forked from OSchip/llvm-project
389 lines
16 KiB
C++
389 lines
16 KiB
C++
//===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Dead Loop Deletion Pass. This pass is responsible
|
|
// for eliminating loops with non-infinite computable trip counts that have no
|
|
// side effects or volatile instructions, and do not contribute to the
|
|
// computation of the function's return value.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/LoopDeletion.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Scalar/LoopPassManager.h"
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "loop-delete"
|
|
|
|
STATISTIC(NumDeleted, "Number of loops deleted");
|
|
|
|
/// This function deletes dead loops. The caller of this function needs to
|
|
/// guarantee that the loop is infact dead. Here we handle two kinds of dead
|
|
/// loop. The first kind (\p isLoopDead) is where only invariant values from
|
|
/// within the loop are used outside of it. The second kind (\p
|
|
/// isLoopNeverExecuted) is where the loop is provably never executed. We can
|
|
/// always remove never executed loops since they will not cause any difference
|
|
/// to program behaviour.
|
|
///
|
|
/// This also updates the relevant analysis information in \p DT, \p SE, and \p
|
|
/// LI. It also updates the loop PM if an updater struct is provided.
|
|
// TODO: This function will be used by loop-simplifyCFG as well. So, move this
|
|
// to LoopUtils.cpp
|
|
static void deleteDeadLoop(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
|
|
LoopInfo &LI, LPMUpdater *Updater = nullptr);
|
|
/// Determines if a loop is dead.
|
|
///
|
|
/// This assumes that we've already checked for unique exit and exiting blocks,
|
|
/// and that the code is in LCSSA form.
|
|
static bool isLoopDead(Loop *L, ScalarEvolution &SE,
|
|
SmallVectorImpl<BasicBlock *> &ExitingBlocks,
|
|
BasicBlock *ExitBlock, bool &Changed,
|
|
BasicBlock *Preheader) {
|
|
// Make sure that all PHI entries coming from the loop are loop invariant.
|
|
// Because the code is in LCSSA form, any values used outside of the loop
|
|
// must pass through a PHI in the exit block, meaning that this check is
|
|
// sufficient to guarantee that no loop-variant values are used outside
|
|
// of the loop.
|
|
BasicBlock::iterator BI = ExitBlock->begin();
|
|
bool AllEntriesInvariant = true;
|
|
bool AllOutgoingValuesSame = true;
|
|
while (PHINode *P = dyn_cast<PHINode>(BI)) {
|
|
Value *incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
|
|
|
|
// Make sure all exiting blocks produce the same incoming value for the exit
|
|
// block. If there are different incoming values for different exiting
|
|
// blocks, then it is impossible to statically determine which value should
|
|
// be used.
|
|
AllOutgoingValuesSame =
|
|
all_of(makeArrayRef(ExitingBlocks).slice(1), [&](BasicBlock *BB) {
|
|
return incoming == P->getIncomingValueForBlock(BB);
|
|
});
|
|
|
|
if (!AllOutgoingValuesSame)
|
|
break;
|
|
|
|
if (Instruction *I = dyn_cast<Instruction>(incoming))
|
|
if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator())) {
|
|
AllEntriesInvariant = false;
|
|
break;
|
|
}
|
|
|
|
++BI;
|
|
}
|
|
|
|
if (Changed)
|
|
SE.forgetLoopDispositions(L);
|
|
|
|
if (!AllEntriesInvariant || !AllOutgoingValuesSame)
|
|
return false;
|
|
|
|
// Make sure that no instructions in the block have potential side-effects.
|
|
// This includes instructions that could write to memory, and loads that are
|
|
// marked volatile.
|
|
for (auto &I : L->blocks())
|
|
if (any_of(*I, [](Instruction &I) { return I.mayHaveSideEffects(); }))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// This function returns true if there is no viable path from the
|
|
/// entry block to the header of \p L. Right now, it only does
|
|
/// a local search to save compile time.
|
|
static bool isLoopNeverExecuted(Loop *L) {
|
|
using namespace PatternMatch;
|
|
|
|
auto *Preheader = L->getLoopPreheader();
|
|
// TODO: We can relax this constraint, since we just need a loop
|
|
// predecessor.
|
|
assert(Preheader && "Needs preheader!");
|
|
|
|
if (Preheader == &Preheader->getParent()->getEntryBlock())
|
|
return false;
|
|
// All predecessors of the preheader should have a constant conditional
|
|
// branch, with the loop's preheader as not-taken.
|
|
for (auto *Pred: predecessors(Preheader)) {
|
|
BasicBlock *Taken, *NotTaken;
|
|
ConstantInt *Cond;
|
|
if (!match(Pred->getTerminator(),
|
|
m_Br(m_ConstantInt(Cond), Taken, NotTaken)))
|
|
return false;
|
|
if (!Cond->getZExtValue())
|
|
std::swap(Taken, NotTaken);
|
|
if (Taken == Preheader)
|
|
return false;
|
|
}
|
|
assert(!pred_empty(Preheader) &&
|
|
"Preheader should have predecessors at this point!");
|
|
// All the predecessors have the loop preheader as not-taken target.
|
|
return true;
|
|
}
|
|
|
|
/// Remove a loop if it is dead.
|
|
///
|
|
/// A loop is considered dead if it does not impact the observable behavior of
|
|
/// the program other than finite running time. This never removes a loop that
|
|
/// might be infinite (unless it is never executed), as doing so could change
|
|
/// the halting/non-halting nature of a program.
|
|
///
|
|
/// This entire process relies pretty heavily on LoopSimplify form and LCSSA in
|
|
/// order to make various safety checks work.
|
|
///
|
|
/// \returns true if any changes were made. This may mutate the loop even if it
|
|
/// is unable to delete it due to hoisting trivially loop invariant
|
|
/// instructions out of the loop.
|
|
static bool deleteLoopIfDead(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
|
|
LoopInfo &LI, LPMUpdater *Updater = nullptr) {
|
|
assert(L->isLCSSAForm(DT) && "Expected LCSSA!");
|
|
|
|
// We can only remove the loop if there is a preheader that we can branch from
|
|
// after removing it. Also, if LoopSimplify form is not available, stay out
|
|
// of trouble.
|
|
BasicBlock *Preheader = L->getLoopPreheader();
|
|
if (!Preheader || !L->hasDedicatedExits()) {
|
|
DEBUG(dbgs()
|
|
<< "Deletion requires Loop with preheader and dedicated exits.\n");
|
|
return false;
|
|
}
|
|
// We can't remove loops that contain subloops. If the subloops were dead,
|
|
// they would already have been removed in earlier executions of this pass.
|
|
if (L->begin() != L->end()) {
|
|
DEBUG(dbgs() << "Loop contains subloops.\n");
|
|
return false;
|
|
}
|
|
|
|
|
|
BasicBlock *ExitBlock = L->getUniqueExitBlock();
|
|
|
|
if (ExitBlock && isLoopNeverExecuted(L)) {
|
|
DEBUG(dbgs() << "Loop is proven to never execute, delete it!");
|
|
// Set incoming value to undef for phi nodes in the exit block.
|
|
BasicBlock::iterator BI = ExitBlock->begin();
|
|
while (PHINode *P = dyn_cast<PHINode>(BI)) {
|
|
for (unsigned i = 0; i < P->getNumIncomingValues(); i++)
|
|
P->setIncomingValue(i, UndefValue::get(P->getType()));
|
|
BI++;
|
|
}
|
|
deleteDeadLoop(L, DT, SE, LI, Updater);
|
|
++NumDeleted;
|
|
return true;
|
|
}
|
|
|
|
// The remaining checks below are for a loop being dead because all statements
|
|
// in the loop are invariant.
|
|
SmallVector<BasicBlock *, 4> ExitingBlocks;
|
|
L->getExitingBlocks(ExitingBlocks);
|
|
|
|
// We require that the loop only have a single exit block. Otherwise, we'd
|
|
// be in the situation of needing to be able to solve statically which exit
|
|
// block will be branched to, or trying to preserve the branching logic in
|
|
// a loop invariant manner.
|
|
if (!ExitBlock) {
|
|
DEBUG(dbgs() << "Deletion requires single exit block\n");
|
|
return false;
|
|
}
|
|
// Finally, we have to check that the loop really is dead.
|
|
bool Changed = false;
|
|
if (!isLoopDead(L, SE, ExitingBlocks, ExitBlock, Changed, Preheader)) {
|
|
DEBUG(dbgs() << "Loop is not invariant, cannot delete.\n");
|
|
return Changed;
|
|
}
|
|
|
|
// Don't remove loops for which we can't solve the trip count.
|
|
// They could be infinite, in which case we'd be changing program behavior.
|
|
const SCEV *S = SE.getMaxBackedgeTakenCount(L);
|
|
if (isa<SCEVCouldNotCompute>(S)) {
|
|
DEBUG(dbgs() << "Could not compute SCEV MaxBackedgeTakenCount.\n");
|
|
return Changed;
|
|
}
|
|
|
|
DEBUG(dbgs() << "Loop is invariant, delete it!");
|
|
deleteDeadLoop(L, DT, SE, LI, Updater);
|
|
++NumDeleted;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void deleteDeadLoop(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
|
|
LoopInfo &LI, LPMUpdater *Updater) {
|
|
assert(L->isLCSSAForm(DT) && "Expected LCSSA!");
|
|
auto *Preheader = L->getLoopPreheader();
|
|
assert(Preheader && "Preheader should exist!");
|
|
|
|
// Now that we know the removal is safe, remove the loop by changing the
|
|
// branch from the preheader to go to the single exit block.
|
|
//
|
|
// Because we're deleting a large chunk of code at once, the sequence in which
|
|
// we remove things is very important to avoid invalidation issues.
|
|
|
|
// If we have an LPM updater, tell it about the loop being removed.
|
|
if (Updater)
|
|
Updater->markLoopAsDeleted(*L);
|
|
|
|
// Tell ScalarEvolution that the loop is deleted. Do this before
|
|
// deleting the loop so that ScalarEvolution can look at the loop
|
|
// to determine what it needs to clean up.
|
|
SE.forgetLoop(L);
|
|
|
|
auto *ExitBlock = L->getUniqueExitBlock();
|
|
assert(ExitBlock && "Should have a unique exit block!");
|
|
assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
|
|
|
|
auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
|
|
assert(OldBr && "Preheader must end with a branch");
|
|
assert(OldBr->isUnconditional() && "Preheader must have a single successor");
|
|
// Connect the preheader to the exit block. Keep the old edge to the header
|
|
// around to perform the dominator tree update in two separate steps
|
|
// -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
|
|
// preheader -> header.
|
|
//
|
|
//
|
|
// 0. Preheader 1. Preheader 2. Preheader
|
|
// | | | |
|
|
// V | V |
|
|
// Header <--\ | Header <--\ | Header <--\
|
|
// | | | | | | | | | | |
|
|
// | V | | | V | | | V |
|
|
// | Body --/ | | Body --/ | | Body --/
|
|
// V V V V V
|
|
// Exit Exit Exit
|
|
//
|
|
// By doing this is two separate steps we can perform the dominator tree
|
|
// update without using the batch update API.
|
|
//
|
|
// Even when the loop is never executed, we cannot remove the edge from the
|
|
// source block to the exit block. Consider the case where the unexecuted loop
|
|
// branches back to an outer loop. If we deleted the loop and removed the edge
|
|
// coming to this inner loop, this will break the outer loop structure (by
|
|
// deleting the backedge of the outer loop). If the outer loop is indeed a
|
|
// non-loop, it will be deleted in a future iteration of loop deletion pass.
|
|
IRBuilder<> Builder(OldBr);
|
|
Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
|
|
// Remove the old branch. The conditional branch becomes a new terminator.
|
|
OldBr->eraseFromParent();
|
|
|
|
// Update the dominator tree by informing it about the new edge from the
|
|
// preheader to the exit.
|
|
DT.insertEdge(Preheader, ExitBlock);
|
|
|
|
// Rewrite phis in the exit block to get their inputs from the Preheader
|
|
// instead of the exiting block.
|
|
BasicBlock::iterator BI = ExitBlock->begin();
|
|
while (PHINode *P = dyn_cast<PHINode>(BI)) {
|
|
// Set the zero'th element of Phi to be from the preheader and remove all
|
|
// other incoming values. Given the loop has dedicated exits, all other
|
|
// incoming values must be from the exiting blocks.
|
|
int PredIndex = 0;
|
|
P->setIncomingBlock(PredIndex, Preheader);
|
|
// Removes all incoming values from all other exiting blocks (including
|
|
// duplicate values from an exiting block).
|
|
// Nuke all entries except the zero'th entry which is the preheader entry.
|
|
// NOTE! We need to remove Incoming Values in the reverse order as done
|
|
// below, to keep the indices valid for deletion (removeIncomingValues
|
|
// updates getNumIncomingValues and shifts all values down into the operand
|
|
// being deleted).
|
|
for (unsigned i = 0, e = P->getNumIncomingValues() - 1; i != e; ++i)
|
|
P->removeIncomingValue(e-i, false);
|
|
|
|
assert((P->getNumIncomingValues() == 1 &&
|
|
P->getIncomingBlock(PredIndex) == Preheader) &&
|
|
"Should have exactly one value and that's from the preheader!");
|
|
++BI;
|
|
}
|
|
|
|
// Disconnect the loop body by branching directly to its exit.
|
|
Builder.SetInsertPoint(Preheader->getTerminator());
|
|
Builder.CreateBr(ExitBlock);
|
|
// Remove the old branch.
|
|
Preheader->getTerminator()->eraseFromParent();
|
|
|
|
// Inform the dominator tree about the removed edge.
|
|
DT.deleteEdge(Preheader, L->getHeader());
|
|
|
|
// Remove the block from the reference counting scheme, so that we can
|
|
// delete it freely later.
|
|
for (auto *Block : L->blocks())
|
|
Block->dropAllReferences();
|
|
|
|
// Erase the instructions and the blocks without having to worry
|
|
// about ordering because we already dropped the references.
|
|
// NOTE: This iteration is safe because erasing the block does not remove its
|
|
// entry from the loop's block list. We do that in the next section.
|
|
for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
|
|
LI != LE; ++LI)
|
|
(*LI)->eraseFromParent();
|
|
|
|
// Finally, the blocks from loopinfo. This has to happen late because
|
|
// otherwise our loop iterators won't work.
|
|
|
|
SmallPtrSet<BasicBlock *, 8> blocks;
|
|
blocks.insert(L->block_begin(), L->block_end());
|
|
for (BasicBlock *BB : blocks)
|
|
LI.removeBlock(BB);
|
|
|
|
// The last step is to update LoopInfo now that we've eliminated this loop.
|
|
LI.erase(L);
|
|
}
|
|
|
|
PreservedAnalyses LoopDeletionPass::run(Loop &L, LoopAnalysisManager &AM,
|
|
LoopStandardAnalysisResults &AR,
|
|
LPMUpdater &Updater) {
|
|
|
|
DEBUG(dbgs() << "Analyzing Loop for deletion: ");
|
|
DEBUG(L.dump());
|
|
if (!deleteLoopIfDead(&L, AR.DT, AR.SE, AR.LI, &Updater))
|
|
return PreservedAnalyses::all();
|
|
|
|
return getLoopPassPreservedAnalyses();
|
|
}
|
|
|
|
namespace {
|
|
class LoopDeletionLegacyPass : public LoopPass {
|
|
public:
|
|
static char ID; // Pass ID, replacement for typeid
|
|
LoopDeletionLegacyPass() : LoopPass(ID) {
|
|
initializeLoopDeletionLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
// Possibly eliminate loop L if it is dead.
|
|
bool runOnLoop(Loop *L, LPPassManager &) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
getLoopAnalysisUsage(AU);
|
|
}
|
|
};
|
|
}
|
|
|
|
char LoopDeletionLegacyPass::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(LoopDeletionLegacyPass, "loop-deletion",
|
|
"Delete dead loops", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopPass)
|
|
INITIALIZE_PASS_END(LoopDeletionLegacyPass, "loop-deletion",
|
|
"Delete dead loops", false, false)
|
|
|
|
Pass *llvm::createLoopDeletionPass() { return new LoopDeletionLegacyPass(); }
|
|
|
|
bool LoopDeletionLegacyPass::runOnLoop(Loop *L, LPPassManager &) {
|
|
if (skipLoop(L))
|
|
return false;
|
|
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
|
LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
|
|
DEBUG(dbgs() << "Analyzing Loop for deletion: ");
|
|
DEBUG(L->dump());
|
|
return deleteLoopIfDead(L, DT, SE, LI);
|
|
}
|