forked from OSchip/llvm-project
1186 lines
35 KiB
C++
1186 lines
35 KiB
C++
/*===---- __clang_hip_math.h - HIP math decls -------------------------------===
|
|
*
|
|
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
* See https://llvm.org/LICENSE.txt for license information.
|
|
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
*
|
|
*===-----------------------------------------------------------------------===
|
|
*/
|
|
|
|
#ifndef __CLANG_HIP_MATH_H__
|
|
#define __CLANG_HIP_MATH_H__
|
|
|
|
#include <algorithm>
|
|
#include <limits.h>
|
|
#include <limits>
|
|
#include <stdint.h>
|
|
|
|
#pragma push_macro("__DEVICE__")
|
|
#pragma push_macro("__RETURN_TYPE")
|
|
|
|
// to be consistent with __clang_cuda_math_forward_declares
|
|
#define __DEVICE__ static __device__
|
|
#define __RETURN_TYPE bool
|
|
|
|
__DEVICE__
|
|
inline uint64_t __make_mantissa_base8(const char *__tagp) {
|
|
uint64_t __r = 0;
|
|
while (__tagp) {
|
|
char __tmp = *__tagp;
|
|
|
|
if (__tmp >= '0' && __tmp <= '7')
|
|
__r = (__r * 8u) + __tmp - '0';
|
|
else
|
|
return 0;
|
|
|
|
++__tagp;
|
|
}
|
|
|
|
return __r;
|
|
}
|
|
|
|
__DEVICE__
|
|
inline uint64_t __make_mantissa_base10(const char *__tagp) {
|
|
uint64_t __r = 0;
|
|
while (__tagp) {
|
|
char __tmp = *__tagp;
|
|
|
|
if (__tmp >= '0' && __tmp <= '9')
|
|
__r = (__r * 10u) + __tmp - '0';
|
|
else
|
|
return 0;
|
|
|
|
++__tagp;
|
|
}
|
|
|
|
return __r;
|
|
}
|
|
|
|
__DEVICE__
|
|
inline uint64_t __make_mantissa_base16(const char *__tagp) {
|
|
uint64_t __r = 0;
|
|
while (__tagp) {
|
|
char __tmp = *__tagp;
|
|
|
|
if (__tmp >= '0' && __tmp <= '9')
|
|
__r = (__r * 16u) + __tmp - '0';
|
|
else if (__tmp >= 'a' && __tmp <= 'f')
|
|
__r = (__r * 16u) + __tmp - 'a' + 10;
|
|
else if (__tmp >= 'A' && __tmp <= 'F')
|
|
__r = (__r * 16u) + __tmp - 'A' + 10;
|
|
else
|
|
return 0;
|
|
|
|
++__tagp;
|
|
}
|
|
|
|
return __r;
|
|
}
|
|
|
|
__DEVICE__
|
|
inline uint64_t __make_mantissa(const char *__tagp) {
|
|
if (!__tagp)
|
|
return 0u;
|
|
|
|
if (*__tagp == '0') {
|
|
++__tagp;
|
|
|
|
if (*__tagp == 'x' || *__tagp == 'X')
|
|
return __make_mantissa_base16(__tagp);
|
|
else
|
|
return __make_mantissa_base8(__tagp);
|
|
}
|
|
|
|
return __make_mantissa_base10(__tagp);
|
|
}
|
|
|
|
// BEGIN FLOAT
|
|
__DEVICE__
|
|
inline float abs(float __x) { return __ocml_fabs_f32(__x); }
|
|
__DEVICE__
|
|
inline float acosf(float __x) { return __ocml_acos_f32(__x); }
|
|
__DEVICE__
|
|
inline float acoshf(float __x) { return __ocml_acosh_f32(__x); }
|
|
__DEVICE__
|
|
inline float asinf(float __x) { return __ocml_asin_f32(__x); }
|
|
__DEVICE__
|
|
inline float asinhf(float __x) { return __ocml_asinh_f32(__x); }
|
|
__DEVICE__
|
|
inline float atan2f(float __x, float __y) { return __ocml_atan2_f32(__x, __y); }
|
|
__DEVICE__
|
|
inline float atanf(float __x) { return __ocml_atan_f32(__x); }
|
|
__DEVICE__
|
|
inline float atanhf(float __x) { return __ocml_atanh_f32(__x); }
|
|
__DEVICE__
|
|
inline float cbrtf(float __x) { return __ocml_cbrt_f32(__x); }
|
|
__DEVICE__
|
|
inline float ceilf(float __x) { return __ocml_ceil_f32(__x); }
|
|
__DEVICE__
|
|
inline float copysignf(float __x, float __y) {
|
|
return __ocml_copysign_f32(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
inline float cosf(float __x) { return __ocml_cos_f32(__x); }
|
|
__DEVICE__
|
|
inline float coshf(float __x) { return __ocml_cosh_f32(__x); }
|
|
__DEVICE__
|
|
inline float cospif(float __x) { return __ocml_cospi_f32(__x); }
|
|
__DEVICE__
|
|
inline float cyl_bessel_i0f(float __x) { return __ocml_i0_f32(__x); }
|
|
__DEVICE__
|
|
inline float cyl_bessel_i1f(float __x) { return __ocml_i1_f32(__x); }
|
|
__DEVICE__
|
|
inline float erfcf(float __x) { return __ocml_erfc_f32(__x); }
|
|
__DEVICE__
|
|
inline float erfcinvf(float __x) { return __ocml_erfcinv_f32(__x); }
|
|
__DEVICE__
|
|
inline float erfcxf(float __x) { return __ocml_erfcx_f32(__x); }
|
|
__DEVICE__
|
|
inline float erff(float __x) { return __ocml_erf_f32(__x); }
|
|
__DEVICE__
|
|
inline float erfinvf(float __x) { return __ocml_erfinv_f32(__x); }
|
|
__DEVICE__
|
|
inline float exp10f(float __x) { return __ocml_exp10_f32(__x); }
|
|
__DEVICE__
|
|
inline float exp2f(float __x) { return __ocml_exp2_f32(__x); }
|
|
__DEVICE__
|
|
inline float expf(float __x) { return __ocml_exp_f32(__x); }
|
|
__DEVICE__
|
|
inline float expm1f(float __x) { return __ocml_expm1_f32(__x); }
|
|
__DEVICE__
|
|
inline float fabsf(float __x) { return __ocml_fabs_f32(__x); }
|
|
__DEVICE__
|
|
inline float fdimf(float __x, float __y) { return __ocml_fdim_f32(__x, __y); }
|
|
__DEVICE__
|
|
inline float fdividef(float __x, float __y) { return __x / __y; }
|
|
__DEVICE__
|
|
inline float floorf(float __x) { return __ocml_floor_f32(__x); }
|
|
__DEVICE__
|
|
inline float fmaf(float __x, float __y, float __z) {
|
|
return __ocml_fma_f32(__x, __y, __z);
|
|
}
|
|
__DEVICE__
|
|
inline float fmaxf(float __x, float __y) { return __ocml_fmax_f32(__x, __y); }
|
|
__DEVICE__
|
|
inline float fminf(float __x, float __y) { return __ocml_fmin_f32(__x, __y); }
|
|
__DEVICE__
|
|
inline float fmodf(float __x, float __y) { return __ocml_fmod_f32(__x, __y); }
|
|
__DEVICE__
|
|
inline float frexpf(float __x, int *__nptr) {
|
|
int __tmp;
|
|
float __r =
|
|
__ocml_frexp_f32(__x, (__attribute__((address_space(5))) int *)&__tmp);
|
|
*__nptr = __tmp;
|
|
|
|
return __r;
|
|
}
|
|
__DEVICE__
|
|
inline float hypotf(float __x, float __y) { return __ocml_hypot_f32(__x, __y); }
|
|
__DEVICE__
|
|
inline int ilogbf(float __x) { return __ocml_ilogb_f32(__x); }
|
|
__DEVICE__
|
|
inline __RETURN_TYPE isfinite(float __x) { return __ocml_isfinite_f32(__x); }
|
|
__DEVICE__
|
|
inline __RETURN_TYPE isinf(float __x) { return __ocml_isinf_f32(__x); }
|
|
__DEVICE__
|
|
inline __RETURN_TYPE isnan(float __x) { return __ocml_isnan_f32(__x); }
|
|
__DEVICE__
|
|
inline float j0f(float __x) { return __ocml_j0_f32(__x); }
|
|
__DEVICE__
|
|
inline float j1f(float __x) { return __ocml_j1_f32(__x); }
|
|
__DEVICE__
|
|
inline float jnf(int __n,
|
|
float __x) { // TODO: we could use Ahmes multiplication
|
|
// and the Miller & Brown algorithm
|
|
// for linear recurrences to get O(log n) steps, but it's unclear if
|
|
// it'd be beneficial in this case.
|
|
if (__n == 0)
|
|
return j0f(__x);
|
|
if (__n == 1)
|
|
return j1f(__x);
|
|
|
|
float __x0 = j0f(__x);
|
|
float __x1 = j1f(__x);
|
|
for (int __i = 1; __i < __n; ++__i) {
|
|
float __x2 = (2 * __i) / __x * __x1 - __x0;
|
|
__x0 = __x1;
|
|
__x1 = __x2;
|
|
}
|
|
|
|
return __x1;
|
|
}
|
|
__DEVICE__
|
|
inline float ldexpf(float __x, int __e) { return __ocml_ldexp_f32(__x, __e); }
|
|
__DEVICE__
|
|
inline float lgammaf(float __x) { return __ocml_lgamma_f32(__x); }
|
|
__DEVICE__
|
|
inline long long int llrintf(float __x) { return __ocml_rint_f32(__x); }
|
|
__DEVICE__
|
|
inline long long int llroundf(float __x) { return __ocml_round_f32(__x); }
|
|
__DEVICE__
|
|
inline float log10f(float __x) { return __ocml_log10_f32(__x); }
|
|
__DEVICE__
|
|
inline float log1pf(float __x) { return __ocml_log1p_f32(__x); }
|
|
__DEVICE__
|
|
inline float log2f(float __x) { return __ocml_log2_f32(__x); }
|
|
__DEVICE__
|
|
inline float logbf(float __x) { return __ocml_logb_f32(__x); }
|
|
__DEVICE__
|
|
inline float logf(float __x) { return __ocml_log_f32(__x); }
|
|
__DEVICE__
|
|
inline long int lrintf(float __x) { return __ocml_rint_f32(__x); }
|
|
__DEVICE__
|
|
inline long int lroundf(float __x) { return __ocml_round_f32(__x); }
|
|
__DEVICE__
|
|
inline float modff(float __x, float *__iptr) {
|
|
float __tmp;
|
|
float __r =
|
|
__ocml_modf_f32(__x, (__attribute__((address_space(5))) float *)&__tmp);
|
|
*__iptr = __tmp;
|
|
|
|
return __r;
|
|
}
|
|
__DEVICE__
|
|
inline float nanf(const char *__tagp) {
|
|
union {
|
|
float val;
|
|
struct ieee_float {
|
|
uint32_t mantissa : 22;
|
|
uint32_t quiet : 1;
|
|
uint32_t exponent : 8;
|
|
uint32_t sign : 1;
|
|
} bits;
|
|
|
|
static_assert(sizeof(float) == sizeof(ieee_float), "");
|
|
} __tmp;
|
|
|
|
__tmp.bits.sign = 0u;
|
|
__tmp.bits.exponent = ~0u;
|
|
__tmp.bits.quiet = 1u;
|
|
__tmp.bits.mantissa = __make_mantissa(__tagp);
|
|
|
|
return __tmp.val;
|
|
}
|
|
__DEVICE__
|
|
inline float nearbyintf(float __x) { return __ocml_nearbyint_f32(__x); }
|
|
__DEVICE__
|
|
inline float nextafterf(float __x, float __y) {
|
|
return __ocml_nextafter_f32(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
inline float norm3df(float __x, float __y, float __z) {
|
|
return __ocml_len3_f32(__x, __y, __z);
|
|
}
|
|
__DEVICE__
|
|
inline float norm4df(float __x, float __y, float __z, float __w) {
|
|
return __ocml_len4_f32(__x, __y, __z, __w);
|
|
}
|
|
__DEVICE__
|
|
inline float normcdff(float __x) { return __ocml_ncdf_f32(__x); }
|
|
__DEVICE__
|
|
inline float normcdfinvf(float __x) { return __ocml_ncdfinv_f32(__x); }
|
|
__DEVICE__
|
|
inline float
|
|
normf(int __dim,
|
|
const float *__a) { // TODO: placeholder until OCML adds support.
|
|
float __r = 0;
|
|
while (__dim--) {
|
|
__r += __a[0] * __a[0];
|
|
++__a;
|
|
}
|
|
|
|
return __ocml_sqrt_f32(__r);
|
|
}
|
|
__DEVICE__
|
|
inline float powf(float __x, float __y) { return __ocml_pow_f32(__x, __y); }
|
|
__DEVICE__
|
|
inline float rcbrtf(float __x) { return __ocml_rcbrt_f32(__x); }
|
|
__DEVICE__
|
|
inline float remainderf(float __x, float __y) {
|
|
return __ocml_remainder_f32(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
inline float remquof(float __x, float __y, int *__quo) {
|
|
int __tmp;
|
|
float __r = __ocml_remquo_f32(
|
|
__x, __y, (__attribute__((address_space(5))) int *)&__tmp);
|
|
*__quo = __tmp;
|
|
|
|
return __r;
|
|
}
|
|
__DEVICE__
|
|
inline float rhypotf(float __x, float __y) {
|
|
return __ocml_rhypot_f32(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
inline float rintf(float __x) { return __ocml_rint_f32(__x); }
|
|
__DEVICE__
|
|
inline float rnorm3df(float __x, float __y, float __z) {
|
|
return __ocml_rlen3_f32(__x, __y, __z);
|
|
}
|
|
|
|
__DEVICE__
|
|
inline float rnorm4df(float __x, float __y, float __z, float __w) {
|
|
return __ocml_rlen4_f32(__x, __y, __z, __w);
|
|
}
|
|
__DEVICE__
|
|
inline float
|
|
rnormf(int __dim,
|
|
const float *__a) { // TODO: placeholder until OCML adds support.
|
|
float __r = 0;
|
|
while (__dim--) {
|
|
__r += __a[0] * __a[0];
|
|
++__a;
|
|
}
|
|
|
|
return __ocml_rsqrt_f32(__r);
|
|
}
|
|
__DEVICE__
|
|
inline float roundf(float __x) { return __ocml_round_f32(__x); }
|
|
__DEVICE__
|
|
inline float rsqrtf(float __x) { return __ocml_rsqrt_f32(__x); }
|
|
__DEVICE__
|
|
inline float scalblnf(float __x, long int __n) {
|
|
return (__n < INT_MAX) ? __ocml_scalbn_f32(__x, __n)
|
|
: __ocml_scalb_f32(__x, __n);
|
|
}
|
|
__DEVICE__
|
|
inline float scalbnf(float __x, int __n) { return __ocml_scalbn_f32(__x, __n); }
|
|
__DEVICE__
|
|
inline __RETURN_TYPE signbit(float __x) { return __ocml_signbit_f32(__x); }
|
|
__DEVICE__
|
|
inline void sincosf(float __x, float *__sinptr, float *__cosptr) {
|
|
float __tmp;
|
|
|
|
*__sinptr =
|
|
__ocml_sincos_f32(__x, (__attribute__((address_space(5))) float *)&__tmp);
|
|
*__cosptr = __tmp;
|
|
}
|
|
__DEVICE__
|
|
inline void sincospif(float __x, float *__sinptr, float *__cosptr) {
|
|
float __tmp;
|
|
|
|
*__sinptr = __ocml_sincospi_f32(
|
|
__x, (__attribute__((address_space(5))) float *)&__tmp);
|
|
*__cosptr = __tmp;
|
|
}
|
|
__DEVICE__
|
|
inline float sinf(float __x) { return __ocml_sin_f32(__x); }
|
|
__DEVICE__
|
|
inline float sinhf(float __x) { return __ocml_sinh_f32(__x); }
|
|
__DEVICE__
|
|
inline float sinpif(float __x) { return __ocml_sinpi_f32(__x); }
|
|
__DEVICE__
|
|
inline float sqrtf(float __x) { return __ocml_sqrt_f32(__x); }
|
|
__DEVICE__
|
|
inline float tanf(float __x) { return __ocml_tan_f32(__x); }
|
|
__DEVICE__
|
|
inline float tanhf(float __x) { return __ocml_tanh_f32(__x); }
|
|
__DEVICE__
|
|
inline float tgammaf(float __x) { return __ocml_tgamma_f32(__x); }
|
|
__DEVICE__
|
|
inline float truncf(float __x) { return __ocml_trunc_f32(__x); }
|
|
__DEVICE__
|
|
inline float y0f(float __x) { return __ocml_y0_f32(__x); }
|
|
__DEVICE__
|
|
inline float y1f(float __x) { return __ocml_y1_f32(__x); }
|
|
__DEVICE__
|
|
inline float ynf(int __n,
|
|
float __x) { // TODO: we could use Ahmes multiplication
|
|
// and the Miller & Brown algorithm
|
|
// for linear recurrences to get O(log n) steps, but it's unclear if
|
|
// it'd be beneficial in this case. Placeholder until OCML adds
|
|
// support.
|
|
if (__n == 0)
|
|
return y0f(__x);
|
|
if (__n == 1)
|
|
return y1f(__x);
|
|
|
|
float __x0 = y0f(__x);
|
|
float __x1 = y1f(__x);
|
|
for (int __i = 1; __i < __n; ++__i) {
|
|
float __x2 = (2 * __i) / __x * __x1 - __x0;
|
|
__x0 = __x1;
|
|
__x1 = __x2;
|
|
}
|
|
|
|
return __x1;
|
|
}
|
|
|
|
// BEGIN INTRINSICS
|
|
__DEVICE__
|
|
inline float __cosf(float __x) { return __ocml_native_cos_f32(__x); }
|
|
__DEVICE__
|
|
inline float __exp10f(float __x) { return __ocml_native_exp10_f32(__x); }
|
|
__DEVICE__
|
|
inline float __expf(float __x) { return __ocml_native_exp_f32(__x); }
|
|
#if defined OCML_BASIC_ROUNDED_OPERATIONS
|
|
__DEVICE__
|
|
inline float __fadd_rd(float __x, float __y) {
|
|
return __ocml_add_rtn_f32(__x, __y);
|
|
}
|
|
#endif
|
|
__DEVICE__
|
|
inline float __fadd_rn(float __x, float __y) { return __x + __y; }
|
|
#if defined OCML_BASIC_ROUNDED_OPERATIONS
|
|
__DEVICE__
|
|
inline float __fadd_ru(float __x, float __y) {
|
|
return __ocml_add_rtp_f32(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
inline float __fadd_rz(float __x, float __y) {
|
|
return __ocml_add_rtz_f32(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
inline float __fdiv_rd(float __x, float __y) {
|
|
return __ocml_div_rtn_f32(__x, __y);
|
|
}
|
|
#endif
|
|
__DEVICE__
|
|
inline float __fdiv_rn(float __x, float __y) { return __x / __y; }
|
|
#if defined OCML_BASIC_ROUNDED_OPERATIONS
|
|
__DEVICE__
|
|
inline float __fdiv_ru(float __x, float __y) {
|
|
return __ocml_div_rtp_f32(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
inline float __fdiv_rz(float __x, float __y) {
|
|
return __ocml_div_rtz_f32(__x, __y);
|
|
}
|
|
#endif
|
|
__DEVICE__
|
|
inline float __fdividef(float __x, float __y) { return __x / __y; }
|
|
#if defined OCML_BASIC_ROUNDED_OPERATIONS
|
|
__DEVICE__
|
|
inline float __fmaf_rd(float __x, float __y, float __z) {
|
|
return __ocml_fma_rtn_f32(__x, __y, __z);
|
|
}
|
|
#endif
|
|
__DEVICE__
|
|
inline float __fmaf_rn(float __x, float __y, float __z) {
|
|
return __ocml_fma_f32(__x, __y, __z);
|
|
}
|
|
#if defined OCML_BASIC_ROUNDED_OPERATIONS
|
|
__DEVICE__
|
|
inline float __fmaf_ru(float __x, float __y, float __z) {
|
|
return __ocml_fma_rtp_f32(__x, __y, __z);
|
|
}
|
|
__DEVICE__
|
|
inline float __fmaf_rz(float __x, float __y, float __z) {
|
|
return __ocml_fma_rtz_f32(__x, __y, __z);
|
|
}
|
|
__DEVICE__
|
|
inline float __fmul_rd(float __x, float __y) {
|
|
return __ocml_mul_rtn_f32(__x, __y);
|
|
}
|
|
#endif
|
|
__DEVICE__
|
|
inline float __fmul_rn(float __x, float __y) { return __x * __y; }
|
|
#if defined OCML_BASIC_ROUNDED_OPERATIONS
|
|
__DEVICE__
|
|
inline float __fmul_ru(float __x, float __y) {
|
|
return __ocml_mul_rtp_f32(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
inline float __fmul_rz(float __x, float __y) {
|
|
return __ocml_mul_rtz_f32(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
inline float __frcp_rd(float __x) { return __llvm_amdgcn_rcp_f32(__x); }
|
|
#endif
|
|
__DEVICE__
|
|
inline float __frcp_rn(float __x) { return __llvm_amdgcn_rcp_f32(__x); }
|
|
#if defined OCML_BASIC_ROUNDED_OPERATIONS
|
|
__DEVICE__
|
|
inline float __frcp_ru(float __x) { return __llvm_amdgcn_rcp_f32(__x); }
|
|
__DEVICE__
|
|
inline float __frcp_rz(float __x) { return __llvm_amdgcn_rcp_f32(__x); }
|
|
#endif
|
|
__DEVICE__
|
|
inline float __frsqrt_rn(float __x) { return __llvm_amdgcn_rsq_f32(__x); }
|
|
#if defined OCML_BASIC_ROUNDED_OPERATIONS
|
|
__DEVICE__
|
|
inline float __fsqrt_rd(float __x) { return __ocml_sqrt_rtn_f32(__x); }
|
|
#endif
|
|
__DEVICE__
|
|
inline float __fsqrt_rn(float __x) { return __ocml_native_sqrt_f32(__x); }
|
|
#if defined OCML_BASIC_ROUNDED_OPERATIONS
|
|
__DEVICE__
|
|
inline float __fsqrt_ru(float __x) { return __ocml_sqrt_rtp_f32(__x); }
|
|
__DEVICE__
|
|
inline float __fsqrt_rz(float __x) { return __ocml_sqrt_rtz_f32(__x); }
|
|
__DEVICE__
|
|
inline float __fsub_rd(float __x, float __y) {
|
|
return __ocml_sub_rtn_f32(__x, __y);
|
|
}
|
|
#endif
|
|
__DEVICE__
|
|
inline float __fsub_rn(float __x, float __y) { return __x - __y; }
|
|
#if defined OCML_BASIC_ROUNDED_OPERATIONS
|
|
__DEVICE__
|
|
inline float __fsub_ru(float __x, float __y) {
|
|
return __ocml_sub_rtp_f32(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
inline float __fsub_rz(float __x, float __y) {
|
|
return __ocml_sub_rtz_f32(__x, __y);
|
|
}
|
|
#endif
|
|
__DEVICE__
|
|
inline float __log10f(float __x) { return __ocml_native_log10_f32(__x); }
|
|
__DEVICE__
|
|
inline float __log2f(float __x) { return __ocml_native_log2_f32(__x); }
|
|
__DEVICE__
|
|
inline float __logf(float __x) { return __ocml_native_log_f32(__x); }
|
|
__DEVICE__
|
|
inline float __powf(float __x, float __y) { return __ocml_pow_f32(__x, __y); }
|
|
__DEVICE__
|
|
inline float __saturatef(float __x) {
|
|
return (__x < 0) ? 0 : ((__x > 1) ? 1 : __x);
|
|
}
|
|
__DEVICE__
|
|
inline void __sincosf(float __x, float *__sinptr, float *__cosptr) {
|
|
*__sinptr = __ocml_native_sin_f32(__x);
|
|
*__cosptr = __ocml_native_cos_f32(__x);
|
|
}
|
|
__DEVICE__
|
|
inline float __sinf(float __x) { return __ocml_native_sin_f32(__x); }
|
|
__DEVICE__
|
|
inline float __tanf(float __x) { return __ocml_tan_f32(__x); }
|
|
// END INTRINSICS
|
|
// END FLOAT
|
|
|
|
// BEGIN DOUBLE
|
|
__DEVICE__
|
|
inline double abs(double __x) { return __ocml_fabs_f64(__x); }
|
|
__DEVICE__
|
|
inline double acos(double __x) { return __ocml_acos_f64(__x); }
|
|
__DEVICE__
|
|
inline double acosh(double __x) { return __ocml_acosh_f64(__x); }
|
|
__DEVICE__
|
|
inline double asin(double __x) { return __ocml_asin_f64(__x); }
|
|
__DEVICE__
|
|
inline double asinh(double __x) { return __ocml_asinh_f64(__x); }
|
|
__DEVICE__
|
|
inline double atan(double __x) { return __ocml_atan_f64(__x); }
|
|
__DEVICE__
|
|
inline double atan2(double __x, double __y) {
|
|
return __ocml_atan2_f64(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
inline double atanh(double __x) { return __ocml_atanh_f64(__x); }
|
|
__DEVICE__
|
|
inline double cbrt(double __x) { return __ocml_cbrt_f64(__x); }
|
|
__DEVICE__
|
|
inline double ceil(double __x) { return __ocml_ceil_f64(__x); }
|
|
__DEVICE__
|
|
inline double copysign(double __x, double __y) {
|
|
return __ocml_copysign_f64(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
inline double cos(double __x) { return __ocml_cos_f64(__x); }
|
|
__DEVICE__
|
|
inline double cosh(double __x) { return __ocml_cosh_f64(__x); }
|
|
__DEVICE__
|
|
inline double cospi(double __x) { return __ocml_cospi_f64(__x); }
|
|
__DEVICE__
|
|
inline double cyl_bessel_i0(double __x) { return __ocml_i0_f64(__x); }
|
|
__DEVICE__
|
|
inline double cyl_bessel_i1(double __x) { return __ocml_i1_f64(__x); }
|
|
__DEVICE__
|
|
inline double erf(double __x) { return __ocml_erf_f64(__x); }
|
|
__DEVICE__
|
|
inline double erfc(double __x) { return __ocml_erfc_f64(__x); }
|
|
__DEVICE__
|
|
inline double erfcinv(double __x) { return __ocml_erfcinv_f64(__x); }
|
|
__DEVICE__
|
|
inline double erfcx(double __x) { return __ocml_erfcx_f64(__x); }
|
|
__DEVICE__
|
|
inline double erfinv(double __x) { return __ocml_erfinv_f64(__x); }
|
|
__DEVICE__
|
|
inline double exp(double __x) { return __ocml_exp_f64(__x); }
|
|
__DEVICE__
|
|
inline double exp10(double __x) { return __ocml_exp10_f64(__x); }
|
|
__DEVICE__
|
|
inline double exp2(double __x) { return __ocml_exp2_f64(__x); }
|
|
__DEVICE__
|
|
inline double expm1(double __x) { return __ocml_expm1_f64(__x); }
|
|
__DEVICE__
|
|
inline double fabs(double __x) { return __ocml_fabs_f64(__x); }
|
|
__DEVICE__
|
|
inline double fdim(double __x, double __y) { return __ocml_fdim_f64(__x, __y); }
|
|
__DEVICE__
|
|
inline double floor(double __x) { return __ocml_floor_f64(__x); }
|
|
__DEVICE__
|
|
inline double fma(double __x, double __y, double __z) {
|
|
return __ocml_fma_f64(__x, __y, __z);
|
|
}
|
|
__DEVICE__
|
|
inline double fmax(double __x, double __y) { return __ocml_fmax_f64(__x, __y); }
|
|
__DEVICE__
|
|
inline double fmin(double __x, double __y) { return __ocml_fmin_f64(__x, __y); }
|
|
__DEVICE__
|
|
inline double fmod(double __x, double __y) { return __ocml_fmod_f64(__x, __y); }
|
|
__DEVICE__
|
|
inline double frexp(double __x, int *__nptr) {
|
|
int __tmp;
|
|
double __r =
|
|
__ocml_frexp_f64(__x, (__attribute__((address_space(5))) int *)&__tmp);
|
|
*__nptr = __tmp;
|
|
|
|
return __r;
|
|
}
|
|
__DEVICE__
|
|
inline double hypot(double __x, double __y) {
|
|
return __ocml_hypot_f64(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
inline int ilogb(double __x) { return __ocml_ilogb_f64(__x); }
|
|
__DEVICE__
|
|
inline __RETURN_TYPE isfinite(double __x) { return __ocml_isfinite_f64(__x); }
|
|
__DEVICE__
|
|
inline __RETURN_TYPE isinf(double __x) { return __ocml_isinf_f64(__x); }
|
|
__DEVICE__
|
|
inline __RETURN_TYPE isnan(double __x) { return __ocml_isnan_f64(__x); }
|
|
__DEVICE__
|
|
inline double j0(double __x) { return __ocml_j0_f64(__x); }
|
|
__DEVICE__
|
|
inline double j1(double __x) { return __ocml_j1_f64(__x); }
|
|
__DEVICE__
|
|
inline double jn(int __n,
|
|
double __x) { // TODO: we could use Ahmes multiplication
|
|
// and the Miller & Brown algorithm
|
|
// for linear recurrences to get O(log n) steps, but it's unclear if
|
|
// it'd be beneficial in this case. Placeholder until OCML adds
|
|
// support.
|
|
if (__n == 0)
|
|
return j0f(__x);
|
|
if (__n == 1)
|
|
return j1f(__x);
|
|
|
|
double __x0 = j0f(__x);
|
|
double __x1 = j1f(__x);
|
|
for (int __i = 1; __i < __n; ++__i) {
|
|
double __x2 = (2 * __i) / __x * __x1 - __x0;
|
|
__x0 = __x1;
|
|
__x1 = __x2;
|
|
}
|
|
|
|
return __x1;
|
|
}
|
|
__DEVICE__
|
|
inline double ldexp(double __x, int __e) { return __ocml_ldexp_f64(__x, __e); }
|
|
__DEVICE__
|
|
inline double lgamma(double __x) { return __ocml_lgamma_f64(__x); }
|
|
__DEVICE__
|
|
inline long long int llrint(double __x) { return __ocml_rint_f64(__x); }
|
|
__DEVICE__
|
|
inline long long int llround(double __x) { return __ocml_round_f64(__x); }
|
|
__DEVICE__
|
|
inline double log(double __x) { return __ocml_log_f64(__x); }
|
|
__DEVICE__
|
|
inline double log10(double __x) { return __ocml_log10_f64(__x); }
|
|
__DEVICE__
|
|
inline double log1p(double __x) { return __ocml_log1p_f64(__x); }
|
|
__DEVICE__
|
|
inline double log2(double __x) { return __ocml_log2_f64(__x); }
|
|
__DEVICE__
|
|
inline double logb(double __x) { return __ocml_logb_f64(__x); }
|
|
__DEVICE__
|
|
inline long int lrint(double __x) { return __ocml_rint_f64(__x); }
|
|
__DEVICE__
|
|
inline long int lround(double __x) { return __ocml_round_f64(__x); }
|
|
__DEVICE__
|
|
inline double modf(double __x, double *__iptr) {
|
|
double __tmp;
|
|
double __r =
|
|
__ocml_modf_f64(__x, (__attribute__((address_space(5))) double *)&__tmp);
|
|
*__iptr = __tmp;
|
|
|
|
return __r;
|
|
}
|
|
__DEVICE__
|
|
inline double nan(const char *__tagp) {
|
|
#if !_WIN32
|
|
union {
|
|
double val;
|
|
struct ieee_double {
|
|
uint64_t mantissa : 51;
|
|
uint32_t quiet : 1;
|
|
uint32_t exponent : 11;
|
|
uint32_t sign : 1;
|
|
} bits;
|
|
static_assert(sizeof(double) == sizeof(ieee_double), "");
|
|
} __tmp;
|
|
|
|
__tmp.bits.sign = 0u;
|
|
__tmp.bits.exponent = ~0u;
|
|
__tmp.bits.quiet = 1u;
|
|
__tmp.bits.mantissa = __make_mantissa(__tagp);
|
|
|
|
return __tmp.val;
|
|
#else
|
|
static_assert(sizeof(uint64_t) == sizeof(double));
|
|
uint64_t val = __make_mantissa(__tagp);
|
|
val |= 0xFFF << 51;
|
|
return *reinterpret_cast<double *>(&val);
|
|
#endif
|
|
}
|
|
__DEVICE__
|
|
inline double nearbyint(double __x) { return __ocml_nearbyint_f64(__x); }
|
|
__DEVICE__
|
|
inline double nextafter(double __x, double __y) {
|
|
return __ocml_nextafter_f64(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
inline double
|
|
norm(int __dim,
|
|
const double *__a) { // TODO: placeholder until OCML adds support.
|
|
double __r = 0;
|
|
while (__dim--) {
|
|
__r += __a[0] * __a[0];
|
|
++__a;
|
|
}
|
|
|
|
return __ocml_sqrt_f64(__r);
|
|
}
|
|
__DEVICE__
|
|
inline double norm3d(double __x, double __y, double __z) {
|
|
return __ocml_len3_f64(__x, __y, __z);
|
|
}
|
|
__DEVICE__
|
|
inline double norm4d(double __x, double __y, double __z, double __w) {
|
|
return __ocml_len4_f64(__x, __y, __z, __w);
|
|
}
|
|
__DEVICE__
|
|
inline double normcdf(double __x) { return __ocml_ncdf_f64(__x); }
|
|
__DEVICE__
|
|
inline double normcdfinv(double __x) { return __ocml_ncdfinv_f64(__x); }
|
|
__DEVICE__
|
|
inline double pow(double __x, double __y) { return __ocml_pow_f64(__x, __y); }
|
|
__DEVICE__
|
|
inline double rcbrt(double __x) { return __ocml_rcbrt_f64(__x); }
|
|
__DEVICE__
|
|
inline double remainder(double __x, double __y) {
|
|
return __ocml_remainder_f64(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
inline double remquo(double __x, double __y, int *__quo) {
|
|
int __tmp;
|
|
double __r = __ocml_remquo_f64(
|
|
__x, __y, (__attribute__((address_space(5))) int *)&__tmp);
|
|
*__quo = __tmp;
|
|
|
|
return __r;
|
|
}
|
|
__DEVICE__
|
|
inline double rhypot(double __x, double __y) {
|
|
return __ocml_rhypot_f64(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
inline double rint(double __x) { return __ocml_rint_f64(__x); }
|
|
__DEVICE__
|
|
inline double
|
|
rnorm(int __dim,
|
|
const double *__a) { // TODO: placeholder until OCML adds support.
|
|
double __r = 0;
|
|
while (__dim--) {
|
|
__r += __a[0] * __a[0];
|
|
++__a;
|
|
}
|
|
|
|
return __ocml_rsqrt_f64(__r);
|
|
}
|
|
__DEVICE__
|
|
inline double rnorm3d(double __x, double __y, double __z) {
|
|
return __ocml_rlen3_f64(__x, __y, __z);
|
|
}
|
|
__DEVICE__
|
|
inline double rnorm4d(double __x, double __y, double __z, double __w) {
|
|
return __ocml_rlen4_f64(__x, __y, __z, __w);
|
|
}
|
|
__DEVICE__
|
|
inline double round(double __x) { return __ocml_round_f64(__x); }
|
|
__DEVICE__
|
|
inline double rsqrt(double __x) { return __ocml_rsqrt_f64(__x); }
|
|
__DEVICE__
|
|
inline double scalbln(double __x, long int __n) {
|
|
return (__n < INT_MAX) ? __ocml_scalbn_f64(__x, __n)
|
|
: __ocml_scalb_f64(__x, __n);
|
|
}
|
|
__DEVICE__
|
|
inline double scalbn(double __x, int __n) {
|
|
return __ocml_scalbn_f64(__x, __n);
|
|
}
|
|
__DEVICE__
|
|
inline __RETURN_TYPE signbit(double __x) { return __ocml_signbit_f64(__x); }
|
|
__DEVICE__
|
|
inline double sin(double __x) { return __ocml_sin_f64(__x); }
|
|
__DEVICE__
|
|
inline void sincos(double __x, double *__sinptr, double *__cosptr) {
|
|
double __tmp;
|
|
*__sinptr = __ocml_sincos_f64(
|
|
__x, (__attribute__((address_space(5))) double *)&__tmp);
|
|
*__cosptr = __tmp;
|
|
}
|
|
__DEVICE__
|
|
inline void sincospi(double __x, double *__sinptr, double *__cosptr) {
|
|
double __tmp;
|
|
*__sinptr = __ocml_sincospi_f64(
|
|
__x, (__attribute__((address_space(5))) double *)&__tmp);
|
|
*__cosptr = __tmp;
|
|
}
|
|
__DEVICE__
|
|
inline double sinh(double __x) { return __ocml_sinh_f64(__x); }
|
|
__DEVICE__
|
|
inline double sinpi(double __x) { return __ocml_sinpi_f64(__x); }
|
|
__DEVICE__
|
|
inline double sqrt(double __x) { return __ocml_sqrt_f64(__x); }
|
|
__DEVICE__
|
|
inline double tan(double __x) { return __ocml_tan_f64(__x); }
|
|
__DEVICE__
|
|
inline double tanh(double __x) { return __ocml_tanh_f64(__x); }
|
|
__DEVICE__
|
|
inline double tgamma(double __x) { return __ocml_tgamma_f64(__x); }
|
|
__DEVICE__
|
|
inline double trunc(double __x) { return __ocml_trunc_f64(__x); }
|
|
__DEVICE__
|
|
inline double y0(double __x) { return __ocml_y0_f64(__x); }
|
|
__DEVICE__
|
|
inline double y1(double __x) { return __ocml_y1_f64(__x); }
|
|
__DEVICE__
|
|
inline double yn(int __n,
|
|
double __x) { // TODO: we could use Ahmes multiplication
|
|
// and the Miller & Brown algorithm
|
|
// for linear recurrences to get O(log n) steps, but it's unclear if
|
|
// it'd be beneficial in this case. Placeholder until OCML adds
|
|
// support.
|
|
if (__n == 0)
|
|
return j0f(__x);
|
|
if (__n == 1)
|
|
return j1f(__x);
|
|
|
|
double __x0 = j0f(__x);
|
|
double __x1 = j1f(__x);
|
|
for (int __i = 1; __i < __n; ++__i) {
|
|
double __x2 = (2 * __i) / __x * __x1 - __x0;
|
|
__x0 = __x1;
|
|
__x1 = __x2;
|
|
}
|
|
|
|
return __x1;
|
|
}
|
|
|
|
// BEGIN INTRINSICS
|
|
#if defined OCML_BASIC_ROUNDED_OPERATIONS
|
|
__DEVICE__
|
|
inline double __dadd_rd(double __x, double __y) {
|
|
return __ocml_add_rtn_f64(__x, __y);
|
|
}
|
|
#endif
|
|
__DEVICE__
|
|
inline double __dadd_rn(double __x, double __y) { return __x + __y; }
|
|
#if defined OCML_BASIC_ROUNDED_OPERATIONS
|
|
__DEVICE__
|
|
inline double __dadd_ru(double __x, double __y) {
|
|
return __ocml_add_rtp_f64(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
inline double __dadd_rz(double __x, double __y) {
|
|
return __ocml_add_rtz_f64(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
inline double __ddiv_rd(double __x, double __y) {
|
|
return __ocml_div_rtn_f64(__x, __y);
|
|
}
|
|
#endif
|
|
__DEVICE__
|
|
inline double __ddiv_rn(double __x, double __y) { return __x / __y; }
|
|
#if defined OCML_BASIC_ROUNDED_OPERATIONS
|
|
__DEVICE__
|
|
inline double __ddiv_ru(double __x, double __y) {
|
|
return __ocml_div_rtp_f64(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
inline double __ddiv_rz(double __x, double __y) {
|
|
return __ocml_div_rtz_f64(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
inline double __dmul_rd(double __x, double __y) {
|
|
return __ocml_mul_rtn_f64(__x, __y);
|
|
}
|
|
#endif
|
|
__DEVICE__
|
|
inline double __dmul_rn(double __x, double __y) { return __x * __y; }
|
|
#if defined OCML_BASIC_ROUNDED_OPERATIONS
|
|
__DEVICE__
|
|
inline double __dmul_ru(double __x, double __y) {
|
|
return __ocml_mul_rtp_f64(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
inline double __dmul_rz(double __x, double __y) {
|
|
return __ocml_mul_rtz_f64(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
inline double __drcp_rd(double __x) { return __llvm_amdgcn_rcp_f64(__x); }
|
|
#endif
|
|
__DEVICE__
|
|
inline double __drcp_rn(double __x) { return __llvm_amdgcn_rcp_f64(__x); }
|
|
#if defined OCML_BASIC_ROUNDED_OPERATIONS
|
|
__DEVICE__
|
|
inline double __drcp_ru(double __x) { return __llvm_amdgcn_rcp_f64(__x); }
|
|
__DEVICE__
|
|
inline double __drcp_rz(double __x) { return __llvm_amdgcn_rcp_f64(__x); }
|
|
__DEVICE__
|
|
inline double __dsqrt_rd(double __x) { return __ocml_sqrt_rtn_f64(__x); }
|
|
#endif
|
|
__DEVICE__
|
|
inline double __dsqrt_rn(double __x) { return __ocml_sqrt_f64(__x); }
|
|
#if defined OCML_BASIC_ROUNDED_OPERATIONS
|
|
__DEVICE__
|
|
inline double __dsqrt_ru(double __x) { return __ocml_sqrt_rtp_f64(__x); }
|
|
__DEVICE__
|
|
inline double __dsqrt_rz(double __x) { return __ocml_sqrt_rtz_f64(__x); }
|
|
__DEVICE__
|
|
inline double __dsub_rd(double __x, double __y) {
|
|
return __ocml_sub_rtn_f64(__x, __y);
|
|
}
|
|
#endif
|
|
__DEVICE__
|
|
inline double __dsub_rn(double __x, double __y) { return __x - __y; }
|
|
#if defined OCML_BASIC_ROUNDED_OPERATIONS
|
|
__DEVICE__
|
|
inline double __dsub_ru(double __x, double __y) {
|
|
return __ocml_sub_rtp_f64(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
inline double __dsub_rz(double __x, double __y) {
|
|
return __ocml_sub_rtz_f64(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
inline double __fma_rd(double __x, double __y, double __z) {
|
|
return __ocml_fma_rtn_f64(__x, __y, __z);
|
|
}
|
|
#endif
|
|
__DEVICE__
|
|
inline double __fma_rn(double __x, double __y, double __z) {
|
|
return __ocml_fma_f64(__x, __y, __z);
|
|
}
|
|
#if defined OCML_BASIC_ROUNDED_OPERATIONS
|
|
__DEVICE__
|
|
inline double __fma_ru(double __x, double __y, double __z) {
|
|
return __ocml_fma_rtp_f64(__x, __y, __z);
|
|
}
|
|
__DEVICE__
|
|
inline double __fma_rz(double __x, double __y, double __z) {
|
|
return __ocml_fma_rtz_f64(__x, __y, __z);
|
|
}
|
|
#endif
|
|
// END INTRINSICS
|
|
// END DOUBLE
|
|
|
|
// BEGIN INTEGER
|
|
__DEVICE__
|
|
inline int abs(int __x) {
|
|
int __sgn = __x >> (sizeof(int) * CHAR_BIT - 1);
|
|
return (__x ^ __sgn) - __sgn;
|
|
}
|
|
__DEVICE__
|
|
inline long labs(long __x) {
|
|
long __sgn = __x >> (sizeof(long) * CHAR_BIT - 1);
|
|
return (__x ^ __sgn) - __sgn;
|
|
}
|
|
__DEVICE__
|
|
inline long long llabs(long long __x) {
|
|
long long __sgn = __x >> (sizeof(long long) * CHAR_BIT - 1);
|
|
return (__x ^ __sgn) - __sgn;
|
|
}
|
|
|
|
#if defined(__cplusplus)
|
|
__DEVICE__
|
|
inline long abs(long __x) { return labs(__x); }
|
|
__DEVICE__
|
|
inline long long abs(long long __x) { return llabs(__x); }
|
|
#endif
|
|
// END INTEGER
|
|
|
|
__DEVICE__
|
|
inline _Float16 fma(_Float16 __x, _Float16 __y, _Float16 __z) {
|
|
return __ocml_fma_f16(__x, __y, __z);
|
|
}
|
|
|
|
__DEVICE__
|
|
inline float fma(float __x, float __y, float __z) {
|
|
return fmaf(__x, __y, __z);
|
|
}
|
|
|
|
#pragma push_macro("__DEF_FUN1")
|
|
#pragma push_macro("__DEF_FUN2")
|
|
#pragma push_macro("__DEF_FUNI")
|
|
#pragma push_macro("__DEF_FLOAT_FUN2I")
|
|
#pragma push_macro("__HIP_OVERLOAD1")
|
|
#pragma push_macro("__HIP_OVERLOAD2")
|
|
|
|
// __hip_enable_if::type is a type function which returns __T if __B is true.
|
|
template <bool __B, class __T = void> struct __hip_enable_if {};
|
|
|
|
template <class __T> struct __hip_enable_if<true, __T> { typedef __T type; };
|
|
|
|
// __HIP_OVERLOAD1 is used to resolve function calls with integer argument to
|
|
// avoid compilation error due to ambibuity. e.g. floor(5) is resolved with
|
|
// floor(double).
|
|
#define __HIP_OVERLOAD1(__retty, __fn) \
|
|
template <typename __T> \
|
|
__DEVICE__ typename __hip_enable_if<std::numeric_limits<__T>::is_integer, \
|
|
__retty>::type \
|
|
__fn(__T __x) { \
|
|
return ::__fn((double)__x); \
|
|
}
|
|
|
|
// __HIP_OVERLOAD2 is used to resolve function calls with mixed float/double
|
|
// or integer argument to avoid compilation error due to ambibuity. e.g.
|
|
// max(5.0f, 6.0) is resolved with max(double, double).
|
|
#define __HIP_OVERLOAD2(__retty, __fn) \
|
|
template <typename __T1, typename __T2> \
|
|
__DEVICE__ \
|
|
typename __hip_enable_if<std::numeric_limits<__T1>::is_specialized && \
|
|
std::numeric_limits<__T2>::is_specialized, \
|
|
__retty>::type \
|
|
__fn(__T1 __x, __T2 __y) { \
|
|
return __fn((double)__x, (double)__y); \
|
|
}
|
|
|
|
// Define cmath functions with float argument and returns float.
|
|
#define __DEF_FUN1(__retty, __func) \
|
|
__DEVICE__ \
|
|
inline float __func(float __x) { return __func##f(__x); } \
|
|
__HIP_OVERLOAD1(__retty, __func)
|
|
|
|
// Define cmath functions with float argument and returns __retty.
|
|
#define __DEF_FUNI(__retty, __func) \
|
|
__DEVICE__ \
|
|
inline __retty __func(float __x) { return __func##f(__x); } \
|
|
__HIP_OVERLOAD1(__retty, __func)
|
|
|
|
// define cmath functions with two float arguments.
|
|
#define __DEF_FUN2(__retty, __func) \
|
|
__DEVICE__ \
|
|
inline float __func(float __x, float __y) { return __func##f(__x, __y); } \
|
|
__HIP_OVERLOAD2(__retty, __func)
|
|
|
|
__DEF_FUN1(double, acos)
|
|
__DEF_FUN1(double, acosh)
|
|
__DEF_FUN1(double, asin)
|
|
__DEF_FUN1(double, asinh)
|
|
__DEF_FUN1(double, atan)
|
|
__DEF_FUN2(double, atan2);
|
|
__DEF_FUN1(double, atanh)
|
|
__DEF_FUN1(double, cbrt)
|
|
__DEF_FUN1(double, ceil)
|
|
__DEF_FUN2(double, copysign);
|
|
__DEF_FUN1(double, cos)
|
|
__DEF_FUN1(double, cosh)
|
|
__DEF_FUN1(double, erf)
|
|
__DEF_FUN1(double, erfc)
|
|
__DEF_FUN1(double, exp)
|
|
__DEF_FUN1(double, exp2)
|
|
__DEF_FUN1(double, expm1)
|
|
__DEF_FUN1(double, fabs)
|
|
__DEF_FUN2(double, fdim);
|
|
__DEF_FUN1(double, floor)
|
|
__DEF_FUN2(double, fmax);
|
|
__DEF_FUN2(double, fmin);
|
|
__DEF_FUN2(double, fmod);
|
|
//__HIP_OVERLOAD1(int, fpclassify)
|
|
__DEF_FUN2(double, hypot);
|
|
__DEF_FUNI(int, ilogb)
|
|
__HIP_OVERLOAD1(bool, isfinite)
|
|
__HIP_OVERLOAD2(bool, isgreater);
|
|
__HIP_OVERLOAD2(bool, isgreaterequal);
|
|
__HIP_OVERLOAD1(bool, isinf);
|
|
__HIP_OVERLOAD2(bool, isless);
|
|
__HIP_OVERLOAD2(bool, islessequal);
|
|
__HIP_OVERLOAD2(bool, islessgreater);
|
|
__HIP_OVERLOAD1(bool, isnan);
|
|
//__HIP_OVERLOAD1(bool, isnormal)
|
|
__HIP_OVERLOAD2(bool, isunordered);
|
|
__DEF_FUN1(double, lgamma)
|
|
__DEF_FUN1(double, log)
|
|
__DEF_FUN1(double, log10)
|
|
__DEF_FUN1(double, log1p)
|
|
__DEF_FUN1(double, log2)
|
|
__DEF_FUN1(double, logb)
|
|
__DEF_FUNI(long long, llrint)
|
|
__DEF_FUNI(long long, llround)
|
|
__DEF_FUNI(long, lrint)
|
|
__DEF_FUNI(long, lround)
|
|
__DEF_FUN1(double, nearbyint);
|
|
__DEF_FUN2(double, nextafter);
|
|
__DEF_FUN2(double, pow);
|
|
__DEF_FUN2(double, remainder);
|
|
__DEF_FUN1(double, rint);
|
|
__DEF_FUN1(double, round);
|
|
__HIP_OVERLOAD1(bool, signbit)
|
|
__DEF_FUN1(double, sin)
|
|
__DEF_FUN1(double, sinh)
|
|
__DEF_FUN1(double, sqrt)
|
|
__DEF_FUN1(double, tan)
|
|
__DEF_FUN1(double, tanh)
|
|
__DEF_FUN1(double, tgamma)
|
|
__DEF_FUN1(double, trunc);
|
|
|
|
// define cmath functions with a float and an integer argument.
|
|
#define __DEF_FLOAT_FUN2I(__func) \
|
|
__DEVICE__ \
|
|
inline float __func(float __x, int __y) { return __func##f(__x, __y); }
|
|
__DEF_FLOAT_FUN2I(scalbn)
|
|
|
|
template <class T> __DEVICE__ inline T min(T __arg1, T __arg2) {
|
|
return (__arg1 < __arg2) ? __arg1 : __arg2;
|
|
}
|
|
|
|
template <class T> __DEVICE__ inline T max(T __arg1, T __arg2) {
|
|
return (__arg1 > __arg2) ? __arg1 : __arg2;
|
|
}
|
|
|
|
__DEVICE__ inline int min(int __arg1, int __arg2) {
|
|
return (__arg1 < __arg2) ? __arg1 : __arg2;
|
|
}
|
|
__DEVICE__ inline int max(int __arg1, int __arg2) {
|
|
return (__arg1 > __arg2) ? __arg1 : __arg2;
|
|
}
|
|
|
|
__DEVICE__
|
|
inline float max(float __x, float __y) { return fmaxf(__x, __y); }
|
|
|
|
__DEVICE__
|
|
inline double max(double __x, double __y) { return fmax(__x, __y); }
|
|
|
|
__DEVICE__
|
|
inline float min(float __x, float __y) { return fminf(__x, __y); }
|
|
|
|
__DEVICE__
|
|
inline double min(double __x, double __y) { return fmin(__x, __y); }
|
|
|
|
__HIP_OVERLOAD2(double, max)
|
|
__HIP_OVERLOAD2(double, min)
|
|
|
|
__host__ inline static int min(int __arg1, int __arg2) {
|
|
return std::min(__arg1, __arg2);
|
|
}
|
|
|
|
__host__ inline static int max(int __arg1, int __arg2) {
|
|
return std::max(__arg1, __arg2);
|
|
}
|
|
|
|
#pragma pop_macro("__DEF_FUN1")
|
|
#pragma pop_macro("__DEF_FUN2")
|
|
#pragma pop_macro("__DEF_FUNI")
|
|
#pragma pop_macro("__DEF_FLOAT_FUN2I")
|
|
#pragma pop_macro("__HIP_OVERLOAD1")
|
|
#pragma pop_macro("__HIP_OVERLOAD2")
|
|
#pragma pop_macro("__DEVICE__")
|
|
#pragma pop_macro("__RETURN_TYPE")
|
|
|
|
#endif // __CLANG_HIP_MATH_H__
|