llvm-project/lldb/source/Core/ValueObject.cpp

1157 lines
40 KiB
C++

//===-- ValueObject.cpp -----------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Core/ValueObject.h"
// C Includes
#include <stdlib.h>
// C++ Includes
// Other libraries and framework includes
#include "llvm/Support/raw_ostream.h"
#include "clang/AST/Type.h"
// Project includes
#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Core/ValueObjectChild.h"
#include "lldb/Core/ValueObjectList.h"
#include "lldb/Symbol/ClangASTType.h"
#include "lldb/Symbol/ClangASTContext.h"
#include "lldb/Symbol/Type.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/LanguageRuntime.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
using namespace lldb;
using namespace lldb_private;
static lldb::user_id_t g_value_obj_uid = 0;
//----------------------------------------------------------------------
// ValueObject constructor
//----------------------------------------------------------------------
ValueObject::ValueObject (ValueObject *parent) :
UserID (++g_value_obj_uid), // Unique identifier for every value object
m_parent (parent),
m_update_id (0), // Value object lists always start at 1, value objects start at zero
m_name (),
m_data (),
m_value (),
m_error (),
m_value_str (),
m_old_value_str (),
m_location_str (),
m_summary_str (),
m_object_desc_str (),
m_children (),
m_synthetic_children (),
m_dynamic_value_sp (),
m_format (eFormatDefault),
m_value_is_valid (false),
m_value_did_change (false),
m_children_count_valid (false),
m_old_value_valid (false)
{
}
//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
ValueObject::~ValueObject ()
{
}
user_id_t
ValueObject::GetUpdateID() const
{
return m_update_id;
}
bool
ValueObject::UpdateValueIfNeeded (ExecutionContextScope *exe_scope)
{
// If this is a constant value, then our success is predicated on whether
// we have an error or not
if (GetIsConstant())
return m_error.Success();
if (exe_scope)
{
Process *process = exe_scope->CalculateProcess();
if (process)
{
const user_id_t stop_id = process->GetStopID();
if (m_update_id != stop_id)
{
bool first_update = m_update_id == 0;
// Save the old value using swap to avoid a string copy which
// also will clear our m_value_str
if (m_value_str.empty())
{
m_old_value_valid = false;
}
else
{
m_old_value_valid = true;
m_old_value_str.swap (m_value_str);
m_value_str.clear();
}
m_location_str.clear();
m_summary_str.clear();
m_object_desc_str.clear();
const bool value_was_valid = GetValueIsValid();
SetValueDidChange (false);
m_error.Clear();
// Call the pure virtual function to update the value
UpdateValue (exe_scope);
// Update the fact that we tried to update the value for this
// value object whether or not we succeed
m_update_id = stop_id;
bool success = m_error.Success();
SetValueIsValid (success);
if (first_update)
SetValueDidChange (false);
else if (!m_value_did_change && success == false)
{
// The value wasn't gotten successfully, so we mark this
// as changed if the value used to be valid and now isn't
SetValueDidChange (value_was_valid);
}
}
}
}
return m_error.Success();
}
const DataExtractor &
ValueObject::GetDataExtractor () const
{
return m_data;
}
DataExtractor &
ValueObject::GetDataExtractor ()
{
return m_data;
}
const Error &
ValueObject::GetError() const
{
return m_error;
}
const ConstString &
ValueObject::GetName() const
{
return m_name;
}
const char *
ValueObject::GetLocationAsCString (ExecutionContextScope *exe_scope)
{
if (UpdateValueIfNeeded(exe_scope))
{
if (m_location_str.empty())
{
StreamString sstr;
switch (m_value.GetValueType())
{
default:
break;
case Value::eValueTypeScalar:
if (m_value.GetContextType() == Value::eContextTypeDCRegisterInfo)
{
RegisterInfo *reg_info = m_value.GetRegisterInfo();
if (reg_info)
{
if (reg_info->name)
m_location_str = reg_info->name;
else if (reg_info->alt_name)
m_location_str = reg_info->alt_name;
break;
}
}
m_location_str = "scalar";
break;
case Value::eValueTypeLoadAddress:
case Value::eValueTypeFileAddress:
case Value::eValueTypeHostAddress:
{
uint32_t addr_nibble_size = m_data.GetAddressByteSize() * 2;
sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS));
m_location_str.swap(sstr.GetString());
}
break;
}
}
}
return m_location_str.c_str();
}
Value &
ValueObject::GetValue()
{
return m_value;
}
const Value &
ValueObject::GetValue() const
{
return m_value;
}
bool
ValueObject::GetValueIsValid () const
{
return m_value_is_valid;
}
void
ValueObject::SetValueIsValid (bool b)
{
m_value_is_valid = b;
}
bool
ValueObject::GetValueDidChange (ExecutionContextScope *exe_scope)
{
GetValueAsCString (exe_scope);
return m_value_did_change;
}
void
ValueObject::SetValueDidChange (bool value_changed)
{
m_value_did_change = value_changed;
}
ValueObjectSP
ValueObject::GetChildAtIndex (uint32_t idx, bool can_create)
{
ValueObjectSP child_sp;
if (idx < GetNumChildren())
{
// Check if we have already made the child value object?
if (can_create && m_children[idx].get() == NULL)
{
// No we haven't created the child at this index, so lets have our
// subclass do it and cache the result for quick future access.
m_children[idx] = CreateChildAtIndex (idx, false, 0);
}
child_sp = m_children[idx];
}
return child_sp;
}
uint32_t
ValueObject::GetIndexOfChildWithName (const ConstString &name)
{
bool omit_empty_base_classes = true;
return ClangASTContext::GetIndexOfChildWithName (GetClangAST(),
GetClangType(),
name.AsCString(),
omit_empty_base_classes);
}
ValueObjectSP
ValueObject::GetChildMemberWithName (const ConstString &name, bool can_create)
{
// when getting a child by name, it could be burried inside some base
// classes (which really aren't part of the expression path), so we
// need a vector of indexes that can get us down to the correct child
std::vector<uint32_t> child_indexes;
clang::ASTContext *clang_ast = GetClangAST();
void *clang_type = GetClangType();
bool omit_empty_base_classes = true;
const size_t num_child_indexes = ClangASTContext::GetIndexOfChildMemberWithName (clang_ast,
clang_type,
name.AsCString(),
omit_empty_base_classes,
child_indexes);
ValueObjectSP child_sp;
if (num_child_indexes > 0)
{
std::vector<uint32_t>::const_iterator pos = child_indexes.begin ();
std::vector<uint32_t>::const_iterator end = child_indexes.end ();
child_sp = GetChildAtIndex(*pos, can_create);
for (++pos; pos != end; ++pos)
{
if (child_sp)
{
ValueObjectSP new_child_sp(child_sp->GetChildAtIndex (*pos, can_create));
child_sp = new_child_sp;
}
else
{
child_sp.reset();
}
}
}
return child_sp;
}
uint32_t
ValueObject::GetNumChildren ()
{
if (!m_children_count_valid)
{
SetNumChildren (CalculateNumChildren());
}
return m_children.size();
}
void
ValueObject::SetNumChildren (uint32_t num_children)
{
m_children_count_valid = true;
m_children.resize(num_children);
}
void
ValueObject::SetName (const char *name)
{
m_name.SetCString(name);
}
void
ValueObject::SetName (const ConstString &name)
{
m_name = name;
}
ValueObjectSP
ValueObject::CreateChildAtIndex (uint32_t idx, bool synthetic_array_member, int32_t synthetic_index)
{
ValueObjectSP valobj_sp;
bool omit_empty_base_classes = true;
std::string child_name_str;
uint32_t child_byte_size = 0;
int32_t child_byte_offset = 0;
uint32_t child_bitfield_bit_size = 0;
uint32_t child_bitfield_bit_offset = 0;
bool child_is_base_class = false;
const bool transparent_pointers = synthetic_array_member == false;
clang::ASTContext *clang_ast = GetClangAST();
clang_type_t clang_type = GetClangType();
clang_type_t child_clang_type;
child_clang_type = ClangASTContext::GetChildClangTypeAtIndex (clang_ast,
GetName().AsCString(),
clang_type,
idx,
transparent_pointers,
omit_empty_base_classes,
child_name_str,
child_byte_size,
child_byte_offset,
child_bitfield_bit_size,
child_bitfield_bit_offset,
child_is_base_class);
if (child_clang_type)
{
if (synthetic_index)
child_byte_offset += child_byte_size * synthetic_index;
ConstString child_name;
if (!child_name_str.empty())
child_name.SetCString (child_name_str.c_str());
valobj_sp.reset (new ValueObjectChild (this,
clang_ast,
child_clang_type,
child_name,
child_byte_size,
child_byte_offset,
child_bitfield_bit_size,
child_bitfield_bit_offset,
child_is_base_class));
}
return valobj_sp;
}
const char *
ValueObject::GetSummaryAsCString (ExecutionContextScope *exe_scope)
{
if (UpdateValueIfNeeded (exe_scope))
{
if (m_summary_str.empty())
{
clang_type_t clang_type = GetClangType();
// See if this is a pointer to a C string?
if (clang_type)
{
StreamString sstr;
clang_type_t elem_or_pointee_clang_type;
const Flags type_flags (ClangASTContext::GetTypeInfo (clang_type,
GetClangAST(),
&elem_or_pointee_clang_type));
if (type_flags.AnySet (ClangASTContext::eTypeIsArray | ClangASTContext::eTypeIsPointer) &&
ClangASTContext::IsCharType (elem_or_pointee_clang_type))
{
Process *process = exe_scope->CalculateProcess();
if (process != NULL)
{
lldb::addr_t cstr_address = LLDB_INVALID_ADDRESS;
lldb::AddressType cstr_address_type = eAddressTypeInvalid;
size_t cstr_len = 0;
if (type_flags.Test (ClangASTContext::eTypeIsArray))
{
// We have an array
cstr_len = ClangASTContext::GetArraySize (clang_type);
cstr_address = GetAddressOf (cstr_address_type, true);
}
else
{
// We have a pointer
cstr_address = GetPointerValue (cstr_address_type, true);
}
if (cstr_address != LLDB_INVALID_ADDRESS)
{
DataExtractor data;
size_t bytes_read = 0;
std::vector<char> data_buffer;
std::vector<char> cstr_buffer;
size_t cstr_length;
Error error;
if (cstr_len > 0)
{
data_buffer.resize(cstr_len);
// Resize the formatted buffer in case every character
// uses the "\xXX" format and one extra byte for a NULL
cstr_buffer.resize(data_buffer.size() * 4 + 1);
data.SetData (&data_buffer.front(), data_buffer.size(), eByteOrderHost);
bytes_read = process->ReadMemory (cstr_address, &data_buffer.front(), cstr_len, error);
if (bytes_read > 0)
{
sstr << '"';
cstr_length = data.Dump (&sstr,
0, // Start offset in "data"
eFormatChar, // Print as characters
1, // Size of item (1 byte for a char!)
bytes_read, // How many bytes to print?
UINT32_MAX, // num per line
LLDB_INVALID_ADDRESS,// base address
0, // bitfield bit size
0); // bitfield bit offset
sstr << '"';
}
}
else
{
const size_t k_max_buf_size = 256;
data_buffer.resize (k_max_buf_size + 1);
// NULL terminate in case we don't get the entire C string
data_buffer.back() = '\0';
// Make a formatted buffer that can contain take 4
// bytes per character in case each byte uses the
// "\xXX" format and one extra byte for a NULL
cstr_buffer.resize (k_max_buf_size * 4 + 1);
data.SetData (&data_buffer.front(), data_buffer.size(), eByteOrderHost);
size_t total_cstr_len = 0;
while ((bytes_read = process->ReadMemory (cstr_address, &data_buffer.front(), k_max_buf_size, error)) > 0)
{
size_t len = strlen(&data_buffer.front());
if (len == 0)
break;
if (len > bytes_read)
len = bytes_read;
if (sstr.GetSize() == 0)
sstr << '"';
cstr_length = data.Dump (&sstr,
0, // Start offset in "data"
eFormatChar, // Print as characters
1, // Size of item (1 byte for a char!)
len, // How many bytes to print?
UINT32_MAX, // num per line
LLDB_INVALID_ADDRESS,// base address
0, // bitfield bit size
0); // bitfield bit offset
if (len < k_max_buf_size)
break;
cstr_address += total_cstr_len;
}
if (sstr.GetSize() > 0)
sstr << '"';
}
}
}
if (sstr.GetSize() > 0)
m_summary_str.assign (sstr.GetData(), sstr.GetSize());
}
else if (ClangASTContext::IsFunctionPointerType (clang_type))
{
lldb::AddressType func_ptr_address_type = eAddressTypeInvalid;
lldb::addr_t func_ptr_address = GetPointerValue (func_ptr_address_type, true);
if (func_ptr_address != 0 && func_ptr_address != LLDB_INVALID_ADDRESS)
{
switch (func_ptr_address_type)
{
case eAddressTypeInvalid:
case eAddressTypeFile:
break;
case eAddressTypeLoad:
{
Address so_addr;
Target *target = exe_scope->CalculateTarget();
if (target && target->GetSectionLoadList().IsEmpty() == false)
{
if (target->GetSectionLoadList().ResolveLoadAddress(func_ptr_address, so_addr))
{
so_addr.Dump (&sstr,
exe_scope,
Address::DumpStyleResolvedDescription,
Address::DumpStyleSectionNameOffset);
}
}
}
break;
case eAddressTypeHost:
break;
}
}
if (sstr.GetSize() > 0)
{
m_summary_str.assign (1, '(');
m_summary_str.append (sstr.GetData(), sstr.GetSize());
m_summary_str.append (1, ')');
}
}
}
}
}
if (m_summary_str.empty())
return NULL;
return m_summary_str.c_str();
}
const char *
ValueObject::GetObjectDescription (ExecutionContextScope *exe_scope)
{
if (!m_object_desc_str.empty())
return m_object_desc_str.c_str();
if (!GetValueIsValid())
return NULL;
Process *process = exe_scope->CalculateProcess();
if (process == NULL)
return NULL;
StreamString s;
lldb::LanguageType language = GetObjectRuntimeLanguage();
LanguageRuntime *runtime = process->GetLanguageRuntime(language);
if (runtime && runtime->GetObjectDescription(s, *this, exe_scope))
{
m_object_desc_str.append (s.GetData());
}
if (m_object_desc_str.empty())
return NULL;
else
return m_object_desc_str.c_str();
}
const char *
ValueObject::GetValueAsCString (ExecutionContextScope *exe_scope)
{
// If our byte size is zero this is an aggregate type that has children
if (ClangASTContext::IsAggregateType (GetClangType()) == false)
{
if (UpdateValueIfNeeded(exe_scope))
{
if (m_value_str.empty())
{
const Value::ContextType context_type = m_value.GetContextType();
switch (context_type)
{
case Value::eContextTypeOpaqueClangQualType:
case Value::eContextTypeDCType:
case Value::eContextTypeDCVariable:
{
clang_type_t clang_type = GetClangType ();
if (clang_type)
{
StreamString sstr;
if (m_format == eFormatDefault)
m_format = ClangASTType::GetFormat(clang_type);
if (ClangASTType::DumpTypeValue (GetClangAST(), // The clang AST
clang_type, // The clang type to display
&sstr,
m_format, // Format to display this type with
m_data, // Data to extract from
0, // Byte offset into "m_data"
GetByteSize(), // Byte size of item in "m_data"
GetBitfieldBitSize(), // Bitfield bit size
GetBitfieldBitOffset())) // Bitfield bit offset
m_value_str.swap(sstr.GetString());
else
m_value_str.clear();
}
}
break;
case Value::eContextTypeDCRegisterInfo:
{
const RegisterInfo *reg_info = m_value.GetRegisterInfo();
if (reg_info)
{
StreamString reg_sstr;
m_data.Dump(&reg_sstr, 0, reg_info->format, reg_info->byte_size, 1, UINT32_MAX, LLDB_INVALID_ADDRESS, 0, 0);
m_value_str.swap(reg_sstr.GetString());
}
}
break;
default:
break;
}
}
if (!m_value_did_change && m_old_value_valid)
{
// The value was gotten successfully, so we consider the
// value as changed if the value string differs
SetValueDidChange (m_old_value_str != m_value_str);
}
}
}
if (m_value_str.empty())
return NULL;
return m_value_str.c_str();
}
addr_t
ValueObject::GetAddressOf (lldb::AddressType &address_type, bool scalar_is_load_address)
{
switch (m_value.GetValueType())
{
case Value::eValueTypeScalar:
if (scalar_is_load_address)
{
address_type = eAddressTypeLoad;
return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
}
break;
case Value::eValueTypeLoadAddress:
case Value::eValueTypeFileAddress:
case Value::eValueTypeHostAddress:
{
address_type = m_value.GetValueAddressType ();
return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
}
break;
}
address_type = eAddressTypeInvalid;
return LLDB_INVALID_ADDRESS;
}
addr_t
ValueObject::GetPointerValue (lldb::AddressType &address_type, bool scalar_is_load_address)
{
lldb::addr_t address = LLDB_INVALID_ADDRESS;
address_type = eAddressTypeInvalid;
switch (m_value.GetValueType())
{
case Value::eValueTypeScalar:
if (scalar_is_load_address)
{
address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
address_type = eAddressTypeLoad;
}
break;
case Value::eValueTypeLoadAddress:
case Value::eValueTypeFileAddress:
case Value::eValueTypeHostAddress:
{
uint32_t data_offset = 0;
address = m_data.GetPointer(&data_offset);
address_type = m_value.GetValueAddressType();
if (address_type == eAddressTypeInvalid)
address_type = eAddressTypeLoad;
}
break;
}
return address;
}
bool
ValueObject::SetValueFromCString (ExecutionContextScope *exe_scope, const char *value_str)
{
// Make sure our value is up to date first so that our location and location
// type is valid.
if (!UpdateValueIfNeeded(exe_scope))
return false;
uint32_t count = 0;
lldb::Encoding encoding = ClangASTType::GetEncoding (GetClangType(), count);
char *end = NULL;
const size_t byte_size = GetByteSize();
switch (encoding)
{
case eEncodingInvalid:
return false;
case eEncodingUint:
if (byte_size > sizeof(unsigned long long))
{
return false;
}
else
{
unsigned long long ull_val = strtoull(value_str, &end, 0);
if (end && *end != '\0')
return false;
m_value = ull_val;
// Limit the bytes in our m_data appropriately.
m_value.GetScalar().GetData (m_data, byte_size);
}
break;
case eEncodingSint:
if (byte_size > sizeof(long long))
{
return false;
}
else
{
long long sll_val = strtoll(value_str, &end, 0);
if (end && *end != '\0')
return false;
m_value = sll_val;
// Limit the bytes in our m_data appropriately.
m_value.GetScalar().GetData (m_data, byte_size);
}
break;
case eEncodingIEEE754:
{
const off_t byte_offset = GetByteOffset();
uint8_t *dst = const_cast<uint8_t *>(m_data.PeekData(byte_offset, byte_size));
if (dst != NULL)
{
// We are decoding a float into host byte order below, so make
// sure m_data knows what it contains.
m_data.SetByteOrder(eByteOrderHost);
const size_t converted_byte_size = ClangASTContext::ConvertStringToFloatValue (
GetClangAST(),
GetClangType(),
value_str,
dst,
byte_size);
if (converted_byte_size == byte_size)
{
}
}
}
break;
case eEncodingVector:
return false;
default:
return false;
}
// If we have made it here the value is in m_data and we should write it
// out to the target
return Write ();
}
bool
ValueObject::Write ()
{
// Clear the update ID so the next time we try and read the value
// we try and read it again.
m_update_id = 0;
// TODO: when Value has a method to write a value back, call it from here.
return false;
}
lldb::LanguageType
ValueObject::GetObjectRuntimeLanguage ()
{
clang_type_t opaque_qual_type = GetClangType();
if (opaque_qual_type == NULL)
return lldb::eLanguageTypeC;
// If the type is a reference, then resolve it to what it refers to first:
clang::QualType qual_type (clang::QualType::getFromOpaquePtr(opaque_qual_type).getNonReferenceType());
if (qual_type->isAnyPointerType())
{
if (qual_type->isObjCObjectPointerType())
return lldb::eLanguageTypeObjC;
clang::QualType pointee_type (qual_type->getPointeeType());
if (pointee_type->getCXXRecordDeclForPointerType() != NULL)
return lldb::eLanguageTypeC_plus_plus;
if (pointee_type->isObjCObjectOrInterfaceType())
return lldb::eLanguageTypeObjC;
if (pointee_type->isObjCClassType())
return lldb::eLanguageTypeObjC;
}
else
{
if (ClangASTContext::IsObjCClassType (opaque_qual_type))
return lldb::eLanguageTypeObjC;
if (ClangASTContext::IsCXXClassType (opaque_qual_type))
return lldb::eLanguageTypeC_plus_plus;
}
return lldb::eLanguageTypeC;
}
void
ValueObject::AddSyntheticChild (const ConstString &key, ValueObjectSP& valobj_sp)
{
m_synthetic_children[key] = valobj_sp;
}
ValueObjectSP
ValueObject::GetSyntheticChild (const ConstString &key) const
{
ValueObjectSP synthetic_child_sp;
std::map<ConstString, ValueObjectSP>::const_iterator pos = m_synthetic_children.find (key);
if (pos != m_synthetic_children.end())
synthetic_child_sp = pos->second;
return synthetic_child_sp;
}
bool
ValueObject::IsPointerType ()
{
return ClangASTContext::IsPointerType (GetClangType());
}
bool
ValueObject::IsPointerOrReferenceType ()
{
return ClangASTContext::IsPointerOrReferenceType(GetClangType());
}
ValueObjectSP
ValueObject::GetSyntheticArrayMemberFromPointer (int32_t index, bool can_create)
{
ValueObjectSP synthetic_child_sp;
if (IsPointerType ())
{
char index_str[64];
snprintf(index_str, sizeof(index_str), "[%i]", index);
ConstString index_const_str(index_str);
// Check if we have already created a synthetic array member in this
// valid object. If we have we will re-use it.
synthetic_child_sp = GetSyntheticChild (index_const_str);
if (!synthetic_child_sp)
{
// We haven't made a synthetic array member for INDEX yet, so
// lets make one and cache it for any future reference.
synthetic_child_sp = CreateChildAtIndex(0, true, index);
// Cache the value if we got one back...
if (synthetic_child_sp)
AddSyntheticChild(index_const_str, synthetic_child_sp);
}
}
return synthetic_child_sp;
}
bool
ValueObject::SetDynamicValue ()
{
if (!IsPointerOrReferenceType())
return false;
// Check that the runtime class is correct for determining the most specific class.
// If it is a C++ class, see if it is dynamic:
return true;
}
void
ValueObject::GetExpressionPath (Stream &s)
{
if (m_parent)
{
m_parent->GetExpressionPath (s);
clang_type_t parent_clang_type = m_parent->GetClangType();
if (parent_clang_type)
{
if (ClangASTContext::IsPointerType(parent_clang_type))
{
s.PutCString("->");
}
else if (ClangASTContext::IsAggregateType (parent_clang_type))
{
if (ClangASTContext::IsArrayType (parent_clang_type) == false &&
m_parent->IsBaseClass() == false)
s.PutChar('.');
}
}
}
if (IsBaseClass())
{
clang_type_t clang_type = GetClangType();
std::string cxx_class_name;
if (ClangASTContext::GetCXXClassName (clang_type, cxx_class_name))
{
s << cxx_class_name.c_str() << "::";
}
}
else
{
const char *name = GetName().AsCString();
if (name)
s.PutCString(name);
}
}
void
ValueObject::DumpValueObject
(
Stream &s,
ExecutionContextScope *exe_scope,
ValueObject *valobj,
const char *root_valobj_name,
uint32_t ptr_depth,
uint32_t curr_depth,
uint32_t max_depth,
bool show_types,
bool show_location,
bool use_objc,
bool scope_already_checked,
bool flat_output
)
{
if (valobj)
{
clang_type_t clang_type = valobj->GetClangType();
const Flags type_flags (ClangASTContext::GetTypeInfo (clang_type, NULL, NULL));
const char *err_cstr = NULL;
const bool has_children = type_flags.Test (ClangASTContext::eTypeHasChildren);
const bool has_value = type_flags.Test (ClangASTContext::eTypeHasValue);
const bool print_valobj = flat_output == false || has_value;
if (print_valobj)
{
if (show_location)
{
s.Printf("%s: ", valobj->GetLocationAsCString(exe_scope));
}
s.Indent();
// Always show the type for the top level items.
if (show_types || curr_depth == 0)
s.Printf("(%s) ", valobj->GetTypeName().AsCString());
if (flat_output)
{
valobj->GetExpressionPath(s);
s.PutCString(" =");
}
else
{
const char *name_cstr = root_valobj_name ? root_valobj_name : valobj->GetName().AsCString("");
s.Printf ("%s =", name_cstr);
}
if (!scope_already_checked && !valobj->IsInScope(exe_scope->CalculateStackFrame()))
{
err_cstr = "error: out of scope";
}
}
const char *val_cstr = NULL;
if (err_cstr == NULL)
{
val_cstr = valobj->GetValueAsCString(exe_scope);
err_cstr = valobj->GetError().AsCString();
}
if (err_cstr)
{
s.Printf (" error: %s\n", err_cstr);
}
else
{
const bool is_ref = type_flags.Test (ClangASTContext::eTypeIsReference);
if (print_valobj)
{
const char *sum_cstr = valobj->GetSummaryAsCString(exe_scope);
if (val_cstr)
s.Printf(" %s", val_cstr);
if (sum_cstr)
s.Printf(" %s", sum_cstr);
if (use_objc)
{
const char *object_desc = valobj->GetObjectDescription(exe_scope);
if (object_desc)
s.Printf(" %s\n", object_desc);
else
s.Printf (" [no Objective-C description available]\n");
return;
}
}
if (curr_depth < max_depth)
{
// We will show children for all concrete types. We won't show
// pointer contents unless a pointer depth has been specified.
// We won't reference contents unless the reference is the
// root object (depth of zero).
bool print_children = true;
// Use a new temporary pointer depth in case we override the
// current pointer depth below...
uint32_t curr_ptr_depth = ptr_depth;
const bool is_ptr = type_flags.Test (ClangASTContext::eTypeIsPointer);
if (is_ptr || is_ref)
{
// We have a pointer or reference whose value is an address.
// Make sure that address is not NULL
lldb::AddressType ptr_address_type;
if (valobj->GetPointerValue (ptr_address_type, true) == 0)
print_children = false;
else if (is_ref && curr_depth == 0)
{
// If this is the root object (depth is zero) that we are showing
// and it is a reference, and no pointer depth has been supplied
// print out what it references. Don't do this at deeper depths
// otherwise we can end up with infinite recursion...
curr_ptr_depth = 1;
}
if (curr_ptr_depth == 0)
print_children = false;
}
if (print_children)
{
const uint32_t num_children = valobj->GetNumChildren();
if (num_children)
{
if (flat_output)
{
if (print_valobj)
s.EOL();
}
else
{
if (print_valobj)
s.PutCString(is_ref ? ": {\n" : " {\n");
s.IndentMore();
}
for (uint32_t idx=0; idx<num_children; ++idx)
{
ValueObjectSP child_sp(valobj->GetChildAtIndex(idx, true));
if (child_sp.get())
{
DumpValueObject (s,
exe_scope,
child_sp.get(),
NULL,
(is_ptr || is_ref) ? curr_ptr_depth - 1 : curr_ptr_depth,
curr_depth + 1,
max_depth,
show_types,
show_location,
false,
true,
flat_output);
}
}
if (!flat_output)
{
s.IndentLess();
s.Indent("}\n");
}
}
else if (has_children)
{
// Aggregate, no children...
if (print_valobj)
s.PutCString(" {}\n");
}
else
{
if (print_valobj)
s.EOL();
}
}
else
{
s.EOL();
}
}
else
{
if (has_children && print_valobj)
{
s.PutCString("{...}\n");
}
}
}
}
}