llvm-project/llvm/lib/Transforms/IPO/ModuleInliner.cpp

355 lines
14 KiB
C++

//===- ModuleInliner.cpp - Code related to module inliner -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the mechanics required to implement inlining without
// missing any calls in the module level. It doesn't need any infromation about
// SCC or call graph, which is different from the SCC inliner. The decisions of
// which calls are profitable to inline are implemented elsewhere.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/ModuleInliner.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InlineAdvisor.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/InlineOrder.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/CallPromotionUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include <cassert>
#include <functional>
using namespace llvm;
#define DEBUG_TYPE "module-inline"
STATISTIC(NumInlined, "Number of functions inlined");
STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
static cl::opt<bool> InlineEnablePriorityOrder(
"module-inline-enable-priority-order", cl::Hidden, cl::init(true),
cl::desc("Enable the priority inline order for the module inliner"));
/// Return true if the specified inline history ID
/// indicates an inline history that includes the specified function.
static bool inlineHistoryIncludes(
Function *F, int InlineHistoryID,
const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) {
while (InlineHistoryID != -1) {
assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
"Invalid inline history ID");
if (InlineHistory[InlineHistoryID].first == F)
return true;
InlineHistoryID = InlineHistory[InlineHistoryID].second;
}
return false;
}
InlineAdvisor &ModuleInlinerPass::getAdvisor(const ModuleAnalysisManager &MAM,
FunctionAnalysisManager &FAM,
Module &M) {
if (OwnedAdvisor)
return *OwnedAdvisor;
auto *IAA = MAM.getCachedResult<InlineAdvisorAnalysis>(M);
if (!IAA) {
// It should still be possible to run the inliner as a stand-alone module
// pass, for test scenarios. In that case, we default to the
// DefaultInlineAdvisor, which doesn't need to keep state between module
// pass runs. It also uses just the default InlineParams. In this case, we
// need to use the provided FAM, which is valid for the duration of the
// inliner pass, and thus the lifetime of the owned advisor. The one we
// would get from the MAM can be invalidated as a result of the inliner's
// activity.
OwnedAdvisor = std::make_unique<DefaultInlineAdvisor>(M, FAM, Params);
return *OwnedAdvisor;
}
assert(IAA->getAdvisor() &&
"Expected a present InlineAdvisorAnalysis also have an "
"InlineAdvisor initialized");
return *IAA->getAdvisor();
}
static bool isKnownLibFunction(Function &F, TargetLibraryInfo &TLI) {
LibFunc LF;
// Either this is a normal library function or a "vectorizable"
// function. Not using the VFDatabase here because this query
// is related only to libraries handled via the TLI.
return TLI.getLibFunc(F, LF) ||
TLI.isKnownVectorFunctionInLibrary(F.getName());
}
PreservedAnalyses ModuleInlinerPass::run(Module &M,
ModuleAnalysisManager &MAM) {
LLVM_DEBUG(dbgs() << "---- Module Inliner is Running ---- \n");
auto &IAA = MAM.getResult<InlineAdvisorAnalysis>(M);
if (!IAA.tryCreate(Params, Mode, {})) {
M.getContext().emitError(
"Could not setup Inlining Advisor for the requested "
"mode and/or options");
return PreservedAnalyses::all();
}
bool Changed = false;
ProfileSummaryInfo *PSI = MAM.getCachedResult<ProfileSummaryAnalysis>(M);
FunctionAnalysisManager &FAM =
MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
return FAM.getResult<TargetLibraryAnalysis>(F);
};
InlineAdvisor &Advisor = getAdvisor(MAM, FAM, M);
Advisor.onPassEntry();
auto AdvisorOnExit = make_scope_exit([&] { Advisor.onPassExit(); });
// In the module inliner, a priority-based worklist is used for calls across
// the entire Module. With this module inliner, the inline order is not
// limited to bottom-up order. More globally scope inline order is enabled.
// Also, the inline deferral logic become unnecessary in this module inliner.
// It is possible to use other priority heuristics, e.g. profile-based
// heuristic.
//
// TODO: Here is a huge amount duplicate code between the module inliner and
// the SCC inliner, which need some refactoring.
std::unique_ptr<InlineOrder<std::pair<CallBase *, int>>> Calls;
if (InlineEnablePriorityOrder)
Calls = std::make_unique<PriorityInlineOrder<InlineSizePriority>>();
else
Calls = std::make_unique<DefaultInlineOrder<std::pair<CallBase *, int>>>();
assert(Calls != nullptr && "Expected an initialized InlineOrder");
// Populate the initial list of calls in this module.
for (Function &F : M) {
auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
// We want to generally process call sites top-down in order for
// simplifications stemming from replacing the call with the returned value
// after inlining to be visible to subsequent inlining decisions.
// FIXME: Using instructions sequence is a really bad way to do this.
// Instead we should do an actual RPO walk of the function body.
for (Instruction &I : instructions(F))
if (auto *CB = dyn_cast<CallBase>(&I))
if (Function *Callee = CB->getCalledFunction()) {
if (!Callee->isDeclaration())
Calls->push({CB, -1});
else if (!isa<IntrinsicInst>(I)) {
using namespace ore;
setInlineRemark(*CB, "unavailable definition");
ORE.emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
<< NV("Callee", Callee) << " will not be inlined into "
<< NV("Caller", CB->getCaller())
<< " because its definition is unavailable"
<< setIsVerbose();
});
}
}
}
if (Calls->empty())
return PreservedAnalyses::all();
// When inlining a callee produces new call sites, we want to keep track of
// the fact that they were inlined from the callee. This allows us to avoid
// infinite inlining in some obscure cases. To represent this, we use an
// index into the InlineHistory vector.
SmallVector<std::pair<Function *, int>, 16> InlineHistory;
// Track a set vector of inlined callees so that we can augment the caller
// with all of their edges in the call graph before pruning out the ones that
// got simplified away.
SmallSetVector<Function *, 4> InlinedCallees;
// Track the dead functions to delete once finished with inlining calls. We
// defer deleting these to make it easier to handle the call graph updates.
SmallVector<Function *, 4> DeadFunctions;
// Loop forward over all of the calls.
while (!Calls->empty()) {
// We expect the calls to typically be batched with sequences of calls that
// have the same caller, so we first set up some shared infrastructure for
// this caller. We also do any pruning we can at this layer on the caller
// alone.
Function &F = *Calls->front().first->getCaller();
LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n"
<< " Function size: " << F.getInstructionCount()
<< "\n");
auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
return FAM.getResult<AssumptionAnalysis>(F);
};
// Now process as many calls as we have within this caller in the sequence.
// We bail out as soon as the caller has to change so we can
// prepare the context of that new caller.
bool DidInline = false;
while (!Calls->empty() && Calls->front().first->getCaller() == &F) {
auto P = Calls->pop();
CallBase *CB = P.first;
const int InlineHistoryID = P.second;
Function &Callee = *CB->getCalledFunction();
if (InlineHistoryID != -1 &&
inlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) {
setInlineRemark(*CB, "recursive");
continue;
}
auto Advice = Advisor.getAdvice(*CB, /*OnlyMandatory*/ false);
// Check whether we want to inline this callsite.
if (!Advice->isInliningRecommended()) {
Advice->recordUnattemptedInlining();
continue;
}
// Setup the data structure used to plumb customization into the
// `InlineFunction` routine.
InlineFunctionInfo IFI(
/*cg=*/nullptr, GetAssumptionCache, PSI,
&FAM.getResult<BlockFrequencyAnalysis>(*(CB->getCaller())),
&FAM.getResult<BlockFrequencyAnalysis>(Callee));
InlineResult IR =
InlineFunction(*CB, IFI, &FAM.getResult<AAManager>(*CB->getCaller()));
if (!IR.isSuccess()) {
Advice->recordUnsuccessfulInlining(IR);
continue;
}
DidInline = true;
InlinedCallees.insert(&Callee);
++NumInlined;
LLVM_DEBUG(dbgs() << " Size after inlining: "
<< F.getInstructionCount() << "\n");
// Add any new callsites to defined functions to the worklist.
if (!IFI.InlinedCallSites.empty()) {
int NewHistoryID = InlineHistory.size();
InlineHistory.push_back({&Callee, InlineHistoryID});
for (CallBase *ICB : reverse(IFI.InlinedCallSites)) {
Function *NewCallee = ICB->getCalledFunction();
if (!NewCallee) {
// Try to promote an indirect (virtual) call without waiting for
// the post-inline cleanup and the next DevirtSCCRepeatedPass
// iteration because the next iteration may not happen and we may
// miss inlining it.
if (tryPromoteCall(*ICB))
NewCallee = ICB->getCalledFunction();
}
if (NewCallee)
if (!NewCallee->isDeclaration())
Calls->push({ICB, NewHistoryID});
}
}
// Merge the attributes based on the inlining.
AttributeFuncs::mergeAttributesForInlining(F, Callee);
// For local functions, check whether this makes the callee trivially
// dead. In that case, we can drop the body of the function eagerly
// which may reduce the number of callers of other functions to one,
// changing inline cost thresholds.
bool CalleeWasDeleted = false;
if (Callee.hasLocalLinkage()) {
// To check this we also need to nuke any dead constant uses (perhaps
// made dead by this operation on other functions).
Callee.removeDeadConstantUsers();
// if (Callee.use_empty() && !CG.isLibFunction(Callee)) {
if (Callee.use_empty() && !isKnownLibFunction(Callee, GetTLI(Callee))) {
Calls->erase_if([&](const std::pair<CallBase *, int> &Call) {
return Call.first->getCaller() == &Callee;
});
// Clear the body and queue the function itself for deletion when we
// finish inlining.
// Note that after this point, it is an error to do anything other
// than use the callee's address or delete it.
Callee.dropAllReferences();
assert(!is_contained(DeadFunctions, &Callee) &&
"Cannot put cause a function to become dead twice!");
DeadFunctions.push_back(&Callee);
CalleeWasDeleted = true;
}
}
if (CalleeWasDeleted)
Advice->recordInliningWithCalleeDeleted();
else
Advice->recordInlining();
}
if (!DidInline)
continue;
Changed = true;
InlinedCallees.clear();
}
// Now that we've finished inlining all of the calls across this module,
// delete all of the trivially dead functions.
//
// Note that this walks a pointer set which has non-deterministic order but
// that is OK as all we do is delete things and add pointers to unordered
// sets.
for (Function *DeadF : DeadFunctions) {
// Clear out any cached analyses.
FAM.clear(*DeadF, DeadF->getName());
// And delete the actual function from the module.
// The Advisor may use Function pointers to efficiently index various
// internal maps, e.g. for memoization. Function cleanup passes like
// argument promotion create new functions. It is possible for a new
// function to be allocated at the address of a deleted function. We could
// index using names, but that's inefficient. Alternatively, we let the
// Advisor free the functions when it sees fit.
DeadF->getBasicBlockList().clear();
M.getFunctionList().remove(DeadF);
++NumDeleted;
}
if (!Changed)
return PreservedAnalyses::all();
return PreservedAnalyses::none();
}