forked from OSchip/llvm-project
501 lines
22 KiB
TableGen
501 lines
22 KiB
TableGen
//=- AArch64CallingConv.td - Calling Conventions for AArch64 -*- tablegen -*-=//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This describes the calling conventions for AArch64 architecture.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// CCIfBigEndian - Match only if we're in big endian mode.
|
|
class CCIfBigEndian<CCAction A> :
|
|
CCIf<"State.getMachineFunction().getDataLayout().isBigEndian()", A>;
|
|
|
|
class CCIfILP32<CCAction A> :
|
|
CCIf<"State.getMachineFunction().getDataLayout().getPointerSize() == 4", A>;
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ARM AAPCS64 Calling Convention
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let Entry = 1 in
|
|
def CC_AArch64_AAPCS : CallingConv<[
|
|
CCIfType<[iPTR], CCBitConvertToType<i64>>,
|
|
CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
|
|
CCIfType<[v2f64, v4f32], CCBitConvertToType<v2i64>>,
|
|
|
|
// Big endian vectors must be passed as if they were 1-element vectors so that
|
|
// their lanes are in a consistent order.
|
|
CCIfBigEndian<CCIfType<[v2i32, v2f32, v4i16, v4f16, v4bf16, v8i8],
|
|
CCBitConvertToType<f64>>>,
|
|
CCIfBigEndian<CCIfType<[v2i64, v2f64, v4i32, v4f32, v8i16, v8f16, v8bf16, v16i8],
|
|
CCBitConvertToType<f128>>>,
|
|
|
|
// In AAPCS, an SRet is passed in X8, not X0 like a normal pointer parameter.
|
|
// However, on windows, in some circumstances, the SRet is passed in X0 or X1
|
|
// instead. The presence of the inreg attribute indicates that SRet is
|
|
// passed in the alternative register (X0 or X1), not X8:
|
|
// - X0 for non-instance methods.
|
|
// - X1 for instance methods.
|
|
|
|
// The "sret" attribute identifies indirect returns.
|
|
// The "inreg" attribute identifies non-aggregate types.
|
|
// The position of the "sret" attribute identifies instance/non-instance
|
|
// methods.
|
|
// "sret" on argument 0 means non-instance methods.
|
|
// "sret" on argument 1 means instance methods.
|
|
|
|
CCIfInReg<CCIfType<[i64],
|
|
CCIfSRet<CCIfType<[i64], CCAssignToReg<[X0, X1]>>>>>,
|
|
|
|
CCIfSRet<CCIfType<[i64], CCAssignToReg<[X8]>>>,
|
|
|
|
// Put ByVal arguments directly on the stack. Minimum size and alignment of a
|
|
// slot is 64-bit.
|
|
CCIfByVal<CCPassByVal<8, 8>>,
|
|
|
|
// The 'nest' parameter, if any, is passed in X18.
|
|
// Darwin uses X18 as the platform register and hence 'nest' isn't currently
|
|
// supported there.
|
|
CCIfNest<CCAssignToReg<[X18]>>,
|
|
|
|
// Pass SwiftSelf in a callee saved register.
|
|
CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[X20]>>>,
|
|
|
|
// A SwiftError is passed in X21.
|
|
CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[X21]>>>,
|
|
|
|
// Pass SwiftAsync in an otherwise callee saved register so that it will be
|
|
// preserved for normal function calls.
|
|
CCIfSwiftAsync<CCIfType<[i64], CCAssignToReg<[X22]>>>,
|
|
|
|
CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>,
|
|
|
|
CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
|
|
nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64],
|
|
CCAssignToReg<[Z0, Z1, Z2, Z3, Z4, Z5, Z6, Z7]>>,
|
|
CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
|
|
nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64],
|
|
CCPassIndirect<i64>>,
|
|
|
|
CCIfType<[nxv2i1, nxv4i1, nxv8i1, nxv16i1],
|
|
CCAssignToReg<[P0, P1, P2, P3]>>,
|
|
CCIfType<[nxv2i1, nxv4i1, nxv8i1, nxv16i1],
|
|
CCPassIndirect<i64>>,
|
|
|
|
// Handle i1, i8, i16, i32, i64, f32, f64 and v2f64 by passing in registers,
|
|
// up to eight each of GPR and FPR.
|
|
CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
|
|
CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3, W4, W5, W6, W7]>>,
|
|
// i128 is split to two i64s, we can't fit half to register X7.
|
|
CCIfType<[i64], CCIfSplit<CCAssignToRegWithShadow<[X0, X2, X4, X6],
|
|
[X0, X1, X3, X5]>>>,
|
|
|
|
// i128 is split to two i64s, and its stack alignment is 16 bytes.
|
|
CCIfType<[i64], CCIfSplit<CCAssignToStackWithShadow<8, 16, [X7]>>>,
|
|
|
|
CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6, X7]>>,
|
|
CCIfType<[f16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
|
|
CCIfType<[bf16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
|
|
CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7]>>,
|
|
CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
|
|
CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
|
|
CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
|
|
CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
|
|
CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
|
|
|
|
// If more than will fit in registers, pass them on the stack instead.
|
|
CCIfType<[i1, i8, i16, f16, bf16], CCAssignToStack<8, 8>>,
|
|
CCIfType<[i32, f32], CCAssignToStack<8, 8>>,
|
|
CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8, v4f16, v4bf16],
|
|
CCAssignToStack<8, 8>>,
|
|
CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
|
|
CCAssignToStack<16, 16>>
|
|
]>;
|
|
|
|
let Entry = 1 in
|
|
def RetCC_AArch64_AAPCS : CallingConv<[
|
|
CCIfType<[iPTR], CCBitConvertToType<i64>>,
|
|
CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
|
|
CCIfType<[v2f64, v4f32], CCBitConvertToType<v2i64>>,
|
|
|
|
CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>,
|
|
CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[X21]>>>,
|
|
|
|
// Big endian vectors must be passed as if they were 1-element vectors so that
|
|
// their lanes are in a consistent order.
|
|
CCIfBigEndian<CCIfType<[v2i32, v2f32, v4i16, v4f16, v4bf16, v8i8],
|
|
CCBitConvertToType<f64>>>,
|
|
CCIfBigEndian<CCIfType<[v2i64, v2f64, v4i32, v4f32, v8i16, v8f16, v8bf16, v16i8],
|
|
CCBitConvertToType<f128>>>,
|
|
|
|
CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
|
|
CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3, W4, W5, W6, W7]>>,
|
|
CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6, X7]>>,
|
|
CCIfType<[f16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
|
|
CCIfType<[bf16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
|
|
CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7]>>,
|
|
CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
|
|
CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
|
|
CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
|
|
CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
|
|
CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
|
|
|
|
CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
|
|
nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64],
|
|
CCAssignToReg<[Z0, Z1, Z2, Z3, Z4, Z5, Z6, Z7]>>,
|
|
|
|
CCIfType<[nxv2i1, nxv4i1, nxv8i1, nxv16i1],
|
|
CCAssignToReg<[P0, P1, P2, P3]>>
|
|
]>;
|
|
|
|
// Vararg functions on windows pass floats in integer registers
|
|
let Entry = 1 in
|
|
def CC_AArch64_Win64_VarArg : CallingConv<[
|
|
CCIfType<[f16, bf16], CCBitConvertToType<i16>>,
|
|
CCIfType<[f32], CCBitConvertToType<i32>>,
|
|
CCIfType<[f64], CCBitConvertToType<i64>>,
|
|
CCDelegateTo<CC_AArch64_AAPCS>
|
|
]>;
|
|
|
|
// Windows Control Flow Guard checks take a single argument (the target function
|
|
// address) and have no return value.
|
|
let Entry = 1 in
|
|
def CC_AArch64_Win64_CFGuard_Check : CallingConv<[
|
|
CCIfType<[i64], CCAssignToReg<[X15]>>
|
|
]>;
|
|
|
|
|
|
// Darwin uses a calling convention which differs in only two ways
|
|
// from the standard one at this level:
|
|
// + i128s (i.e. split i64s) don't need even registers.
|
|
// + Stack slots are sized as needed rather than being at least 64-bit.
|
|
let Entry = 1 in
|
|
def CC_AArch64_DarwinPCS : CallingConv<[
|
|
CCIfType<[iPTR], CCBitConvertToType<i64>>,
|
|
CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
|
|
CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
|
|
|
|
// An SRet is passed in X8, not X0 like a normal pointer parameter.
|
|
CCIfSRet<CCIfType<[i64], CCAssignToReg<[X8]>>>,
|
|
|
|
// Put ByVal arguments directly on the stack. Minimum size and alignment of a
|
|
// slot is 64-bit.
|
|
CCIfByVal<CCPassByVal<8, 8>>,
|
|
|
|
// Pass SwiftSelf in a callee saved register.
|
|
CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[X20]>>>,
|
|
|
|
// A SwiftError is passed in X21.
|
|
CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[X21]>>>,
|
|
|
|
// Pass SwiftAsync in an otherwise callee saved register so that it will be
|
|
// preserved for normal function calls.
|
|
CCIfSwiftAsync<CCIfType<[i64], CCAssignToReg<[X22]>>>,
|
|
|
|
CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>,
|
|
|
|
// Handle i1, i8, i16, i32, i64, f32, f64 and v2f64 by passing in registers,
|
|
// up to eight each of GPR and FPR.
|
|
CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
|
|
CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3, W4, W5, W6, W7]>>,
|
|
// i128 is split to two i64s, we can't fit half to register X7.
|
|
CCIfType<[i64],
|
|
CCIfSplit<CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6]>>>,
|
|
// i128 is split to two i64s, and its stack alignment is 16 bytes.
|
|
CCIfType<[i64], CCIfSplit<CCAssignToStackWithShadow<8, 16, [X7]>>>,
|
|
|
|
CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6, X7]>>,
|
|
CCIfType<[f16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
|
|
CCIfType<[bf16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
|
|
CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7]>>,
|
|
CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
|
|
CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
|
|
CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
|
|
CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
|
|
CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
|
|
|
|
// If more than will fit in registers, pass them on the stack instead.
|
|
CCIf<"ValVT == MVT::i1 || ValVT == MVT::i8", CCAssignToStack<1, 1>>,
|
|
CCIf<"ValVT == MVT::i16 || ValVT == MVT::f16 || ValVT == MVT::bf16",
|
|
CCAssignToStack<2, 2>>,
|
|
CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
|
|
|
|
// Re-demote pointers to 32-bits so we don't end up storing 64-bit
|
|
// values and clobbering neighbouring stack locations. Not very pretty.
|
|
CCIfPtr<CCIfILP32<CCTruncToType<i32>>>,
|
|
CCIfPtr<CCIfILP32<CCAssignToStack<4, 4>>>,
|
|
|
|
CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8, v4f16, v4bf16],
|
|
CCAssignToStack<8, 8>>,
|
|
CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
|
|
CCAssignToStack<16, 16>>
|
|
]>;
|
|
|
|
let Entry = 1 in
|
|
def CC_AArch64_DarwinPCS_VarArg : CallingConv<[
|
|
CCIfType<[iPTR], CCBitConvertToType<i64>>,
|
|
CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
|
|
CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
|
|
|
|
CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Stack_Block">>,
|
|
|
|
// Handle all scalar types as either i64 or f64.
|
|
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
|
|
CCIfType<[f16, bf16, f32], CCPromoteToType<f64>>,
|
|
|
|
// Everything is on the stack.
|
|
// i128 is split to two i64s, and its stack alignment is 16 bytes.
|
|
CCIfType<[i64], CCIfSplit<CCAssignToStack<8, 16>>>,
|
|
CCIfType<[i64, f64, v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
|
|
CCAssignToStack<8, 8>>,
|
|
CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
|
|
CCAssignToStack<16, 16>>
|
|
]>;
|
|
|
|
// In the ILP32 world, the minimum stack slot size is 4 bytes. Otherwise the
|
|
// same as the normal Darwin VarArgs handling.
|
|
let Entry = 1 in
|
|
def CC_AArch64_DarwinPCS_ILP32_VarArg : CallingConv<[
|
|
CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
|
|
CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
|
|
|
|
// Handle all scalar types as either i32 or f32.
|
|
CCIfType<[i8, i16], CCPromoteToType<i32>>,
|
|
CCIfType<[f16, bf16], CCPromoteToType<f32>>,
|
|
|
|
// Everything is on the stack.
|
|
// i128 is split to two i64s, and its stack alignment is 16 bytes.
|
|
CCIfPtr<CCIfILP32<CCTruncToType<i32>>>,
|
|
CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
|
|
CCIfType<[i64], CCIfSplit<CCAssignToStack<8, 16>>>,
|
|
CCIfType<[i64, f64, v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
|
|
CCAssignToStack<8, 8>>,
|
|
CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
|
|
CCAssignToStack<16, 16>>
|
|
]>;
|
|
|
|
|
|
// The WebKit_JS calling convention only passes the first argument (the callee)
|
|
// in register and the remaining arguments on stack. We allow 32bit stack slots,
|
|
// so that WebKit can write partial values in the stack and define the other
|
|
// 32bit quantity as undef.
|
|
let Entry = 1 in
|
|
def CC_AArch64_WebKit_JS : CallingConv<[
|
|
// Handle i1, i8, i16, i32, and i64 passing in register X0 (W0).
|
|
CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
|
|
CCIfType<[i32], CCAssignToReg<[W0]>>,
|
|
CCIfType<[i64], CCAssignToReg<[X0]>>,
|
|
|
|
// Pass the remaining arguments on the stack instead.
|
|
CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
|
|
CCIfType<[i64, f64], CCAssignToStack<8, 8>>
|
|
]>;
|
|
|
|
let Entry = 1 in
|
|
def RetCC_AArch64_WebKit_JS : CallingConv<[
|
|
CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3, W4, W5, W6, W7]>>,
|
|
CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6, X7]>>,
|
|
CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7]>>,
|
|
CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>
|
|
]>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ARM64 Calling Convention for GHC
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// This calling convention is specific to the Glasgow Haskell Compiler.
|
|
// The only documentation is the GHC source code, specifically the C header
|
|
// file:
|
|
//
|
|
// https://github.com/ghc/ghc/blob/master/includes/stg/MachRegs.h
|
|
//
|
|
// which defines the registers for the Spineless Tagless G-Machine (STG) that
|
|
// GHC uses to implement lazy evaluation. The generic STG machine has a set of
|
|
// registers which are mapped to appropriate set of architecture specific
|
|
// registers for each CPU architecture.
|
|
//
|
|
// The STG Machine is documented here:
|
|
//
|
|
// https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/GeneratedCode
|
|
//
|
|
// The AArch64 register mapping is under the heading "The ARMv8/AArch64 ABI
|
|
// register mapping".
|
|
|
|
let Entry = 1 in
|
|
def CC_AArch64_GHC : CallingConv<[
|
|
CCIfType<[iPTR], CCBitConvertToType<i64>>,
|
|
|
|
// Handle all vector types as either f64 or v2f64.
|
|
CCIfType<[v1i64, v2i32, v4i16, v8i8, v2f32], CCBitConvertToType<f64>>,
|
|
CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, f128], CCBitConvertToType<v2f64>>,
|
|
|
|
CCIfType<[v2f64], CCAssignToReg<[Q4, Q5]>>,
|
|
CCIfType<[f32], CCAssignToReg<[S8, S9, S10, S11]>>,
|
|
CCIfType<[f64], CCAssignToReg<[D12, D13, D14, D15]>>,
|
|
|
|
// Promote i8/i16/i32 arguments to i64.
|
|
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
|
|
|
|
// Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
|
|
CCIfType<[i64], CCAssignToReg<[X19, X20, X21, X22, X23, X24, X25, X26, X27, X28]>>
|
|
]>;
|
|
|
|
// The order of the callee-saves in this file is important, because the
|
|
// FrameLowering code will use this order to determine the layout the
|
|
// callee-save area in the stack frame. As can be observed below, Darwin
|
|
// requires the frame-record (LR, FP) to be at the top the callee-save area,
|
|
// whereas for other platforms they are at the bottom.
|
|
|
|
// FIXME: LR is only callee-saved in the sense that *we* preserve it and are
|
|
// presumably a callee to someone. External functions may not do so, but this
|
|
// is currently safe since BL has LR as an implicit-def and what happens after a
|
|
// tail call doesn't matter.
|
|
//
|
|
// It would be better to model its preservation semantics properly (create a
|
|
// vreg on entry, use it in RET & tail call generation; make that vreg def if we
|
|
// end up saving LR as part of a call frame). Watch this space...
|
|
def CSR_AArch64_AAPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24,
|
|
X25, X26, X27, X28, LR, FP,
|
|
D8, D9, D10, D11,
|
|
D12, D13, D14, D15)>;
|
|
|
|
// A variant for treating X18 as callee saved, when interfacing with
|
|
// code that needs X18 to be preserved.
|
|
def CSR_AArch64_AAPCS_X18 : CalleeSavedRegs<(add X18, CSR_AArch64_AAPCS)>;
|
|
|
|
// Win64 has unwinding codes for an (FP,LR) pair, save_fplr and save_fplr_x.
|
|
// We put FP before LR, so that frame lowering logic generates (FP,LR) pairs,
|
|
// and not (LR,FP) pairs.
|
|
def CSR_Win_AArch64_AAPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24,
|
|
X25, X26, X27, X28, FP, LR,
|
|
D8, D9, D10, D11,
|
|
D12, D13, D14, D15)>;
|
|
|
|
// The Control Flow Guard check call uses a custom calling convention that also
|
|
// preserves X0-X8 and Q0-Q7.
|
|
def CSR_Win_AArch64_CFGuard_Check : CalleeSavedRegs<(add CSR_Win_AArch64_AAPCS,
|
|
(sequence "X%u", 0, 8),
|
|
(sequence "Q%u", 0, 7))>;
|
|
|
|
// AArch64 PCS for vector functions (VPCS)
|
|
// must (additionally) preserve full Q8-Q23 registers
|
|
def CSR_AArch64_AAVPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24,
|
|
X25, X26, X27, X28, LR, FP,
|
|
(sequence "Q%u", 8, 23))>;
|
|
|
|
// Functions taking SVE arguments or returning an SVE type
|
|
// must (additionally) preserve full Z8-Z23 and predicate registers P4-P15
|
|
def CSR_AArch64_SVE_AAPCS : CalleeSavedRegs<(add (sequence "Z%u", 8, 23),
|
|
(sequence "P%u", 4, 15),
|
|
X19, X20, X21, X22, X23, X24,
|
|
X25, X26, X27, X28, LR, FP)>;
|
|
|
|
def CSR_AArch64_AAPCS_SwiftTail
|
|
: CalleeSavedRegs<(sub CSR_AArch64_AAPCS, X20, X22)>;
|
|
|
|
// Constructors and destructors return 'this' in the iOS 64-bit C++ ABI; since
|
|
// 'this' and the pointer return value are both passed in X0 in these cases,
|
|
// this can be partially modelled by treating X0 as a callee-saved register;
|
|
// only the resulting RegMask is used; the SaveList is ignored
|
|
//
|
|
// (For generic ARM 64-bit ABI code, clang will not generate constructors or
|
|
// destructors with 'this' returns, so this RegMask will not be used in that
|
|
// case)
|
|
def CSR_AArch64_AAPCS_ThisReturn : CalleeSavedRegs<(add CSR_AArch64_AAPCS, X0)>;
|
|
|
|
def CSR_AArch64_AAPCS_SwiftError
|
|
: CalleeSavedRegs<(sub CSR_AArch64_AAPCS, X21)>;
|
|
|
|
// The ELF stub used for TLS-descriptor access saves every feasible
|
|
// register. Only X0 and LR are clobbered.
|
|
def CSR_AArch64_TLS_ELF
|
|
: CalleeSavedRegs<(add (sequence "X%u", 1, 28), FP,
|
|
(sequence "Q%u", 0, 31))>;
|
|
|
|
def CSR_AArch64_AllRegs
|
|
: CalleeSavedRegs<(add (sequence "W%u", 0, 30), WSP,
|
|
(sequence "X%u", 0, 28), FP, LR, SP,
|
|
(sequence "B%u", 0, 31), (sequence "H%u", 0, 31),
|
|
(sequence "S%u", 0, 31), (sequence "D%u", 0, 31),
|
|
(sequence "Q%u", 0, 31))>;
|
|
|
|
def CSR_AArch64_NoRegs : CalleeSavedRegs<(add)>;
|
|
|
|
def CSR_AArch64_RT_MostRegs : CalleeSavedRegs<(add CSR_AArch64_AAPCS,
|
|
(sequence "X%u", 9, 15))>;
|
|
|
|
def CSR_AArch64_StackProbe_Windows
|
|
: CalleeSavedRegs<(add (sequence "X%u", 0, 15),
|
|
(sequence "X%u", 18, 28), FP, SP,
|
|
(sequence "Q%u", 0, 31))>;
|
|
|
|
// Darwin variants of AAPCS.
|
|
// Darwin puts the frame-record at the top of the callee-save area.
|
|
def CSR_Darwin_AArch64_AAPCS : CalleeSavedRegs<(add LR, FP, X19, X20, X21, X22,
|
|
X23, X24, X25, X26, X27, X28,
|
|
D8, D9, D10, D11,
|
|
D12, D13, D14, D15)>;
|
|
|
|
def CSR_Darwin_AArch64_AAVPCS : CalleeSavedRegs<(add LR, FP, X19, X20, X21,
|
|
X22, X23, X24, X25, X26, X27,
|
|
X28, (sequence "Q%u", 8, 23))>;
|
|
def CSR_Darwin_AArch64_AAPCS_ThisReturn
|
|
: CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS, X0)>;
|
|
|
|
def CSR_Darwin_AArch64_AAPCS_SwiftError
|
|
: CalleeSavedRegs<(sub CSR_Darwin_AArch64_AAPCS, X21)>;
|
|
|
|
def CSR_Darwin_AArch64_AAPCS_SwiftTail
|
|
: CalleeSavedRegs<(sub CSR_Darwin_AArch64_AAPCS, X20, X22)>;
|
|
|
|
// The function used by Darwin to obtain the address of a thread-local variable
|
|
// guarantees more than a normal AAPCS function. x16 and x17 are used on the
|
|
// fast path for calculation, but other registers except X0 (argument/return)
|
|
// and LR (it is a call, after all) are preserved.
|
|
def CSR_Darwin_AArch64_TLS
|
|
: CalleeSavedRegs<(add (sub (sequence "X%u", 1, 28), X16, X17),
|
|
FP,
|
|
(sequence "Q%u", 0, 31))>;
|
|
|
|
// We can only handle a register pair with adjacent registers, the register pair
|
|
// should belong to the same class as well. Since the access function on the
|
|
// fast path calls a function that follows CSR_Darwin_AArch64_TLS,
|
|
// CSR_Darwin_AArch64_CXX_TLS should be a subset of CSR_Darwin_AArch64_TLS.
|
|
def CSR_Darwin_AArch64_CXX_TLS
|
|
: CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS,
|
|
(sub (sequence "X%u", 1, 28), X15, X16, X17, X18),
|
|
(sequence "D%u", 0, 31))>;
|
|
|
|
// CSRs that are handled by prologue, epilogue.
|
|
def CSR_Darwin_AArch64_CXX_TLS_PE
|
|
: CalleeSavedRegs<(add LR, FP)>;
|
|
|
|
// CSRs that are handled explicitly via copies.
|
|
def CSR_Darwin_AArch64_CXX_TLS_ViaCopy
|
|
: CalleeSavedRegs<(sub CSR_Darwin_AArch64_CXX_TLS, LR, FP)>;
|
|
|
|
def CSR_Darwin_AArch64_RT_MostRegs
|
|
: CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS, (sequence "X%u", 9, 15))>;
|
|
|
|
// Variants of the standard calling conventions for shadow call stack.
|
|
// These all preserve x18 in addition to any other registers.
|
|
def CSR_AArch64_NoRegs_SCS
|
|
: CalleeSavedRegs<(add CSR_AArch64_NoRegs, X18)>;
|
|
def CSR_AArch64_AllRegs_SCS
|
|
: CalleeSavedRegs<(add CSR_AArch64_AllRegs, X18)>;
|
|
def CSR_AArch64_AAPCS_SwiftError_SCS
|
|
: CalleeSavedRegs<(add CSR_AArch64_AAPCS_SwiftError, X18)>;
|
|
def CSR_AArch64_RT_MostRegs_SCS
|
|
: CalleeSavedRegs<(add CSR_AArch64_RT_MostRegs, X18)>;
|
|
def CSR_AArch64_AAVPCS_SCS
|
|
: CalleeSavedRegs<(add CSR_AArch64_AAVPCS, X18)>;
|
|
def CSR_AArch64_SVE_AAPCS_SCS
|
|
: CalleeSavedRegs<(add CSR_AArch64_SVE_AAPCS, X18)>;
|
|
def CSR_AArch64_AAPCS_SCS
|
|
: CalleeSavedRegs<(add CSR_AArch64_AAPCS, X18)>;
|