forked from OSchip/llvm-project
599 lines
22 KiB
C++
599 lines
22 KiB
C++
//===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
|
|
#include "llvm/Analysis/BasicAliasAnalysis.h"
|
|
#include "llvm/Analysis/ModuleSummaryAnalysis.h"
|
|
#include "llvm/Analysis/ProfileSummaryInfo.h"
|
|
#include "llvm/Analysis/TypeMetadataUtils.h"
|
|
#include "llvm/Bitcode/BitcodeWriter.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DebugInfo.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Object/ModuleSymbolTable.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/ScopedPrinter.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include "llvm/Transforms/IPO/FunctionAttrs.h"
|
|
#include "llvm/Transforms/IPO/FunctionImport.h"
|
|
#include "llvm/Transforms/IPO/LowerTypeTests.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Transforms/Utils/ModuleUtils.h"
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
// Determine if a promotion alias should be created for a symbol name.
|
|
static bool allowPromotionAlias(const std::string &Name) {
|
|
// Promotion aliases are used only in inline assembly. It's safe to
|
|
// simply skip unusual names. Subset of MCAsmInfo::isAcceptableChar()
|
|
// and MCAsmInfoXCOFF::isAcceptableChar().
|
|
for (const char &C : Name) {
|
|
if (isAlnum(C) || C == '_' || C == '.')
|
|
continue;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Promote each local-linkage entity defined by ExportM and used by ImportM by
|
|
// changing visibility and appending the given ModuleId.
|
|
void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId,
|
|
SetVector<GlobalValue *> &PromoteExtra) {
|
|
DenseMap<const Comdat *, Comdat *> RenamedComdats;
|
|
for (auto &ExportGV : ExportM.global_values()) {
|
|
if (!ExportGV.hasLocalLinkage())
|
|
continue;
|
|
|
|
auto Name = ExportGV.getName();
|
|
GlobalValue *ImportGV = nullptr;
|
|
if (!PromoteExtra.count(&ExportGV)) {
|
|
ImportGV = ImportM.getNamedValue(Name);
|
|
if (!ImportGV)
|
|
continue;
|
|
ImportGV->removeDeadConstantUsers();
|
|
if (ImportGV->use_empty()) {
|
|
ImportGV->eraseFromParent();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
std::string OldName = Name.str();
|
|
std::string NewName = (Name + ModuleId).str();
|
|
|
|
if (const auto *C = ExportGV.getComdat())
|
|
if (C->getName() == Name)
|
|
RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName));
|
|
|
|
ExportGV.setName(NewName);
|
|
ExportGV.setLinkage(GlobalValue::ExternalLinkage);
|
|
ExportGV.setVisibility(GlobalValue::HiddenVisibility);
|
|
|
|
if (ImportGV) {
|
|
ImportGV->setName(NewName);
|
|
ImportGV->setVisibility(GlobalValue::HiddenVisibility);
|
|
}
|
|
|
|
if (isa<Function>(&ExportGV) && allowPromotionAlias(OldName)) {
|
|
// Create a local alias with the original name to avoid breaking
|
|
// references from inline assembly.
|
|
std::string Alias = ".set " + OldName + "," + NewName + "\n";
|
|
ExportM.appendModuleInlineAsm(Alias);
|
|
}
|
|
}
|
|
|
|
if (!RenamedComdats.empty())
|
|
for (auto &GO : ExportM.global_objects())
|
|
if (auto *C = GO.getComdat()) {
|
|
auto Replacement = RenamedComdats.find(C);
|
|
if (Replacement != RenamedComdats.end())
|
|
GO.setComdat(Replacement->second);
|
|
}
|
|
}
|
|
|
|
// Promote all internal (i.e. distinct) type ids used by the module by replacing
|
|
// them with external type ids formed using the module id.
|
|
//
|
|
// Note that this needs to be done before we clone the module because each clone
|
|
// will receive its own set of distinct metadata nodes.
|
|
void promoteTypeIds(Module &M, StringRef ModuleId) {
|
|
DenseMap<Metadata *, Metadata *> LocalToGlobal;
|
|
auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) {
|
|
Metadata *MD =
|
|
cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata();
|
|
|
|
if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) {
|
|
Metadata *&GlobalMD = LocalToGlobal[MD];
|
|
if (!GlobalMD) {
|
|
std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str();
|
|
GlobalMD = MDString::get(M.getContext(), NewName);
|
|
}
|
|
|
|
CI->setArgOperand(ArgNo,
|
|
MetadataAsValue::get(M.getContext(), GlobalMD));
|
|
}
|
|
};
|
|
|
|
if (Function *TypeTestFunc =
|
|
M.getFunction(Intrinsic::getName(Intrinsic::type_test))) {
|
|
for (const Use &U : TypeTestFunc->uses()) {
|
|
auto CI = cast<CallInst>(U.getUser());
|
|
ExternalizeTypeId(CI, 1);
|
|
}
|
|
}
|
|
|
|
if (Function *TypeCheckedLoadFunc =
|
|
M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) {
|
|
for (const Use &U : TypeCheckedLoadFunc->uses()) {
|
|
auto CI = cast<CallInst>(U.getUser());
|
|
ExternalizeTypeId(CI, 2);
|
|
}
|
|
}
|
|
|
|
for (GlobalObject &GO : M.global_objects()) {
|
|
SmallVector<MDNode *, 1> MDs;
|
|
GO.getMetadata(LLVMContext::MD_type, MDs);
|
|
|
|
GO.eraseMetadata(LLVMContext::MD_type);
|
|
for (auto MD : MDs) {
|
|
auto I = LocalToGlobal.find(MD->getOperand(1));
|
|
if (I == LocalToGlobal.end()) {
|
|
GO.addMetadata(LLVMContext::MD_type, *MD);
|
|
continue;
|
|
}
|
|
GO.addMetadata(
|
|
LLVMContext::MD_type,
|
|
*MDNode::get(M.getContext(), {MD->getOperand(0), I->second}));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Drop unused globals, and drop type information from function declarations.
|
|
// FIXME: If we made functions typeless then there would be no need to do this.
|
|
void simplifyExternals(Module &M) {
|
|
FunctionType *EmptyFT =
|
|
FunctionType::get(Type::getVoidTy(M.getContext()), false);
|
|
|
|
for (Function &F : llvm::make_early_inc_range(M)) {
|
|
if (F.isDeclaration() && F.use_empty()) {
|
|
F.eraseFromParent();
|
|
continue;
|
|
}
|
|
|
|
if (!F.isDeclaration() || F.getFunctionType() == EmptyFT ||
|
|
// Changing the type of an intrinsic may invalidate the IR.
|
|
F.getName().startswith("llvm."))
|
|
continue;
|
|
|
|
Function *NewF =
|
|
Function::Create(EmptyFT, GlobalValue::ExternalLinkage,
|
|
F.getAddressSpace(), "", &M);
|
|
NewF->copyAttributesFrom(&F);
|
|
// Only copy function attribtues.
|
|
NewF->setAttributes(AttributeList::get(M.getContext(),
|
|
AttributeList::FunctionIndex,
|
|
F.getAttributes().getFnAttrs()));
|
|
NewF->takeName(&F);
|
|
F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType()));
|
|
F.eraseFromParent();
|
|
}
|
|
|
|
for (GlobalVariable &GV : llvm::make_early_inc_range(M.globals())) {
|
|
if (GV.isDeclaration() && GV.use_empty()) {
|
|
GV.eraseFromParent();
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
filterModule(Module *M,
|
|
function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) {
|
|
std::vector<GlobalValue *> V;
|
|
for (GlobalValue &GV : M->global_values())
|
|
if (!ShouldKeepDefinition(&GV))
|
|
V.push_back(&GV);
|
|
|
|
for (GlobalValue *GV : V)
|
|
if (!convertToDeclaration(*GV))
|
|
GV->eraseFromParent();
|
|
}
|
|
|
|
void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) {
|
|
if (auto *F = dyn_cast<Function>(C))
|
|
return Fn(F);
|
|
if (isa<GlobalValue>(C))
|
|
return;
|
|
for (Value *Op : C->operands())
|
|
forEachVirtualFunction(cast<Constant>(Op), Fn);
|
|
}
|
|
|
|
// Clone any @llvm[.compiler].used over to the new module and append
|
|
// values whose defs were cloned into that module.
|
|
static void cloneUsedGlobalVariables(const Module &SrcM, Module &DestM,
|
|
bool CompilerUsed) {
|
|
SmallVector<GlobalValue *, 4> Used, NewUsed;
|
|
// First collect those in the llvm[.compiler].used set.
|
|
collectUsedGlobalVariables(SrcM, Used, CompilerUsed);
|
|
// Next build a set of the equivalent values defined in DestM.
|
|
for (auto *V : Used) {
|
|
auto *GV = DestM.getNamedValue(V->getName());
|
|
if (GV && !GV->isDeclaration())
|
|
NewUsed.push_back(GV);
|
|
}
|
|
// Finally, add them to a llvm[.compiler].used variable in DestM.
|
|
if (CompilerUsed)
|
|
appendToCompilerUsed(DestM, NewUsed);
|
|
else
|
|
appendToUsed(DestM, NewUsed);
|
|
}
|
|
|
|
// If it's possible to split M into regular and thin LTO parts, do so and write
|
|
// a multi-module bitcode file with the two parts to OS. Otherwise, write only a
|
|
// regular LTO bitcode file to OS.
|
|
void splitAndWriteThinLTOBitcode(
|
|
raw_ostream &OS, raw_ostream *ThinLinkOS,
|
|
function_ref<AAResults &(Function &)> AARGetter, Module &M) {
|
|
std::string ModuleId = getUniqueModuleId(&M);
|
|
if (ModuleId.empty()) {
|
|
// We couldn't generate a module ID for this module, write it out as a
|
|
// regular LTO module with an index for summary-based dead stripping.
|
|
ProfileSummaryInfo PSI(M);
|
|
M.addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
|
|
ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
|
|
WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, &Index);
|
|
|
|
if (ThinLinkOS)
|
|
// We don't have a ThinLTO part, but still write the module to the
|
|
// ThinLinkOS if requested so that the expected output file is produced.
|
|
WriteBitcodeToFile(M, *ThinLinkOS, /*ShouldPreserveUseListOrder=*/false,
|
|
&Index);
|
|
|
|
return;
|
|
}
|
|
|
|
promoteTypeIds(M, ModuleId);
|
|
|
|
// Returns whether a global or its associated global has attached type
|
|
// metadata. The former may participate in CFI or whole-program
|
|
// devirtualization, so they need to appear in the merged module instead of
|
|
// the thin LTO module. Similarly, globals that are associated with globals
|
|
// with type metadata need to appear in the merged module because they will
|
|
// reference the global's section directly.
|
|
auto HasTypeMetadata = [](const GlobalObject *GO) {
|
|
if (MDNode *MD = GO->getMetadata(LLVMContext::MD_associated))
|
|
if (auto *AssocVM = dyn_cast_or_null<ValueAsMetadata>(MD->getOperand(0)))
|
|
if (auto *AssocGO = dyn_cast<GlobalObject>(AssocVM->getValue()))
|
|
if (AssocGO->hasMetadata(LLVMContext::MD_type))
|
|
return true;
|
|
return GO->hasMetadata(LLVMContext::MD_type);
|
|
};
|
|
|
|
// Collect the set of virtual functions that are eligible for virtual constant
|
|
// propagation. Each eligible function must not access memory, must return
|
|
// an integer of width <=64 bits, must take at least one argument, must not
|
|
// use its first argument (assumed to be "this") and all arguments other than
|
|
// the first one must be of <=64 bit integer type.
|
|
//
|
|
// Note that we test whether this copy of the function is readnone, rather
|
|
// than testing function attributes, which must hold for any copy of the
|
|
// function, even a less optimized version substituted at link time. This is
|
|
// sound because the virtual constant propagation optimizations effectively
|
|
// inline all implementations of the virtual function into each call site,
|
|
// rather than using function attributes to perform local optimization.
|
|
DenseSet<const Function *> EligibleVirtualFns;
|
|
// If any member of a comdat lives in MergedM, put all members of that
|
|
// comdat in MergedM to keep the comdat together.
|
|
DenseSet<const Comdat *> MergedMComdats;
|
|
for (GlobalVariable &GV : M.globals())
|
|
if (HasTypeMetadata(&GV)) {
|
|
if (const auto *C = GV.getComdat())
|
|
MergedMComdats.insert(C);
|
|
forEachVirtualFunction(GV.getInitializer(), [&](Function *F) {
|
|
auto *RT = dyn_cast<IntegerType>(F->getReturnType());
|
|
if (!RT || RT->getBitWidth() > 64 || F->arg_empty() ||
|
|
!F->arg_begin()->use_empty())
|
|
return;
|
|
for (auto &Arg : drop_begin(F->args())) {
|
|
auto *ArgT = dyn_cast<IntegerType>(Arg.getType());
|
|
if (!ArgT || ArgT->getBitWidth() > 64)
|
|
return;
|
|
}
|
|
if (!F->isDeclaration() &&
|
|
computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == MAK_ReadNone)
|
|
EligibleVirtualFns.insert(F);
|
|
});
|
|
}
|
|
|
|
ValueToValueMapTy VMap;
|
|
std::unique_ptr<Module> MergedM(
|
|
CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool {
|
|
if (const auto *C = GV->getComdat())
|
|
if (MergedMComdats.count(C))
|
|
return true;
|
|
if (auto *F = dyn_cast<Function>(GV))
|
|
return EligibleVirtualFns.count(F);
|
|
if (auto *GVar =
|
|
dyn_cast_or_null<GlobalVariable>(GV->getAliaseeObject()))
|
|
return HasTypeMetadata(GVar);
|
|
return false;
|
|
}));
|
|
StripDebugInfo(*MergedM);
|
|
MergedM->setModuleInlineAsm("");
|
|
|
|
// Clone any llvm.*used globals to ensure the included values are
|
|
// not deleted.
|
|
cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ false);
|
|
cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ true);
|
|
|
|
for (Function &F : *MergedM)
|
|
if (!F.isDeclaration()) {
|
|
// Reset the linkage of all functions eligible for virtual constant
|
|
// propagation. The canonical definitions live in the thin LTO module so
|
|
// that they can be imported.
|
|
F.setLinkage(GlobalValue::AvailableExternallyLinkage);
|
|
F.setComdat(nullptr);
|
|
}
|
|
|
|
SetVector<GlobalValue *> CfiFunctions;
|
|
for (auto &F : M)
|
|
if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F))
|
|
CfiFunctions.insert(&F);
|
|
|
|
// Remove all globals with type metadata, globals with comdats that live in
|
|
// MergedM, and aliases pointing to such globals from the thin LTO module.
|
|
filterModule(&M, [&](const GlobalValue *GV) {
|
|
if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getAliaseeObject()))
|
|
if (HasTypeMetadata(GVar))
|
|
return false;
|
|
if (const auto *C = GV->getComdat())
|
|
if (MergedMComdats.count(C))
|
|
return false;
|
|
return true;
|
|
});
|
|
|
|
promoteInternals(*MergedM, M, ModuleId, CfiFunctions);
|
|
promoteInternals(M, *MergedM, ModuleId, CfiFunctions);
|
|
|
|
auto &Ctx = MergedM->getContext();
|
|
SmallVector<MDNode *, 8> CfiFunctionMDs;
|
|
for (auto V : CfiFunctions) {
|
|
Function &F = *cast<Function>(V);
|
|
SmallVector<MDNode *, 2> Types;
|
|
F.getMetadata(LLVMContext::MD_type, Types);
|
|
|
|
SmallVector<Metadata *, 4> Elts;
|
|
Elts.push_back(MDString::get(Ctx, F.getName()));
|
|
CfiFunctionLinkage Linkage;
|
|
if (lowertypetests::isJumpTableCanonical(&F))
|
|
Linkage = CFL_Definition;
|
|
else if (F.hasExternalWeakLinkage())
|
|
Linkage = CFL_WeakDeclaration;
|
|
else
|
|
Linkage = CFL_Declaration;
|
|
Elts.push_back(ConstantAsMetadata::get(
|
|
llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage)));
|
|
append_range(Elts, Types);
|
|
CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts));
|
|
}
|
|
|
|
if(!CfiFunctionMDs.empty()) {
|
|
NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions");
|
|
for (auto MD : CfiFunctionMDs)
|
|
NMD->addOperand(MD);
|
|
}
|
|
|
|
SmallVector<MDNode *, 8> FunctionAliases;
|
|
for (auto &A : M.aliases()) {
|
|
if (!isa<Function>(A.getAliasee()))
|
|
continue;
|
|
|
|
auto *F = cast<Function>(A.getAliasee());
|
|
|
|
Metadata *Elts[] = {
|
|
MDString::get(Ctx, A.getName()),
|
|
MDString::get(Ctx, F->getName()),
|
|
ConstantAsMetadata::get(
|
|
ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())),
|
|
ConstantAsMetadata::get(
|
|
ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())),
|
|
};
|
|
|
|
FunctionAliases.push_back(MDTuple::get(Ctx, Elts));
|
|
}
|
|
|
|
if (!FunctionAliases.empty()) {
|
|
NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases");
|
|
for (auto MD : FunctionAliases)
|
|
NMD->addOperand(MD);
|
|
}
|
|
|
|
SmallVector<MDNode *, 8> Symvers;
|
|
ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) {
|
|
Function *F = M.getFunction(Name);
|
|
if (!F || F->use_empty())
|
|
return;
|
|
|
|
Symvers.push_back(MDTuple::get(
|
|
Ctx, {MDString::get(Ctx, Name), MDString::get(Ctx, Alias)}));
|
|
});
|
|
|
|
if (!Symvers.empty()) {
|
|
NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers");
|
|
for (auto MD : Symvers)
|
|
NMD->addOperand(MD);
|
|
}
|
|
|
|
simplifyExternals(*MergedM);
|
|
|
|
// FIXME: Try to re-use BSI and PFI from the original module here.
|
|
ProfileSummaryInfo PSI(M);
|
|
ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
|
|
|
|
// Mark the merged module as requiring full LTO. We still want an index for
|
|
// it though, so that it can participate in summary-based dead stripping.
|
|
MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
|
|
ModuleSummaryIndex MergedMIndex =
|
|
buildModuleSummaryIndex(*MergedM, nullptr, &PSI);
|
|
|
|
SmallVector<char, 0> Buffer;
|
|
|
|
BitcodeWriter W(Buffer);
|
|
// Save the module hash produced for the full bitcode, which will
|
|
// be used in the backends, and use that in the minimized bitcode
|
|
// produced for the full link.
|
|
ModuleHash ModHash = {{0}};
|
|
W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index,
|
|
/*GenerateHash=*/true, &ModHash);
|
|
W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex);
|
|
W.writeSymtab();
|
|
W.writeStrtab();
|
|
OS << Buffer;
|
|
|
|
// If a minimized bitcode module was requested for the thin link, only
|
|
// the information that is needed by thin link will be written in the
|
|
// given OS (the merged module will be written as usual).
|
|
if (ThinLinkOS) {
|
|
Buffer.clear();
|
|
BitcodeWriter W2(Buffer);
|
|
StripDebugInfo(M);
|
|
W2.writeThinLinkBitcode(M, Index, ModHash);
|
|
W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false,
|
|
&MergedMIndex);
|
|
W2.writeSymtab();
|
|
W2.writeStrtab();
|
|
*ThinLinkOS << Buffer;
|
|
}
|
|
}
|
|
|
|
// Check if the LTO Unit splitting has been enabled.
|
|
bool enableSplitLTOUnit(Module &M) {
|
|
bool EnableSplitLTOUnit = false;
|
|
if (auto *MD = mdconst::extract_or_null<ConstantInt>(
|
|
M.getModuleFlag("EnableSplitLTOUnit")))
|
|
EnableSplitLTOUnit = MD->getZExtValue();
|
|
return EnableSplitLTOUnit;
|
|
}
|
|
|
|
// Returns whether this module needs to be split because it uses type metadata.
|
|
bool hasTypeMetadata(Module &M) {
|
|
for (auto &GO : M.global_objects()) {
|
|
if (GO.hasMetadata(LLVMContext::MD_type))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS,
|
|
function_ref<AAResults &(Function &)> AARGetter,
|
|
Module &M, const ModuleSummaryIndex *Index) {
|
|
std::unique_ptr<ModuleSummaryIndex> NewIndex = nullptr;
|
|
// See if this module has any type metadata. If so, we try to split it
|
|
// or at least promote type ids to enable WPD.
|
|
if (hasTypeMetadata(M)) {
|
|
if (enableSplitLTOUnit(M))
|
|
return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M);
|
|
// Promote type ids as needed for index-based WPD.
|
|
std::string ModuleId = getUniqueModuleId(&M);
|
|
if (!ModuleId.empty()) {
|
|
promoteTypeIds(M, ModuleId);
|
|
// Need to rebuild the index so that it contains type metadata
|
|
// for the newly promoted type ids.
|
|
// FIXME: Probably should not bother building the index at all
|
|
// in the caller of writeThinLTOBitcode (which does so via the
|
|
// ModuleSummaryIndexAnalysis pass), since we have to rebuild it
|
|
// anyway whenever there is type metadata (here or in
|
|
// splitAndWriteThinLTOBitcode). Just always build it once via the
|
|
// buildModuleSummaryIndex when Module(s) are ready.
|
|
ProfileSummaryInfo PSI(M);
|
|
NewIndex = std::make_unique<ModuleSummaryIndex>(
|
|
buildModuleSummaryIndex(M, nullptr, &PSI));
|
|
Index = NewIndex.get();
|
|
}
|
|
}
|
|
|
|
// Write it out as an unsplit ThinLTO module.
|
|
|
|
// Save the module hash produced for the full bitcode, which will
|
|
// be used in the backends, and use that in the minimized bitcode
|
|
// produced for the full link.
|
|
ModuleHash ModHash = {{0}};
|
|
WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index,
|
|
/*GenerateHash=*/true, &ModHash);
|
|
// If a minimized bitcode module was requested for the thin link, only
|
|
// the information that is needed by thin link will be written in the
|
|
// given OS.
|
|
if (ThinLinkOS && Index)
|
|
WriteThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash);
|
|
}
|
|
|
|
class WriteThinLTOBitcode : public ModulePass {
|
|
raw_ostream &OS; // raw_ostream to print on
|
|
// The output stream on which to emit a minimized module for use
|
|
// just in the thin link, if requested.
|
|
raw_ostream *ThinLinkOS;
|
|
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid
|
|
WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()), ThinLinkOS(nullptr) {
|
|
initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS)
|
|
: ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) {
|
|
initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; }
|
|
|
|
bool runOnModule(Module &M) override {
|
|
const ModuleSummaryIndex *Index =
|
|
&(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex());
|
|
writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index);
|
|
return true;
|
|
}
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesAll();
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<ModuleSummaryIndexWrapperPass>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
}
|
|
};
|
|
} // anonymous namespace
|
|
|
|
char WriteThinLTOBitcode::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode",
|
|
"Write ThinLTO Bitcode", false, true)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode",
|
|
"Write ThinLTO Bitcode", false, true)
|
|
|
|
ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str,
|
|
raw_ostream *ThinLinkOS) {
|
|
return new WriteThinLTOBitcode(Str, ThinLinkOS);
|
|
}
|
|
|
|
PreservedAnalyses
|
|
llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) {
|
|
FunctionAnalysisManager &FAM =
|
|
AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
|
|
writeThinLTOBitcode(OS, ThinLinkOS,
|
|
[&FAM](Function &F) -> AAResults & {
|
|
return FAM.getResult<AAManager>(F);
|
|
},
|
|
M, &AM.getResult<ModuleSummaryIndexAnalysis>(M));
|
|
return PreservedAnalyses::all();
|
|
}
|