forked from OSchip/llvm-project
1631 lines
58 KiB
C++
1631 lines
58 KiB
C++
//===- IslNodeBuilder.cpp - Translate an isl AST into a LLVM-IR AST -------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the IslNodeBuilder, a class to translate an isl AST into
|
|
// a LLVM-IR AST.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "polly/CodeGen/IslNodeBuilder.h"
|
|
#include "polly/CodeGen/BlockGenerators.h"
|
|
#include "polly/CodeGen/CodeGeneration.h"
|
|
#include "polly/CodeGen/IslAst.h"
|
|
#include "polly/CodeGen/IslExprBuilder.h"
|
|
#include "polly/CodeGen/LoopGenerators.h"
|
|
#include "polly/CodeGen/RuntimeDebugBuilder.h"
|
|
#include "polly/Config/config.h"
|
|
#include "polly/Options.h"
|
|
#include "polly/ScopInfo.h"
|
|
#include "polly/Support/GICHelper.h"
|
|
#include "polly/Support/SCEVValidator.h"
|
|
#include "polly/Support/ScopHelper.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/RegionInfo.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "isl/aff.h"
|
|
#include "isl/aff_type.h"
|
|
#include "isl/ast.h"
|
|
#include "isl/ast_build.h"
|
|
#include "isl/isl-noexceptions.h"
|
|
#include "isl/map.h"
|
|
#include "isl/set.h"
|
|
#include "isl/union_map.h"
|
|
#include "isl/union_set.h"
|
|
#include "isl/val.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
using namespace polly;
|
|
|
|
#define DEBUG_TYPE "polly-codegen"
|
|
|
|
STATISTIC(VersionedScops, "Number of SCoPs that required versioning.");
|
|
|
|
STATISTIC(SequentialLoops, "Number of generated sequential for-loops");
|
|
STATISTIC(ParallelLoops, "Number of generated parallel for-loops");
|
|
STATISTIC(VectorLoops, "Number of generated vector for-loops");
|
|
STATISTIC(IfConditions, "Number of generated if-conditions");
|
|
|
|
static cl::opt<bool> PollyGenerateRTCPrint(
|
|
"polly-codegen-emit-rtc-print",
|
|
cl::desc("Emit code that prints the runtime check result dynamically."),
|
|
cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
|
|
|
|
// If this option is set we always use the isl AST generator to regenerate
|
|
// memory accesses. Without this option set we regenerate expressions using the
|
|
// original SCEV expressions and only generate new expressions in case the
|
|
// access relation has been changed and consequently must be regenerated.
|
|
static cl::opt<bool> PollyGenerateExpressions(
|
|
"polly-codegen-generate-expressions",
|
|
cl::desc("Generate AST expressions for unmodified and modified accesses"),
|
|
cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
|
|
|
|
static cl::opt<int> PollyTargetFirstLevelCacheLineSize(
|
|
"polly-target-first-level-cache-line-size",
|
|
cl::desc("The size of the first level cache line size specified in bytes."),
|
|
cl::Hidden, cl::init(64), cl::ZeroOrMore, cl::cat(PollyCategory));
|
|
|
|
__isl_give isl_ast_expr *
|
|
IslNodeBuilder::getUpperBound(__isl_keep isl_ast_node *For,
|
|
ICmpInst::Predicate &Predicate) {
|
|
isl_id *UBID, *IteratorID;
|
|
isl_ast_expr *Cond, *Iterator, *UB, *Arg0;
|
|
isl_ast_op_type Type;
|
|
|
|
Cond = isl_ast_node_for_get_cond(For);
|
|
Iterator = isl_ast_node_for_get_iterator(For);
|
|
assert(isl_ast_expr_get_type(Cond) == isl_ast_expr_op &&
|
|
"conditional expression is not an atomic upper bound");
|
|
|
|
Type = isl_ast_expr_get_op_type(Cond);
|
|
|
|
switch (Type) {
|
|
case isl_ast_op_le:
|
|
Predicate = ICmpInst::ICMP_SLE;
|
|
break;
|
|
case isl_ast_op_lt:
|
|
Predicate = ICmpInst::ICMP_SLT;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unexpected comparison type in loop condition");
|
|
}
|
|
|
|
Arg0 = isl_ast_expr_get_op_arg(Cond, 0);
|
|
|
|
assert(isl_ast_expr_get_type(Arg0) == isl_ast_expr_id &&
|
|
"conditional expression is not an atomic upper bound");
|
|
|
|
UBID = isl_ast_expr_get_id(Arg0);
|
|
|
|
assert(isl_ast_expr_get_type(Iterator) == isl_ast_expr_id &&
|
|
"Could not get the iterator");
|
|
|
|
IteratorID = isl_ast_expr_get_id(Iterator);
|
|
|
|
assert(UBID == IteratorID &&
|
|
"conditional expression is not an atomic upper bound");
|
|
|
|
UB = isl_ast_expr_get_op_arg(Cond, 1);
|
|
|
|
isl_ast_expr_free(Cond);
|
|
isl_ast_expr_free(Iterator);
|
|
isl_ast_expr_free(Arg0);
|
|
isl_id_free(IteratorID);
|
|
isl_id_free(UBID);
|
|
|
|
return UB;
|
|
}
|
|
|
|
/// Return true if a return value of Predicate is true for the value represented
|
|
/// by passed isl_ast_expr_int.
|
|
static bool checkIslAstExprInt(__isl_take isl_ast_expr *Expr,
|
|
isl_bool (*Predicate)(__isl_keep isl_val *)) {
|
|
if (isl_ast_expr_get_type(Expr) != isl_ast_expr_int) {
|
|
isl_ast_expr_free(Expr);
|
|
return false;
|
|
}
|
|
auto ExprVal = isl_ast_expr_get_val(Expr);
|
|
isl_ast_expr_free(Expr);
|
|
if (Predicate(ExprVal) != isl_bool_true) {
|
|
isl_val_free(ExprVal);
|
|
return false;
|
|
}
|
|
isl_val_free(ExprVal);
|
|
return true;
|
|
}
|
|
|
|
int IslNodeBuilder::getNumberOfIterations(__isl_keep isl_ast_node *For) {
|
|
assert(isl_ast_node_get_type(For) == isl_ast_node_for);
|
|
auto Body = isl_ast_node_for_get_body(For);
|
|
|
|
// First, check if we can actually handle this code.
|
|
switch (isl_ast_node_get_type(Body)) {
|
|
case isl_ast_node_user:
|
|
break;
|
|
case isl_ast_node_block: {
|
|
isl_ast_node_list *List = isl_ast_node_block_get_children(Body);
|
|
for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) {
|
|
isl_ast_node *Node = isl_ast_node_list_get_ast_node(List, i);
|
|
int Type = isl_ast_node_get_type(Node);
|
|
isl_ast_node_free(Node);
|
|
if (Type != isl_ast_node_user) {
|
|
isl_ast_node_list_free(List);
|
|
isl_ast_node_free(Body);
|
|
return -1;
|
|
}
|
|
}
|
|
isl_ast_node_list_free(List);
|
|
break;
|
|
}
|
|
default:
|
|
isl_ast_node_free(Body);
|
|
return -1;
|
|
}
|
|
isl_ast_node_free(Body);
|
|
|
|
auto Init = isl_ast_node_for_get_init(For);
|
|
if (!checkIslAstExprInt(Init, isl_val_is_zero))
|
|
return -1;
|
|
auto Inc = isl_ast_node_for_get_inc(For);
|
|
if (!checkIslAstExprInt(Inc, isl_val_is_one))
|
|
return -1;
|
|
CmpInst::Predicate Predicate;
|
|
auto UB = getUpperBound(For, Predicate);
|
|
if (isl_ast_expr_get_type(UB) != isl_ast_expr_int) {
|
|
isl_ast_expr_free(UB);
|
|
return -1;
|
|
}
|
|
auto UpVal = isl_ast_expr_get_val(UB);
|
|
isl_ast_expr_free(UB);
|
|
int NumberIterations = isl_val_get_num_si(UpVal);
|
|
isl_val_free(UpVal);
|
|
if (NumberIterations < 0)
|
|
return -1;
|
|
if (Predicate == CmpInst::ICMP_SLT)
|
|
return NumberIterations;
|
|
else
|
|
return NumberIterations + 1;
|
|
}
|
|
|
|
/// Extract the values and SCEVs needed to generate code for a block.
|
|
static int findReferencesInBlock(struct SubtreeReferences &References,
|
|
const ScopStmt *Stmt, BasicBlock *BB) {
|
|
for (Instruction &Inst : *BB) {
|
|
// Include invariant loads
|
|
if (isa<LoadInst>(Inst))
|
|
if (Value *InvariantLoad = References.GlobalMap.lookup(&Inst))
|
|
References.Values.insert(InvariantLoad);
|
|
|
|
for (Value *SrcVal : Inst.operands()) {
|
|
auto *Scope = References.LI.getLoopFor(BB);
|
|
if (canSynthesize(SrcVal, References.S, &References.SE, Scope)) {
|
|
References.SCEVs.insert(References.SE.getSCEVAtScope(SrcVal, Scope));
|
|
continue;
|
|
} else if (Value *NewVal = References.GlobalMap.lookup(SrcVal))
|
|
References.Values.insert(NewVal);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
isl_stat addReferencesFromStmt(const ScopStmt *Stmt, void *UserPtr,
|
|
bool CreateScalarRefs) {
|
|
auto &References = *static_cast<struct SubtreeReferences *>(UserPtr);
|
|
|
|
if (Stmt->isBlockStmt())
|
|
findReferencesInBlock(References, Stmt, Stmt->getBasicBlock());
|
|
else {
|
|
assert(Stmt->isRegionStmt() &&
|
|
"Stmt was neither block nor region statement");
|
|
for (BasicBlock *BB : Stmt->getRegion()->blocks())
|
|
findReferencesInBlock(References, Stmt, BB);
|
|
}
|
|
|
|
for (auto &Access : *Stmt) {
|
|
if (References.ParamSpace) {
|
|
isl::space ParamSpace = Access->getLatestAccessRelation().get_space();
|
|
(*References.ParamSpace) =
|
|
References.ParamSpace->align_params(ParamSpace);
|
|
}
|
|
|
|
if (Access->isLatestArrayKind()) {
|
|
auto *BasePtr = Access->getLatestScopArrayInfo()->getBasePtr();
|
|
if (Instruction *OpInst = dyn_cast<Instruction>(BasePtr))
|
|
if (Stmt->getParent()->contains(OpInst))
|
|
continue;
|
|
|
|
References.Values.insert(BasePtr);
|
|
continue;
|
|
}
|
|
|
|
if (CreateScalarRefs)
|
|
References.Values.insert(References.BlockGen.getOrCreateAlloca(*Access));
|
|
}
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/// Extract the out-of-scop values and SCEVs referenced from a set describing
|
|
/// a ScopStmt.
|
|
///
|
|
/// This includes the SCEVUnknowns referenced by the SCEVs used in the
|
|
/// statement and the base pointers of the memory accesses. For scalar
|
|
/// statements we force the generation of alloca memory locations and list
|
|
/// these locations in the set of out-of-scop values as well.
|
|
///
|
|
/// @param Set A set which references the ScopStmt we are interested in.
|
|
/// @param UserPtr A void pointer that can be casted to a SubtreeReferences
|
|
/// structure.
|
|
static isl_stat addReferencesFromStmtSet(__isl_take isl_set *Set,
|
|
void *UserPtr) {
|
|
isl_id *Id = isl_set_get_tuple_id(Set);
|
|
auto *Stmt = static_cast<const ScopStmt *>(isl_id_get_user(Id));
|
|
isl_id_free(Id);
|
|
isl_set_free(Set);
|
|
return addReferencesFromStmt(Stmt, UserPtr);
|
|
}
|
|
|
|
/// Extract the out-of-scop values and SCEVs referenced from a union set
|
|
/// referencing multiple ScopStmts.
|
|
///
|
|
/// This includes the SCEVUnknowns referenced by the SCEVs used in the
|
|
/// statement and the base pointers of the memory accesses. For scalar
|
|
/// statements we force the generation of alloca memory locations and list
|
|
/// these locations in the set of out-of-scop values as well.
|
|
///
|
|
/// @param USet A union set referencing the ScopStmts we are interested
|
|
/// in.
|
|
/// @param References The SubtreeReferences data structure through which
|
|
/// results are returned and further information is
|
|
/// provided.
|
|
static void
|
|
addReferencesFromStmtUnionSet(isl_union_set *USet,
|
|
struct SubtreeReferences &References) {
|
|
isl_union_set_foreach_set(USet, addReferencesFromStmtSet, &References);
|
|
isl_union_set_free(USet);
|
|
}
|
|
|
|
__isl_give isl_union_map *
|
|
IslNodeBuilder::getScheduleForAstNode(__isl_keep isl_ast_node *For) {
|
|
return IslAstInfo::getSchedule(For);
|
|
}
|
|
|
|
void IslNodeBuilder::getReferencesInSubtree(__isl_keep isl_ast_node *For,
|
|
SetVector<Value *> &Values,
|
|
SetVector<const Loop *> &Loops) {
|
|
SetVector<const SCEV *> SCEVs;
|
|
struct SubtreeReferences References = {
|
|
LI, SE, S, ValueMap, Values, SCEVs, getBlockGenerator(), nullptr};
|
|
|
|
for (const auto &I : IDToValue)
|
|
Values.insert(I.second);
|
|
|
|
// NOTE: this is populated in IslNodeBuilder::addParameters
|
|
for (const auto &I : OutsideLoopIterations)
|
|
Values.insert(cast<SCEVUnknown>(I.second)->getValue());
|
|
|
|
isl_union_set *Schedule = isl_union_map_domain(getScheduleForAstNode(For));
|
|
addReferencesFromStmtUnionSet(Schedule, References);
|
|
|
|
for (const SCEV *Expr : SCEVs) {
|
|
findValues(Expr, SE, Values);
|
|
findLoops(Expr, Loops);
|
|
}
|
|
|
|
Values.remove_if([](const Value *V) { return isa<GlobalValue>(V); });
|
|
|
|
/// Note: Code generation of induction variables of loops outside Scops
|
|
///
|
|
/// Remove loops that contain the scop or that are part of the scop, as they
|
|
/// are considered local. This leaves only loops that are before the scop, but
|
|
/// do not contain the scop itself.
|
|
/// We ignore loops perfectly contained in the Scop because these are already
|
|
/// generated at `IslNodeBuilder::addParameters`. These `Loops` are loops
|
|
/// whose induction variables are referred to by the Scop, but the Scop is not
|
|
/// fully contained in these Loops. Since there can be many of these,
|
|
/// we choose to codegen these on-demand.
|
|
/// @see IslNodeBuilder::materializeNonScopLoopInductionVariable.
|
|
Loops.remove_if([this](const Loop *L) {
|
|
return S.contains(L) || L->contains(S.getEntry());
|
|
});
|
|
|
|
// Contains Values that may need to be replaced with other values
|
|
// due to replacements from the ValueMap. We should make sure
|
|
// that we return correctly remapped values.
|
|
// NOTE: this code path is tested by:
|
|
// 1. test/Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll
|
|
// 2. test/Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll
|
|
SetVector<Value *> ReplacedValues;
|
|
for (Value *V : Values) {
|
|
ReplacedValues.insert(getLatestValue(V));
|
|
}
|
|
Values = ReplacedValues;
|
|
}
|
|
|
|
void IslNodeBuilder::updateValues(ValueMapT &NewValues) {
|
|
SmallPtrSet<Value *, 5> Inserted;
|
|
|
|
for (const auto &I : IDToValue) {
|
|
IDToValue[I.first] = NewValues[I.second];
|
|
Inserted.insert(I.second);
|
|
}
|
|
|
|
for (const auto &I : NewValues) {
|
|
if (Inserted.count(I.first))
|
|
continue;
|
|
|
|
ValueMap[I.first] = I.second;
|
|
}
|
|
}
|
|
|
|
Value *IslNodeBuilder::getLatestValue(Value *Original) const {
|
|
auto It = ValueMap.find(Original);
|
|
if (It == ValueMap.end())
|
|
return Original;
|
|
return It->second;
|
|
}
|
|
|
|
void IslNodeBuilder::createUserVector(__isl_take isl_ast_node *User,
|
|
std::vector<Value *> &IVS,
|
|
__isl_take isl_id *IteratorID,
|
|
__isl_take isl_union_map *Schedule) {
|
|
isl_ast_expr *Expr = isl_ast_node_user_get_expr(User);
|
|
isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
|
|
isl_id *Id = isl_ast_expr_get_id(StmtExpr);
|
|
isl_ast_expr_free(StmtExpr);
|
|
ScopStmt *Stmt = (ScopStmt *)isl_id_get_user(Id);
|
|
std::vector<LoopToScevMapT> VLTS(IVS.size());
|
|
|
|
isl_union_set *Domain = isl_union_set_from_set(Stmt->getDomain().release());
|
|
Schedule = isl_union_map_intersect_domain(Schedule, Domain);
|
|
isl_map *S = isl_map_from_union_map(Schedule);
|
|
|
|
auto *NewAccesses = createNewAccesses(Stmt, User);
|
|
createSubstitutionsVector(Expr, Stmt, VLTS, IVS, IteratorID);
|
|
VectorBlockGenerator::generate(BlockGen, *Stmt, VLTS, S, NewAccesses);
|
|
isl_id_to_ast_expr_free(NewAccesses);
|
|
isl_map_free(S);
|
|
isl_id_free(Id);
|
|
isl_ast_node_free(User);
|
|
}
|
|
|
|
void IslNodeBuilder::createMark(__isl_take isl_ast_node *Node) {
|
|
auto *Id = isl_ast_node_mark_get_id(Node);
|
|
auto Child = isl_ast_node_mark_get_node(Node);
|
|
isl_ast_node_free(Node);
|
|
// If a child node of a 'SIMD mark' is a loop that has a single iteration,
|
|
// it will be optimized away and we should skip it.
|
|
if (strcmp(isl_id_get_name(Id), "SIMD") == 0 &&
|
|
isl_ast_node_get_type(Child) == isl_ast_node_for) {
|
|
bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY;
|
|
int VectorWidth = getNumberOfIterations(Child);
|
|
if (Vector && 1 < VectorWidth && VectorWidth <= 16)
|
|
createForVector(Child, VectorWidth);
|
|
else
|
|
createForSequential(Child, true);
|
|
isl_id_free(Id);
|
|
return;
|
|
}
|
|
if (strcmp(isl_id_get_name(Id), "Inter iteration alias-free") == 0) {
|
|
auto *BasePtr = static_cast<Value *>(isl_id_get_user(Id));
|
|
Annotator.addInterIterationAliasFreeBasePtr(BasePtr);
|
|
}
|
|
create(Child);
|
|
isl_id_free(Id);
|
|
}
|
|
|
|
void IslNodeBuilder::createForVector(__isl_take isl_ast_node *For,
|
|
int VectorWidth) {
|
|
isl_ast_node *Body = isl_ast_node_for_get_body(For);
|
|
isl_ast_expr *Init = isl_ast_node_for_get_init(For);
|
|
isl_ast_expr *Inc = isl_ast_node_for_get_inc(For);
|
|
isl_ast_expr *Iterator = isl_ast_node_for_get_iterator(For);
|
|
isl_id *IteratorID = isl_ast_expr_get_id(Iterator);
|
|
|
|
Value *ValueLB = ExprBuilder.create(Init);
|
|
Value *ValueInc = ExprBuilder.create(Inc);
|
|
|
|
Type *MaxType = ExprBuilder.getType(Iterator);
|
|
MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
|
|
MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());
|
|
|
|
if (MaxType != ValueLB->getType())
|
|
ValueLB = Builder.CreateSExt(ValueLB, MaxType);
|
|
if (MaxType != ValueInc->getType())
|
|
ValueInc = Builder.CreateSExt(ValueInc, MaxType);
|
|
|
|
std::vector<Value *> IVS(VectorWidth);
|
|
IVS[0] = ValueLB;
|
|
|
|
for (int i = 1; i < VectorWidth; i++)
|
|
IVS[i] = Builder.CreateAdd(IVS[i - 1], ValueInc, "p_vector_iv");
|
|
|
|
isl_union_map *Schedule = getScheduleForAstNode(For);
|
|
assert(Schedule && "For statement annotation does not contain its schedule");
|
|
|
|
IDToValue[IteratorID] = ValueLB;
|
|
|
|
switch (isl_ast_node_get_type(Body)) {
|
|
case isl_ast_node_user:
|
|
createUserVector(Body, IVS, isl_id_copy(IteratorID),
|
|
isl_union_map_copy(Schedule));
|
|
break;
|
|
case isl_ast_node_block: {
|
|
isl_ast_node_list *List = isl_ast_node_block_get_children(Body);
|
|
|
|
for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i)
|
|
createUserVector(isl_ast_node_list_get_ast_node(List, i), IVS,
|
|
isl_id_copy(IteratorID), isl_union_map_copy(Schedule));
|
|
|
|
isl_ast_node_free(Body);
|
|
isl_ast_node_list_free(List);
|
|
break;
|
|
}
|
|
default:
|
|
isl_ast_node_dump(Body);
|
|
llvm_unreachable("Unhandled isl_ast_node in vectorizer");
|
|
}
|
|
|
|
IDToValue.erase(IDToValue.find(IteratorID));
|
|
isl_id_free(IteratorID);
|
|
isl_union_map_free(Schedule);
|
|
|
|
isl_ast_node_free(For);
|
|
isl_ast_expr_free(Iterator);
|
|
|
|
VectorLoops++;
|
|
}
|
|
|
|
/// Restore the initial ordering of dimensions of the band node
|
|
///
|
|
/// In case the band node represents all the dimensions of the iteration
|
|
/// domain, recreate the band node to restore the initial ordering of the
|
|
/// dimensions.
|
|
///
|
|
/// @param Node The band node to be modified.
|
|
/// @return The modified schedule node.
|
|
static bool IsLoopVectorizerDisabled(isl::ast_node Node) {
|
|
assert(isl_ast_node_get_type(Node.get()) == isl_ast_node_for);
|
|
auto Body = Node.for_get_body();
|
|
if (isl_ast_node_get_type(Body.get()) != isl_ast_node_mark)
|
|
return false;
|
|
auto Id = Body.mark_get_id();
|
|
if (strcmp(Id.get_name().c_str(), "Loop Vectorizer Disabled") == 0)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
void IslNodeBuilder::createForSequential(__isl_take isl_ast_node *For,
|
|
bool MarkParallel) {
|
|
isl_ast_node *Body;
|
|
isl_ast_expr *Init, *Inc, *Iterator, *UB;
|
|
isl_id *IteratorID;
|
|
Value *ValueLB, *ValueUB, *ValueInc;
|
|
Type *MaxType;
|
|
BasicBlock *ExitBlock;
|
|
Value *IV;
|
|
CmpInst::Predicate Predicate;
|
|
|
|
bool LoopVectorizerDisabled = IsLoopVectorizerDisabled(isl::manage_copy(For));
|
|
|
|
Body = isl_ast_node_for_get_body(For);
|
|
|
|
// isl_ast_node_for_is_degenerate(For)
|
|
//
|
|
// TODO: For degenerated loops we could generate a plain assignment.
|
|
// However, for now we just reuse the logic for normal loops, which will
|
|
// create a loop with a single iteration.
|
|
|
|
Init = isl_ast_node_for_get_init(For);
|
|
Inc = isl_ast_node_for_get_inc(For);
|
|
Iterator = isl_ast_node_for_get_iterator(For);
|
|
IteratorID = isl_ast_expr_get_id(Iterator);
|
|
UB = getUpperBound(For, Predicate);
|
|
|
|
ValueLB = ExprBuilder.create(Init);
|
|
ValueUB = ExprBuilder.create(UB);
|
|
ValueInc = ExprBuilder.create(Inc);
|
|
|
|
MaxType = ExprBuilder.getType(Iterator);
|
|
MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
|
|
MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType());
|
|
MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());
|
|
|
|
if (MaxType != ValueLB->getType())
|
|
ValueLB = Builder.CreateSExt(ValueLB, MaxType);
|
|
if (MaxType != ValueUB->getType())
|
|
ValueUB = Builder.CreateSExt(ValueUB, MaxType);
|
|
if (MaxType != ValueInc->getType())
|
|
ValueInc = Builder.CreateSExt(ValueInc, MaxType);
|
|
|
|
// If we can show that LB <Predicate> UB holds at least once, we can
|
|
// omit the GuardBB in front of the loop.
|
|
bool UseGuardBB =
|
|
!SE.isKnownPredicate(Predicate, SE.getSCEV(ValueLB), SE.getSCEV(ValueUB));
|
|
IV = createLoop(ValueLB, ValueUB, ValueInc, Builder, LI, DT, ExitBlock,
|
|
Predicate, &Annotator, MarkParallel, UseGuardBB,
|
|
LoopVectorizerDisabled);
|
|
IDToValue[IteratorID] = IV;
|
|
|
|
create(Body);
|
|
|
|
Annotator.popLoop(MarkParallel);
|
|
|
|
IDToValue.erase(IDToValue.find(IteratorID));
|
|
|
|
Builder.SetInsertPoint(&ExitBlock->front());
|
|
|
|
isl_ast_node_free(For);
|
|
isl_ast_expr_free(Iterator);
|
|
isl_id_free(IteratorID);
|
|
|
|
SequentialLoops++;
|
|
}
|
|
|
|
/// Remove the BBs contained in a (sub)function from the dominator tree.
|
|
///
|
|
/// This function removes the basic blocks that are part of a subfunction from
|
|
/// the dominator tree. Specifically, when generating code it may happen that at
|
|
/// some point the code generation continues in a new sub-function (e.g., when
|
|
/// generating OpenMP code). The basic blocks that are created in this
|
|
/// sub-function are then still part of the dominator tree of the original
|
|
/// function, such that the dominator tree reaches over function boundaries.
|
|
/// This is not only incorrect, but also causes crashes. This function now
|
|
/// removes from the dominator tree all basic blocks that are dominated (and
|
|
/// consequently reachable) from the entry block of this (sub)function.
|
|
///
|
|
/// FIXME: A LLVM (function or region) pass should not touch anything outside of
|
|
/// the function/region it runs on. Hence, the pure need for this function shows
|
|
/// that we do not comply to this rule. At the moment, this does not cause any
|
|
/// issues, but we should be aware that such issues may appear. Unfortunately
|
|
/// the current LLVM pass infrastructure does not allow to make Polly a module
|
|
/// or call-graph pass to solve this issue, as such a pass would not have access
|
|
/// to the per-function analyses passes needed by Polly. A future pass manager
|
|
/// infrastructure is supposed to enable such kind of access possibly allowing
|
|
/// us to create a cleaner solution here.
|
|
///
|
|
/// FIXME: Instead of adding the dominance information and then dropping it
|
|
/// later on, we should try to just not add it in the first place. This requires
|
|
/// some careful testing to make sure this does not break in interaction with
|
|
/// the SCEVBuilder and SplitBlock which may rely on the dominator tree or
|
|
/// which may try to update it.
|
|
///
|
|
/// @param F The function which contains the BBs to removed.
|
|
/// @param DT The dominator tree from which to remove the BBs.
|
|
static void removeSubFuncFromDomTree(Function *F, DominatorTree &DT) {
|
|
DomTreeNode *N = DT.getNode(&F->getEntryBlock());
|
|
std::vector<BasicBlock *> Nodes;
|
|
|
|
// We can only remove an element from the dominator tree, if all its children
|
|
// have been removed. To ensure this we obtain the list of nodes to remove
|
|
// using a post-order tree traversal.
|
|
for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I)
|
|
Nodes.push_back(I->getBlock());
|
|
|
|
for (BasicBlock *BB : Nodes)
|
|
DT.eraseNode(BB);
|
|
}
|
|
|
|
void IslNodeBuilder::createForParallel(__isl_take isl_ast_node *For) {
|
|
isl_ast_node *Body;
|
|
isl_ast_expr *Init, *Inc, *Iterator, *UB;
|
|
isl_id *IteratorID;
|
|
Value *ValueLB, *ValueUB, *ValueInc;
|
|
Type *MaxType;
|
|
Value *IV;
|
|
CmpInst::Predicate Predicate;
|
|
|
|
// The preamble of parallel code interacts different than normal code with
|
|
// e.g., scalar initialization. Therefore, we ensure the parallel code is
|
|
// separated from the last basic block.
|
|
BasicBlock *ParBB = SplitBlock(Builder.GetInsertBlock(),
|
|
&*Builder.GetInsertPoint(), &DT, &LI);
|
|
ParBB->setName("polly.parallel.for");
|
|
Builder.SetInsertPoint(&ParBB->front());
|
|
|
|
Body = isl_ast_node_for_get_body(For);
|
|
Init = isl_ast_node_for_get_init(For);
|
|
Inc = isl_ast_node_for_get_inc(For);
|
|
Iterator = isl_ast_node_for_get_iterator(For);
|
|
IteratorID = isl_ast_expr_get_id(Iterator);
|
|
UB = getUpperBound(For, Predicate);
|
|
|
|
ValueLB = ExprBuilder.create(Init);
|
|
ValueUB = ExprBuilder.create(UB);
|
|
ValueInc = ExprBuilder.create(Inc);
|
|
|
|
// OpenMP always uses SLE. In case the isl generated AST uses a SLT
|
|
// expression, we need to adjust the loop bound by one.
|
|
if (Predicate == CmpInst::ICMP_SLT)
|
|
ValueUB = Builder.CreateAdd(
|
|
ValueUB, Builder.CreateSExt(Builder.getTrue(), ValueUB->getType()));
|
|
|
|
MaxType = ExprBuilder.getType(Iterator);
|
|
MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
|
|
MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType());
|
|
MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());
|
|
|
|
if (MaxType != ValueLB->getType())
|
|
ValueLB = Builder.CreateSExt(ValueLB, MaxType);
|
|
if (MaxType != ValueUB->getType())
|
|
ValueUB = Builder.CreateSExt(ValueUB, MaxType);
|
|
if (MaxType != ValueInc->getType())
|
|
ValueInc = Builder.CreateSExt(ValueInc, MaxType);
|
|
|
|
BasicBlock::iterator LoopBody;
|
|
|
|
SetVector<Value *> SubtreeValues;
|
|
SetVector<const Loop *> Loops;
|
|
|
|
getReferencesInSubtree(For, SubtreeValues, Loops);
|
|
|
|
// Create for all loops we depend on values that contain the current loop
|
|
// iteration. These values are necessary to generate code for SCEVs that
|
|
// depend on such loops. As a result we need to pass them to the subfunction.
|
|
// See [Code generation of induction variables of loops outside Scops]
|
|
for (const Loop *L : Loops) {
|
|
Value *LoopInductionVar = materializeNonScopLoopInductionVariable(L);
|
|
SubtreeValues.insert(LoopInductionVar);
|
|
}
|
|
|
|
ValueMapT NewValues;
|
|
ParallelLoopGenerator ParallelLoopGen(Builder, LI, DT, DL);
|
|
|
|
IV = ParallelLoopGen.createParallelLoop(ValueLB, ValueUB, ValueInc,
|
|
SubtreeValues, NewValues, &LoopBody);
|
|
BasicBlock::iterator AfterLoop = Builder.GetInsertPoint();
|
|
Builder.SetInsertPoint(&*LoopBody);
|
|
|
|
// Remember the parallel subfunction
|
|
ParallelSubfunctions.push_back(LoopBody->getFunction());
|
|
|
|
// Save the current values.
|
|
auto ValueMapCopy = ValueMap;
|
|
IslExprBuilder::IDToValueTy IDToValueCopy = IDToValue;
|
|
|
|
updateValues(NewValues);
|
|
IDToValue[IteratorID] = IV;
|
|
|
|
ValueMapT NewValuesReverse;
|
|
|
|
for (auto P : NewValues)
|
|
NewValuesReverse[P.second] = P.first;
|
|
|
|
Annotator.addAlternativeAliasBases(NewValuesReverse);
|
|
|
|
create(Body);
|
|
|
|
Annotator.resetAlternativeAliasBases();
|
|
// Restore the original values.
|
|
ValueMap = ValueMapCopy;
|
|
IDToValue = IDToValueCopy;
|
|
|
|
Builder.SetInsertPoint(&*AfterLoop);
|
|
removeSubFuncFromDomTree((*LoopBody).getParent()->getParent(), DT);
|
|
|
|
for (const Loop *L : Loops)
|
|
OutsideLoopIterations.erase(L);
|
|
|
|
isl_ast_node_free(For);
|
|
isl_ast_expr_free(Iterator);
|
|
isl_id_free(IteratorID);
|
|
|
|
ParallelLoops++;
|
|
}
|
|
|
|
/// Return whether any of @p Node's statements contain partial accesses.
|
|
///
|
|
/// Partial accesses are not supported by Polly's vector code generator.
|
|
static bool hasPartialAccesses(__isl_take isl_ast_node *Node) {
|
|
return isl_ast_node_foreach_descendant_top_down(
|
|
Node,
|
|
[](isl_ast_node *Node, void *User) -> isl_bool {
|
|
if (isl_ast_node_get_type(Node) != isl_ast_node_user)
|
|
return isl_bool_true;
|
|
|
|
isl::ast_expr Expr =
|
|
isl::manage(isl_ast_node_user_get_expr(Node));
|
|
isl::ast_expr StmtExpr = Expr.get_op_arg(0);
|
|
isl::id Id = StmtExpr.get_id();
|
|
|
|
ScopStmt *Stmt =
|
|
static_cast<ScopStmt *>(isl_id_get_user(Id.get()));
|
|
isl::set StmtDom = Stmt->getDomain();
|
|
for (auto *MA : *Stmt) {
|
|
if (MA->isLatestPartialAccess())
|
|
return isl_bool_error;
|
|
}
|
|
return isl_bool_true;
|
|
},
|
|
nullptr) == isl_stat_error;
|
|
}
|
|
|
|
void IslNodeBuilder::createFor(__isl_take isl_ast_node *For) {
|
|
bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY;
|
|
|
|
if (Vector && IslAstInfo::isInnermostParallel(For) &&
|
|
!IslAstInfo::isReductionParallel(For)) {
|
|
int VectorWidth = getNumberOfIterations(For);
|
|
if (1 < VectorWidth && VectorWidth <= 16 && !hasPartialAccesses(For)) {
|
|
createForVector(For, VectorWidth);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (IslAstInfo::isExecutedInParallel(For)) {
|
|
createForParallel(For);
|
|
return;
|
|
}
|
|
bool Parallel =
|
|
(IslAstInfo::isParallel(For) && !IslAstInfo::isReductionParallel(For));
|
|
createForSequential(For, Parallel);
|
|
}
|
|
|
|
void IslNodeBuilder::createIf(__isl_take isl_ast_node *If) {
|
|
isl_ast_expr *Cond = isl_ast_node_if_get_cond(If);
|
|
|
|
Function *F = Builder.GetInsertBlock()->getParent();
|
|
LLVMContext &Context = F->getContext();
|
|
|
|
BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(),
|
|
&*Builder.GetInsertPoint(), &DT, &LI);
|
|
CondBB->setName("polly.cond");
|
|
BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI);
|
|
MergeBB->setName("polly.merge");
|
|
BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F);
|
|
BasicBlock *ElseBB = BasicBlock::Create(Context, "polly.else", F);
|
|
|
|
DT.addNewBlock(ThenBB, CondBB);
|
|
DT.addNewBlock(ElseBB, CondBB);
|
|
DT.changeImmediateDominator(MergeBB, CondBB);
|
|
|
|
Loop *L = LI.getLoopFor(CondBB);
|
|
if (L) {
|
|
L->addBasicBlockToLoop(ThenBB, LI);
|
|
L->addBasicBlockToLoop(ElseBB, LI);
|
|
}
|
|
|
|
CondBB->getTerminator()->eraseFromParent();
|
|
|
|
Builder.SetInsertPoint(CondBB);
|
|
Value *Predicate = ExprBuilder.create(Cond);
|
|
Builder.CreateCondBr(Predicate, ThenBB, ElseBB);
|
|
Builder.SetInsertPoint(ThenBB);
|
|
Builder.CreateBr(MergeBB);
|
|
Builder.SetInsertPoint(ElseBB);
|
|
Builder.CreateBr(MergeBB);
|
|
Builder.SetInsertPoint(&ThenBB->front());
|
|
|
|
create(isl_ast_node_if_get_then(If));
|
|
|
|
Builder.SetInsertPoint(&ElseBB->front());
|
|
|
|
if (isl_ast_node_if_has_else(If))
|
|
create(isl_ast_node_if_get_else(If));
|
|
|
|
Builder.SetInsertPoint(&MergeBB->front());
|
|
|
|
isl_ast_node_free(If);
|
|
|
|
IfConditions++;
|
|
}
|
|
|
|
__isl_give isl_id_to_ast_expr *
|
|
IslNodeBuilder::createNewAccesses(ScopStmt *Stmt,
|
|
__isl_keep isl_ast_node *Node) {
|
|
isl_id_to_ast_expr *NewAccesses =
|
|
isl_id_to_ast_expr_alloc(Stmt->getParent()->getIslCtx().get(), 0);
|
|
|
|
auto *Build = IslAstInfo::getBuild(Node);
|
|
assert(Build && "Could not obtain isl_ast_build from user node");
|
|
Stmt->setAstBuild(isl::manage_copy(Build));
|
|
|
|
for (auto *MA : *Stmt) {
|
|
if (!MA->hasNewAccessRelation()) {
|
|
if (PollyGenerateExpressions) {
|
|
if (!MA->isAffine())
|
|
continue;
|
|
if (MA->getLatestScopArrayInfo()->getBasePtrOriginSAI())
|
|
continue;
|
|
|
|
auto *BasePtr =
|
|
dyn_cast<Instruction>(MA->getLatestScopArrayInfo()->getBasePtr());
|
|
if (BasePtr && Stmt->getParent()->getRegion().contains(BasePtr))
|
|
continue;
|
|
} else {
|
|
continue;
|
|
}
|
|
}
|
|
assert(MA->isAffine() &&
|
|
"Only affine memory accesses can be code generated");
|
|
|
|
auto Schedule = isl_ast_build_get_schedule(Build);
|
|
|
|
#ifndef NDEBUG
|
|
if (MA->isRead()) {
|
|
auto Dom = Stmt->getDomain().release();
|
|
auto SchedDom = isl_set_from_union_set(
|
|
isl_union_map_domain(isl_union_map_copy(Schedule)));
|
|
auto AccDom = isl_map_domain(MA->getAccessRelation().release());
|
|
Dom = isl_set_intersect_params(Dom,
|
|
Stmt->getParent()->getContext().release());
|
|
SchedDom = isl_set_intersect_params(
|
|
SchedDom, Stmt->getParent()->getContext().release());
|
|
assert(isl_set_is_subset(SchedDom, AccDom) &&
|
|
"Access relation not defined on full schedule domain");
|
|
assert(isl_set_is_subset(Dom, AccDom) &&
|
|
"Access relation not defined on full domain");
|
|
isl_set_free(AccDom);
|
|
isl_set_free(SchedDom);
|
|
isl_set_free(Dom);
|
|
}
|
|
#endif
|
|
|
|
auto PWAccRel =
|
|
MA->applyScheduleToAccessRelation(isl::manage(Schedule)).release();
|
|
|
|
// isl cannot generate an index expression for access-nothing accesses.
|
|
isl::set AccDomain =
|
|
isl::manage(isl_pw_multi_aff_domain(isl_pw_multi_aff_copy(PWAccRel)));
|
|
isl::set Context = S.getContext();
|
|
AccDomain = AccDomain.intersect_params(Context);
|
|
if (AccDomain.is_empty()) {
|
|
isl_pw_multi_aff_free(PWAccRel);
|
|
continue;
|
|
}
|
|
|
|
auto AccessExpr = isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel);
|
|
NewAccesses =
|
|
isl_id_to_ast_expr_set(NewAccesses, MA->getId().release(), AccessExpr);
|
|
}
|
|
|
|
return NewAccesses;
|
|
}
|
|
|
|
void IslNodeBuilder::createSubstitutions(__isl_take isl_ast_expr *Expr,
|
|
ScopStmt *Stmt, LoopToScevMapT <S) {
|
|
assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
|
|
"Expression of type 'op' expected");
|
|
assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_call &&
|
|
"Operation of type 'call' expected");
|
|
for (int i = 0; i < isl_ast_expr_get_op_n_arg(Expr) - 1; ++i) {
|
|
isl_ast_expr *SubExpr;
|
|
Value *V;
|
|
|
|
SubExpr = isl_ast_expr_get_op_arg(Expr, i + 1);
|
|
V = ExprBuilder.create(SubExpr);
|
|
ScalarEvolution *SE = Stmt->getParent()->getSE();
|
|
LTS[Stmt->getLoopForDimension(i)] = SE->getUnknown(V);
|
|
}
|
|
|
|
isl_ast_expr_free(Expr);
|
|
}
|
|
|
|
void IslNodeBuilder::createSubstitutionsVector(
|
|
__isl_take isl_ast_expr *Expr, ScopStmt *Stmt,
|
|
std::vector<LoopToScevMapT> &VLTS, std::vector<Value *> &IVS,
|
|
__isl_take isl_id *IteratorID) {
|
|
int i = 0;
|
|
|
|
Value *OldValue = IDToValue[IteratorID];
|
|
for (Value *IV : IVS) {
|
|
IDToValue[IteratorID] = IV;
|
|
createSubstitutions(isl_ast_expr_copy(Expr), Stmt, VLTS[i]);
|
|
i++;
|
|
}
|
|
|
|
IDToValue[IteratorID] = OldValue;
|
|
isl_id_free(IteratorID);
|
|
isl_ast_expr_free(Expr);
|
|
}
|
|
|
|
void IslNodeBuilder::generateCopyStmt(
|
|
ScopStmt *Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) {
|
|
assert(Stmt->size() == 2);
|
|
auto ReadAccess = Stmt->begin();
|
|
auto WriteAccess = ReadAccess++;
|
|
assert((*ReadAccess)->isRead() && (*WriteAccess)->isMustWrite());
|
|
assert((*ReadAccess)->getElementType() == (*WriteAccess)->getElementType() &&
|
|
"Accesses use the same data type");
|
|
assert((*ReadAccess)->isArrayKind() && (*WriteAccess)->isArrayKind());
|
|
auto *AccessExpr =
|
|
isl_id_to_ast_expr_get(NewAccesses, (*ReadAccess)->getId().release());
|
|
auto *LoadValue = ExprBuilder.create(AccessExpr);
|
|
AccessExpr =
|
|
isl_id_to_ast_expr_get(NewAccesses, (*WriteAccess)->getId().release());
|
|
auto *StoreAddr = ExprBuilder.createAccessAddress(AccessExpr);
|
|
Builder.CreateStore(LoadValue, StoreAddr);
|
|
}
|
|
|
|
Value *IslNodeBuilder::materializeNonScopLoopInductionVariable(const Loop *L) {
|
|
assert(OutsideLoopIterations.find(L) == OutsideLoopIterations.end() &&
|
|
"trying to materialize loop induction variable twice");
|
|
const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)),
|
|
SE.getUnknown(Builder.getInt64(1)), L,
|
|
SCEV::FlagAnyWrap);
|
|
Value *V = generateSCEV(OuterLIV);
|
|
OutsideLoopIterations[L] = SE.getUnknown(V);
|
|
return V;
|
|
}
|
|
|
|
void IslNodeBuilder::createUser(__isl_take isl_ast_node *User) {
|
|
LoopToScevMapT LTS;
|
|
isl_id *Id;
|
|
ScopStmt *Stmt;
|
|
|
|
isl_ast_expr *Expr = isl_ast_node_user_get_expr(User);
|
|
isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
|
|
Id = isl_ast_expr_get_id(StmtExpr);
|
|
isl_ast_expr_free(StmtExpr);
|
|
|
|
LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end());
|
|
|
|
Stmt = (ScopStmt *)isl_id_get_user(Id);
|
|
auto *NewAccesses = createNewAccesses(Stmt, User);
|
|
if (Stmt->isCopyStmt()) {
|
|
generateCopyStmt(Stmt, NewAccesses);
|
|
isl_ast_expr_free(Expr);
|
|
} else {
|
|
createSubstitutions(Expr, Stmt, LTS);
|
|
|
|
if (Stmt->isBlockStmt())
|
|
BlockGen.copyStmt(*Stmt, LTS, NewAccesses);
|
|
else
|
|
RegionGen.copyStmt(*Stmt, LTS, NewAccesses);
|
|
}
|
|
|
|
isl_id_to_ast_expr_free(NewAccesses);
|
|
isl_ast_node_free(User);
|
|
isl_id_free(Id);
|
|
}
|
|
|
|
void IslNodeBuilder::createBlock(__isl_take isl_ast_node *Block) {
|
|
isl_ast_node_list *List = isl_ast_node_block_get_children(Block);
|
|
|
|
for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i)
|
|
create(isl_ast_node_list_get_ast_node(List, i));
|
|
|
|
isl_ast_node_free(Block);
|
|
isl_ast_node_list_free(List);
|
|
}
|
|
|
|
void IslNodeBuilder::create(__isl_take isl_ast_node *Node) {
|
|
switch (isl_ast_node_get_type(Node)) {
|
|
case isl_ast_node_error:
|
|
llvm_unreachable("code generation error");
|
|
case isl_ast_node_mark:
|
|
createMark(Node);
|
|
return;
|
|
case isl_ast_node_for:
|
|
createFor(Node);
|
|
return;
|
|
case isl_ast_node_if:
|
|
createIf(Node);
|
|
return;
|
|
case isl_ast_node_user:
|
|
createUser(Node);
|
|
return;
|
|
case isl_ast_node_block:
|
|
createBlock(Node);
|
|
return;
|
|
}
|
|
|
|
llvm_unreachable("Unknown isl_ast_node type");
|
|
}
|
|
|
|
bool IslNodeBuilder::materializeValue(isl_id *Id) {
|
|
// If the Id is already mapped, skip it.
|
|
if (!IDToValue.count(Id)) {
|
|
auto *ParamSCEV = (const SCEV *)isl_id_get_user(Id);
|
|
Value *V = nullptr;
|
|
|
|
// Parameters could refer to invariant loads that need to be
|
|
// preloaded before we can generate code for the parameter. Thus,
|
|
// check if any value referred to in ParamSCEV is an invariant load
|
|
// and if so make sure its equivalence class is preloaded.
|
|
SetVector<Value *> Values;
|
|
findValues(ParamSCEV, SE, Values);
|
|
for (auto *Val : Values) {
|
|
// Check if the value is an instruction in a dead block within the SCoP
|
|
// and if so do not code generate it.
|
|
if (auto *Inst = dyn_cast<Instruction>(Val)) {
|
|
if (S.contains(Inst)) {
|
|
bool IsDead = true;
|
|
|
|
// Check for "undef" loads first, then if there is a statement for
|
|
// the parent of Inst and lastly if the parent of Inst has an empty
|
|
// domain. In the first and last case the instruction is dead but if
|
|
// there is a statement or the domain is not empty Inst is not dead.
|
|
auto MemInst = MemAccInst::dyn_cast(Inst);
|
|
auto Address = MemInst ? MemInst.getPointerOperand() : nullptr;
|
|
if (Address && SE.getUnknown(UndefValue::get(Address->getType())) ==
|
|
SE.getPointerBase(SE.getSCEV(Address))) {
|
|
} else if (S.getStmtFor(Inst)) {
|
|
IsDead = false;
|
|
} else {
|
|
auto *Domain = S.getDomainConditions(Inst->getParent()).release();
|
|
IsDead = isl_set_is_empty(Domain);
|
|
isl_set_free(Domain);
|
|
}
|
|
|
|
if (IsDead) {
|
|
V = UndefValue::get(ParamSCEV->getType());
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (auto *IAClass = S.lookupInvariantEquivClass(Val)) {
|
|
// Check if this invariant access class is empty, hence if we never
|
|
// actually added a loads instruction to it. In that case it has no
|
|
// (meaningful) users and we should not try to code generate it.
|
|
if (IAClass->InvariantAccesses.empty())
|
|
V = UndefValue::get(ParamSCEV->getType());
|
|
|
|
if (!preloadInvariantEquivClass(*IAClass)) {
|
|
isl_id_free(Id);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
V = V ? V : generateSCEV(ParamSCEV);
|
|
IDToValue[Id] = V;
|
|
}
|
|
|
|
isl_id_free(Id);
|
|
return true;
|
|
}
|
|
|
|
bool IslNodeBuilder::materializeParameters(isl_set *Set) {
|
|
for (unsigned i = 0, e = isl_set_dim(Set, isl_dim_param); i < e; ++i) {
|
|
if (!isl_set_involves_dims(Set, isl_dim_param, i, 1))
|
|
continue;
|
|
isl_id *Id = isl_set_get_dim_id(Set, isl_dim_param, i);
|
|
if (!materializeValue(Id))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool IslNodeBuilder::materializeParameters() {
|
|
for (const SCEV *Param : S.parameters()) {
|
|
isl_id *Id = S.getIdForParam(Param).release();
|
|
if (!materializeValue(Id))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Generate the computation of the size of the outermost dimension from the
|
|
/// Fortran array descriptor (in this case, `@g_arr`). The final `%size`
|
|
/// contains the size of the array.
|
|
///
|
|
/// %arrty = type { i8*, i64, i64, [3 x %desc.dimensionty] }
|
|
/// %desc.dimensionty = type { i64, i64, i64 }
|
|
/// @g_arr = global %arrty zeroinitializer, align 32
|
|
/// ...
|
|
/// %0 = load i64, i64* getelementptr inbounds
|
|
/// (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 2)
|
|
/// %1 = load i64, i64* getelementptr inbounds
|
|
/// (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 1)
|
|
/// %2 = sub nsw i64 %0, %1
|
|
/// %size = add nsw i64 %2, 1
|
|
static Value *buildFADOutermostDimensionLoad(Value *GlobalDescriptor,
|
|
PollyIRBuilder &Builder,
|
|
std::string ArrayName) {
|
|
assert(GlobalDescriptor && "invalid global descriptor given");
|
|
|
|
Value *endIdx[4] = {Builder.getInt64(0), Builder.getInt32(3),
|
|
Builder.getInt64(0), Builder.getInt32(2)};
|
|
Value *endPtr = Builder.CreateInBoundsGEP(GlobalDescriptor, endIdx,
|
|
ArrayName + "_end_ptr");
|
|
Value *end = Builder.CreateLoad(endPtr, ArrayName + "_end");
|
|
|
|
Value *beginIdx[4] = {Builder.getInt64(0), Builder.getInt32(3),
|
|
Builder.getInt64(0), Builder.getInt32(1)};
|
|
Value *beginPtr = Builder.CreateInBoundsGEP(GlobalDescriptor, beginIdx,
|
|
ArrayName + "_begin_ptr");
|
|
Value *begin = Builder.CreateLoad(beginPtr, ArrayName + "_begin");
|
|
|
|
Value *size =
|
|
Builder.CreateNSWSub(end, begin, ArrayName + "_end_begin_delta");
|
|
Type *endType = dyn_cast<IntegerType>(end->getType());
|
|
assert(endType && "expected type of end to be integral");
|
|
|
|
size = Builder.CreateNSWAdd(end,
|
|
ConstantInt::get(endType, 1, /* signed = */ true),
|
|
ArrayName + "_size");
|
|
|
|
return size;
|
|
}
|
|
|
|
bool IslNodeBuilder::materializeFortranArrayOutermostDimension() {
|
|
for (ScopArrayInfo *Array : S.arrays()) {
|
|
if (Array->getNumberOfDimensions() == 0)
|
|
continue;
|
|
|
|
Value *FAD = Array->getFortranArrayDescriptor();
|
|
if (!FAD)
|
|
continue;
|
|
|
|
isl_pw_aff *ParametricPwAff = Array->getDimensionSizePw(0).release();
|
|
assert(ParametricPwAff && "parametric pw_aff corresponding "
|
|
"to outermost dimension does not "
|
|
"exist");
|
|
|
|
isl_id *Id = isl_pw_aff_get_dim_id(ParametricPwAff, isl_dim_param, 0);
|
|
isl_pw_aff_free(ParametricPwAff);
|
|
|
|
assert(Id && "pw_aff is not parametric");
|
|
|
|
if (IDToValue.count(Id)) {
|
|
isl_id_free(Id);
|
|
continue;
|
|
}
|
|
|
|
Value *FinalValue =
|
|
buildFADOutermostDimensionLoad(FAD, Builder, Array->getName());
|
|
assert(FinalValue && "unable to build Fortran array "
|
|
"descriptor load of outermost dimension");
|
|
IDToValue[Id] = FinalValue;
|
|
isl_id_free(Id);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
Value *IslNodeBuilder::preloadUnconditionally(isl_set *AccessRange,
|
|
isl_ast_build *Build,
|
|
Instruction *AccInst) {
|
|
isl_pw_multi_aff *PWAccRel = isl_pw_multi_aff_from_set(AccessRange);
|
|
isl_ast_expr *Access =
|
|
isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel);
|
|
auto *Address = isl_ast_expr_address_of(Access);
|
|
auto *AddressValue = ExprBuilder.create(Address);
|
|
Value *PreloadVal;
|
|
|
|
// Correct the type as the SAI might have a different type than the user
|
|
// expects, especially if the base pointer is a struct.
|
|
Type *Ty = AccInst->getType();
|
|
|
|
auto *Ptr = AddressValue;
|
|
auto Name = Ptr->getName();
|
|
auto AS = Ptr->getType()->getPointerAddressSpace();
|
|
Ptr = Builder.CreatePointerCast(Ptr, Ty->getPointerTo(AS), Name + ".cast");
|
|
PreloadVal = Builder.CreateLoad(Ptr, Name + ".load");
|
|
if (LoadInst *PreloadInst = dyn_cast<LoadInst>(PreloadVal))
|
|
PreloadInst->setAlignment(dyn_cast<LoadInst>(AccInst)->getAlignment());
|
|
|
|
// TODO: This is only a hot fix for SCoP sequences that use the same load
|
|
// instruction contained and hoisted by one of the SCoPs.
|
|
if (SE.isSCEVable(Ty))
|
|
SE.forgetValue(AccInst);
|
|
|
|
return PreloadVal;
|
|
}
|
|
|
|
Value *IslNodeBuilder::preloadInvariantLoad(const MemoryAccess &MA,
|
|
isl_set *Domain) {
|
|
isl_set *AccessRange = isl_map_range(MA.getAddressFunction().release());
|
|
AccessRange = isl_set_gist_params(AccessRange, S.getContext().release());
|
|
|
|
if (!materializeParameters(AccessRange)) {
|
|
isl_set_free(AccessRange);
|
|
isl_set_free(Domain);
|
|
return nullptr;
|
|
}
|
|
|
|
auto *Build =
|
|
isl_ast_build_from_context(isl_set_universe(S.getParamSpace().release()));
|
|
isl_set *Universe = isl_set_universe(isl_set_get_space(Domain));
|
|
bool AlwaysExecuted = isl_set_is_equal(Domain, Universe);
|
|
isl_set_free(Universe);
|
|
|
|
Instruction *AccInst = MA.getAccessInstruction();
|
|
Type *AccInstTy = AccInst->getType();
|
|
|
|
Value *PreloadVal = nullptr;
|
|
if (AlwaysExecuted) {
|
|
PreloadVal = preloadUnconditionally(AccessRange, Build, AccInst);
|
|
isl_ast_build_free(Build);
|
|
isl_set_free(Domain);
|
|
return PreloadVal;
|
|
}
|
|
|
|
if (!materializeParameters(Domain)) {
|
|
isl_ast_build_free(Build);
|
|
isl_set_free(AccessRange);
|
|
isl_set_free(Domain);
|
|
return nullptr;
|
|
}
|
|
|
|
isl_ast_expr *DomainCond = isl_ast_build_expr_from_set(Build, Domain);
|
|
Domain = nullptr;
|
|
|
|
ExprBuilder.setTrackOverflow(true);
|
|
Value *Cond = ExprBuilder.create(DomainCond);
|
|
Value *OverflowHappened = Builder.CreateNot(ExprBuilder.getOverflowState(),
|
|
"polly.preload.cond.overflown");
|
|
Cond = Builder.CreateAnd(Cond, OverflowHappened, "polly.preload.cond.result");
|
|
ExprBuilder.setTrackOverflow(false);
|
|
|
|
if (!Cond->getType()->isIntegerTy(1))
|
|
Cond = Builder.CreateIsNotNull(Cond);
|
|
|
|
BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(),
|
|
&*Builder.GetInsertPoint(), &DT, &LI);
|
|
CondBB->setName("polly.preload.cond");
|
|
|
|
BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI);
|
|
MergeBB->setName("polly.preload.merge");
|
|
|
|
Function *F = Builder.GetInsertBlock()->getParent();
|
|
LLVMContext &Context = F->getContext();
|
|
BasicBlock *ExecBB = BasicBlock::Create(Context, "polly.preload.exec", F);
|
|
|
|
DT.addNewBlock(ExecBB, CondBB);
|
|
if (Loop *L = LI.getLoopFor(CondBB))
|
|
L->addBasicBlockToLoop(ExecBB, LI);
|
|
|
|
auto *CondBBTerminator = CondBB->getTerminator();
|
|
Builder.SetInsertPoint(CondBBTerminator);
|
|
Builder.CreateCondBr(Cond, ExecBB, MergeBB);
|
|
CondBBTerminator->eraseFromParent();
|
|
|
|
Builder.SetInsertPoint(ExecBB);
|
|
Builder.CreateBr(MergeBB);
|
|
|
|
Builder.SetInsertPoint(ExecBB->getTerminator());
|
|
Value *PreAccInst = preloadUnconditionally(AccessRange, Build, AccInst);
|
|
Builder.SetInsertPoint(MergeBB->getTerminator());
|
|
auto *MergePHI = Builder.CreatePHI(
|
|
AccInstTy, 2, "polly.preload." + AccInst->getName() + ".merge");
|
|
PreloadVal = MergePHI;
|
|
|
|
if (!PreAccInst) {
|
|
PreloadVal = nullptr;
|
|
PreAccInst = UndefValue::get(AccInstTy);
|
|
}
|
|
|
|
MergePHI->addIncoming(PreAccInst, ExecBB);
|
|
MergePHI->addIncoming(Constant::getNullValue(AccInstTy), CondBB);
|
|
|
|
isl_ast_build_free(Build);
|
|
return PreloadVal;
|
|
}
|
|
|
|
bool IslNodeBuilder::preloadInvariantEquivClass(
|
|
InvariantEquivClassTy &IAClass) {
|
|
// For an equivalence class of invariant loads we pre-load the representing
|
|
// element with the unified execution context. However, we have to map all
|
|
// elements of the class to the one preloaded load as they are referenced
|
|
// during the code generation and therefor need to be mapped.
|
|
const MemoryAccessList &MAs = IAClass.InvariantAccesses;
|
|
if (MAs.empty())
|
|
return true;
|
|
|
|
MemoryAccess *MA = MAs.front();
|
|
assert(MA->isArrayKind() && MA->isRead());
|
|
|
|
// If the access function was already mapped, the preload of this equivalence
|
|
// class was triggered earlier already and doesn't need to be done again.
|
|
if (ValueMap.count(MA->getAccessInstruction()))
|
|
return true;
|
|
|
|
// Check for recursion which can be caused by additional constraints, e.g.,
|
|
// non-finite loop constraints. In such a case we have to bail out and insert
|
|
// a "false" runtime check that will cause the original code to be executed.
|
|
auto PtrId = std::make_pair(IAClass.IdentifyingPointer, IAClass.AccessType);
|
|
if (!PreloadedPtrs.insert(PtrId).second)
|
|
return false;
|
|
|
|
// The execution context of the IAClass.
|
|
isl::set &ExecutionCtx = IAClass.ExecutionContext;
|
|
|
|
// If the base pointer of this class is dependent on another one we have to
|
|
// make sure it was preloaded already.
|
|
auto *SAI = MA->getScopArrayInfo();
|
|
if (auto *BaseIAClass = S.lookupInvariantEquivClass(SAI->getBasePtr())) {
|
|
if (!preloadInvariantEquivClass(*BaseIAClass))
|
|
return false;
|
|
|
|
// After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx and
|
|
// we need to refine the ExecutionCtx.
|
|
isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext;
|
|
ExecutionCtx = ExecutionCtx.intersect(BaseExecutionCtx);
|
|
}
|
|
|
|
// If the size of a dimension is dependent on another class, make sure it is
|
|
// preloaded.
|
|
for (unsigned i = 1, e = SAI->getNumberOfDimensions(); i < e; ++i) {
|
|
const SCEV *Dim = SAI->getDimensionSize(i);
|
|
SetVector<Value *> Values;
|
|
findValues(Dim, SE, Values);
|
|
for (auto *Val : Values) {
|
|
if (auto *BaseIAClass = S.lookupInvariantEquivClass(Val)) {
|
|
if (!preloadInvariantEquivClass(*BaseIAClass))
|
|
return false;
|
|
|
|
// After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx
|
|
// and we need to refine the ExecutionCtx.
|
|
isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext;
|
|
ExecutionCtx = ExecutionCtx.intersect(BaseExecutionCtx);
|
|
}
|
|
}
|
|
}
|
|
|
|
Instruction *AccInst = MA->getAccessInstruction();
|
|
Type *AccInstTy = AccInst->getType();
|
|
|
|
Value *PreloadVal = preloadInvariantLoad(*MA, ExecutionCtx.copy());
|
|
if (!PreloadVal)
|
|
return false;
|
|
|
|
for (const MemoryAccess *MA : MAs) {
|
|
Instruction *MAAccInst = MA->getAccessInstruction();
|
|
assert(PreloadVal->getType() == MAAccInst->getType());
|
|
ValueMap[MAAccInst] = PreloadVal;
|
|
}
|
|
|
|
if (SE.isSCEVable(AccInstTy)) {
|
|
isl_id *ParamId = S.getIdForParam(SE.getSCEV(AccInst)).release();
|
|
if (ParamId)
|
|
IDToValue[ParamId] = PreloadVal;
|
|
isl_id_free(ParamId);
|
|
}
|
|
|
|
BasicBlock *EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock();
|
|
auto *Alloca = new AllocaInst(AccInstTy, DL.getAllocaAddrSpace(),
|
|
AccInst->getName() + ".preload.s2a");
|
|
Alloca->insertBefore(&*EntryBB->getFirstInsertionPt());
|
|
Builder.CreateStore(PreloadVal, Alloca);
|
|
ValueMapT PreloadedPointer;
|
|
PreloadedPointer[PreloadVal] = AccInst;
|
|
Annotator.addAlternativeAliasBases(PreloadedPointer);
|
|
|
|
for (auto *DerivedSAI : SAI->getDerivedSAIs()) {
|
|
Value *BasePtr = DerivedSAI->getBasePtr();
|
|
|
|
for (const MemoryAccess *MA : MAs) {
|
|
// As the derived SAI information is quite coarse, any load from the
|
|
// current SAI could be the base pointer of the derived SAI, however we
|
|
// should only change the base pointer of the derived SAI if we actually
|
|
// preloaded it.
|
|
if (BasePtr == MA->getOriginalBaseAddr()) {
|
|
assert(BasePtr->getType() == PreloadVal->getType());
|
|
DerivedSAI->setBasePtr(PreloadVal);
|
|
}
|
|
|
|
// For scalar derived SAIs we remap the alloca used for the derived value.
|
|
if (BasePtr == MA->getAccessInstruction())
|
|
ScalarMap[DerivedSAI] = Alloca;
|
|
}
|
|
}
|
|
|
|
for (const MemoryAccess *MA : MAs) {
|
|
Instruction *MAAccInst = MA->getAccessInstruction();
|
|
// Use the escape system to get the correct value to users outside the SCoP.
|
|
BlockGenerator::EscapeUserVectorTy EscapeUsers;
|
|
for (auto *U : MAAccInst->users())
|
|
if (Instruction *UI = dyn_cast<Instruction>(U))
|
|
if (!S.contains(UI))
|
|
EscapeUsers.push_back(UI);
|
|
|
|
if (EscapeUsers.empty())
|
|
continue;
|
|
|
|
EscapeMap[MA->getAccessInstruction()] =
|
|
std::make_pair(Alloca, std::move(EscapeUsers));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void IslNodeBuilder::allocateNewArrays(BBPair StartExitBlocks) {
|
|
for (auto &SAI : S.arrays()) {
|
|
if (SAI->getBasePtr())
|
|
continue;
|
|
|
|
assert(SAI->getNumberOfDimensions() > 0 && SAI->getDimensionSize(0) &&
|
|
"The size of the outermost dimension is used to declare newly "
|
|
"created arrays that require memory allocation.");
|
|
|
|
Type *NewArrayType = nullptr;
|
|
|
|
// Get the size of the array = size(dim_1)*...*size(dim_n)
|
|
uint64_t ArraySizeInt = 1;
|
|
for (int i = SAI->getNumberOfDimensions() - 1; i >= 0; i--) {
|
|
auto *DimSize = SAI->getDimensionSize(i);
|
|
unsigned UnsignedDimSize = static_cast<const SCEVConstant *>(DimSize)
|
|
->getAPInt()
|
|
.getLimitedValue();
|
|
|
|
if (!NewArrayType)
|
|
NewArrayType = SAI->getElementType();
|
|
|
|
NewArrayType = ArrayType::get(NewArrayType, UnsignedDimSize);
|
|
ArraySizeInt *= UnsignedDimSize;
|
|
}
|
|
|
|
if (SAI->isOnHeap()) {
|
|
LLVMContext &Ctx = NewArrayType->getContext();
|
|
|
|
// Get the IntPtrTy from the Datalayout
|
|
auto IntPtrTy = DL.getIntPtrType(Ctx);
|
|
|
|
// Get the size of the element type in bits
|
|
unsigned Size = SAI->getElemSizeInBytes();
|
|
|
|
// Insert the malloc call at polly.start
|
|
auto InstIt = std::get<0>(StartExitBlocks)->getTerminator();
|
|
auto *CreatedArray = CallInst::CreateMalloc(
|
|
&*InstIt, IntPtrTy, SAI->getElementType(),
|
|
ConstantInt::get(Type::getInt64Ty(Ctx), Size),
|
|
ConstantInt::get(Type::getInt64Ty(Ctx), ArraySizeInt), nullptr,
|
|
SAI->getName());
|
|
|
|
SAI->setBasePtr(CreatedArray);
|
|
|
|
// Insert the free call at polly.exiting
|
|
CallInst::CreateFree(CreatedArray,
|
|
std::get<1>(StartExitBlocks)->getTerminator());
|
|
} else {
|
|
auto InstIt = Builder.GetInsertBlock()
|
|
->getParent()
|
|
->getEntryBlock()
|
|
.getTerminator();
|
|
|
|
auto *CreatedArray = new AllocaInst(NewArrayType, DL.getAllocaAddrSpace(),
|
|
SAI->getName(), &*InstIt);
|
|
CreatedArray->setAlignment(PollyTargetFirstLevelCacheLineSize);
|
|
SAI->setBasePtr(CreatedArray);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool IslNodeBuilder::preloadInvariantLoads() {
|
|
auto &InvariantEquivClasses = S.getInvariantAccesses();
|
|
if (InvariantEquivClasses.empty())
|
|
return true;
|
|
|
|
BasicBlock *PreLoadBB = SplitBlock(Builder.GetInsertBlock(),
|
|
&*Builder.GetInsertPoint(), &DT, &LI);
|
|
PreLoadBB->setName("polly.preload.begin");
|
|
Builder.SetInsertPoint(&PreLoadBB->front());
|
|
|
|
for (auto &IAClass : InvariantEquivClasses)
|
|
if (!preloadInvariantEquivClass(IAClass))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void IslNodeBuilder::addParameters(__isl_take isl_set *Context) {
|
|
// Materialize values for the parameters of the SCoP.
|
|
materializeParameters();
|
|
|
|
// materialize the outermost dimension parameters for a Fortran array.
|
|
// NOTE: materializeParameters() does not work since it looks through
|
|
// the SCEVs. We don't have a corresponding SCEV for the array size
|
|
// parameter
|
|
materializeFortranArrayOutermostDimension();
|
|
|
|
// Generate values for the current loop iteration for all surrounding loops.
|
|
//
|
|
// We may also reference loops outside of the scop which do not contain the
|
|
// scop itself, but as the number of such scops may be arbitrarily large we do
|
|
// not generate code for them here, but only at the point of code generation
|
|
// where these values are needed.
|
|
Loop *L = LI.getLoopFor(S.getEntry());
|
|
|
|
while (L != nullptr && S.contains(L))
|
|
L = L->getParentLoop();
|
|
|
|
while (L != nullptr) {
|
|
materializeNonScopLoopInductionVariable(L);
|
|
L = L->getParentLoop();
|
|
}
|
|
|
|
isl_set_free(Context);
|
|
}
|
|
|
|
Value *IslNodeBuilder::generateSCEV(const SCEV *Expr) {
|
|
/// We pass the insert location of our Builder, as Polly ensures during IR
|
|
/// generation that there is always a valid CFG into which instructions are
|
|
/// inserted. As a result, the insertpoint is known to be always followed by a
|
|
/// terminator instruction. This means the insert point may be specified by a
|
|
/// terminator instruction, but it can never point to an ->end() iterator
|
|
/// which does not have a corresponding instruction. Hence, dereferencing
|
|
/// the insertpoint to obtain an instruction is known to be save.
|
|
///
|
|
/// We also do not need to update the Builder here, as new instructions are
|
|
/// always inserted _before_ the given InsertLocation. As a result, the
|
|
/// insert location remains valid.
|
|
assert(Builder.GetInsertBlock()->end() != Builder.GetInsertPoint() &&
|
|
"Insert location points after last valid instruction");
|
|
Instruction *InsertLocation = &*Builder.GetInsertPoint();
|
|
return expandCodeFor(S, SE, DL, "polly", Expr, Expr->getType(),
|
|
InsertLocation, &ValueMap,
|
|
StartBlock->getSinglePredecessor());
|
|
}
|
|
|
|
/// The AST expression we generate to perform the run-time check assumes
|
|
/// computations on integer types of infinite size. As we only use 64-bit
|
|
/// arithmetic we check for overflows, in case of which we set the result
|
|
/// of this run-time check to false to be conservatively correct,
|
|
Value *IslNodeBuilder::createRTC(isl_ast_expr *Condition) {
|
|
auto ExprBuilder = getExprBuilder();
|
|
|
|
// In case the AST expression has integers larger than 64 bit, bail out. The
|
|
// resulting LLVM-IR will contain operations on types that use more than 64
|
|
// bits. These are -- in case wrapping intrinsics are used -- translated to
|
|
// runtime library calls that are not available on all systems (e.g., Android)
|
|
// and consequently will result in linker errors.
|
|
if (ExprBuilder.hasLargeInts(isl::manage_copy(Condition))) {
|
|
isl_ast_expr_free(Condition);
|
|
return Builder.getFalse();
|
|
}
|
|
|
|
ExprBuilder.setTrackOverflow(true);
|
|
Value *RTC = ExprBuilder.create(Condition);
|
|
if (!RTC->getType()->isIntegerTy(1))
|
|
RTC = Builder.CreateIsNotNull(RTC);
|
|
Value *OverflowHappened =
|
|
Builder.CreateNot(ExprBuilder.getOverflowState(), "polly.rtc.overflown");
|
|
|
|
if (PollyGenerateRTCPrint) {
|
|
auto *F = Builder.GetInsertBlock()->getParent();
|
|
RuntimeDebugBuilder::createCPUPrinter(
|
|
Builder,
|
|
"F: " + F->getName().str() + " R: " + S.getRegion().getNameStr() +
|
|
"RTC: ",
|
|
RTC, " Overflow: ", OverflowHappened,
|
|
"\n"
|
|
" (0 failed, -1 succeeded)\n"
|
|
" (if one or both are 0 falling back to original code, if both are -1 "
|
|
"executing Polly code)\n");
|
|
}
|
|
|
|
RTC = Builder.CreateAnd(RTC, OverflowHappened, "polly.rtc.result");
|
|
ExprBuilder.setTrackOverflow(false);
|
|
|
|
if (!isa<ConstantInt>(RTC))
|
|
VersionedScops++;
|
|
|
|
return RTC;
|
|
}
|