llvm-project/lldb/source/Target/Memory.cpp

478 lines
17 KiB
C++

//===-- Memory.cpp ----------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Target/Memory.h"
// C Includes
#include <inttypes.h>
// C++ Includes
// Other libraries and framework includes
// Project includes
#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/State.h"
#include "lldb/Core/Log.h"
#include "lldb/Target/Process.h"
using namespace lldb;
using namespace lldb_private;
//----------------------------------------------------------------------
// MemoryCache constructor
//----------------------------------------------------------------------
MemoryCache::MemoryCache(Process &process) :
m_process (process),
m_cache_line_byte_size (512),
m_mutex (Mutex::eMutexTypeRecursive),
m_cache (),
m_invalid_ranges ()
{
}
//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
MemoryCache::~MemoryCache()
{
}
void
MemoryCache::Clear(bool clear_invalid_ranges)
{
Mutex::Locker locker (m_mutex);
m_cache.clear();
if (clear_invalid_ranges)
m_invalid_ranges.Clear();
}
void
MemoryCache::Flush (addr_t addr, size_t size)
{
if (size == 0)
return;
Mutex::Locker locker (m_mutex);
if (m_cache.empty())
return;
const uint32_t cache_line_byte_size = m_cache_line_byte_size;
const addr_t end_addr = (addr + size - 1);
const addr_t first_cache_line_addr = addr - (addr % cache_line_byte_size);
const addr_t last_cache_line_addr = end_addr - (end_addr % cache_line_byte_size);
// Watch for overflow where size will cause us to go off the end of the
// 64 bit address space
uint32_t num_cache_lines;
if (last_cache_line_addr >= first_cache_line_addr)
num_cache_lines = ((last_cache_line_addr - first_cache_line_addr)/cache_line_byte_size) + 1;
else
num_cache_lines = (UINT64_MAX - first_cache_line_addr + 1)/cache_line_byte_size;
uint32_t cache_idx = 0;
for (addr_t curr_addr = first_cache_line_addr;
cache_idx < num_cache_lines;
curr_addr += cache_line_byte_size, ++cache_idx)
{
BlockMap::iterator pos = m_cache.find (curr_addr);
if (pos != m_cache.end())
m_cache.erase(pos);
}
}
void
MemoryCache::AddInvalidRange (lldb::addr_t base_addr, lldb::addr_t byte_size)
{
if (byte_size > 0)
{
Mutex::Locker locker (m_mutex);
InvalidRanges::Entry range (base_addr, byte_size);
m_invalid_ranges.Append(range);
m_invalid_ranges.Sort();
}
}
bool
MemoryCache::RemoveInvalidRange (lldb::addr_t base_addr, lldb::addr_t byte_size)
{
if (byte_size > 0)
{
Mutex::Locker locker (m_mutex);
const uint32_t idx = m_invalid_ranges.FindEntryIndexThatContains(base_addr);
if (idx != UINT32_MAX)
{
const InvalidRanges::Entry *entry = m_invalid_ranges.GetEntryAtIndex (idx);
if (entry->GetRangeBase() == base_addr && entry->GetByteSize() == byte_size)
return m_invalid_ranges.RemoveEntrtAtIndex (idx);
}
}
return false;
}
size_t
MemoryCache::Read (addr_t addr,
void *dst,
size_t dst_len,
Error &error)
{
size_t bytes_left = dst_len;
// If this memory read request is larger than the cache line size, then
// we (1) try to read as much of it at once as possible, and (2) don't
// add the data to the memory cache. We don't want to split a big read
// up into more separate reads than necessary, and with a large memory read
// request, it is unlikely that the caller function will ask for the next
// 4 bytes after the large memory read - so there's little benefit to saving
// it in the cache.
if (dst && dst_len > m_cache_line_byte_size)
{
return m_process.ReadMemoryFromInferior (addr, dst, dst_len, error);
}
if (dst && bytes_left > 0)
{
const uint32_t cache_line_byte_size = m_cache_line_byte_size;
uint8_t *dst_buf = (uint8_t *)dst;
addr_t curr_addr = addr - (addr % cache_line_byte_size);
addr_t cache_offset = addr - curr_addr;
Mutex::Locker locker (m_mutex);
while (bytes_left > 0)
{
if (m_invalid_ranges.FindEntryThatContains(curr_addr))
{
error.SetErrorStringWithFormat("memory read failed for 0x%" PRIx64, curr_addr);
return dst_len - bytes_left;
}
BlockMap::const_iterator pos = m_cache.find (curr_addr);
BlockMap::const_iterator end = m_cache.end ();
if (pos != end)
{
size_t curr_read_size = cache_line_byte_size - cache_offset;
if (curr_read_size > bytes_left)
curr_read_size = bytes_left;
memcpy (dst_buf + dst_len - bytes_left, pos->second->GetBytes() + cache_offset, curr_read_size);
bytes_left -= curr_read_size;
curr_addr += curr_read_size + cache_offset;
cache_offset = 0;
if (bytes_left > 0)
{
// Get sequential cache page hits
for (++pos; (pos != end) && (bytes_left > 0); ++pos)
{
assert ((curr_addr % cache_line_byte_size) == 0);
if (pos->first != curr_addr)
break;
curr_read_size = pos->second->GetByteSize();
if (curr_read_size > bytes_left)
curr_read_size = bytes_left;
memcpy (dst_buf + dst_len - bytes_left, pos->second->GetBytes(), curr_read_size);
bytes_left -= curr_read_size;
curr_addr += curr_read_size;
// We have a cache page that succeeded to read some bytes
// but not an entire page. If this happens, we must cap
// off how much data we are able to read...
if (pos->second->GetByteSize() != cache_line_byte_size)
return dst_len - bytes_left;
}
}
}
// We need to read from the process
if (bytes_left > 0)
{
assert ((curr_addr % cache_line_byte_size) == 0);
std::unique_ptr<DataBufferHeap> data_buffer_heap_ap(new DataBufferHeap (cache_line_byte_size, 0));
size_t process_bytes_read = m_process.ReadMemoryFromInferior (curr_addr,
data_buffer_heap_ap->GetBytes(),
data_buffer_heap_ap->GetByteSize(),
error);
if (process_bytes_read == 0)
return dst_len - bytes_left;
if (process_bytes_read != cache_line_byte_size)
data_buffer_heap_ap->SetByteSize (process_bytes_read);
m_cache[curr_addr] = DataBufferSP (data_buffer_heap_ap.release());
// We have read data and put it into the cache, continue through the
// loop again to get the data out of the cache...
}
}
}
return dst_len - bytes_left;
}
AllocatedBlock::AllocatedBlock (lldb::addr_t addr,
uint32_t byte_size,
uint32_t permissions,
uint32_t chunk_size) :
m_addr (addr),
m_byte_size (byte_size),
m_permissions (permissions),
m_chunk_size (chunk_size),
m_offset_to_chunk_size ()
// m_allocated (byte_size / chunk_size)
{
assert (byte_size > chunk_size);
}
AllocatedBlock::~AllocatedBlock ()
{
}
lldb::addr_t
AllocatedBlock::ReserveBlock (uint32_t size)
{
addr_t addr = LLDB_INVALID_ADDRESS;
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_VERBOSE));
if (size <= m_byte_size)
{
const uint32_t needed_chunks = CalculateChunksNeededForSize (size);
if (m_offset_to_chunk_size.empty())
{
m_offset_to_chunk_size[0] = needed_chunks;
if (log)
log->Printf ("[1] AllocatedBlock::ReserveBlock(%p) (size = %u (0x%x)) => offset = 0x%x, %u %u bit chunks", this, size, size, 0, needed_chunks, m_chunk_size);
addr = m_addr;
}
else
{
uint32_t last_offset = 0;
OffsetToChunkSize::const_iterator pos = m_offset_to_chunk_size.begin();
OffsetToChunkSize::const_iterator end = m_offset_to_chunk_size.end();
while (pos != end)
{
if (pos->first > last_offset)
{
const uint32_t bytes_available = pos->first - last_offset;
const uint32_t num_chunks = CalculateChunksNeededForSize (bytes_available);
if (num_chunks >= needed_chunks)
{
m_offset_to_chunk_size[last_offset] = needed_chunks;
if (log)
log->Printf ("[2] AllocatedBlock::ReserveBlock(%p) (size = %u (0x%x)) => offset = 0x%x, %u %u bit chunks - num_chunks %lu", this, size, size, last_offset, needed_chunks, m_chunk_size, m_offset_to_chunk_size.size());
addr = m_addr + last_offset;
break;
}
}
last_offset = pos->first + pos->second * m_chunk_size;
if (++pos == end)
{
// Last entry...
const uint32_t chunks_left = CalculateChunksNeededForSize (m_byte_size - last_offset);
if (chunks_left >= needed_chunks)
{
m_offset_to_chunk_size[last_offset] = needed_chunks;
if (log)
log->Printf ("[3] AllocatedBlock::ReserveBlock(%p) (size = %u (0x%x)) => offset = 0x%x, %u %u bit chunks - num_chunks %lu", this, size, size, last_offset, needed_chunks, m_chunk_size, m_offset_to_chunk_size.size());
addr = m_addr + last_offset;
break;
}
}
}
}
// const uint32_t total_chunks = m_allocated.size ();
// uint32_t unallocated_idx = 0;
// uint32_t allocated_idx = m_allocated.find_first();
// uint32_t first_chunk_idx = UINT32_MAX;
// uint32_t num_chunks;
// while (1)
// {
// if (allocated_idx == UINT32_MAX)
// {
// // No more bits are set starting from unallocated_idx, so we
// // either have enough chunks for the request, or we don't.
// // Eiter way we break out of the while loop...
// num_chunks = total_chunks - unallocated_idx;
// if (needed_chunks <= num_chunks)
// first_chunk_idx = unallocated_idx;
// break;
// }
// else if (allocated_idx > unallocated_idx)
// {
// // We have some allocated chunks, check if there are enough
// // free chunks to satisfy the request?
// num_chunks = allocated_idx - unallocated_idx;
// if (needed_chunks <= num_chunks)
// {
// // Yep, we have enough!
// first_chunk_idx = unallocated_idx;
// break;
// }
// }
//
// while (unallocated_idx < total_chunks)
// {
// if (m_allocated[unallocated_idx])
// ++unallocated_idx;
// else
// break;
// }
//
// if (unallocated_idx >= total_chunks)
// break;
//
// allocated_idx = m_allocated.find_next(unallocated_idx);
// }
//
// if (first_chunk_idx != UINT32_MAX)
// {
// const uint32_t end_bit_idx = unallocated_idx + needed_chunks;
// for (uint32_t idx = first_chunk_idx; idx < end_bit_idx; ++idx)
// m_allocated.set(idx);
// return m_addr + m_chunk_size * first_chunk_idx;
// }
}
if (log)
log->Printf ("AllocatedBlock::ReserveBlock(%p) (size = %u (0x%x)) => 0x%16.16" PRIx64, this, size, size, (uint64_t)addr);
return addr;
}
bool
AllocatedBlock::FreeBlock (addr_t addr)
{
uint32_t offset = addr - m_addr;
OffsetToChunkSize::iterator pos = m_offset_to_chunk_size.find (offset);
bool success = false;
if (pos != m_offset_to_chunk_size.end())
{
m_offset_to_chunk_size.erase (pos);
success = true;
}
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_VERBOSE));
if (log)
log->Printf ("AllocatedBlock::FreeBlock(%p) (addr = 0x%16.16" PRIx64 ") => %i, num_chunks: %lu", this, (uint64_t)addr, success, m_offset_to_chunk_size.size());
return success;
}
AllocatedMemoryCache::AllocatedMemoryCache (Process &process) :
m_process (process),
m_mutex (Mutex::eMutexTypeRecursive),
m_memory_map()
{
}
AllocatedMemoryCache::~AllocatedMemoryCache ()
{
}
void
AllocatedMemoryCache::Clear()
{
Mutex::Locker locker (m_mutex);
if (m_process.IsAlive())
{
PermissionsToBlockMap::iterator pos, end = m_memory_map.end();
for (pos = m_memory_map.begin(); pos != end; ++pos)
m_process.DoDeallocateMemory(pos->second->GetBaseAddress());
}
m_memory_map.clear();
}
AllocatedMemoryCache::AllocatedBlockSP
AllocatedMemoryCache::AllocatePage (uint32_t byte_size,
uint32_t permissions,
uint32_t chunk_size,
Error &error)
{
AllocatedBlockSP block_sp;
const size_t page_size = 4096;
const size_t num_pages = (byte_size + page_size - 1) / page_size;
const size_t page_byte_size = num_pages * page_size;
addr_t addr = m_process.DoAllocateMemory(page_byte_size, permissions, error);
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
{
log->Printf ("Process::DoAllocateMemory (byte_size = 0x%8.8" PRIx32 ", permissions = %s) => 0x%16.16" PRIx64,
(uint32_t)page_byte_size,
GetPermissionsAsCString(permissions),
(uint64_t)addr);
}
if (addr != LLDB_INVALID_ADDRESS)
{
block_sp.reset (new AllocatedBlock (addr, page_byte_size, permissions, chunk_size));
m_memory_map.insert (std::make_pair (permissions, block_sp));
}
return block_sp;
}
lldb::addr_t
AllocatedMemoryCache::AllocateMemory (size_t byte_size,
uint32_t permissions,
Error &error)
{
Mutex::Locker locker (m_mutex);
addr_t addr = LLDB_INVALID_ADDRESS;
std::pair<PermissionsToBlockMap::iterator, PermissionsToBlockMap::iterator> range = m_memory_map.equal_range (permissions);
for (PermissionsToBlockMap::iterator pos = range.first; pos != range.second; ++pos)
{
addr = (*pos).second->ReserveBlock (byte_size);
if (addr != LLDB_INVALID_ADDRESS)
break;
}
if (addr == LLDB_INVALID_ADDRESS)
{
AllocatedBlockSP block_sp (AllocatePage (byte_size, permissions, 16, error));
if (block_sp)
addr = block_sp->ReserveBlock (byte_size);
}
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf ("AllocatedMemoryCache::AllocateMemory (byte_size = 0x%8.8" PRIx32 ", permissions = %s) => 0x%16.16" PRIx64, (uint32_t)byte_size, GetPermissionsAsCString(permissions), (uint64_t)addr);
return addr;
}
bool
AllocatedMemoryCache::DeallocateMemory (lldb::addr_t addr)
{
Mutex::Locker locker (m_mutex);
PermissionsToBlockMap::iterator pos, end = m_memory_map.end();
bool success = false;
for (pos = m_memory_map.begin(); pos != end; ++pos)
{
if (pos->second->Contains (addr))
{
success = pos->second->FreeBlock (addr);
break;
}
}
Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf("AllocatedMemoryCache::DeallocateMemory (addr = 0x%16.16" PRIx64 ") => %i", (uint64_t)addr, success);
return success;
}