llvm-project/llvm/lib/CodeGen
Dan Gohman e6db8ca5eb Don't copy the operand of a SwitchInst into virtual registers as
eagerly. This helps avoid CopyToReg nodes in some cases where they
aren't needed, and also helps subsequent optimizer heuristics
in cases where the extra nodes would cause the node to appear
to have multiple results. This doesn't have a significant impact
currently; it'll help an upcoming change.

llvm-svn: 68667
2009-04-09 02:33:36 +00:00
..
AsmPrinter If subprogram type is not tagged as DW_TAG_subroutine_type then use it directly as a return value type. 2009-04-08 22:18:45 +00:00
SelectionDAG Don't copy the operand of a SwitchInst into virtual registers as 2009-04-09 02:33:36 +00:00
BranchFolding.cpp Turns out AnalyzeBranch can modify the mbb being analyzed. This is a nasty 2009-02-09 07:14:22 +00:00
CMakeLists.txt update 2009-03-11 22:52:25 +00:00
DeadMachineInstructionElim.cpp Rename AliasSet to SubRegs, to reflect changes in the surrounding code. 2008-10-16 01:06:18 +00:00
ELFWriter.cpp Introduce new linkage types linkonce_odr, weak_odr, common_odr 2009-03-07 15:45:40 +00:00
ELFWriter.h Use raw_ostream throughout the AsmPrinter. 2008-08-21 00:14:44 +00:00
GCMetadata.cpp Eliminate several more unnecessary intptr_t casts. 2009-02-18 05:09:16 +00:00
GCMetadataPrinter.cpp Use raw_ostream throughout the AsmPrinter. 2008-08-21 00:14:44 +00:00
GCStrategy.cpp Eliminate several more unnecessary intptr_t casts. 2009-02-18 05:09:16 +00:00
IfConversion.cpp Fix typo. Patch by nlewycky. 2008-11-04 18:05:30 +00:00
IntrinsicLowering.cpp Introduce new linkage types linkonce_odr, weak_odr, common_odr 2009-03-07 15:45:40 +00:00
LLVMTargetMachine.cpp CodeGen still defaults to non-verbose asm, but llc now overrides it and default to verbose. 2009-03-25 01:47:28 +00:00
LatencyPriorityQueue.cpp Add initial support for back-scheduling address computations, 2008-12-16 03:35:01 +00:00
LiveInterval.cpp Implement support for using modeling implicit-zero-extension on x86-64 2009-04-08 00:15:30 +00:00
LiveIntervalAnalysis.cpp Implement support for using modeling implicit-zero-extension on x86-64 2009-04-08 00:15:30 +00:00
LiveStackAnalysis.cpp Livestacks really does preserve everything. 2008-09-22 22:26:15 +00:00
LiveVariables.cpp Fix PR3243: a LiveVariables bug. When HandlePhysRegKill is checking whether the last reference is also the last def (i.e. dead def), it should also check if last reference is the current machine instruction being processed. This can happen when it is processing a physical register use and setting the current machine instruction as sub-register's last ref. 2009-01-20 21:25:12 +00:00
LoopAligner.cpp Avoid inserting noop's in the middle of a loop. 2008-11-27 01:16:00 +00:00
LowerSubregs.cpp Do not fold away subreg_to_reg if the source register has a sub-register index. That means the source register is taking a sub-register of a larger register. e.g. On x86 2009-03-23 07:19:58 +00:00
MachOWriter.cpp It makes no sense to have a ODR version of common 2009-03-11 20:14:15 +00:00
MachOWriter.h Rename getABITypeSize to getTypePaddedSize, as 2009-01-12 20:38:59 +00:00
MachineBasicBlock.cpp Reapply 68073, with fixes. EH Landing-pad basic blocks are not 2009-03-31 18:39:13 +00:00
MachineDominators.cpp Eliminate several more unnecessary intptr_t casts. 2009-02-18 05:09:16 +00:00
MachineFunction.cpp Now that errs() is properly non-buffered, there's no need to 2009-03-23 15:57:19 +00:00
MachineInstr.cpp Model inline asm constraint which ties an input to an output register as machine operand TIED_TO constraint. This eliminated the need to pre-allocate registers for these. This also allows register allocator can eliminate the unneeded copies. 2009-03-23 08:01:15 +00:00
MachineLICM.cpp MachineLICM CSE should match destination register classes; avoid hoisting implicit_def's. 2009-02-27 00:02:22 +00:00
MachineLoopInfo.cpp Change class' public PassInfo variables to by initialized with the 2008-05-13 02:05:11 +00:00
MachineModuleInfo.cpp Remove dead code. 2009-02-03 19:46:28 +00:00
MachinePassRegistry.cpp Remove attribution from file headers, per discussion on llvmdev. 2007-12-29 20:36:04 +00:00
MachineRegisterInfo.cpp Move createVirtualRegister out-of-line. 2008-12-08 04:54:11 +00:00
MachineSink.cpp Fix PR3522. It's not safe to sink into landing pad BB's. 2009-02-15 08:36:12 +00:00
Makefile Removed trailing whitespace from Makefiles. 2009-01-09 16:44:42 +00:00
OcamlGC.cpp Registry.h should not depend on CommandLine.h. 2009-01-16 07:02:28 +00:00
PBQP.cpp reorder #include order, patch by Kenneth Boyd! 2008-10-06 03:54:25 +00:00
PBQP.h Fix typos pointed out by Duncan. Also untabify these files. 2008-10-03 17:11:58 +00:00
PHIElimination.cpp Reapply r67049, with the test adjusted for darwin 2009-03-17 09:46:22 +00:00
Passes.cpp Clean up the use of static and anonymous namespaces. This turned up 2008-05-13 00:00:25 +00:00
PhysRegTracker.h Rename MRegisterInfo to TargetRegisterInfo. 2008-02-10 18:45:23 +00:00
PostRASchedulerList.cpp Add parentheses to pacify gcc-4.3. 2009-03-11 09:04:34 +00:00
PreAllocSplitting.cpp Remove the "fast" cases for spill and restore point determination, as these were subtlely wrong in obscure cases. Patch the testcase 2009-03-31 08:27:09 +00:00
PrologEpilogInserter.cpp Shrink wrapping in PEI: initial release. Finishing development, enable with --shrink-wrap. 2009-03-27 06:09:40 +00:00
PseudoSourceValue.cpp Now that errs() is properly non-buffered, there's no need to 2009-03-23 15:57:19 +00:00
README.txt Remove tabs. 2008-08-22 00:04:26 +00:00
RegAllocBigBlock.cpp Adjust the sizes for a few SmallVectors to reflect their usage. 2009-02-12 17:29:01 +00:00
RegAllocLinearScan.cpp Fix a bug in spill weight computation. If the alias is a super-register, and the super-register is in the register class we are trying to allocate. Then add the weight to all sub-registers of the super-register even if they are not aliases. 2009-03-23 22:57:19 +00:00
RegAllocLocal.cpp Added MachineInstr::isRegTiedToDefOperand to check for two-addressness. 2009-03-19 20:30:06 +00:00
RegAllocPBQP.cpp r66870 missed this out. 2009-03-17 15:46:15 +00:00
RegAllocSimple.cpp Silience unused warnings. 2008-12-23 21:55:04 +00:00
RegisterCoalescer.cpp Clean up the use of static and anonymous namespaces. This turned up 2008-05-13 00:00:25 +00:00
RegisterScavenging.cpp Tidy up #includes, deleting a bunch of unnecessary #includes. 2009-01-05 17:59:02 +00:00
ScheduleDAG.cpp When scheduling a block in parts, keep track of the overall 2009-02-11 04:27:20 +00:00
ScheduleDAGEmit.cpp When scheduling a block in parts, keep track of the overall 2009-02-11 04:27:20 +00:00
ScheduleDAGInstrs.cpp When scheduling a block in parts, keep track of the overall 2009-02-11 04:27:20 +00:00
ScheduleDAGInstrs.h When scheduling a block in parts, keep track of the overall 2009-02-11 04:27:20 +00:00
ScheduleDAGPrinter.cpp Apparently some MachineBasicBlock's don't have corresponding llvm basic blocks. 2009-02-11 23:42:39 +00:00
ShadowStackGC.cpp Introduce new linkage types linkonce_odr, weak_odr, common_odr 2009-03-07 15:45:40 +00:00
SimpleRegisterCoalescing.cpp Implement support for using modeling implicit-zero-extension on x86-64 2009-04-08 00:15:30 +00:00
SimpleRegisterCoalescing.h ReMaterializeTrivialDef need to trim the live interval to the last kill if the copy kills the source register. This fixes uint64tof64.ll after ARM::MOVi is marked as isAsCheapAsAMove. 2009-02-05 08:45:04 +00:00
Spiller.cpp Oy! When reverting r68073, I added in experimental code. Sorry... 2009-03-31 08:41:31 +00:00
Spiller.h Oy! When reverting r68073, I added in experimental code. Sorry... 2009-03-31 08:41:31 +00:00
StackProtector.cpp When we split a basic block, there's a default branch to the newly created BB. 2009-03-06 01:41:15 +00:00
StackSlotColoring.cpp Enable stack slot coloring DCE. Evan's spiller fixes were needed before this could happen. 2009-02-26 04:47:57 +00:00
StrongPHIElimination.cpp Fix a bug in live-in detection that caused lost-copy problems to show up. 2008-10-12 20:39:30 +00:00
TargetInstrInfoImpl.cpp Explicitly pass in debug location information to BuildMI. 2009-02-03 02:29:34 +00:00
TwoAddressInstructionPass.cpp Implement support for using modeling implicit-zero-extension on x86-64 2009-04-08 00:15:30 +00:00
UnreachableBlockElim.cpp Rename getAnalysisToUpdate to getAnalysisIfAvailable. 2009-01-28 13:14:17 +00:00
VirtRegMap.cpp Oy! When reverting r68073, I added in experimental code. Sorry... 2009-03-31 08:41:31 +00:00
VirtRegMap.h Oy! When reverting r68073, I added in experimental code. Sorry... 2009-03-31 08:41:31 +00:00

README.txt

//===---------------------------------------------------------------------===//

Common register allocation / spilling problem:

        mul lr, r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        ldr r4, [sp, #+52]
        mla r4, r3, lr, r4

can be:

        mul lr, r4, lr
        mov r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

and then "merge" mul and mov:

        mul r4, r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

It also increase the likelyhood the store may become dead.

//===---------------------------------------------------------------------===//

I think we should have a "hasSideEffects" flag (which is automatically set for
stuff that "isLoad" "isCall" etc), and the remat pass should eventually be able
to remat any instruction that has no side effects, if it can handle it and if
profitable.

For now, I'd suggest having the remat stuff work like this:

1. I need to spill/reload this thing.
2. Check to see if it has side effects.
3. Check to see if it is simple enough: e.g. it only has one register
destination and no register input.
4. If so, clone the instruction, do the xform, etc.

Advantages of this are:

1. the .td file describes the behavior of the instructions, not the way the
   algorithm should work.
2. as remat gets smarter in the future, we shouldn't have to be changing the .td
   files.
3. it is easier to explain what the flag means in the .td file, because you
   don't have to pull in the explanation of how the current remat algo works.

Some potential added complexities:

1. Some instructions have to be glued to it's predecessor or successor. All of
   the PC relative instructions and condition code setting instruction. We could
   mark them as hasSideEffects, but that's not quite right. PC relative loads
   from constantpools can be remat'ed, for example. But it requires more than
   just cloning the instruction. Some instructions can be remat'ed but it
   expands to more than one instruction. But allocator will have to make a
   decision.

4. As stated in 3, not as simple as cloning in some cases. The target will have
   to decide how to remat it. For example, an ARM 2-piece constant generation
   instruction is remat'ed as a load from constantpool.

//===---------------------------------------------------------------------===//

bb27 ...
        ...
        %reg1037 = ADDri %reg1039, 1
        %reg1038 = ADDrs %reg1032, %reg1039, %NOREG, 10
    Successors according to CFG: 0x8b03bf0 (#5)

bb76 (0x8b03bf0, LLVM BB @0x8b032d0, ID#5):
    Predecessors according to CFG: 0x8b0c5f0 (#3) 0x8b0a7c0 (#4)
        %reg1039 = PHI %reg1070, mbb<bb76.outer,0x8b0c5f0>, %reg1037, mbb<bb27,0x8b0a7c0>

Note ADDri is not a two-address instruction. However, its result %reg1037 is an
operand of the PHI node in bb76 and its operand %reg1039 is the result of the
PHI node. We should treat it as a two-address code and make sure the ADDri is
scheduled after any node that reads %reg1039.

//===---------------------------------------------------------------------===//

Use local info (i.e. register scavenger) to assign it a free register to allow
reuse:
        ldr r3, [sp, #+4]
        add r3, r3, #3
        ldr r2, [sp, #+8]
        add r2, r2, #2
        ldr r1, [sp, #+4]  <==
        add r1, r1, #1
        ldr r0, [sp, #+4]
        add r0, r0, #2

//===---------------------------------------------------------------------===//

LLVM aggressively lift CSE out of loop. Sometimes this can be negative side-
effects:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
load [i + R1]
...
load [i + R2]
...
load [i + R3]

Suppose there is high register pressure, R1, R2, R3, can be spilled. We need
to implement proper re-materialization to handle this:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
R1 = X + 4  @ re-materialized
load [i + R1]
...
R2 = X + 7 @ re-materialized
load [i + R2]
...
R3 = X + 15 @ re-materialized
load [i + R3]

Furthermore, with re-association, we can enable sharing:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
T = i + X
load [T + 4]
...
load [T + 7]
...
load [T + 15]
//===---------------------------------------------------------------------===//

It's not always a good idea to choose rematerialization over spilling. If all
the load / store instructions would be folded then spilling is cheaper because
it won't require new live intervals / registers. See 2003-05-31-LongShifts for
an example.

//===---------------------------------------------------------------------===//

With a copying garbage collector, derived pointers must not be retained across
collector safe points; the collector could move the objects and invalidate the
derived pointer. This is bad enough in the first place, but safe points can
crop up unpredictably. Consider:

        %array = load { i32, [0 x %obj] }** %array_addr
        %nth_el = getelementptr { i32, [0 x %obj] }* %array, i32 0, i32 %n
        %old = load %obj** %nth_el
        %z = div i64 %x, %y
        store %obj* %new, %obj** %nth_el

If the i64 division is lowered to a libcall, then a safe point will (must)
appear for the call site. If a collection occurs, %array and %nth_el no longer
point into the correct object.

The fix for this is to copy address calculations so that dependent pointers
are never live across safe point boundaries. But the loads cannot be copied
like this if there was an intervening store, so may be hard to get right.

Only a concurrent mutator can trigger a collection at the libcall safe point.
So single-threaded programs do not have this requirement, even with a copying
collector. Still, LLVM optimizations would probably undo a front-end's careful
work.

//===---------------------------------------------------------------------===//

The ocaml frametable structure supports liveness information. It would be good
to support it.

//===---------------------------------------------------------------------===//

The FIXME in ComputeCommonTailLength in BranchFolding.cpp needs to be
revisited. The check is there to work around a misuse of directives in inline
assembly.

//===---------------------------------------------------------------------===//

It would be good to detect collector/target compatibility instead of silently
doing the wrong thing.

//===---------------------------------------------------------------------===//

It would be really nice to be able to write patterns in .td files for copies,
which would eliminate a bunch of explicit predicates on them (e.g. no side 
effects).  Once this is in place, it would be even better to have tblgen 
synthesize the various copy insertion/inspection methods in TargetInstrInfo.

//===---------------------------------------------------------------------===//

Stack coloring improvments:

1. Do proper LiveStackAnalysis on all stack objects including those which are
   not spill slots.
2. Reorder objects to fill in gaps between objects.
   e.g. 4, 1, <gap>, 4, 1, 1, 1, <gap>, 4 => 4, 1, 1, 1, 1, 4, 4