
unsigned int Cycles;
VisitedBBInfo() : HasReturn(false), Cycles(0) {}
VisitedBBInfo(bool HasReturn, unsigned int Cycles)
: HasReturn(HasReturn), Cycles(Cycles) {}
};
struct PadShortFunc : public MachineFunctionPass {
static char ID;
PadShortFunc() : MachineFunctionPass(ID)
, Threshold(4) {}
bool runOnMachineFunction(MachineFunction &MF) override;
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
StringRef getPassName() const override {
return "X86 Atom pad short functions";
}
private:
void findReturns(MachineBasicBlock *MBB,
unsigned int Cycles = 0);
bool cyclesUntilReturn(MachineBasicBlock *MBB,
unsigned int &Cycles);
void addPadding(MachineBasicBlock *MBB,
MachineBasicBlock::iterator &MBBI,
unsigned int NOOPsToAdd);
const unsigned int Threshold;
// ReturnBBs - Maps basic blocks that return to the minimum number of
// cycles until the return, starting from the entry block.
DenseMap<MachineBasicBlock*, unsigned int> ReturnBBs;
// VisitedBBs - Cache of previously visited BBs.
DenseMap<MachineBasicBlock*, VisitedBBInfo> VisitedBBs;
TargetSchedModel TSM;
};
char PadShortFunc::ID = 0;
}
FunctionPass *llvm::createX86PadShortFunctions() {
return new PadShortFunc();
}
/// runOnMachineFunction - Loop over all of the basic blocks, inserting
/// NOOP instructions before early exits.
bool PadShortFunc::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(MF.getFunction()))
return false;
if (MF.getFunction().optForSize())
return false;
if (!MF.getSubtarget<X86Subtarget>().padShortFunctions())
return false;
TSM.init(&MF.getSubtarget());
// Search through basic blocks and mark the ones that have early returns
ReturnBBs.clear();
VisitedBBs.clear();
findReturns(&MF.front());
bool MadeChange = false;
MachineBasicBlock *MBB;
unsigned int Cycles = 0;
// Pad the identified basic blocks with NOOPs
for (DenseMap<MachineBasicBlock*, unsigned int>::iterator I = ReturnBBs.begin();
I != ReturnBBs.end(); ++I) {
MBB = I->first;
Cycles = I->second;
if (Cycles < Threshold) {
// BB ends in a return. Skip over any DBG_VALUE instructions
// trailing the terminator.
assert(MBB->size() > 0 &&
"Basic block should contain at least a RET but is empty");
MachineBasicBlock::iterator ReturnLoc = --MBB->end();
while (ReturnLoc->isDebugInstr())
--ReturnLoc;
assert(ReturnLoc->isReturn() && !ReturnLoc->isCall() &&
"Basic block does not end with RET");
addPadding(MBB, ReturnLoc, Threshold - Cycles);
NumBBsPadded++;
MadeChange = true;
}
}
return MadeChange;
}
/// findReturn - Starting at MBB, follow control flow and add all
/// basic blocks that contain a return to ReturnBBs.
void PadShortFunc::findReturns(MachineBasicBlock *MBB, unsigned int Cycles) {
// If this BB has a return, note how many cycles it takes to get there.
bool hasReturn = cyclesUntilReturn(MBB, Cycles);
if (Cycles >= Threshold)
return;
if (hasReturn) {
ReturnBBs[MBB] = std::max(ReturnBBs[MBB], Cycles);
return;
}
// Follow branches in BB and look for returns
for (MachineBasicBlock::succ_iterator I = MBB->succ_begin();
I != MBB->succ_end(); ++I) {
if (*I == MBB)
continue;
findReturns(*I, Cycles);
}
}
/// cyclesUntilReturn - return true if the MBB has a return instruction,
/// and return false otherwise.
/// Cycles will be incremented by the number of cycles taken to reach the
/// return or the end of the BB, whichever occurs first.
bool PadShortFunc::cyclesUntilReturn(MachineBasicBlock *MBB,
unsigned int &Cycles) {
// Return cached result if BB was previously visited
DenseMap<MachineBasicBlock*, VisitedBBInfo>::iterator it
= VisitedBBs.find(MBB);
if (it != VisitedBBs.end()) {
VisitedBBInfo BBInfo = it->second;
Cycles += BBInfo.Cycles;
return BBInfo.HasReturn;
}
unsigned int CyclesToEnd = 0;
for (MachineInstr &MI : *MBB) {
// Mark basic blocks with a return instruction. Calls to other
// functions do not count because the called function will be padded,
// if necessary.
if (MI.isReturn() && !MI.isCall()) {
VisitedBBs[MBB] = VisitedBBInfo(true, CyclesToEnd);
Cycles += CyclesToEnd;
return true;
}
CyclesToEnd += TSM.computeInstrLatency(&MI);
}
VisitedBBs[MBB] = VisitedBBInfo(false, CyclesToEnd);
Cycles += CyclesToEnd;
return false;
}
/// addPadding - Add the given number of NOOP instructions to the function
/// just prior to the return at MBBI
void PadShortFunc::addPadding(MachineBasicBlock *MBB,
MachineBasicBlock::iterator &MBBI,
unsigned int NOOPsToAdd) {
DebugLoc DL = MBBI->getDebugLoc();
unsigned IssueWidth = TSM.getIssueWidth();
for (unsigned i = 0, e = IssueWidth * NOOPsToAdd; i != e; ++i)
BuildMI(*MBB, MBBI, DL, TSM.getInstrInfo()->get(X86::NOOP));
}