llvm-project/clang/lib/Checker/CStringChecker.cpp

713 lines
25 KiB
C++

//= CStringChecker.h - Checks calls to C string functions ----------*- C++ -*-//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This defines CStringChecker, which is an assortment of checks on calls
// to functions in <string.h>.
//
//===----------------------------------------------------------------------===//
#include "GRExprEngineExperimentalChecks.h"
#include "clang/Checker/BugReporter/BugType.h"
#include "clang/Checker/PathSensitive/CheckerVisitor.h"
#include "llvm/ADT/StringSwitch.h"
using namespace clang;
namespace {
class CStringChecker : public CheckerVisitor<CStringChecker> {
BugType *BT_Null, *BT_Bounds, *BT_Overlap, *BT_NotCString;
public:
CStringChecker()
: BT_Null(0), BT_Bounds(0), BT_Overlap(0), BT_NotCString(0) {}
static void *getTag() { static int tag; return &tag; }
bool EvalCallExpr(CheckerContext &C, const CallExpr *CE);
typedef void (CStringChecker::*FnCheck)(CheckerContext &, const CallExpr *);
void EvalMemcpy(CheckerContext &C, const CallExpr *CE);
void EvalMemmove(CheckerContext &C, const CallExpr *CE);
void EvalBcopy(CheckerContext &C, const CallExpr *CE);
void EvalCopyCommon(CheckerContext &C, const GRState *state,
const Expr *Size, const Expr *Source, const Expr *Dest,
bool Restricted = false);
void EvalMemcmp(CheckerContext &C, const CallExpr *CE);
void EvalStrlen(CheckerContext &C, const CallExpr *CE);
// Utility methods
std::pair<const GRState*, const GRState*>
AssumeZero(CheckerContext &C, const GRState *state, SVal V, QualType Ty);
SVal GetCStringLength(CheckerContext &C, const GRState *state,
const Expr *Ex, SVal Buf);
bool SummarizeRegion(llvm::raw_ostream& os, ASTContext& Ctx,
const MemRegion *MR);
// Re-usable checks
const GRState *CheckNonNull(CheckerContext &C, const GRState *state,
const Expr *S, SVal l);
const GRState *CheckLocation(CheckerContext &C, const GRState *state,
const Expr *S, SVal l);
const GRState *CheckBufferAccess(CheckerContext &C, const GRState *state,
const Expr *Size,
const Expr *FirstBuf,
const Expr *SecondBuf = NULL);
const GRState *CheckOverlap(CheckerContext &C, const GRState *state,
const Expr *Size, const Expr *First,
const Expr *Second);
void EmitOverlapBug(CheckerContext &C, const GRState *state,
const Stmt *First, const Stmt *Second);
};
} //end anonymous namespace
void clang::RegisterCStringChecker(GRExprEngine &Eng) {
Eng.registerCheck(new CStringChecker());
}
//===----------------------------------------------------------------------===//
// Individual checks and utility methods.
//===----------------------------------------------------------------------===//
std::pair<const GRState*, const GRState*>
CStringChecker::AssumeZero(CheckerContext &C, const GRState *state, SVal V,
QualType Ty) {
DefinedSVal *Val = dyn_cast<DefinedSVal>(&V);
if (!Val)
return std::pair<const GRState*, const GRState *>(state, state);
ValueManager &ValMgr = C.getValueManager();
SValuator &SV = ValMgr.getSValuator();
DefinedOrUnknownSVal Zero = ValMgr.makeZeroVal(Ty);
DefinedOrUnknownSVal ValIsZero = SV.EvalEQ(state, *Val, Zero);
return state->Assume(ValIsZero);
}
const GRState *CStringChecker::CheckNonNull(CheckerContext &C,
const GRState *state,
const Expr *S, SVal l) {
// If a previous check has failed, propagate the failure.
if (!state)
return NULL;
const GRState *stateNull, *stateNonNull;
llvm::tie(stateNull, stateNonNull) = AssumeZero(C, state, l, S->getType());
if (stateNull && !stateNonNull) {
ExplodedNode *N = C.GenerateSink(stateNull);
if (!N)
return NULL;
if (!BT_Null)
BT_Null = new BuiltinBug("API",
"Null pointer argument in call to byte string function");
// Generate a report for this bug.
BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Null);
EnhancedBugReport *report = new EnhancedBugReport(*BT,
BT->getDescription(), N);
report->addRange(S->getSourceRange());
report->addVisitorCreator(bugreporter::registerTrackNullOrUndefValue, S);
C.EmitReport(report);
return NULL;
}
// From here on, assume that the value is non-null.
assert(stateNonNull);
return stateNonNull;
}
// FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor?
const GRState *CStringChecker::CheckLocation(CheckerContext &C,
const GRState *state,
const Expr *S, SVal l) {
// If a previous check has failed, propagate the failure.
if (!state)
return NULL;
// Check for out of bound array element access.
const MemRegion *R = l.getAsRegion();
if (!R)
return state;
const ElementRegion *ER = dyn_cast<ElementRegion>(R);
if (!ER)
return state;
assert(ER->getValueType(C.getASTContext()) == C.getASTContext().CharTy &&
"CheckLocation should only be called with char* ElementRegions");
// Get the size of the array.
const SubRegion *Super = cast<SubRegion>(ER->getSuperRegion());
ValueManager &ValMgr = C.getValueManager();
SVal Extent = ValMgr.convertToArrayIndex(Super->getExtent(ValMgr));
DefinedOrUnknownSVal Size = cast<DefinedOrUnknownSVal>(Extent);
// Get the index of the accessed element.
DefinedOrUnknownSVal &Idx = cast<DefinedOrUnknownSVal>(ER->getIndex());
const GRState *StInBound = state->AssumeInBound(Idx, Size, true);
const GRState *StOutBound = state->AssumeInBound(Idx, Size, false);
if (StOutBound && !StInBound) {
ExplodedNode *N = C.GenerateSink(StOutBound);
if (!N)
return NULL;
if (!BT_Bounds)
BT_Bounds = new BuiltinBug("Out-of-bound array access",
"Byte string function accesses out-of-bound array element "
"(buffer overflow)");
// FIXME: It would be nice to eventually make this diagnostic more clear,
// e.g., by referencing the original declaration or by saying *why* this
// reference is outside the range.
// Generate a report for this bug.
BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Bounds);
RangedBugReport *report = new RangedBugReport(*BT, BT->getDescription(), N);
report->addRange(S->getSourceRange());
C.EmitReport(report);
return NULL;
}
// Array bound check succeeded. From this point forward the array bound
// should always succeed.
return StInBound;
}
const GRState *CStringChecker::CheckBufferAccess(CheckerContext &C,
const GRState *state,
const Expr *Size,
const Expr *FirstBuf,
const Expr *SecondBuf) {
// If a previous check has failed, propagate the failure.
if (!state)
return NULL;
ValueManager &VM = C.getValueManager();
SValuator &SV = VM.getSValuator();
ASTContext &Ctx = C.getASTContext();
QualType SizeTy = Ctx.getSizeType();
QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
// Check that the first buffer is non-null.
SVal BufVal = state->getSVal(FirstBuf);
state = CheckNonNull(C, state, FirstBuf, BufVal);
if (!state)
return NULL;
// Get the access length and make sure it is known.
SVal LengthVal = state->getSVal(Size);
NonLoc *Length = dyn_cast<NonLoc>(&LengthVal);
if (!Length)
return state;
// Compute the offset of the last element to be accessed: size-1.
NonLoc One = cast<NonLoc>(VM.makeIntVal(1, SizeTy));
NonLoc LastOffset = cast<NonLoc>(SV.EvalBinOpNN(state, BinaryOperator::Sub,
*Length, One, SizeTy));
// Check that the first buffer is sufficently long.
Loc BufStart = cast<Loc>(SV.EvalCast(BufVal, PtrTy, FirstBuf->getType()));
SVal BufEnd
= SV.EvalBinOpLN(state, BinaryOperator::Add, BufStart, LastOffset, PtrTy);
state = CheckLocation(C, state, FirstBuf, BufEnd);
// If the buffer isn't large enough, abort.
if (!state)
return NULL;
// If there's a second buffer, check it as well.
if (SecondBuf) {
BufVal = state->getSVal(SecondBuf);
state = CheckNonNull(C, state, SecondBuf, BufVal);
if (!state)
return NULL;
BufStart = cast<Loc>(SV.EvalCast(BufVal, PtrTy, SecondBuf->getType()));
BufEnd
= SV.EvalBinOpLN(state, BinaryOperator::Add, BufStart, LastOffset, PtrTy);
state = CheckLocation(C, state, SecondBuf, BufEnd);
}
// Large enough or not, return this state!
return state;
}
const GRState *CStringChecker::CheckOverlap(CheckerContext &C,
const GRState *state,
const Expr *Size,
const Expr *First,
const Expr *Second) {
// Do a simple check for overlap: if the two arguments are from the same
// buffer, see if the end of the first is greater than the start of the second
// or vice versa.
// If a previous check has failed, propagate the failure.
if (!state)
return NULL;
ValueManager &VM = state->getStateManager().getValueManager();
SValuator &SV = VM.getSValuator();
ASTContext &Ctx = VM.getContext();
const GRState *stateTrue, *stateFalse;
// Get the buffer values and make sure they're known locations.
SVal FirstVal = state->getSVal(First);
SVal SecondVal = state->getSVal(Second);
Loc *FirstLoc = dyn_cast<Loc>(&FirstVal);
if (!FirstLoc)
return state;
Loc *SecondLoc = dyn_cast<Loc>(&SecondVal);
if (!SecondLoc)
return state;
// Are the two values the same?
DefinedOrUnknownSVal EqualTest = SV.EvalEQ(state, *FirstLoc, *SecondLoc);
llvm::tie(stateTrue, stateFalse) = state->Assume(EqualTest);
if (stateTrue && !stateFalse) {
// If the values are known to be equal, that's automatically an overlap.
EmitOverlapBug(C, stateTrue, First, Second);
return NULL;
}
// Assume the two expressions are not equal.
assert(stateFalse);
state = stateFalse;
// Which value comes first?
QualType CmpTy = Ctx.IntTy;
SVal Reverse = SV.EvalBinOpLL(state, BinaryOperator::GT,
*FirstLoc, *SecondLoc, CmpTy);
DefinedOrUnknownSVal *ReverseTest = dyn_cast<DefinedOrUnknownSVal>(&Reverse);
if (!ReverseTest)
return state;
llvm::tie(stateTrue, stateFalse) = state->Assume(*ReverseTest);
if (stateTrue) {
if (stateFalse) {
// If we don't know which one comes first, we can't perform this test.
return state;
} else {
// Switch the values so that FirstVal is before SecondVal.
Loc *tmpLoc = FirstLoc;
FirstLoc = SecondLoc;
SecondLoc = tmpLoc;
// Switch the Exprs as well, so that they still correspond.
const Expr *tmpExpr = First;
First = Second;
Second = tmpExpr;
}
}
// Get the length, and make sure it too is known.
SVal LengthVal = state->getSVal(Size);
NonLoc *Length = dyn_cast<NonLoc>(&LengthVal);
if (!Length)
return state;
// Convert the first buffer's start address to char*.
// Bail out if the cast fails.
QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy);
SVal FirstStart = SV.EvalCast(*FirstLoc, CharPtrTy, First->getType());
Loc *FirstStartLoc = dyn_cast<Loc>(&FirstStart);
if (!FirstStartLoc)
return state;
// Compute the end of the first buffer. Bail out if THAT fails.
SVal FirstEnd = SV.EvalBinOpLN(state, BinaryOperator::Add,
*FirstStartLoc, *Length, CharPtrTy);
Loc *FirstEndLoc = dyn_cast<Loc>(&FirstEnd);
if (!FirstEndLoc)
return state;
// Is the end of the first buffer past the start of the second buffer?
SVal Overlap = SV.EvalBinOpLL(state, BinaryOperator::GT,
*FirstEndLoc, *SecondLoc, CmpTy);
DefinedOrUnknownSVal *OverlapTest = dyn_cast<DefinedOrUnknownSVal>(&Overlap);
if (!OverlapTest)
return state;
llvm::tie(stateTrue, stateFalse) = state->Assume(*OverlapTest);
if (stateTrue && !stateFalse) {
// Overlap!
EmitOverlapBug(C, stateTrue, First, Second);
return NULL;
}
// Assume the two expressions don't overlap.
assert(stateFalse);
return stateFalse;
}
void CStringChecker::EmitOverlapBug(CheckerContext &C, const GRState *state,
const Stmt *First, const Stmt *Second) {
ExplodedNode *N = C.GenerateSink(state);
if (!N)
return;
if (!BT_Overlap)
BT_Overlap = new BugType("Unix API", "Improper arguments");
// Generate a report for this bug.
RangedBugReport *report =
new RangedBugReport(*BT_Overlap,
"Arguments must not be overlapping buffers", N);
report->addRange(First->getSourceRange());
report->addRange(Second->getSourceRange());
C.EmitReport(report);
}
SVal CStringChecker::GetCStringLength(CheckerContext &C, const GRState *state,
const Expr *Ex, SVal Buf) {
const MemRegion *MR = Buf.getAsRegion();
if (!MR) {
// If we can't get a region, see if it's something we /know/ isn't a
// C string. In the context of locations, the only time we can issue such
// a warning is for labels.
if (loc::GotoLabel *Label = dyn_cast<loc::GotoLabel>(&Buf)) {
ExplodedNode *N = C.GenerateSink(state);
if (N) {
if (!BT_NotCString)
BT_NotCString = new BuiltinBug("API",
"Argument is not a null-terminated string.");
llvm::SmallString<120> buf;
llvm::raw_svector_ostream os(buf);
os << "Argument to byte string function is the address of the label '"
<< Label->getLabel()->getID()->getName()
<< "', which is not a null-terminated string";
// Generate a report for this bug.
EnhancedBugReport *report = new EnhancedBugReport(*BT_NotCString,
os.str(), N);
report->addRange(Ex->getSourceRange());
C.EmitReport(report);
}
return UndefinedVal();
}
// If it's not a region and not a label, it may be a constant location,
// or it may be unknown. Just conjure a value as usual (see end of method).
} else {
// If we have a region, strip casts from it and see if we can figure out
// its length. For anything we can't figure out, just conjure a value as
// usual (see end of method).
MR = MR->StripCasts();
switch (MR->getKind()) {
case MemRegion::StringRegionKind: {
ValueManager &ValMgr = C.getValueManager();
ASTContext &Ctx = ValMgr.getContext();
const StringLiteral *Str = cast<StringRegion>(MR)->getStringLiteral();
// Non-constant string literals may have been changed, so only return a
// known value if we know the literal is constant.
if (Str->getType().isConstant(Ctx)) {
QualType SizeTy = Ctx.getSizeType();
return ValMgr.makeIntVal(Str->getByteLength(), SizeTy);
}
// FIXME: Handle the non-constant case. For now, just treat it like any
// other initialized region.
// FALL-THROUGH
}
case MemRegion::SymbolicRegionKind:
case MemRegion::AllocaRegionKind:
case MemRegion::VarRegionKind:
case MemRegion::FieldRegionKind:
case MemRegion::ObjCIvarRegionKind:
// FIXME: These need to be tracked!
break;
case MemRegion::CompoundLiteralRegionKind:
// FIXME: Can we track this? Is it necessary?
break;
case MemRegion::ElementRegionKind:
// FIXME: How can we handle this? It's not good enough to subtract the
// offset from the base string length; consider "123\x00567" and &a[5].
break;
default: {
// Other regions (mostly non-data) can't have a reliable C string length.
// In this case, an error is emitted and UndefinedVal is returned.
// The caller should always be prepared to handle this case.
ExplodedNode *N = C.GenerateSink(state);
if (N) {
if (!BT_NotCString)
BT_NotCString = new BuiltinBug("API",
"Argument is not a null-terminated string.");
llvm::SmallString<120> buf;
llvm::raw_svector_ostream os(buf);
os << "Argument to byte string function is ";
if (SummarizeRegion(os, C.getASTContext(), MR)) {
os << ", which is not a null-terminated string";
} else {
os << "not a null-terminated string";
}
// Generate a report for this bug.
EnhancedBugReport *report = new EnhancedBugReport(*BT_NotCString,
os.str(), N);
report->addRange(Ex->getSourceRange());
C.EmitReport(report);
}
return UndefinedVal();
}
}
}
// If we can't track a certain region's C string length, or if we can't get a
// region from the SVal, conjure a value, for use in later constraints.
unsigned Count = C.getNodeBuilder().getCurrentBlockCount();
ValueManager &ValMgr = C.getValueManager();
QualType SizeTy = ValMgr.getContext().getSizeType();
return ValMgr.getConjuredSymbolVal(getTag(), Ex, SizeTy, Count);
}
bool CStringChecker::SummarizeRegion(llvm::raw_ostream& os, ASTContext& Ctx,
const MemRegion *MR) {
const TypedRegion *TR = dyn_cast<TypedRegion>(MR);
if (!TR)
return false;
switch (TR->getKind()) {
case MemRegion::FunctionTextRegionKind: {
const FunctionDecl *FD = cast<FunctionTextRegion>(TR)->getDecl();
if (FD)
os << "the address of the function '" << FD << "'";
else
os << "the address of a function";
return true;
}
case MemRegion::BlockTextRegionKind:
os << "block text";
return true;
case MemRegion::BlockDataRegionKind:
os << "a block";
return true;
case MemRegion::CXXThisRegionKind:
case MemRegion::CXXObjectRegionKind:
os << "a C++ object of type "
<< TR->getValueType(Ctx).getAsString();
return true;
case MemRegion::VarRegionKind:
os << "a variable of type"
<< TR->getValueType(Ctx).getAsString();
return true;
case MemRegion::FieldRegionKind:
os << "a field of type "
<< TR->getValueType(Ctx).getAsString();
return true;
case MemRegion::ObjCIvarRegionKind:
os << "an instance variable of type "
<< TR->getValueType(Ctx).getAsString();
return true;
default:
return false;
}
}
//===----------------------------------------------------------------------===//
// Evaluation of individual function calls.
//===----------------------------------------------------------------------===//
void CStringChecker::EvalCopyCommon(CheckerContext &C, const GRState *state,
const Expr *Size, const Expr *Dest,
const Expr *Source, bool Restricted) {
// See if the size argument is zero.
SVal SizeVal = state->getSVal(Size);
QualType SizeTy = Size->getType();
const GRState *StZeroSize, *StNonZeroSize;
llvm::tie(StZeroSize, StNonZeroSize) = AssumeZero(C, state, SizeVal, SizeTy);
// If the size is zero, there won't be any actual memory access.
if (StZeroSize)
C.addTransition(StZeroSize);
// If the size can be nonzero, we have to check the other arguments.
if (StNonZeroSize) {
state = StNonZeroSize;
state = CheckBufferAccess(C, state, Size, Dest, Source);
if (Restricted)
state = CheckOverlap(C, state, Size, Dest, Source);
if (state)
C.addTransition(state);
}
}
void CStringChecker::EvalMemcpy(CheckerContext &C, const CallExpr *CE) {
// void *memcpy(void *restrict dst, const void *restrict src, size_t n);
// The return value is the address of the destination buffer.
const Expr *Dest = CE->getArg(0);
const GRState *state = C.getState();
state = state->BindExpr(CE, state->getSVal(Dest));
EvalCopyCommon(C, state, CE->getArg(2), Dest, CE->getArg(1), true);
}
void CStringChecker::EvalMemmove(CheckerContext &C, const CallExpr *CE) {
// void *memmove(void *dst, const void *src, size_t n);
// The return value is the address of the destination buffer.
const Expr *Dest = CE->getArg(0);
const GRState *state = C.getState();
state = state->BindExpr(CE, state->getSVal(Dest));
EvalCopyCommon(C, state, CE->getArg(2), Dest, CE->getArg(1));
}
void CStringChecker::EvalBcopy(CheckerContext &C, const CallExpr *CE) {
// void bcopy(const void *src, void *dst, size_t n);
EvalCopyCommon(C, C.getState(), CE->getArg(2), CE->getArg(1), CE->getArg(0));
}
void CStringChecker::EvalMemcmp(CheckerContext &C, const CallExpr *CE) {
// int memcmp(const void *s1, const void *s2, size_t n);
const Expr *Left = CE->getArg(0);
const Expr *Right = CE->getArg(1);
const Expr *Size = CE->getArg(2);
const GRState *state = C.getState();
ValueManager &ValMgr = C.getValueManager();
SValuator &SV = ValMgr.getSValuator();
// See if the size argument is zero.
SVal SizeVal = state->getSVal(Size);
QualType SizeTy = Size->getType();
const GRState *StZeroSize, *StNonZeroSize;
llvm::tie(StZeroSize, StNonZeroSize) = AssumeZero(C, state, SizeVal, SizeTy);
// If the size can be zero, the result will be 0 in that case, and we don't
// have to check either of the buffers.
if (StZeroSize) {
state = StZeroSize;
state = state->BindExpr(CE, ValMgr.makeZeroVal(CE->getType()));
C.addTransition(state);
}
// If the size can be nonzero, we have to check the other arguments.
if (StNonZeroSize) {
state = StNonZeroSize;
// If we know the two buffers are the same, we know the result is 0.
// First, get the two buffers' addresses. Another checker will have already
// made sure they're not undefined.
DefinedOrUnknownSVal LV = cast<DefinedOrUnknownSVal>(state->getSVal(Left));
DefinedOrUnknownSVal RV = cast<DefinedOrUnknownSVal>(state->getSVal(Right));
// See if they are the same.
DefinedOrUnknownSVal SameBuf = SV.EvalEQ(state, LV, RV);
const GRState *StSameBuf, *StNotSameBuf;
llvm::tie(StSameBuf, StNotSameBuf) = state->Assume(SameBuf);
// If the two arguments might be the same buffer, we know the result is zero,
// and we only need to check one size.
if (StSameBuf) {
state = StSameBuf;
state = CheckBufferAccess(C, state, Size, Left);
if (state) {
state = StSameBuf->BindExpr(CE, ValMgr.makeZeroVal(CE->getType()));
C.addTransition(state);
}
}
// If the two arguments might be different buffers, we have to check the
// size of both of them.
if (StNotSameBuf) {
state = StNotSameBuf;
state = CheckBufferAccess(C, state, Size, Left, Right);
if (state) {
// The return value is the comparison result, which we don't know.
unsigned Count = C.getNodeBuilder().getCurrentBlockCount();
SVal CmpV = ValMgr.getConjuredSymbolVal(NULL, CE, CE->getType(), Count);
state = state->BindExpr(CE, CmpV);
C.addTransition(state);
}
}
}
}
void CStringChecker::EvalStrlen(CheckerContext &C, const CallExpr *CE) {
// size_t strlen(const char *s);
const GRState *state = C.getState();
const Expr *Arg = CE->getArg(0);
SVal ArgVal = state->getSVal(Arg);
// Check that the argument is non-null.
state = CheckNonNull(C, state, Arg, ArgVal);
if (state) {
// Figure out what the length is, making sure the argument is a C string
// (or something similar to a C string). If the argument is valid, the
// length will be defined, and we can then set the return value.
SVal StrLen = GetCStringLength(C, state, Arg, ArgVal);
if (!StrLen.isUndef()) {
state = state->BindExpr(CE, StrLen);
C.addTransition(state);
}
}
}
//===----------------------------------------------------------------------===//
// The driver method.
//===----------------------------------------------------------------------===//
bool CStringChecker::EvalCallExpr(CheckerContext &C, const CallExpr *CE) {
// Get the callee. All the functions we care about are C functions
// with simple identifiers.
const GRState *state = C.getState();
const Expr *Callee = CE->getCallee();
const FunctionDecl *FD = state->getSVal(Callee).getAsFunctionDecl();
if (!FD)
return false;
// Get the name of the callee. If it's a builtin, strip off the prefix.
llvm::StringRef Name = FD->getName();
if (Name.startswith("__builtin_"))
Name = Name.substr(10);
FnCheck EvalFunction = llvm::StringSwitch<FnCheck>(Name)
.Cases("memcpy", "__memcpy_chk", &CStringChecker::EvalMemcpy)
.Cases("memcmp", "bcmp", &CStringChecker::EvalMemcmp)
.Cases("memmove", "__memmove_chk", &CStringChecker::EvalMemmove)
.Case("strlen", &CStringChecker::EvalStrlen)
.Case("bcopy", &CStringChecker::EvalBcopy)
.Default(NULL);
// If the callee isn't a string function, let another checker handle it.
if (!EvalFunction)
return false;
// Check and evaluate the call.
(this->*EvalFunction)(C, CE);
return true;
}