forked from OSchip/llvm-project
703 lines
23 KiB
C++
703 lines
23 KiB
C++
//===- ADCE.cpp - Code to perform dead code elimination -------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Aggressive Dead Code Elimination pass. This pass
|
|
// optimistically assumes that all instructions are dead until proven otherwise,
|
|
// allowing it to eliminate dead computations that other DCE passes do not
|
|
// catch, particularly involving loop computations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/ADCE.h"
|
|
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/IteratedDominanceFrontier.h"
|
|
#include "llvm/Analysis/PostDominators.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/ProfileData/InstrProf.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "adce"
|
|
|
|
STATISTIC(NumRemoved, "Number of instructions removed");
|
|
STATISTIC(NumBranchesRemoved, "Number of branch instructions removed");
|
|
|
|
// This is a temporary option until we change the interface to this pass based
|
|
// on optimization level.
|
|
static cl::opt<bool> RemoveControlFlowFlag("adce-remove-control-flow",
|
|
cl::init(true), cl::Hidden);
|
|
|
|
// This option enables removing of may-be-infinite loops which have no other
|
|
// effect.
|
|
static cl::opt<bool> RemoveLoops("adce-remove-loops", cl::init(false),
|
|
cl::Hidden);
|
|
|
|
namespace {
|
|
/// Information about Instructions
|
|
struct InstInfoType {
|
|
/// True if the associated instruction is live.
|
|
bool Live = false;
|
|
/// Quick access to information for block containing associated Instruction.
|
|
struct BlockInfoType *Block = nullptr;
|
|
};
|
|
|
|
/// Information about basic blocks relevant to dead code elimination.
|
|
struct BlockInfoType {
|
|
/// True when this block contains a live instructions.
|
|
bool Live = false;
|
|
/// True when this block ends in an unconditional branch.
|
|
bool UnconditionalBranch = false;
|
|
/// True when this block is known to have live PHI nodes.
|
|
bool HasLivePhiNodes = false;
|
|
/// Control dependence sources need to be live for this block.
|
|
bool CFLive = false;
|
|
|
|
/// Quick access to the LiveInfo for the terminator,
|
|
/// holds the value &InstInfo[Terminator]
|
|
InstInfoType *TerminatorLiveInfo = nullptr;
|
|
|
|
bool terminatorIsLive() const { return TerminatorLiveInfo->Live; }
|
|
|
|
/// Corresponding BasicBlock.
|
|
BasicBlock *BB = nullptr;
|
|
|
|
/// Cache of BB->getTerminator().
|
|
TerminatorInst *Terminator = nullptr;
|
|
|
|
/// Post-order numbering of reverse control flow graph.
|
|
unsigned PostOrder;
|
|
};
|
|
|
|
class AggressiveDeadCodeElimination {
|
|
Function &F;
|
|
|
|
// ADCE does not use DominatorTree per se, but it updates it to preserve the
|
|
// analysis.
|
|
DominatorTree &DT;
|
|
PostDominatorTree &PDT;
|
|
|
|
/// Mapping of blocks to associated information, an element in BlockInfoVec.
|
|
DenseMap<BasicBlock *, BlockInfoType> BlockInfo;
|
|
bool isLive(BasicBlock *BB) { return BlockInfo[BB].Live; }
|
|
|
|
/// Mapping of instructions to associated information.
|
|
DenseMap<Instruction *, InstInfoType> InstInfo;
|
|
bool isLive(Instruction *I) { return InstInfo[I].Live; }
|
|
|
|
/// Instructions known to be live where we need to mark
|
|
/// reaching definitions as live.
|
|
SmallVector<Instruction *, 128> Worklist;
|
|
/// Debug info scopes around a live instruction.
|
|
SmallPtrSet<const Metadata *, 32> AliveScopes;
|
|
|
|
/// Set of blocks with not known to have live terminators.
|
|
SmallPtrSet<BasicBlock *, 16> BlocksWithDeadTerminators;
|
|
|
|
/// The set of blocks which we have determined whose control
|
|
/// dependence sources must be live and which have not had
|
|
/// those dependences analyzed.
|
|
SmallPtrSet<BasicBlock *, 16> NewLiveBlocks;
|
|
|
|
/// Set up auxiliary data structures for Instructions and BasicBlocks and
|
|
/// initialize the Worklist to the set of must-be-live Instruscions.
|
|
void initialize();
|
|
/// Return true for operations which are always treated as live.
|
|
bool isAlwaysLive(Instruction &I);
|
|
/// Return true for instrumentation instructions for value profiling.
|
|
bool isInstrumentsConstant(Instruction &I);
|
|
|
|
/// Propagate liveness to reaching definitions.
|
|
void markLiveInstructions();
|
|
/// Mark an instruction as live.
|
|
void markLive(Instruction *I);
|
|
/// Mark a block as live.
|
|
void markLive(BlockInfoType &BB);
|
|
void markLive(BasicBlock *BB) { markLive(BlockInfo[BB]); }
|
|
|
|
/// Mark terminators of control predecessors of a PHI node live.
|
|
void markPhiLive(PHINode *PN);
|
|
|
|
/// Record the Debug Scopes which surround live debug information.
|
|
void collectLiveScopes(const DILocalScope &LS);
|
|
void collectLiveScopes(const DILocation &DL);
|
|
|
|
/// Analyze dead branches to find those whose branches are the sources
|
|
/// of control dependences impacting a live block. Those branches are
|
|
/// marked live.
|
|
void markLiveBranchesFromControlDependences();
|
|
|
|
/// Remove instructions not marked live, return if any any instruction
|
|
/// was removed.
|
|
bool removeDeadInstructions();
|
|
|
|
/// Identify connected sections of the control flow graph which have
|
|
/// dead terminators and rewrite the control flow graph to remove them.
|
|
void updateDeadRegions();
|
|
|
|
/// Set the BlockInfo::PostOrder field based on a post-order
|
|
/// numbering of the reverse control flow graph.
|
|
void computeReversePostOrder();
|
|
|
|
/// Make the terminator of this block an unconditional branch to \p Target.
|
|
void makeUnconditional(BasicBlock *BB, BasicBlock *Target);
|
|
|
|
public:
|
|
AggressiveDeadCodeElimination(Function &F, DominatorTree &DT,
|
|
PostDominatorTree &PDT)
|
|
: F(F), DT(DT), PDT(PDT) {}
|
|
bool performDeadCodeElimination();
|
|
};
|
|
}
|
|
|
|
bool AggressiveDeadCodeElimination::performDeadCodeElimination() {
|
|
initialize();
|
|
markLiveInstructions();
|
|
return removeDeadInstructions();
|
|
}
|
|
|
|
static bool isUnconditionalBranch(TerminatorInst *Term) {
|
|
auto *BR = dyn_cast<BranchInst>(Term);
|
|
return BR && BR->isUnconditional();
|
|
}
|
|
|
|
void AggressiveDeadCodeElimination::initialize() {
|
|
|
|
auto NumBlocks = F.size();
|
|
|
|
// We will have an entry in the map for each block so we grow the
|
|
// structure to twice that size to keep the load factor low in the hash table.
|
|
BlockInfo.reserve(NumBlocks);
|
|
size_t NumInsts = 0;
|
|
|
|
// Iterate over blocks and initialize BlockInfoVec entries, count
|
|
// instructions to size the InstInfo hash table.
|
|
for (auto &BB : F) {
|
|
NumInsts += BB.size();
|
|
auto &Info = BlockInfo[&BB];
|
|
Info.BB = &BB;
|
|
Info.Terminator = BB.getTerminator();
|
|
Info.UnconditionalBranch = isUnconditionalBranch(Info.Terminator);
|
|
}
|
|
|
|
// Initialize instruction map and set pointers to block info.
|
|
InstInfo.reserve(NumInsts);
|
|
for (auto &BBInfo : BlockInfo)
|
|
for (Instruction &I : *BBInfo.second.BB)
|
|
InstInfo[&I].Block = &BBInfo.second;
|
|
|
|
// Since BlockInfoVec holds pointers into InstInfo and vice-versa, we may not
|
|
// add any more elements to either after this point.
|
|
for (auto &BBInfo : BlockInfo)
|
|
BBInfo.second.TerminatorLiveInfo = &InstInfo[BBInfo.second.Terminator];
|
|
|
|
// Collect the set of "root" instructions that are known live.
|
|
for (Instruction &I : instructions(F))
|
|
if (isAlwaysLive(I))
|
|
markLive(&I);
|
|
|
|
if (!RemoveControlFlowFlag)
|
|
return;
|
|
|
|
if (!RemoveLoops) {
|
|
// This stores state for the depth-first iterator. In addition
|
|
// to recording which nodes have been visited we also record whether
|
|
// a node is currently on the "stack" of active ancestors of the current
|
|
// node.
|
|
typedef DenseMap<BasicBlock *, bool> StatusMap ;
|
|
class DFState : public StatusMap {
|
|
public:
|
|
std::pair<StatusMap::iterator, bool> insert(BasicBlock *BB) {
|
|
return StatusMap::insert(std::make_pair(BB, true));
|
|
}
|
|
|
|
// Invoked after we have visited all children of a node.
|
|
void completed(BasicBlock *BB) { (*this)[BB] = false; }
|
|
|
|
// Return true if \p BB is currently on the active stack
|
|
// of ancestors.
|
|
bool onStack(BasicBlock *BB) {
|
|
auto Iter = find(BB);
|
|
return Iter != end() && Iter->second;
|
|
}
|
|
} State;
|
|
|
|
State.reserve(F.size());
|
|
// Iterate over blocks in depth-first pre-order and
|
|
// treat all edges to a block already seen as loop back edges
|
|
// and mark the branch live it if there is a back edge.
|
|
for (auto *BB: depth_first_ext(&F.getEntryBlock(), State)) {
|
|
TerminatorInst *Term = BB->getTerminator();
|
|
if (isLive(Term))
|
|
continue;
|
|
|
|
for (auto *Succ : successors(BB))
|
|
if (State.onStack(Succ)) {
|
|
// back edge....
|
|
markLive(Term);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Mark blocks live if there is no path from the block to a
|
|
// return of the function.
|
|
// We do this by seeing which of the postdomtree root children exit the
|
|
// program, and for all others, mark the subtree live.
|
|
for (auto &PDTChild : children<DomTreeNode *>(PDT.getRootNode())) {
|
|
auto *BB = PDTChild->getBlock();
|
|
auto &Info = BlockInfo[BB];
|
|
// Real function return
|
|
if (isa<ReturnInst>(Info.Terminator)) {
|
|
DEBUG(dbgs() << "post-dom root child is a return: " << BB->getName()
|
|
<< '\n';);
|
|
continue;
|
|
}
|
|
|
|
// This child is something else, like an infinite loop.
|
|
for (auto DFNode : depth_first(PDTChild))
|
|
markLive(BlockInfo[DFNode->getBlock()].Terminator);
|
|
}
|
|
|
|
// Treat the entry block as always live
|
|
auto *BB = &F.getEntryBlock();
|
|
auto &EntryInfo = BlockInfo[BB];
|
|
EntryInfo.Live = true;
|
|
if (EntryInfo.UnconditionalBranch)
|
|
markLive(EntryInfo.Terminator);
|
|
|
|
// Build initial collection of blocks with dead terminators
|
|
for (auto &BBInfo : BlockInfo)
|
|
if (!BBInfo.second.terminatorIsLive())
|
|
BlocksWithDeadTerminators.insert(BBInfo.second.BB);
|
|
}
|
|
|
|
bool AggressiveDeadCodeElimination::isAlwaysLive(Instruction &I) {
|
|
// TODO -- use llvm::isInstructionTriviallyDead
|
|
if (I.isEHPad() || I.mayHaveSideEffects()) {
|
|
// Skip any value profile instrumentation calls if they are
|
|
// instrumenting constants.
|
|
if (isInstrumentsConstant(I))
|
|
return false;
|
|
return true;
|
|
}
|
|
if (!isa<TerminatorInst>(I))
|
|
return false;
|
|
if (RemoveControlFlowFlag && (isa<BranchInst>(I) || isa<SwitchInst>(I)))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
// Check if this instruction is a runtime call for value profiling and
|
|
// if it's instrumenting a constant.
|
|
bool AggressiveDeadCodeElimination::isInstrumentsConstant(Instruction &I) {
|
|
// TODO -- move this test into llvm::isInstructionTriviallyDead
|
|
if (CallInst *CI = dyn_cast<CallInst>(&I))
|
|
if (Function *Callee = CI->getCalledFunction())
|
|
if (Callee->getName().equals(getInstrProfValueProfFuncName()))
|
|
if (isa<Constant>(CI->getArgOperand(0)))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
void AggressiveDeadCodeElimination::markLiveInstructions() {
|
|
|
|
// Propagate liveness backwards to operands.
|
|
do {
|
|
// Worklist holds newly discovered live instructions
|
|
// where we need to mark the inputs as live.
|
|
while (!Worklist.empty()) {
|
|
Instruction *LiveInst = Worklist.pop_back_val();
|
|
DEBUG(dbgs() << "work live: "; LiveInst->dump(););
|
|
|
|
for (Use &OI : LiveInst->operands())
|
|
if (Instruction *Inst = dyn_cast<Instruction>(OI))
|
|
markLive(Inst);
|
|
|
|
if (auto *PN = dyn_cast<PHINode>(LiveInst))
|
|
markPhiLive(PN);
|
|
}
|
|
|
|
// After data flow liveness has been identified, examine which branch
|
|
// decisions are required to determine live instructions are executed.
|
|
markLiveBranchesFromControlDependences();
|
|
|
|
} while (!Worklist.empty());
|
|
}
|
|
|
|
void AggressiveDeadCodeElimination::markLive(Instruction *I) {
|
|
|
|
auto &Info = InstInfo[I];
|
|
if (Info.Live)
|
|
return;
|
|
|
|
DEBUG(dbgs() << "mark live: "; I->dump());
|
|
Info.Live = true;
|
|
Worklist.push_back(I);
|
|
|
|
// Collect the live debug info scopes attached to this instruction.
|
|
if (const DILocation *DL = I->getDebugLoc())
|
|
collectLiveScopes(*DL);
|
|
|
|
// Mark the containing block live
|
|
auto &BBInfo = *Info.Block;
|
|
if (BBInfo.Terminator == I) {
|
|
BlocksWithDeadTerminators.erase(BBInfo.BB);
|
|
// For live terminators, mark destination blocks
|
|
// live to preserve this control flow edges.
|
|
if (!BBInfo.UnconditionalBranch)
|
|
for (auto *BB : successors(I->getParent()))
|
|
markLive(BB);
|
|
}
|
|
markLive(BBInfo);
|
|
}
|
|
|
|
void AggressiveDeadCodeElimination::markLive(BlockInfoType &BBInfo) {
|
|
if (BBInfo.Live)
|
|
return;
|
|
DEBUG(dbgs() << "mark block live: " << BBInfo.BB->getName() << '\n');
|
|
BBInfo.Live = true;
|
|
if (!BBInfo.CFLive) {
|
|
BBInfo.CFLive = true;
|
|
NewLiveBlocks.insert(BBInfo.BB);
|
|
}
|
|
|
|
// Mark unconditional branches at the end of live
|
|
// blocks as live since there is no work to do for them later
|
|
if (BBInfo.UnconditionalBranch)
|
|
markLive(BBInfo.Terminator);
|
|
}
|
|
|
|
void AggressiveDeadCodeElimination::collectLiveScopes(const DILocalScope &LS) {
|
|
if (!AliveScopes.insert(&LS).second)
|
|
return;
|
|
|
|
if (isa<DISubprogram>(LS))
|
|
return;
|
|
|
|
// Tail-recurse through the scope chain.
|
|
collectLiveScopes(cast<DILocalScope>(*LS.getScope()));
|
|
}
|
|
|
|
void AggressiveDeadCodeElimination::collectLiveScopes(const DILocation &DL) {
|
|
// Even though DILocations are not scopes, shove them into AliveScopes so we
|
|
// don't revisit them.
|
|
if (!AliveScopes.insert(&DL).second)
|
|
return;
|
|
|
|
// Collect live scopes from the scope chain.
|
|
collectLiveScopes(*DL.getScope());
|
|
|
|
// Tail-recurse through the inlined-at chain.
|
|
if (const DILocation *IA = DL.getInlinedAt())
|
|
collectLiveScopes(*IA);
|
|
}
|
|
|
|
void AggressiveDeadCodeElimination::markPhiLive(PHINode *PN) {
|
|
auto &Info = BlockInfo[PN->getParent()];
|
|
// Only need to check this once per block.
|
|
if (Info.HasLivePhiNodes)
|
|
return;
|
|
Info.HasLivePhiNodes = true;
|
|
|
|
// If a predecessor block is not live, mark it as control-flow live
|
|
// which will trigger marking live branches upon which
|
|
// that block is control dependent.
|
|
for (auto *PredBB : predecessors(Info.BB)) {
|
|
auto &Info = BlockInfo[PredBB];
|
|
if (!Info.CFLive) {
|
|
Info.CFLive = true;
|
|
NewLiveBlocks.insert(PredBB);
|
|
}
|
|
}
|
|
}
|
|
|
|
void AggressiveDeadCodeElimination::markLiveBranchesFromControlDependences() {
|
|
|
|
if (BlocksWithDeadTerminators.empty())
|
|
return;
|
|
|
|
DEBUG({
|
|
dbgs() << "new live blocks:\n";
|
|
for (auto *BB : NewLiveBlocks)
|
|
dbgs() << "\t" << BB->getName() << '\n';
|
|
dbgs() << "dead terminator blocks:\n";
|
|
for (auto *BB : BlocksWithDeadTerminators)
|
|
dbgs() << "\t" << BB->getName() << '\n';
|
|
});
|
|
|
|
// The dominance frontier of a live block X in the reverse
|
|
// control graph is the set of blocks upon which X is control
|
|
// dependent. The following sequence computes the set of blocks
|
|
// which currently have dead terminators that are control
|
|
// dependence sources of a block which is in NewLiveBlocks.
|
|
|
|
SmallVector<BasicBlock *, 32> IDFBlocks;
|
|
ReverseIDFCalculator IDFs(PDT);
|
|
IDFs.setDefiningBlocks(NewLiveBlocks);
|
|
IDFs.setLiveInBlocks(BlocksWithDeadTerminators);
|
|
IDFs.calculate(IDFBlocks);
|
|
NewLiveBlocks.clear();
|
|
|
|
// Dead terminators which control live blocks are now marked live.
|
|
for (auto *BB : IDFBlocks) {
|
|
DEBUG(dbgs() << "live control in: " << BB->getName() << '\n');
|
|
markLive(BB->getTerminator());
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Routines to update the CFG and SSA information before removing dead code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
bool AggressiveDeadCodeElimination::removeDeadInstructions() {
|
|
|
|
// Updates control and dataflow around dead blocks
|
|
updateDeadRegions();
|
|
|
|
DEBUG({
|
|
for (Instruction &I : instructions(F)) {
|
|
// Check if the instruction is alive.
|
|
if (isLive(&I))
|
|
continue;
|
|
|
|
if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I)) {
|
|
// Check if the scope of this variable location is alive.
|
|
if (AliveScopes.count(DII->getDebugLoc()->getScope()))
|
|
continue;
|
|
|
|
// If intrinsic is pointing at a live SSA value, there may be an
|
|
// earlier optimization bug: if we know the location of the variable,
|
|
// why isn't the scope of the location alive?
|
|
if (Value *V = DII->getVariableLocation())
|
|
if (Instruction *II = dyn_cast<Instruction>(V))
|
|
if (isLive(II))
|
|
dbgs() << "Dropping debug info for " << *DII << "\n";
|
|
}
|
|
}
|
|
});
|
|
|
|
// The inverse of the live set is the dead set. These are those instructions
|
|
// that have no side effects and do not influence the control flow or return
|
|
// value of the function, and may therefore be deleted safely.
|
|
// NOTE: We reuse the Worklist vector here for memory efficiency.
|
|
for (Instruction &I : instructions(F)) {
|
|
// Check if the instruction is alive.
|
|
if (isLive(&I))
|
|
continue;
|
|
|
|
if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I)) {
|
|
// Check if the scope of this variable location is alive.
|
|
if (AliveScopes.count(DII->getDebugLoc()->getScope()))
|
|
continue;
|
|
|
|
// Fallthrough and drop the intrinsic.
|
|
}
|
|
|
|
// Prepare to delete.
|
|
Worklist.push_back(&I);
|
|
I.dropAllReferences();
|
|
}
|
|
|
|
for (Instruction *&I : Worklist) {
|
|
++NumRemoved;
|
|
I->eraseFromParent();
|
|
}
|
|
|
|
return !Worklist.empty();
|
|
}
|
|
|
|
// A dead region is the set of dead blocks with a common live post-dominator.
|
|
void AggressiveDeadCodeElimination::updateDeadRegions() {
|
|
|
|
DEBUG({
|
|
dbgs() << "final dead terminator blocks: " << '\n';
|
|
for (auto *BB : BlocksWithDeadTerminators)
|
|
dbgs() << '\t' << BB->getName()
|
|
<< (BlockInfo[BB].Live ? " LIVE\n" : "\n");
|
|
});
|
|
|
|
// Don't compute the post ordering unless we needed it.
|
|
bool HavePostOrder = false;
|
|
|
|
for (auto *BB : BlocksWithDeadTerminators) {
|
|
auto &Info = BlockInfo[BB];
|
|
if (Info.UnconditionalBranch) {
|
|
InstInfo[Info.Terminator].Live = true;
|
|
continue;
|
|
}
|
|
|
|
if (!HavePostOrder) {
|
|
computeReversePostOrder();
|
|
HavePostOrder = true;
|
|
}
|
|
|
|
// Add an unconditional branch to the successor closest to the
|
|
// end of the function which insures a path to the exit for each
|
|
// live edge.
|
|
BlockInfoType *PreferredSucc = nullptr;
|
|
for (auto *Succ : successors(BB)) {
|
|
auto *Info = &BlockInfo[Succ];
|
|
if (!PreferredSucc || PreferredSucc->PostOrder < Info->PostOrder)
|
|
PreferredSucc = Info;
|
|
}
|
|
assert((PreferredSucc && PreferredSucc->PostOrder > 0) &&
|
|
"Failed to find safe successor for dead branch");
|
|
|
|
// Collect removed successors to update the (Post)DominatorTrees.
|
|
SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
|
|
bool First = true;
|
|
for (auto *Succ : successors(BB)) {
|
|
if (!First || Succ != PreferredSucc->BB) {
|
|
Succ->removePredecessor(BB);
|
|
RemovedSuccessors.insert(Succ);
|
|
} else
|
|
First = false;
|
|
}
|
|
makeUnconditional(BB, PreferredSucc->BB);
|
|
|
|
// Inform the dominators about the deleted CFG edges.
|
|
SmallVector<DominatorTree::UpdateType, 4> DeletedEdges;
|
|
for (auto *Succ : RemovedSuccessors) {
|
|
// It might have happened that the same successor appeared multiple times
|
|
// and the CFG edge wasn't really removed.
|
|
if (Succ != PreferredSucc->BB) {
|
|
DEBUG(dbgs() << "ADCE: (Post)DomTree edge enqueued for deletion"
|
|
<< BB->getName() << " -> " << Succ->getName() << "\n");
|
|
DeletedEdges.push_back({DominatorTree::Delete, BB, Succ});
|
|
}
|
|
}
|
|
|
|
DT.applyUpdates(DeletedEdges);
|
|
PDT.applyUpdates(DeletedEdges);
|
|
|
|
NumBranchesRemoved += 1;
|
|
}
|
|
}
|
|
|
|
// reverse top-sort order
|
|
void AggressiveDeadCodeElimination::computeReversePostOrder() {
|
|
|
|
// This provides a post-order numbering of the reverse control flow graph
|
|
// Note that it is incomplete in the presence of infinite loops but we don't
|
|
// need numbers blocks which don't reach the end of the functions since
|
|
// all branches in those blocks are forced live.
|
|
|
|
// For each block without successors, extend the DFS from the block
|
|
// backward through the graph
|
|
SmallPtrSet<BasicBlock*, 16> Visited;
|
|
unsigned PostOrder = 0;
|
|
for (auto &BB : F) {
|
|
if (succ_begin(&BB) != succ_end(&BB))
|
|
continue;
|
|
for (BasicBlock *Block : inverse_post_order_ext(&BB,Visited))
|
|
BlockInfo[Block].PostOrder = PostOrder++;
|
|
}
|
|
}
|
|
|
|
void AggressiveDeadCodeElimination::makeUnconditional(BasicBlock *BB,
|
|
BasicBlock *Target) {
|
|
TerminatorInst *PredTerm = BB->getTerminator();
|
|
// Collect the live debug info scopes attached to this instruction.
|
|
if (const DILocation *DL = PredTerm->getDebugLoc())
|
|
collectLiveScopes(*DL);
|
|
|
|
// Just mark live an existing unconditional branch
|
|
if (isUnconditionalBranch(PredTerm)) {
|
|
PredTerm->setSuccessor(0, Target);
|
|
InstInfo[PredTerm].Live = true;
|
|
return;
|
|
}
|
|
DEBUG(dbgs() << "making unconditional " << BB->getName() << '\n');
|
|
NumBranchesRemoved += 1;
|
|
IRBuilder<> Builder(PredTerm);
|
|
auto *NewTerm = Builder.CreateBr(Target);
|
|
InstInfo[NewTerm].Live = true;
|
|
if (const DILocation *DL = PredTerm->getDebugLoc())
|
|
NewTerm->setDebugLoc(DL);
|
|
|
|
InstInfo.erase(PredTerm);
|
|
PredTerm->eraseFromParent();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Pass Manager integration code
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
PreservedAnalyses ADCEPass::run(Function &F, FunctionAnalysisManager &FAM) {
|
|
auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
|
|
auto &PDT = FAM.getResult<PostDominatorTreeAnalysis>(F);
|
|
if (!AggressiveDeadCodeElimination(F, DT, PDT).performDeadCodeElimination())
|
|
return PreservedAnalyses::all();
|
|
|
|
PreservedAnalyses PA;
|
|
PA.preserveSet<CFGAnalyses>();
|
|
PA.preserve<GlobalsAA>();
|
|
PA.preserve<DominatorTreeAnalysis>();
|
|
PA.preserve<PostDominatorTreeAnalysis>();
|
|
return PA;
|
|
}
|
|
|
|
namespace {
|
|
struct ADCELegacyPass : public FunctionPass {
|
|
static char ID; // Pass identification, replacement for typeid
|
|
ADCELegacyPass() : FunctionPass(ID) {
|
|
initializeADCELegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
if (skipFunction(F))
|
|
return false;
|
|
|
|
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
|
|
return AggressiveDeadCodeElimination(F, DT, PDT)
|
|
.performDeadCodeElimination();
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
// We require DominatorTree here only to update and thus preserve it.
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<PostDominatorTreeWrapperPass>();
|
|
if (!RemoveControlFlowFlag)
|
|
AU.setPreservesCFG();
|
|
else {
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<PostDominatorTreeWrapperPass>();
|
|
}
|
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
|
}
|
|
};
|
|
}
|
|
|
|
char ADCELegacyPass::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(ADCELegacyPass, "adce",
|
|
"Aggressive Dead Code Elimination", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_END(ADCELegacyPass, "adce", "Aggressive Dead Code Elimination",
|
|
false, false)
|
|
|
|
FunctionPass *llvm::createAggressiveDCEPass() { return new ADCELegacyPass(); }
|