forked from OSchip/llvm-project
1760 lines
64 KiB
C++
1760 lines
64 KiB
C++
//===-- InductiveRangeCheckElimination.cpp - ------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
// The InductiveRangeCheckElimination pass splits a loop's iteration space into
|
|
// three disjoint ranges. It does that in a way such that the loop running in
|
|
// the middle loop provably does not need range checks. As an example, it will
|
|
// convert
|
|
//
|
|
// len = < known positive >
|
|
// for (i = 0; i < n; i++) {
|
|
// if (0 <= i && i < len) {
|
|
// do_something();
|
|
// } else {
|
|
// throw_out_of_bounds();
|
|
// }
|
|
// }
|
|
//
|
|
// to
|
|
//
|
|
// len = < known positive >
|
|
// limit = smin(n, len)
|
|
// // no first segment
|
|
// for (i = 0; i < limit; i++) {
|
|
// if (0 <= i && i < len) { // this check is fully redundant
|
|
// do_something();
|
|
// } else {
|
|
// throw_out_of_bounds();
|
|
// }
|
|
// }
|
|
// for (i = limit; i < n; i++) {
|
|
// if (0 <= i && i < len) {
|
|
// do_something();
|
|
// } else {
|
|
// throw_out_of_bounds();
|
|
// }
|
|
// }
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/Analysis/BranchProbabilityInfo.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Transforms/Utils/LoopSimplify.h"
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
|
|
cl::init(64));
|
|
|
|
static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
|
|
cl::init(false));
|
|
|
|
static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal",
|
|
cl::Hidden, cl::init(10));
|
|
|
|
static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks",
|
|
cl::Hidden, cl::init(false));
|
|
|
|
static const char *ClonedLoopTag = "irce.loop.clone";
|
|
|
|
#define DEBUG_TYPE "irce"
|
|
|
|
namespace {
|
|
|
|
/// An inductive range check is conditional branch in a loop with
|
|
///
|
|
/// 1. a very cold successor (i.e. the branch jumps to that successor very
|
|
/// rarely)
|
|
///
|
|
/// and
|
|
///
|
|
/// 2. a condition that is provably true for some contiguous range of values
|
|
/// taken by the containing loop's induction variable.
|
|
///
|
|
class InductiveRangeCheck {
|
|
// Classifies a range check
|
|
enum RangeCheckKind : unsigned {
|
|
// Range check of the form "0 <= I".
|
|
RANGE_CHECK_LOWER = 1,
|
|
|
|
// Range check of the form "I < L" where L is known positive.
|
|
RANGE_CHECK_UPPER = 2,
|
|
|
|
// The logical and of the RANGE_CHECK_LOWER and RANGE_CHECK_UPPER
|
|
// conditions.
|
|
RANGE_CHECK_BOTH = RANGE_CHECK_LOWER | RANGE_CHECK_UPPER,
|
|
|
|
// Unrecognized range check condition.
|
|
RANGE_CHECK_UNKNOWN = (unsigned)-1
|
|
};
|
|
|
|
static StringRef rangeCheckKindToStr(RangeCheckKind);
|
|
|
|
const SCEV *Offset = nullptr;
|
|
const SCEV *Scale = nullptr;
|
|
Value *Length = nullptr;
|
|
Use *CheckUse = nullptr;
|
|
RangeCheckKind Kind = RANGE_CHECK_UNKNOWN;
|
|
|
|
static RangeCheckKind parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
|
|
ScalarEvolution &SE, Value *&Index,
|
|
Value *&Length);
|
|
|
|
static void
|
|
extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse,
|
|
SmallVectorImpl<InductiveRangeCheck> &Checks,
|
|
SmallPtrSetImpl<Value *> &Visited);
|
|
|
|
public:
|
|
const SCEV *getOffset() const { return Offset; }
|
|
const SCEV *getScale() const { return Scale; }
|
|
Value *getLength() const { return Length; }
|
|
|
|
void print(raw_ostream &OS) const {
|
|
OS << "InductiveRangeCheck:\n";
|
|
OS << " Kind: " << rangeCheckKindToStr(Kind) << "\n";
|
|
OS << " Offset: ";
|
|
Offset->print(OS);
|
|
OS << " Scale: ";
|
|
Scale->print(OS);
|
|
OS << " Length: ";
|
|
if (Length)
|
|
Length->print(OS);
|
|
else
|
|
OS << "(null)";
|
|
OS << "\n CheckUse: ";
|
|
getCheckUse()->getUser()->print(OS);
|
|
OS << " Operand: " << getCheckUse()->getOperandNo() << "\n";
|
|
}
|
|
|
|
LLVM_DUMP_METHOD
|
|
void dump() {
|
|
print(dbgs());
|
|
}
|
|
|
|
Use *getCheckUse() const { return CheckUse; }
|
|
|
|
/// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If
|
|
/// R.getEnd() sle R.getBegin(), then R denotes the empty range.
|
|
|
|
class Range {
|
|
const SCEV *Begin;
|
|
const SCEV *End;
|
|
|
|
public:
|
|
Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
|
|
assert(Begin->getType() == End->getType() && "ill-typed range!");
|
|
}
|
|
|
|
Type *getType() const { return Begin->getType(); }
|
|
const SCEV *getBegin() const { return Begin; }
|
|
const SCEV *getEnd() const { return End; }
|
|
};
|
|
|
|
/// This is the value the condition of the branch needs to evaluate to for the
|
|
/// branch to take the hot successor (see (1) above).
|
|
bool getPassingDirection() { return true; }
|
|
|
|
/// Computes a range for the induction variable (IndVar) in which the range
|
|
/// check is redundant and can be constant-folded away. The induction
|
|
/// variable is not required to be the canonical {0,+,1} induction variable.
|
|
Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
|
|
const SCEVAddRecExpr *IndVar) const;
|
|
|
|
/// Parse out a set of inductive range checks from \p BI and append them to \p
|
|
/// Checks.
|
|
///
|
|
/// NB! There may be conditions feeding into \p BI that aren't inductive range
|
|
/// checks, and hence don't end up in \p Checks.
|
|
static void
|
|
extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE,
|
|
BranchProbabilityInfo &BPI,
|
|
SmallVectorImpl<InductiveRangeCheck> &Checks);
|
|
};
|
|
|
|
class InductiveRangeCheckElimination : public LoopPass {
|
|
public:
|
|
static char ID;
|
|
InductiveRangeCheckElimination() : LoopPass(ID) {
|
|
initializeInductiveRangeCheckEliminationPass(
|
|
*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<BranchProbabilityInfoWrapperPass>();
|
|
getLoopAnalysisUsage(AU);
|
|
}
|
|
|
|
bool runOnLoop(Loop *L, LPPassManager &LPM) override;
|
|
};
|
|
|
|
char InductiveRangeCheckElimination::ID = 0;
|
|
}
|
|
|
|
INITIALIZE_PASS_BEGIN(InductiveRangeCheckElimination, "irce",
|
|
"Inductive range check elimination", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopPass)
|
|
INITIALIZE_PASS_END(InductiveRangeCheckElimination, "irce",
|
|
"Inductive range check elimination", false, false)
|
|
|
|
StringRef InductiveRangeCheck::rangeCheckKindToStr(
|
|
InductiveRangeCheck::RangeCheckKind RCK) {
|
|
switch (RCK) {
|
|
case InductiveRangeCheck::RANGE_CHECK_UNKNOWN:
|
|
return "RANGE_CHECK_UNKNOWN";
|
|
|
|
case InductiveRangeCheck::RANGE_CHECK_UPPER:
|
|
return "RANGE_CHECK_UPPER";
|
|
|
|
case InductiveRangeCheck::RANGE_CHECK_LOWER:
|
|
return "RANGE_CHECK_LOWER";
|
|
|
|
case InductiveRangeCheck::RANGE_CHECK_BOTH:
|
|
return "RANGE_CHECK_BOTH";
|
|
}
|
|
|
|
llvm_unreachable("unknown range check type!");
|
|
}
|
|
|
|
/// Parse a single ICmp instruction, `ICI`, into a range check. If `ICI` cannot
|
|
/// be interpreted as a range check, return `RANGE_CHECK_UNKNOWN` and set
|
|
/// `Index` and `Length` to `nullptr`. Otherwise set `Index` to the value being
|
|
/// range checked, and set `Length` to the upper limit `Index` is being range
|
|
/// checked with if (and only if) the range check type is stronger or equal to
|
|
/// RANGE_CHECK_UPPER.
|
|
///
|
|
InductiveRangeCheck::RangeCheckKind
|
|
InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
|
|
ScalarEvolution &SE, Value *&Index,
|
|
Value *&Length) {
|
|
|
|
auto IsNonNegativeAndNotLoopVarying = [&SE, L](Value *V) {
|
|
const SCEV *S = SE.getSCEV(V);
|
|
if (isa<SCEVCouldNotCompute>(S))
|
|
return false;
|
|
|
|
return SE.getLoopDisposition(S, L) == ScalarEvolution::LoopInvariant &&
|
|
SE.isKnownNonNegative(S);
|
|
};
|
|
|
|
using namespace llvm::PatternMatch;
|
|
|
|
ICmpInst::Predicate Pred = ICI->getPredicate();
|
|
Value *LHS = ICI->getOperand(0);
|
|
Value *RHS = ICI->getOperand(1);
|
|
|
|
switch (Pred) {
|
|
default:
|
|
return RANGE_CHECK_UNKNOWN;
|
|
|
|
case ICmpInst::ICMP_SLE:
|
|
std::swap(LHS, RHS);
|
|
LLVM_FALLTHROUGH;
|
|
case ICmpInst::ICMP_SGE:
|
|
if (match(RHS, m_ConstantInt<0>())) {
|
|
Index = LHS;
|
|
return RANGE_CHECK_LOWER;
|
|
}
|
|
return RANGE_CHECK_UNKNOWN;
|
|
|
|
case ICmpInst::ICMP_SLT:
|
|
std::swap(LHS, RHS);
|
|
LLVM_FALLTHROUGH;
|
|
case ICmpInst::ICMP_SGT:
|
|
if (match(RHS, m_ConstantInt<-1>())) {
|
|
Index = LHS;
|
|
return RANGE_CHECK_LOWER;
|
|
}
|
|
|
|
if (IsNonNegativeAndNotLoopVarying(LHS)) {
|
|
Index = RHS;
|
|
Length = LHS;
|
|
return RANGE_CHECK_UPPER;
|
|
}
|
|
return RANGE_CHECK_UNKNOWN;
|
|
|
|
case ICmpInst::ICMP_ULT:
|
|
std::swap(LHS, RHS);
|
|
LLVM_FALLTHROUGH;
|
|
case ICmpInst::ICMP_UGT:
|
|
if (IsNonNegativeAndNotLoopVarying(LHS)) {
|
|
Index = RHS;
|
|
Length = LHS;
|
|
return RANGE_CHECK_BOTH;
|
|
}
|
|
return RANGE_CHECK_UNKNOWN;
|
|
}
|
|
|
|
llvm_unreachable("default clause returns!");
|
|
}
|
|
|
|
void InductiveRangeCheck::extractRangeChecksFromCond(
|
|
Loop *L, ScalarEvolution &SE, Use &ConditionUse,
|
|
SmallVectorImpl<InductiveRangeCheck> &Checks,
|
|
SmallPtrSetImpl<Value *> &Visited) {
|
|
using namespace llvm::PatternMatch;
|
|
|
|
Value *Condition = ConditionUse.get();
|
|
if (!Visited.insert(Condition).second)
|
|
return;
|
|
|
|
if (match(Condition, m_And(m_Value(), m_Value()))) {
|
|
SmallVector<InductiveRangeCheck, 8> SubChecks;
|
|
extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0),
|
|
SubChecks, Visited);
|
|
extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1),
|
|
SubChecks, Visited);
|
|
|
|
if (SubChecks.size() == 2) {
|
|
// Handle a special case where we know how to merge two checks separately
|
|
// checking the upper and lower bounds into a full range check.
|
|
const auto &RChkA = SubChecks[0];
|
|
const auto &RChkB = SubChecks[1];
|
|
if ((RChkA.Length == RChkB.Length || !RChkA.Length || !RChkB.Length) &&
|
|
RChkA.Offset == RChkB.Offset && RChkA.Scale == RChkB.Scale) {
|
|
|
|
// If RChkA.Kind == RChkB.Kind then we just found two identical checks.
|
|
// But if one of them is a RANGE_CHECK_LOWER and the other is a
|
|
// RANGE_CHECK_UPPER (only possibility if they're different) then
|
|
// together they form a RANGE_CHECK_BOTH.
|
|
SubChecks[0].Kind =
|
|
(InductiveRangeCheck::RangeCheckKind)(RChkA.Kind | RChkB.Kind);
|
|
SubChecks[0].Length = RChkA.Length ? RChkA.Length : RChkB.Length;
|
|
SubChecks[0].CheckUse = &ConditionUse;
|
|
|
|
// We updated one of the checks in place, now erase the other.
|
|
SubChecks.pop_back();
|
|
}
|
|
}
|
|
|
|
Checks.insert(Checks.end(), SubChecks.begin(), SubChecks.end());
|
|
return;
|
|
}
|
|
|
|
ICmpInst *ICI = dyn_cast<ICmpInst>(Condition);
|
|
if (!ICI)
|
|
return;
|
|
|
|
Value *Length = nullptr, *Index;
|
|
auto RCKind = parseRangeCheckICmp(L, ICI, SE, Index, Length);
|
|
if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN)
|
|
return;
|
|
|
|
const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index));
|
|
bool IsAffineIndex =
|
|
IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
|
|
|
|
if (!IsAffineIndex)
|
|
return;
|
|
|
|
InductiveRangeCheck IRC;
|
|
IRC.Length = Length;
|
|
IRC.Offset = IndexAddRec->getStart();
|
|
IRC.Scale = IndexAddRec->getStepRecurrence(SE);
|
|
IRC.CheckUse = &ConditionUse;
|
|
IRC.Kind = RCKind;
|
|
Checks.push_back(IRC);
|
|
}
|
|
|
|
void InductiveRangeCheck::extractRangeChecksFromBranch(
|
|
BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo &BPI,
|
|
SmallVectorImpl<InductiveRangeCheck> &Checks) {
|
|
|
|
if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
|
|
return;
|
|
|
|
BranchProbability LikelyTaken(15, 16);
|
|
|
|
if (!SkipProfitabilityChecks &&
|
|
BPI.getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken)
|
|
return;
|
|
|
|
SmallPtrSet<Value *, 8> Visited;
|
|
InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0),
|
|
Checks, Visited);
|
|
}
|
|
|
|
// Add metadata to the loop L to disable loop optimizations. Callers need to
|
|
// confirm that optimizing loop L is not beneficial.
|
|
static void DisableAllLoopOptsOnLoop(Loop &L) {
|
|
// We do not care about any existing loopID related metadata for L, since we
|
|
// are setting all loop metadata to false.
|
|
LLVMContext &Context = L.getHeader()->getContext();
|
|
// Reserve first location for self reference to the LoopID metadata node.
|
|
MDNode *Dummy = MDNode::get(Context, {});
|
|
MDNode *DisableUnroll = MDNode::get(
|
|
Context, {MDString::get(Context, "llvm.loop.unroll.disable")});
|
|
Metadata *FalseVal =
|
|
ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0));
|
|
MDNode *DisableVectorize = MDNode::get(
|
|
Context,
|
|
{MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal});
|
|
MDNode *DisableLICMVersioning = MDNode::get(
|
|
Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")});
|
|
MDNode *DisableDistribution= MDNode::get(
|
|
Context,
|
|
{MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal});
|
|
MDNode *NewLoopID =
|
|
MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize,
|
|
DisableLICMVersioning, DisableDistribution});
|
|
// Set operand 0 to refer to the loop id itself.
|
|
NewLoopID->replaceOperandWith(0, NewLoopID);
|
|
L.setLoopID(NewLoopID);
|
|
}
|
|
|
|
namespace {
|
|
|
|
// Keeps track of the structure of a loop. This is similar to llvm::Loop,
|
|
// except that it is more lightweight and can track the state of a loop through
|
|
// changing and potentially invalid IR. This structure also formalizes the
|
|
// kinds of loops we can deal with -- ones that have a single latch that is also
|
|
// an exiting block *and* have a canonical induction variable.
|
|
struct LoopStructure {
|
|
const char *Tag;
|
|
|
|
BasicBlock *Header;
|
|
BasicBlock *Latch;
|
|
|
|
// `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
|
|
// successor is `LatchExit', the exit block of the loop.
|
|
BranchInst *LatchBr;
|
|
BasicBlock *LatchExit;
|
|
unsigned LatchBrExitIdx;
|
|
|
|
// The loop represented by this instance of LoopStructure is semantically
|
|
// equivalent to:
|
|
//
|
|
// intN_ty inc = IndVarIncreasing ? 1 : -1;
|
|
// pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT;
|
|
//
|
|
// for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarBase)
|
|
// ... body ...
|
|
|
|
Value *IndVarBase;
|
|
Value *IndVarStart;
|
|
Value *IndVarStep;
|
|
Value *LoopExitAt;
|
|
bool IndVarIncreasing;
|
|
bool IsSignedPredicate;
|
|
|
|
LoopStructure()
|
|
: Tag(""), Header(nullptr), Latch(nullptr), LatchBr(nullptr),
|
|
LatchExit(nullptr), LatchBrExitIdx(-1), IndVarBase(nullptr),
|
|
IndVarStart(nullptr), IndVarStep(nullptr), LoopExitAt(nullptr),
|
|
IndVarIncreasing(false), IsSignedPredicate(true) {}
|
|
|
|
template <typename M> LoopStructure map(M Map) const {
|
|
LoopStructure Result;
|
|
Result.Tag = Tag;
|
|
Result.Header = cast<BasicBlock>(Map(Header));
|
|
Result.Latch = cast<BasicBlock>(Map(Latch));
|
|
Result.LatchBr = cast<BranchInst>(Map(LatchBr));
|
|
Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
|
|
Result.LatchBrExitIdx = LatchBrExitIdx;
|
|
Result.IndVarBase = Map(IndVarBase);
|
|
Result.IndVarStart = Map(IndVarStart);
|
|
Result.IndVarStep = Map(IndVarStep);
|
|
Result.LoopExitAt = Map(LoopExitAt);
|
|
Result.IndVarIncreasing = IndVarIncreasing;
|
|
Result.IsSignedPredicate = IsSignedPredicate;
|
|
return Result;
|
|
}
|
|
|
|
static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &,
|
|
BranchProbabilityInfo &BPI,
|
|
Loop &,
|
|
const char *&);
|
|
};
|
|
|
|
/// This class is used to constrain loops to run within a given iteration space.
|
|
/// The algorithm this class implements is given a Loop and a range [Begin,
|
|
/// End). The algorithm then tries to break out a "main loop" out of the loop
|
|
/// it is given in a way that the "main loop" runs with the induction variable
|
|
/// in a subset of [Begin, End). The algorithm emits appropriate pre and post
|
|
/// loops to run any remaining iterations. The pre loop runs any iterations in
|
|
/// which the induction variable is < Begin, and the post loop runs any
|
|
/// iterations in which the induction variable is >= End.
|
|
///
|
|
class LoopConstrainer {
|
|
// The representation of a clone of the original loop we started out with.
|
|
struct ClonedLoop {
|
|
// The cloned blocks
|
|
std::vector<BasicBlock *> Blocks;
|
|
|
|
// `Map` maps values in the clonee into values in the cloned version
|
|
ValueToValueMapTy Map;
|
|
|
|
// An instance of `LoopStructure` for the cloned loop
|
|
LoopStructure Structure;
|
|
};
|
|
|
|
// Result of rewriting the range of a loop. See changeIterationSpaceEnd for
|
|
// more details on what these fields mean.
|
|
struct RewrittenRangeInfo {
|
|
BasicBlock *PseudoExit;
|
|
BasicBlock *ExitSelector;
|
|
std::vector<PHINode *> PHIValuesAtPseudoExit;
|
|
PHINode *IndVarEnd;
|
|
|
|
RewrittenRangeInfo()
|
|
: PseudoExit(nullptr), ExitSelector(nullptr), IndVarEnd(nullptr) {}
|
|
};
|
|
|
|
// Calculated subranges we restrict the iteration space of the main loop to.
|
|
// See the implementation of `calculateSubRanges' for more details on how
|
|
// these fields are computed. `LowLimit` is None if there is no restriction
|
|
// on low end of the restricted iteration space of the main loop. `HighLimit`
|
|
// is None if there is no restriction on high end of the restricted iteration
|
|
// space of the main loop.
|
|
|
|
struct SubRanges {
|
|
Optional<const SCEV *> LowLimit;
|
|
Optional<const SCEV *> HighLimit;
|
|
};
|
|
|
|
// A utility function that does a `replaceUsesOfWith' on the incoming block
|
|
// set of a `PHINode' -- replaces instances of `Block' in the `PHINode's
|
|
// incoming block list with `ReplaceBy'.
|
|
static void replacePHIBlock(PHINode *PN, BasicBlock *Block,
|
|
BasicBlock *ReplaceBy);
|
|
|
|
// Compute a safe set of limits for the main loop to run in -- effectively the
|
|
// intersection of `Range' and the iteration space of the original loop.
|
|
// Return None if unable to compute the set of subranges.
|
|
//
|
|
Optional<SubRanges> calculateSubRanges(bool IsSignedPredicate) const;
|
|
|
|
// Clone `OriginalLoop' and return the result in CLResult. The IR after
|
|
// running `cloneLoop' is well formed except for the PHI nodes in CLResult --
|
|
// the PHI nodes say that there is an incoming edge from `OriginalPreheader`
|
|
// but there is no such edge.
|
|
//
|
|
void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
|
|
|
|
// Create the appropriate loop structure needed to describe a cloned copy of
|
|
// `Original`. The clone is described by `VM`.
|
|
Loop *createClonedLoopStructure(Loop *Original, Loop *Parent,
|
|
ValueToValueMapTy &VM);
|
|
|
|
// Rewrite the iteration space of the loop denoted by (LS, Preheader). The
|
|
// iteration space of the rewritten loop ends at ExitLoopAt. The start of the
|
|
// iteration space is not changed. `ExitLoopAt' is assumed to be slt
|
|
// `OriginalHeaderCount'.
|
|
//
|
|
// If there are iterations left to execute, control is made to jump to
|
|
// `ContinuationBlock', otherwise they take the normal loop exit. The
|
|
// returned `RewrittenRangeInfo' object is populated as follows:
|
|
//
|
|
// .PseudoExit is a basic block that unconditionally branches to
|
|
// `ContinuationBlock'.
|
|
//
|
|
// .ExitSelector is a basic block that decides, on exit from the loop,
|
|
// whether to branch to the "true" exit or to `PseudoExit'.
|
|
//
|
|
// .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
|
|
// for each PHINode in the loop header on taking the pseudo exit.
|
|
//
|
|
// After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
|
|
// preheader because it is made to branch to the loop header only
|
|
// conditionally.
|
|
//
|
|
RewrittenRangeInfo
|
|
changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
|
|
Value *ExitLoopAt,
|
|
BasicBlock *ContinuationBlock) const;
|
|
|
|
// The loop denoted by `LS' has `OldPreheader' as its preheader. This
|
|
// function creates a new preheader for `LS' and returns it.
|
|
//
|
|
BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
|
|
const char *Tag) const;
|
|
|
|
// `ContinuationBlockAndPreheader' was the continuation block for some call to
|
|
// `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
|
|
// This function rewrites the PHI nodes in `LS.Header' to start with the
|
|
// correct value.
|
|
void rewriteIncomingValuesForPHIs(
|
|
LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
|
|
const LoopConstrainer::RewrittenRangeInfo &RRI) const;
|
|
|
|
// Even though we do not preserve any passes at this time, we at least need to
|
|
// keep the parent loop structure consistent. The `LPPassManager' seems to
|
|
// verify this after running a loop pass. This function adds the list of
|
|
// blocks denoted by BBs to this loops parent loop if required.
|
|
void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
|
|
|
|
// Some global state.
|
|
Function &F;
|
|
LLVMContext &Ctx;
|
|
ScalarEvolution &SE;
|
|
DominatorTree &DT;
|
|
LPPassManager &LPM;
|
|
LoopInfo &LI;
|
|
|
|
// Information about the original loop we started out with.
|
|
Loop &OriginalLoop;
|
|
const SCEV *LatchTakenCount;
|
|
BasicBlock *OriginalPreheader;
|
|
|
|
// The preheader of the main loop. This may or may not be different from
|
|
// `OriginalPreheader'.
|
|
BasicBlock *MainLoopPreheader;
|
|
|
|
// The range we need to run the main loop in.
|
|
InductiveRangeCheck::Range Range;
|
|
|
|
// The structure of the main loop (see comment at the beginning of this class
|
|
// for a definition)
|
|
LoopStructure MainLoopStructure;
|
|
|
|
public:
|
|
LoopConstrainer(Loop &L, LoopInfo &LI, LPPassManager &LPM,
|
|
const LoopStructure &LS, ScalarEvolution &SE,
|
|
DominatorTree &DT, InductiveRangeCheck::Range R)
|
|
: F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
|
|
SE(SE), DT(DT), LPM(LPM), LI(LI), OriginalLoop(L),
|
|
LatchTakenCount(nullptr), OriginalPreheader(nullptr),
|
|
MainLoopPreheader(nullptr), Range(R), MainLoopStructure(LS) {}
|
|
|
|
// Entry point for the algorithm. Returns true on success.
|
|
bool run();
|
|
};
|
|
|
|
}
|
|
|
|
void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block,
|
|
BasicBlock *ReplaceBy) {
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
if (PN->getIncomingBlock(i) == Block)
|
|
PN->setIncomingBlock(i, ReplaceBy);
|
|
}
|
|
|
|
static bool CanBeMax(ScalarEvolution &SE, const SCEV *S, bool Signed) {
|
|
APInt Max = Signed ?
|
|
APInt::getSignedMaxValue(cast<IntegerType>(S->getType())->getBitWidth()) :
|
|
APInt::getMaxValue(cast<IntegerType>(S->getType())->getBitWidth());
|
|
return SE.getSignedRange(S).contains(Max) &&
|
|
SE.getUnsignedRange(S).contains(Max);
|
|
}
|
|
|
|
static bool SumCanReachMax(ScalarEvolution &SE, const SCEV *S1, const SCEV *S2,
|
|
bool Signed) {
|
|
// S1 < INT_MAX - S2 ===> S1 + S2 < INT_MAX.
|
|
assert(SE.isKnownNonNegative(S2) &&
|
|
"We expected the 2nd arg to be non-negative!");
|
|
const SCEV *Max = SE.getConstant(
|
|
Signed ? APInt::getSignedMaxValue(
|
|
cast<IntegerType>(S1->getType())->getBitWidth())
|
|
: APInt::getMaxValue(
|
|
cast<IntegerType>(S1->getType())->getBitWidth()));
|
|
const SCEV *CapForS1 = SE.getMinusSCEV(Max, S2);
|
|
return !SE.isKnownPredicate(Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
|
|
S1, CapForS1);
|
|
}
|
|
|
|
static bool CanBeMin(ScalarEvolution &SE, const SCEV *S, bool Signed) {
|
|
APInt Min = Signed ?
|
|
APInt::getSignedMinValue(cast<IntegerType>(S->getType())->getBitWidth()) :
|
|
APInt::getMinValue(cast<IntegerType>(S->getType())->getBitWidth());
|
|
return SE.getSignedRange(S).contains(Min) &&
|
|
SE.getUnsignedRange(S).contains(Min);
|
|
}
|
|
|
|
static bool SumCanReachMin(ScalarEvolution &SE, const SCEV *S1, const SCEV *S2,
|
|
bool Signed) {
|
|
// S1 > INT_MIN - S2 ===> S1 + S2 > INT_MIN.
|
|
assert(SE.isKnownNonPositive(S2) &&
|
|
"We expected the 2nd arg to be non-positive!");
|
|
const SCEV *Max = SE.getConstant(
|
|
Signed ? APInt::getSignedMinValue(
|
|
cast<IntegerType>(S1->getType())->getBitWidth())
|
|
: APInt::getMinValue(
|
|
cast<IntegerType>(S1->getType())->getBitWidth()));
|
|
const SCEV *CapForS1 = SE.getMinusSCEV(Max, S2);
|
|
return !SE.isKnownPredicate(Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT,
|
|
S1, CapForS1);
|
|
}
|
|
|
|
Optional<LoopStructure>
|
|
LoopStructure::parseLoopStructure(ScalarEvolution &SE,
|
|
BranchProbabilityInfo &BPI,
|
|
Loop &L, const char *&FailureReason) {
|
|
if (!L.isLoopSimplifyForm()) {
|
|
FailureReason = "loop not in LoopSimplify form";
|
|
return None;
|
|
}
|
|
|
|
BasicBlock *Latch = L.getLoopLatch();
|
|
assert(Latch && "Simplified loops only have one latch!");
|
|
|
|
if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) {
|
|
FailureReason = "loop has already been cloned";
|
|
return None;
|
|
}
|
|
|
|
if (!L.isLoopExiting(Latch)) {
|
|
FailureReason = "no loop latch";
|
|
return None;
|
|
}
|
|
|
|
BasicBlock *Header = L.getHeader();
|
|
BasicBlock *Preheader = L.getLoopPreheader();
|
|
if (!Preheader) {
|
|
FailureReason = "no preheader";
|
|
return None;
|
|
}
|
|
|
|
BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
|
|
if (!LatchBr || LatchBr->isUnconditional()) {
|
|
FailureReason = "latch terminator not conditional branch";
|
|
return None;
|
|
}
|
|
|
|
unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
|
|
|
|
BranchProbability ExitProbability =
|
|
BPI.getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx);
|
|
|
|
if (!SkipProfitabilityChecks &&
|
|
ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) {
|
|
FailureReason = "short running loop, not profitable";
|
|
return None;
|
|
}
|
|
|
|
ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
|
|
if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
|
|
FailureReason = "latch terminator branch not conditional on integral icmp";
|
|
return None;
|
|
}
|
|
|
|
const SCEV *LatchCount = SE.getExitCount(&L, Latch);
|
|
if (isa<SCEVCouldNotCompute>(LatchCount)) {
|
|
FailureReason = "could not compute latch count";
|
|
return None;
|
|
}
|
|
|
|
ICmpInst::Predicate Pred = ICI->getPredicate();
|
|
Value *LeftValue = ICI->getOperand(0);
|
|
const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
|
|
IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
|
|
|
|
Value *RightValue = ICI->getOperand(1);
|
|
const SCEV *RightSCEV = SE.getSCEV(RightValue);
|
|
|
|
// We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
|
|
if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
|
|
if (isa<SCEVAddRecExpr>(RightSCEV)) {
|
|
std::swap(LeftSCEV, RightSCEV);
|
|
std::swap(LeftValue, RightValue);
|
|
Pred = ICmpInst::getSwappedPredicate(Pred);
|
|
} else {
|
|
FailureReason = "no add recurrences in the icmp";
|
|
return None;
|
|
}
|
|
}
|
|
|
|
auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) {
|
|
if (AR->getNoWrapFlags(SCEV::FlagNSW))
|
|
return true;
|
|
|
|
IntegerType *Ty = cast<IntegerType>(AR->getType());
|
|
IntegerType *WideTy =
|
|
IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
|
|
|
|
const SCEVAddRecExpr *ExtendAfterOp =
|
|
dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
|
|
if (ExtendAfterOp) {
|
|
const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
|
|
const SCEV *ExtendedStep =
|
|
SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
|
|
|
|
bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
|
|
ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
|
|
|
|
if (NoSignedWrap)
|
|
return true;
|
|
}
|
|
|
|
// We may have proved this when computing the sign extension above.
|
|
return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap;
|
|
};
|
|
|
|
// Here we check whether the suggested AddRec is an induction variable that
|
|
// can be handled (i.e. with known constant step), and if yes, calculate its
|
|
// step and identify whether it is increasing or decreasing.
|
|
auto IsInductionVar = [&](const SCEVAddRecExpr *AR, bool &IsIncreasing,
|
|
ConstantInt *&StepCI) {
|
|
if (!AR->isAffine())
|
|
return false;
|
|
|
|
// Currently we only work with induction variables that have been proved to
|
|
// not wrap. This restriction can potentially be lifted in the future.
|
|
|
|
if (!HasNoSignedWrap(AR))
|
|
return false;
|
|
|
|
if (const SCEVConstant *StepExpr =
|
|
dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) {
|
|
StepCI = StepExpr->getValue();
|
|
assert(!StepCI->isZero() && "Zero step?");
|
|
IsIncreasing = !StepCI->isNegative();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
// `ICI` is interpreted as taking the backedge if the *next* value of the
|
|
// induction variable satisfies some constraint.
|
|
|
|
const SCEVAddRecExpr *IndVarBase = cast<SCEVAddRecExpr>(LeftSCEV);
|
|
bool IsIncreasing = false;
|
|
bool IsSignedPredicate = true;
|
|
ConstantInt *StepCI;
|
|
if (!IsInductionVar(IndVarBase, IsIncreasing, StepCI)) {
|
|
FailureReason = "LHS in icmp not induction variable";
|
|
return None;
|
|
}
|
|
|
|
const SCEV *StartNext = IndVarBase->getStart();
|
|
const SCEV *Addend = SE.getNegativeSCEV(IndVarBase->getStepRecurrence(SE));
|
|
const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
|
|
const SCEV *Step = SE.getSCEV(StepCI);
|
|
|
|
ConstantInt *One = ConstantInt::get(IndVarTy, 1);
|
|
if (IsIncreasing) {
|
|
bool DecreasedRightValueByOne = false;
|
|
if (StepCI->isOne()) {
|
|
// Try to turn eq/ne predicates to those we can work with.
|
|
if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
|
|
// while (++i != len) { while (++i < len) {
|
|
// ... ---> ...
|
|
// } }
|
|
// If both parts are known non-negative, it is profitable to use
|
|
// unsigned comparison in increasing loop. This allows us to make the
|
|
// comparison check against "RightSCEV + 1" more optimistic.
|
|
if (SE.isKnownNonNegative(IndVarStart) &&
|
|
SE.isKnownNonNegative(RightSCEV))
|
|
Pred = ICmpInst::ICMP_ULT;
|
|
else
|
|
Pred = ICmpInst::ICMP_SLT;
|
|
else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0 &&
|
|
!CanBeMin(SE, RightSCEV, /* IsSignedPredicate */ true)) {
|
|
// while (true) { while (true) {
|
|
// if (++i == len) ---> if (++i > len - 1)
|
|
// break; break;
|
|
// ... ...
|
|
// } }
|
|
// TODO: Insert ICMP_UGT if both are non-negative?
|
|
Pred = ICmpInst::ICMP_SGT;
|
|
RightSCEV = SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType()));
|
|
DecreasedRightValueByOne = true;
|
|
}
|
|
}
|
|
|
|
bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
|
|
bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
|
|
bool FoundExpectedPred =
|
|
(LTPred && LatchBrExitIdx == 1) || (GTPred && LatchBrExitIdx == 0);
|
|
|
|
if (!FoundExpectedPred) {
|
|
FailureReason = "expected icmp slt semantically, found something else";
|
|
return None;
|
|
}
|
|
|
|
IsSignedPredicate =
|
|
Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT;
|
|
// The predicate that we need to check that the induction variable lies
|
|
// within bounds.
|
|
ICmpInst::Predicate BoundPred =
|
|
IsSignedPredicate ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
|
|
|
|
if (LatchBrExitIdx == 0) {
|
|
const SCEV *StepMinusOne = SE.getMinusSCEV(Step,
|
|
SE.getOne(Step->getType()));
|
|
if (SumCanReachMax(SE, RightSCEV, StepMinusOne, IsSignedPredicate)) {
|
|
// TODO: this restriction is easily removable -- we just have to
|
|
// remember that the icmp was an slt and not an sle.
|
|
FailureReason = "limit may overflow when coercing le to lt";
|
|
return None;
|
|
}
|
|
|
|
if (!SE.isLoopEntryGuardedByCond(
|
|
&L, BoundPred, IndVarStart,
|
|
SE.getAddExpr(RightSCEV, Step))) {
|
|
FailureReason = "Induction variable start not bounded by upper limit";
|
|
return None;
|
|
}
|
|
|
|
// We need to increase the right value unless we have already decreased
|
|
// it virtually when we replaced EQ with SGT.
|
|
if (!DecreasedRightValueByOne) {
|
|
IRBuilder<> B(Preheader->getTerminator());
|
|
RightValue = B.CreateAdd(RightValue, One);
|
|
}
|
|
} else {
|
|
if (!SE.isLoopEntryGuardedByCond(&L, BoundPred, IndVarStart, RightSCEV)) {
|
|
FailureReason = "Induction variable start not bounded by upper limit";
|
|
return None;
|
|
}
|
|
assert(!DecreasedRightValueByOne &&
|
|
"Right value can be decreased only for LatchBrExitIdx == 0!");
|
|
}
|
|
} else {
|
|
bool IncreasedRightValueByOne = false;
|
|
if (StepCI->isMinusOne()) {
|
|
// Try to turn eq/ne predicates to those we can work with.
|
|
if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
|
|
// while (--i != len) { while (--i > len) {
|
|
// ... ---> ...
|
|
// } }
|
|
// We intentionally don't turn the predicate into UGT even if we know
|
|
// that both operands are non-negative, because it will only pessimize
|
|
// our check against "RightSCEV - 1".
|
|
Pred = ICmpInst::ICMP_SGT;
|
|
else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0 &&
|
|
!CanBeMax(SE, RightSCEV, /* IsSignedPredicate */ true)) {
|
|
// while (true) { while (true) {
|
|
// if (--i == len) ---> if (--i < len + 1)
|
|
// break; break;
|
|
// ... ...
|
|
// } }
|
|
// TODO: Insert ICMP_ULT if both are non-negative?
|
|
Pred = ICmpInst::ICMP_SLT;
|
|
RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
|
|
IncreasedRightValueByOne = true;
|
|
}
|
|
}
|
|
|
|
bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
|
|
bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
|
|
|
|
bool FoundExpectedPred =
|
|
(GTPred && LatchBrExitIdx == 1) || (LTPred && LatchBrExitIdx == 0);
|
|
|
|
if (!FoundExpectedPred) {
|
|
FailureReason = "expected icmp sgt semantically, found something else";
|
|
return None;
|
|
}
|
|
|
|
IsSignedPredicate =
|
|
Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT;
|
|
// The predicate that we need to check that the induction variable lies
|
|
// within bounds.
|
|
ICmpInst::Predicate BoundPred =
|
|
IsSignedPredicate ? CmpInst::ICMP_SGT : CmpInst::ICMP_UGT;
|
|
|
|
if (LatchBrExitIdx == 0) {
|
|
const SCEV *StepPlusOne = SE.getAddExpr(Step, SE.getOne(Step->getType()));
|
|
if (SumCanReachMin(SE, RightSCEV, StepPlusOne, IsSignedPredicate)) {
|
|
// TODO: this restriction is easily removable -- we just have to
|
|
// remember that the icmp was an sgt and not an sge.
|
|
FailureReason = "limit may overflow when coercing ge to gt";
|
|
return None;
|
|
}
|
|
|
|
if (!SE.isLoopEntryGuardedByCond(
|
|
&L, BoundPred, IndVarStart,
|
|
SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType())))) {
|
|
FailureReason = "Induction variable start not bounded by lower limit";
|
|
return None;
|
|
}
|
|
|
|
// We need to decrease the right value unless we have already increased
|
|
// it virtually when we replaced EQ with SLT.
|
|
if (!IncreasedRightValueByOne) {
|
|
IRBuilder<> B(Preheader->getTerminator());
|
|
RightValue = B.CreateSub(RightValue, One);
|
|
}
|
|
} else {
|
|
if (!SE.isLoopEntryGuardedByCond(&L, BoundPred, IndVarStart, RightSCEV)) {
|
|
FailureReason = "Induction variable start not bounded by lower limit";
|
|
return None;
|
|
}
|
|
assert(!IncreasedRightValueByOne &&
|
|
"Right value can be increased only for LatchBrExitIdx == 0!");
|
|
}
|
|
}
|
|
BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
|
|
|
|
assert(SE.getLoopDisposition(LatchCount, &L) ==
|
|
ScalarEvolution::LoopInvariant &&
|
|
"loop variant exit count doesn't make sense!");
|
|
|
|
assert(!L.contains(LatchExit) && "expected an exit block!");
|
|
const DataLayout &DL = Preheader->getModule()->getDataLayout();
|
|
Value *IndVarStartV =
|
|
SCEVExpander(SE, DL, "irce")
|
|
.expandCodeFor(IndVarStart, IndVarTy, Preheader->getTerminator());
|
|
IndVarStartV->setName("indvar.start");
|
|
|
|
LoopStructure Result;
|
|
|
|
Result.Tag = "main";
|
|
Result.Header = Header;
|
|
Result.Latch = Latch;
|
|
Result.LatchBr = LatchBr;
|
|
Result.LatchExit = LatchExit;
|
|
Result.LatchBrExitIdx = LatchBrExitIdx;
|
|
Result.IndVarStart = IndVarStartV;
|
|
Result.IndVarStep = StepCI;
|
|
Result.IndVarBase = LeftValue;
|
|
Result.IndVarIncreasing = IsIncreasing;
|
|
Result.LoopExitAt = RightValue;
|
|
Result.IsSignedPredicate = IsSignedPredicate;
|
|
|
|
FailureReason = nullptr;
|
|
|
|
return Result;
|
|
}
|
|
|
|
Optional<LoopConstrainer::SubRanges>
|
|
LoopConstrainer::calculateSubRanges(bool IsSignedPredicate) const {
|
|
IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
|
|
|
|
if (Range.getType() != Ty)
|
|
return None;
|
|
|
|
LoopConstrainer::SubRanges Result;
|
|
|
|
// I think we can be more aggressive here and make this nuw / nsw if the
|
|
// addition that feeds into the icmp for the latch's terminating branch is nuw
|
|
// / nsw. In any case, a wrapping 2's complement addition is safe.
|
|
const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart);
|
|
const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt);
|
|
|
|
bool Increasing = MainLoopStructure.IndVarIncreasing;
|
|
|
|
// We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or
|
|
// [Smallest, GreatestSeen] is the range of values the induction variable
|
|
// takes.
|
|
|
|
const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr;
|
|
|
|
const SCEV *One = SE.getOne(Ty);
|
|
if (Increasing) {
|
|
Smallest = Start;
|
|
Greatest = End;
|
|
// No overflow, because the range [Smallest, GreatestSeen] is not empty.
|
|
GreatestSeen = SE.getMinusSCEV(End, One);
|
|
} else {
|
|
// These two computations may sign-overflow. Here is why that is okay:
|
|
//
|
|
// We know that the induction variable does not sign-overflow on any
|
|
// iteration except the last one, and it starts at `Start` and ends at
|
|
// `End`, decrementing by one every time.
|
|
//
|
|
// * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
|
|
// induction variable is decreasing we know that that the smallest value
|
|
// the loop body is actually executed with is `INT_SMIN` == `Smallest`.
|
|
//
|
|
// * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`. In
|
|
// that case, `Clamp` will always return `Smallest` and
|
|
// [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
|
|
// will be an empty range. Returning an empty range is always safe.
|
|
//
|
|
|
|
Smallest = SE.getAddExpr(End, One);
|
|
Greatest = SE.getAddExpr(Start, One);
|
|
GreatestSeen = Start;
|
|
}
|
|
|
|
auto Clamp = [this, Smallest, Greatest, IsSignedPredicate](const SCEV *S) {
|
|
bool MaybeNegativeValues = IsSignedPredicate || !SE.isKnownNonNegative(S);
|
|
return MaybeNegativeValues
|
|
? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S))
|
|
: SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S));
|
|
};
|
|
|
|
// In some cases we can prove that we don't need a pre or post loop.
|
|
ICmpInst::Predicate PredLE =
|
|
IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
|
|
ICmpInst::Predicate PredLT =
|
|
IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
|
|
|
|
bool ProvablyNoPreloop =
|
|
SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest);
|
|
if (!ProvablyNoPreloop)
|
|
Result.LowLimit = Clamp(Range.getBegin());
|
|
|
|
bool ProvablyNoPostLoop =
|
|
SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd());
|
|
if (!ProvablyNoPostLoop)
|
|
Result.HighLimit = Clamp(Range.getEnd());
|
|
|
|
return Result;
|
|
}
|
|
|
|
void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
|
|
const char *Tag) const {
|
|
for (BasicBlock *BB : OriginalLoop.getBlocks()) {
|
|
BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
|
|
Result.Blocks.push_back(Clone);
|
|
Result.Map[BB] = Clone;
|
|
}
|
|
|
|
auto GetClonedValue = [&Result](Value *V) {
|
|
assert(V && "null values not in domain!");
|
|
auto It = Result.Map.find(V);
|
|
if (It == Result.Map.end())
|
|
return V;
|
|
return static_cast<Value *>(It->second);
|
|
};
|
|
|
|
auto *ClonedLatch =
|
|
cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch()));
|
|
ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag,
|
|
MDNode::get(Ctx, {}));
|
|
|
|
Result.Structure = MainLoopStructure.map(GetClonedValue);
|
|
Result.Structure.Tag = Tag;
|
|
|
|
for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
|
|
BasicBlock *ClonedBB = Result.Blocks[i];
|
|
BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
|
|
|
|
assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
|
|
|
|
for (Instruction &I : *ClonedBB)
|
|
RemapInstruction(&I, Result.Map,
|
|
RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
|
|
|
|
// Exit blocks will now have one more predecessor and their PHI nodes need
|
|
// to be edited to reflect that. No phi nodes need to be introduced because
|
|
// the loop is in LCSSA.
|
|
|
|
for (auto *SBB : successors(OriginalBB)) {
|
|
if (OriginalLoop.contains(SBB))
|
|
continue; // not an exit block
|
|
|
|
for (Instruction &I : *SBB) {
|
|
auto *PN = dyn_cast<PHINode>(&I);
|
|
if (!PN)
|
|
break;
|
|
|
|
Value *OldIncoming = PN->getIncomingValueForBlock(OriginalBB);
|
|
PN->addIncoming(GetClonedValue(OldIncoming), ClonedBB);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
|
|
const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
|
|
BasicBlock *ContinuationBlock) const {
|
|
|
|
// We start with a loop with a single latch:
|
|
//
|
|
// +--------------------+
|
|
// | |
|
|
// | preheader |
|
|
// | |
|
|
// +--------+-----------+
|
|
// | ----------------\
|
|
// | / |
|
|
// +--------v----v------+ |
|
|
// | | |
|
|
// | header | |
|
|
// | | |
|
|
// +--------------------+ |
|
|
// |
|
|
// ..... |
|
|
// |
|
|
// +--------------------+ |
|
|
// | | |
|
|
// | latch >----------/
|
|
// | |
|
|
// +-------v------------+
|
|
// |
|
|
// |
|
|
// | +--------------------+
|
|
// | | |
|
|
// +---> original exit |
|
|
// | |
|
|
// +--------------------+
|
|
//
|
|
// We change the control flow to look like
|
|
//
|
|
//
|
|
// +--------------------+
|
|
// | |
|
|
// | preheader >-------------------------+
|
|
// | | |
|
|
// +--------v-----------+ |
|
|
// | /-------------+ |
|
|
// | / | |
|
|
// +--------v--v--------+ | |
|
|
// | | | |
|
|
// | header | | +--------+ |
|
|
// | | | | | |
|
|
// +--------------------+ | | +-----v-----v-----------+
|
|
// | | | |
|
|
// | | | .pseudo.exit |
|
|
// | | | |
|
|
// | | +-----------v-----------+
|
|
// | | |
|
|
// ..... | | |
|
|
// | | +--------v-------------+
|
|
// +--------------------+ | | | |
|
|
// | | | | | ContinuationBlock |
|
|
// | latch >------+ | | |
|
|
// | | | +----------------------+
|
|
// +---------v----------+ |
|
|
// | |
|
|
// | |
|
|
// | +---------------^-----+
|
|
// | | |
|
|
// +-----> .exit.selector |
|
|
// | |
|
|
// +----------v----------+
|
|
// |
|
|
// +--------------------+ |
|
|
// | | |
|
|
// | original exit <----+
|
|
// | |
|
|
// +--------------------+
|
|
//
|
|
|
|
RewrittenRangeInfo RRI;
|
|
|
|
BasicBlock *BBInsertLocation = LS.Latch->getNextNode();
|
|
RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
|
|
&F, BBInsertLocation);
|
|
RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
|
|
BBInsertLocation);
|
|
|
|
BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator());
|
|
bool Increasing = LS.IndVarIncreasing;
|
|
bool IsSignedPredicate = LS.IsSignedPredicate;
|
|
|
|
IRBuilder<> B(PreheaderJump);
|
|
|
|
// EnterLoopCond - is it okay to start executing this `LS'?
|
|
Value *EnterLoopCond = nullptr;
|
|
if (Increasing)
|
|
EnterLoopCond = IsSignedPredicate
|
|
? B.CreateICmpSLT(LS.IndVarStart, ExitSubloopAt)
|
|
: B.CreateICmpULT(LS.IndVarStart, ExitSubloopAt);
|
|
else
|
|
EnterLoopCond = IsSignedPredicate
|
|
? B.CreateICmpSGT(LS.IndVarStart, ExitSubloopAt)
|
|
: B.CreateICmpUGT(LS.IndVarStart, ExitSubloopAt);
|
|
|
|
B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
|
|
PreheaderJump->eraseFromParent();
|
|
|
|
LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
|
|
B.SetInsertPoint(LS.LatchBr);
|
|
Value *TakeBackedgeLoopCond = nullptr;
|
|
if (Increasing)
|
|
TakeBackedgeLoopCond = IsSignedPredicate
|
|
? B.CreateICmpSLT(LS.IndVarBase, ExitSubloopAt)
|
|
: B.CreateICmpULT(LS.IndVarBase, ExitSubloopAt);
|
|
else
|
|
TakeBackedgeLoopCond = IsSignedPredicate
|
|
? B.CreateICmpSGT(LS.IndVarBase, ExitSubloopAt)
|
|
: B.CreateICmpUGT(LS.IndVarBase, ExitSubloopAt);
|
|
Value *CondForBranch = LS.LatchBrExitIdx == 1
|
|
? TakeBackedgeLoopCond
|
|
: B.CreateNot(TakeBackedgeLoopCond);
|
|
|
|
LS.LatchBr->setCondition(CondForBranch);
|
|
|
|
B.SetInsertPoint(RRI.ExitSelector);
|
|
|
|
// IterationsLeft - are there any more iterations left, given the original
|
|
// upper bound on the induction variable? If not, we branch to the "real"
|
|
// exit.
|
|
Value *IterationsLeft = nullptr;
|
|
if (Increasing)
|
|
IterationsLeft = IsSignedPredicate
|
|
? B.CreateICmpSLT(LS.IndVarBase, LS.LoopExitAt)
|
|
: B.CreateICmpULT(LS.IndVarBase, LS.LoopExitAt);
|
|
else
|
|
IterationsLeft = IsSignedPredicate
|
|
? B.CreateICmpSGT(LS.IndVarBase, LS.LoopExitAt)
|
|
: B.CreateICmpUGT(LS.IndVarBase, LS.LoopExitAt);
|
|
B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
|
|
|
|
BranchInst *BranchToContinuation =
|
|
BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
|
|
|
|
// We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
|
|
// each of the PHI nodes in the loop header. This feeds into the initial
|
|
// value of the same PHI nodes if/when we continue execution.
|
|
for (Instruction &I : *LS.Header) {
|
|
auto *PN = dyn_cast<PHINode>(&I);
|
|
if (!PN)
|
|
break;
|
|
|
|
PHINode *NewPHI = PHINode::Create(PN->getType(), 2, PN->getName() + ".copy",
|
|
BranchToContinuation);
|
|
|
|
NewPHI->addIncoming(PN->getIncomingValueForBlock(Preheader), Preheader);
|
|
NewPHI->addIncoming(PN->getIncomingValueForBlock(LS.Latch),
|
|
RRI.ExitSelector);
|
|
RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
|
|
}
|
|
|
|
RRI.IndVarEnd = PHINode::Create(LS.IndVarBase->getType(), 2, "indvar.end",
|
|
BranchToContinuation);
|
|
RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader);
|
|
RRI.IndVarEnd->addIncoming(LS.IndVarBase, RRI.ExitSelector);
|
|
|
|
// The latch exit now has a branch from `RRI.ExitSelector' instead of
|
|
// `LS.Latch'. The PHI nodes need to be updated to reflect that.
|
|
for (Instruction &I : *LS.LatchExit) {
|
|
if (PHINode *PN = dyn_cast<PHINode>(&I))
|
|
replacePHIBlock(PN, LS.Latch, RRI.ExitSelector);
|
|
else
|
|
break;
|
|
}
|
|
|
|
return RRI;
|
|
}
|
|
|
|
void LoopConstrainer::rewriteIncomingValuesForPHIs(
|
|
LoopStructure &LS, BasicBlock *ContinuationBlock,
|
|
const LoopConstrainer::RewrittenRangeInfo &RRI) const {
|
|
|
|
unsigned PHIIndex = 0;
|
|
for (Instruction &I : *LS.Header) {
|
|
auto *PN = dyn_cast<PHINode>(&I);
|
|
if (!PN)
|
|
break;
|
|
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
|
|
if (PN->getIncomingBlock(i) == ContinuationBlock)
|
|
PN->setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]);
|
|
}
|
|
|
|
LS.IndVarStart = RRI.IndVarEnd;
|
|
}
|
|
|
|
BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
|
|
BasicBlock *OldPreheader,
|
|
const char *Tag) const {
|
|
|
|
BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
|
|
BranchInst::Create(LS.Header, Preheader);
|
|
|
|
for (Instruction &I : *LS.Header) {
|
|
auto *PN = dyn_cast<PHINode>(&I);
|
|
if (!PN)
|
|
break;
|
|
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
|
|
replacePHIBlock(PN, OldPreheader, Preheader);
|
|
}
|
|
|
|
return Preheader;
|
|
}
|
|
|
|
void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
|
|
Loop *ParentLoop = OriginalLoop.getParentLoop();
|
|
if (!ParentLoop)
|
|
return;
|
|
|
|
for (BasicBlock *BB : BBs)
|
|
ParentLoop->addBasicBlockToLoop(BB, LI);
|
|
}
|
|
|
|
Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent,
|
|
ValueToValueMapTy &VM) {
|
|
Loop &New = *new Loop();
|
|
if (Parent)
|
|
Parent->addChildLoop(&New);
|
|
else
|
|
LI.addTopLevelLoop(&New);
|
|
LPM.addLoop(New);
|
|
|
|
// Add all of the blocks in Original to the new loop.
|
|
for (auto *BB : Original->blocks())
|
|
if (LI.getLoopFor(BB) == Original)
|
|
New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI);
|
|
|
|
// Add all of the subloops to the new loop.
|
|
for (Loop *SubLoop : *Original)
|
|
createClonedLoopStructure(SubLoop, &New, VM);
|
|
|
|
return &New;
|
|
}
|
|
|
|
bool LoopConstrainer::run() {
|
|
BasicBlock *Preheader = nullptr;
|
|
LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
|
|
Preheader = OriginalLoop.getLoopPreheader();
|
|
assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
|
|
"preconditions!");
|
|
|
|
OriginalPreheader = Preheader;
|
|
MainLoopPreheader = Preheader;
|
|
|
|
bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate;
|
|
Optional<SubRanges> MaybeSR = calculateSubRanges(IsSignedPredicate);
|
|
if (!MaybeSR.hasValue()) {
|
|
DEBUG(dbgs() << "irce: could not compute subranges\n");
|
|
return false;
|
|
}
|
|
|
|
SubRanges SR = MaybeSR.getValue();
|
|
bool Increasing = MainLoopStructure.IndVarIncreasing;
|
|
IntegerType *IVTy =
|
|
cast<IntegerType>(MainLoopStructure.IndVarBase->getType());
|
|
|
|
SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce");
|
|
Instruction *InsertPt = OriginalPreheader->getTerminator();
|
|
|
|
// It would have been better to make `PreLoop' and `PostLoop'
|
|
// `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
|
|
// constructor.
|
|
ClonedLoop PreLoop, PostLoop;
|
|
bool NeedsPreLoop =
|
|
Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue();
|
|
bool NeedsPostLoop =
|
|
Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue();
|
|
|
|
Value *ExitPreLoopAt = nullptr;
|
|
Value *ExitMainLoopAt = nullptr;
|
|
const SCEVConstant *MinusOneS =
|
|
cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
|
|
|
|
if (NeedsPreLoop) {
|
|
const SCEV *ExitPreLoopAtSCEV = nullptr;
|
|
|
|
if (Increasing)
|
|
ExitPreLoopAtSCEV = *SR.LowLimit;
|
|
else {
|
|
if (CanBeMin(SE, *SR.HighLimit, IsSignedPredicate)) {
|
|
DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
|
|
<< "preloop exit limit. HighLimit = " << *(*SR.HighLimit)
|
|
<< "\n");
|
|
return false;
|
|
}
|
|
ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
|
|
}
|
|
|
|
ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
|
|
ExitPreLoopAt->setName("exit.preloop.at");
|
|
}
|
|
|
|
if (NeedsPostLoop) {
|
|
const SCEV *ExitMainLoopAtSCEV = nullptr;
|
|
|
|
if (Increasing)
|
|
ExitMainLoopAtSCEV = *SR.HighLimit;
|
|
else {
|
|
if (CanBeMin(SE, *SR.LowLimit, IsSignedPredicate)) {
|
|
DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
|
|
<< "mainloop exit limit. LowLimit = " << *(*SR.LowLimit)
|
|
<< "\n");
|
|
return false;
|
|
}
|
|
ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
|
|
}
|
|
|
|
ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
|
|
ExitMainLoopAt->setName("exit.mainloop.at");
|
|
}
|
|
|
|
// We clone these ahead of time so that we don't have to deal with changing
|
|
// and temporarily invalid IR as we transform the loops.
|
|
if (NeedsPreLoop)
|
|
cloneLoop(PreLoop, "preloop");
|
|
if (NeedsPostLoop)
|
|
cloneLoop(PostLoop, "postloop");
|
|
|
|
RewrittenRangeInfo PreLoopRRI;
|
|
|
|
if (NeedsPreLoop) {
|
|
Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
|
|
PreLoop.Structure.Header);
|
|
|
|
MainLoopPreheader =
|
|
createPreheader(MainLoopStructure, Preheader, "mainloop");
|
|
PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
|
|
ExitPreLoopAt, MainLoopPreheader);
|
|
rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
|
|
PreLoopRRI);
|
|
}
|
|
|
|
BasicBlock *PostLoopPreheader = nullptr;
|
|
RewrittenRangeInfo PostLoopRRI;
|
|
|
|
if (NeedsPostLoop) {
|
|
PostLoopPreheader =
|
|
createPreheader(PostLoop.Structure, Preheader, "postloop");
|
|
PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
|
|
ExitMainLoopAt, PostLoopPreheader);
|
|
rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
|
|
PostLoopRRI);
|
|
}
|
|
|
|
BasicBlock *NewMainLoopPreheader =
|
|
MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
|
|
BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit,
|
|
PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit,
|
|
PostLoopRRI.ExitSelector, NewMainLoopPreheader};
|
|
|
|
// Some of the above may be nullptr, filter them out before passing to
|
|
// addToParentLoopIfNeeded.
|
|
auto NewBlocksEnd =
|
|
std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
|
|
|
|
addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
|
|
|
|
DT.recalculate(F);
|
|
|
|
// We need to first add all the pre and post loop blocks into the loop
|
|
// structures (as part of createClonedLoopStructure), and then update the
|
|
// LCSSA form and LoopSimplifyForm. This is necessary for correctly updating
|
|
// LI when LoopSimplifyForm is generated.
|
|
Loop *PreL = nullptr, *PostL = nullptr;
|
|
if (!PreLoop.Blocks.empty()) {
|
|
PreL = createClonedLoopStructure(
|
|
&OriginalLoop, OriginalLoop.getParentLoop(), PreLoop.Map);
|
|
}
|
|
|
|
if (!PostLoop.Blocks.empty()) {
|
|
PostL = createClonedLoopStructure(
|
|
&OriginalLoop, OriginalLoop.getParentLoop(), PostLoop.Map);
|
|
}
|
|
|
|
// This function canonicalizes the loop into Loop-Simplify and LCSSA forms.
|
|
auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) {
|
|
formLCSSARecursively(*L, DT, &LI, &SE);
|
|
simplifyLoop(L, &DT, &LI, &SE, nullptr, true);
|
|
// Pre/post loops are slow paths, we do not need to perform any loop
|
|
// optimizations on them.
|
|
if (!IsOriginalLoop)
|
|
DisableAllLoopOptsOnLoop(*L);
|
|
};
|
|
if (PreL)
|
|
CanonicalizeLoop(PreL, false);
|
|
if (PostL)
|
|
CanonicalizeLoop(PostL, false);
|
|
CanonicalizeLoop(&OriginalLoop, true);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Computes and returns a range of values for the induction variable (IndVar)
|
|
/// in which the range check can be safely elided. If it cannot compute such a
|
|
/// range, returns None.
|
|
Optional<InductiveRangeCheck::Range>
|
|
InductiveRangeCheck::computeSafeIterationSpace(
|
|
ScalarEvolution &SE, const SCEVAddRecExpr *IndVar) const {
|
|
// IndVar is of the form "A + B * I" (where "I" is the canonical induction
|
|
// variable, that may or may not exist as a real llvm::Value in the loop) and
|
|
// this inductive range check is a range check on the "C + D * I" ("C" is
|
|
// getOffset() and "D" is getScale()). We rewrite the value being range
|
|
// checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
|
|
//
|
|
// The actual inequalities we solve are of the form
|
|
//
|
|
// 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1)
|
|
//
|
|
// The inequality is satisfied by -M <= IndVar < (L - M) [^1]. All additions
|
|
// and subtractions are twos-complement wrapping and comparisons are signed.
|
|
//
|
|
// Proof:
|
|
//
|
|
// If there exists IndVar such that -M <= IndVar < (L - M) then it follows
|
|
// that -M <= (-M + L) [== Eq. 1]. Since L >= 0, if (-M + L) sign-overflows
|
|
// then (-M + L) < (-M). Hence by [Eq. 1], (-M + L) could not have
|
|
// overflown.
|
|
//
|
|
// This means IndVar = t + (-M) for t in [0, L). Hence (IndVar + M) = t.
|
|
// Hence 0 <= (IndVar + M) < L
|
|
|
|
// [^1]: Note that the solution does _not_ apply if L < 0; consider values M =
|
|
// 127, IndVar = 126 and L = -2 in an i8 world.
|
|
|
|
if (!IndVar->isAffine())
|
|
return None;
|
|
|
|
const SCEV *A = IndVar->getStart();
|
|
const SCEVConstant *B = dyn_cast<SCEVConstant>(IndVar->getStepRecurrence(SE));
|
|
if (!B)
|
|
return None;
|
|
assert(!B->isZero() && "Recurrence with zero step?");
|
|
|
|
const SCEV *C = getOffset();
|
|
const SCEVConstant *D = dyn_cast<SCEVConstant>(getScale());
|
|
if (D != B)
|
|
return None;
|
|
|
|
assert(!D->getValue()->isZero() && "Recurrence with zero step?");
|
|
|
|
const SCEV *M = SE.getMinusSCEV(C, A);
|
|
const SCEV *Begin = SE.getNegativeSCEV(M);
|
|
const SCEV *UpperLimit = nullptr;
|
|
|
|
// We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
|
|
// We can potentially do much better here.
|
|
if (Value *V = getLength()) {
|
|
UpperLimit = SE.getSCEV(V);
|
|
} else {
|
|
assert(Kind == InductiveRangeCheck::RANGE_CHECK_LOWER && "invariant!");
|
|
unsigned BitWidth = cast<IntegerType>(IndVar->getType())->getBitWidth();
|
|
UpperLimit = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
|
|
}
|
|
|
|
const SCEV *End = SE.getMinusSCEV(UpperLimit, M);
|
|
return InductiveRangeCheck::Range(Begin, End);
|
|
}
|
|
|
|
static Optional<InductiveRangeCheck::Range>
|
|
IntersectRange(ScalarEvolution &SE,
|
|
const Optional<InductiveRangeCheck::Range> &R1,
|
|
const InductiveRangeCheck::Range &R2) {
|
|
if (!R1.hasValue())
|
|
return R2;
|
|
auto &R1Value = R1.getValue();
|
|
|
|
// TODO: we could widen the smaller range and have this work; but for now we
|
|
// bail out to keep things simple.
|
|
if (R1Value.getType() != R2.getType())
|
|
return None;
|
|
|
|
const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
|
|
const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
|
|
|
|
return InductiveRangeCheck::Range(NewBegin, NewEnd);
|
|
}
|
|
|
|
bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) {
|
|
if (skipLoop(L))
|
|
return false;
|
|
|
|
if (L->getBlocks().size() >= LoopSizeCutoff) {
|
|
DEBUG(dbgs() << "irce: giving up constraining loop, too large\n";);
|
|
return false;
|
|
}
|
|
|
|
BasicBlock *Preheader = L->getLoopPreheader();
|
|
if (!Preheader) {
|
|
DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
|
|
return false;
|
|
}
|
|
|
|
LLVMContext &Context = Preheader->getContext();
|
|
SmallVector<InductiveRangeCheck, 16> RangeChecks;
|
|
ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
|
BranchProbabilityInfo &BPI =
|
|
getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
|
|
|
|
for (auto BBI : L->getBlocks())
|
|
if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
|
|
InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI,
|
|
RangeChecks);
|
|
|
|
if (RangeChecks.empty())
|
|
return false;
|
|
|
|
auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
|
|
OS << "irce: looking at loop "; L->print(OS);
|
|
OS << "irce: loop has " << RangeChecks.size()
|
|
<< " inductive range checks: \n";
|
|
for (InductiveRangeCheck &IRC : RangeChecks)
|
|
IRC.print(OS);
|
|
};
|
|
|
|
DEBUG(PrintRecognizedRangeChecks(dbgs()));
|
|
|
|
if (PrintRangeChecks)
|
|
PrintRecognizedRangeChecks(errs());
|
|
|
|
const char *FailureReason = nullptr;
|
|
Optional<LoopStructure> MaybeLoopStructure =
|
|
LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason);
|
|
if (!MaybeLoopStructure.hasValue()) {
|
|
DEBUG(dbgs() << "irce: could not parse loop structure: " << FailureReason
|
|
<< "\n";);
|
|
return false;
|
|
}
|
|
LoopStructure LS = MaybeLoopStructure.getValue();
|
|
const SCEVAddRecExpr *IndVar =
|
|
cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep)));
|
|
|
|
Optional<InductiveRangeCheck::Range> SafeIterRange;
|
|
Instruction *ExprInsertPt = Preheader->getTerminator();
|
|
|
|
SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate;
|
|
|
|
IRBuilder<> B(ExprInsertPt);
|
|
for (InductiveRangeCheck &IRC : RangeChecks) {
|
|
auto Result = IRC.computeSafeIterationSpace(SE, IndVar);
|
|
if (Result.hasValue()) {
|
|
auto MaybeSafeIterRange =
|
|
IntersectRange(SE, SafeIterRange, Result.getValue());
|
|
if (MaybeSafeIterRange.hasValue()) {
|
|
RangeChecksToEliminate.push_back(IRC);
|
|
SafeIterRange = MaybeSafeIterRange.getValue();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!SafeIterRange.hasValue())
|
|
return false;
|
|
|
|
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
LoopConstrainer LC(*L, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), LPM,
|
|
LS, SE, DT, SafeIterRange.getValue());
|
|
bool Changed = LC.run();
|
|
|
|
if (Changed) {
|
|
auto PrintConstrainedLoopInfo = [L]() {
|
|
dbgs() << "irce: in function ";
|
|
dbgs() << L->getHeader()->getParent()->getName() << ": ";
|
|
dbgs() << "constrained ";
|
|
L->print(dbgs());
|
|
};
|
|
|
|
DEBUG(PrintConstrainedLoopInfo());
|
|
|
|
if (PrintChangedLoops)
|
|
PrintConstrainedLoopInfo();
|
|
|
|
// Optimize away the now-redundant range checks.
|
|
|
|
for (InductiveRangeCheck &IRC : RangeChecksToEliminate) {
|
|
ConstantInt *FoldedRangeCheck = IRC.getPassingDirection()
|
|
? ConstantInt::getTrue(Context)
|
|
: ConstantInt::getFalse(Context);
|
|
IRC.getCheckUse()->set(FoldedRangeCheck);
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
Pass *llvm::createInductiveRangeCheckEliminationPass() {
|
|
return new InductiveRangeCheckElimination;
|
|
}
|