llvm-project/clang/lib/StaticAnalyzer/Core/ExprEngineCXX.cpp

761 lines
32 KiB
C++

//===- ExprEngineCXX.cpp - ExprEngine support for C++ -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the C++ expression evaluation engine.
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
#include "clang/Analysis/ConstructionContext.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/ParentMap.h"
#include "clang/Basic/PrettyStackTrace.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
using namespace clang;
using namespace ento;
void ExprEngine::CreateCXXTemporaryObject(const MaterializeTemporaryExpr *ME,
ExplodedNode *Pred,
ExplodedNodeSet &Dst) {
StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
const Expr *tempExpr = ME->GetTemporaryExpr()->IgnoreParens();
ProgramStateRef state = Pred->getState();
const LocationContext *LCtx = Pred->getLocationContext();
state = createTemporaryRegionIfNeeded(state, LCtx, tempExpr, ME);
Bldr.generateNode(ME, Pred, state);
}
// FIXME: This is the sort of code that should eventually live in a Core
// checker rather than as a special case in ExprEngine.
void ExprEngine::performTrivialCopy(NodeBuilder &Bldr, ExplodedNode *Pred,
const CallEvent &Call) {
SVal ThisVal;
bool AlwaysReturnsLValue;
if (const CXXConstructorCall *Ctor = dyn_cast<CXXConstructorCall>(&Call)) {
assert(Ctor->getDecl()->isTrivial());
assert(Ctor->getDecl()->isCopyOrMoveConstructor());
ThisVal = Ctor->getCXXThisVal();
AlwaysReturnsLValue = false;
} else {
assert(cast<CXXMethodDecl>(Call.getDecl())->isTrivial());
assert(cast<CXXMethodDecl>(Call.getDecl())->getOverloadedOperator() ==
OO_Equal);
ThisVal = cast<CXXInstanceCall>(Call).getCXXThisVal();
AlwaysReturnsLValue = true;
}
const LocationContext *LCtx = Pred->getLocationContext();
ExplodedNodeSet Dst;
Bldr.takeNodes(Pred);
SVal V = Call.getArgSVal(0);
// If the value being copied is not unknown, load from its location to get
// an aggregate rvalue.
if (Optional<Loc> L = V.getAs<Loc>())
V = Pred->getState()->getSVal(*L);
else
assert(V.isUnknownOrUndef());
const Expr *CallExpr = Call.getOriginExpr();
evalBind(Dst, CallExpr, Pred, ThisVal, V, true);
PostStmt PS(CallExpr, LCtx);
for (ExplodedNodeSet::iterator I = Dst.begin(), E = Dst.end();
I != E; ++I) {
ProgramStateRef State = (*I)->getState();
if (AlwaysReturnsLValue)
State = State->BindExpr(CallExpr, LCtx, ThisVal);
else
State = bindReturnValue(Call, LCtx, State);
Bldr.generateNode(PS, State, *I);
}
}
SVal ExprEngine::makeZeroElementRegion(ProgramStateRef State, SVal LValue,
QualType &Ty, bool &IsArray) {
SValBuilder &SVB = State->getStateManager().getSValBuilder();
ASTContext &Ctx = SVB.getContext();
while (const ArrayType *AT = Ctx.getAsArrayType(Ty)) {
Ty = AT->getElementType();
LValue = State->getLValue(Ty, SVB.makeZeroArrayIndex(), LValue);
IsArray = true;
}
return LValue;
}
const MemRegion *
ExprEngine::getRegionForConstructedObject(const CXXConstructExpr *CE,
ExplodedNode *Pred,
const ConstructionContext *CC,
EvalCallOptions &CallOpts) {
const LocationContext *LCtx = Pred->getLocationContext();
ProgramStateRef State = Pred->getState();
MemRegionManager &MRMgr = getSValBuilder().getRegionManager();
// See if we're constructing an existing region by looking at the
// current construction context.
if (CC) {
switch (CC->getKind()) {
case ConstructionContext::SimpleVariableKind: {
const auto *DSCC = cast<SimpleVariableConstructionContext>(CC);
const auto *DS = DSCC->getDeclStmt();
const auto *Var = cast<VarDecl>(DS->getSingleDecl());
SVal LValue = State->getLValue(Var, LCtx);
QualType Ty = Var->getType();
LValue =
makeZeroElementRegion(State, LValue, Ty, CallOpts.IsArrayCtorOrDtor);
return LValue.getAsRegion();
}
case ConstructionContext::ConstructorInitializerKind: {
const auto *ICC = cast<ConstructorInitializerConstructionContext>(CC);
const auto *Init = ICC->getCXXCtorInitializer();
assert(Init->isAnyMemberInitializer());
const CXXMethodDecl *CurCtor = cast<CXXMethodDecl>(LCtx->getDecl());
Loc ThisPtr =
getSValBuilder().getCXXThis(CurCtor, LCtx->getCurrentStackFrame());
SVal ThisVal = State->getSVal(ThisPtr);
const ValueDecl *Field;
SVal FieldVal;
if (Init->isIndirectMemberInitializer()) {
Field = Init->getIndirectMember();
FieldVal = State->getLValue(Init->getIndirectMember(), ThisVal);
} else {
Field = Init->getMember();
FieldVal = State->getLValue(Init->getMember(), ThisVal);
}
QualType Ty = Field->getType();
FieldVal = makeZeroElementRegion(State, FieldVal, Ty,
CallOpts.IsArrayCtorOrDtor);
return FieldVal.getAsRegion();
}
case ConstructionContext::NewAllocatedObjectKind: {
if (AMgr.getAnalyzerOptions().mayInlineCXXAllocator()) {
const auto *NECC = cast<NewAllocatedObjectConstructionContext>(CC);
const auto *NE = NECC->getCXXNewExpr();
// TODO: Detect when the allocator returns a null pointer.
// Constructor shall not be called in this case.
if (const SubRegion *MR = dyn_cast_or_null<SubRegion>(
getCXXNewAllocatorValue(State, NE, LCtx).getAsRegion())) {
if (NE->isArray()) {
// TODO: In fact, we need to call the constructor for every
// allocated element, not just the first one!
CallOpts.IsArrayCtorOrDtor = true;
return getStoreManager().GetElementZeroRegion(
MR, NE->getType()->getPointeeType());
}
return MR;
}
}
break;
}
case ConstructionContext::TemporaryObjectKind: {
const auto *TOCC = cast<TemporaryObjectConstructionContext>(CC);
// See if we're lifetime-extended via our field. If so, take a note.
// Because automatic destructors aren't quite working in this case.
if (const auto *MTE = TOCC->getMaterializedTemporaryExpr()) {
if (const ValueDecl *VD = MTE->getExtendingDecl()) {
assert(VD->getType()->isReferenceType());
if (VD->getType()->getPointeeType().getCanonicalType() !=
MTE->GetTemporaryExpr()->getType().getCanonicalType()) {
CallOpts.IsTemporaryLifetimeExtendedViaSubobject = true;
}
}
}
// TODO: Support temporaries lifetime-extended via static references.
// They'd need a getCXXStaticTempObjectRegion().
CallOpts.IsTemporaryCtorOrDtor = true;
return MRMgr.getCXXTempObjectRegion(CE, LCtx);
}
case ConstructionContext::ReturnedValueKind: {
// TODO: We should construct into a CXXBindTemporaryExpr or a
// MaterializeTemporaryExpr around the call-expression on the previous
// stack frame. Currently we re-bind the temporary to the correct region
// later, but that's not semantically correct. This of course does not
// apply when we're in the top frame. But if we are in an inlined
// function, we should be able to take the call-site CFG element,
// and it should contain (but right now it wouldn't) some sort of
// construction context that'd give us the right temporary expression.
CallOpts.IsTemporaryCtorOrDtor = true;
return MRMgr.getCXXTempObjectRegion(CE, LCtx);
}
}
}
// If we couldn't find an existing region to construct into, assume we're
// constructing a temporary. Notify the caller of our failure.
CallOpts.IsCtorOrDtorWithImproperlyModeledTargetRegion = true;
return MRMgr.getCXXTempObjectRegion(CE, LCtx);
}
const CXXConstructExpr *
ExprEngine::findDirectConstructorForCurrentCFGElement() {
// Go backward in the CFG to see if the previous element (ignoring
// destructors) was a CXXConstructExpr. If so, that constructor
// was constructed directly into an existing region.
// This process is essentially the inverse of that performed in
// findElementDirectlyInitializedByCurrentConstructor().
if (currStmtIdx == 0)
return nullptr;
const CFGBlock *B = getBuilderContext().getBlock();
unsigned int PreviousStmtIdx = currStmtIdx - 1;
CFGElement Previous = (*B)[PreviousStmtIdx];
while (Previous.getAs<CFGImplicitDtor>() && PreviousStmtIdx > 0) {
--PreviousStmtIdx;
Previous = (*B)[PreviousStmtIdx];
}
if (Optional<CFGStmt> PrevStmtElem = Previous.getAs<CFGStmt>()) {
if (auto *CtorExpr = dyn_cast<CXXConstructExpr>(PrevStmtElem->getStmt())) {
return CtorExpr;
}
}
return nullptr;
}
void ExprEngine::VisitCXXConstructExpr(const CXXConstructExpr *CE,
ExplodedNode *Pred,
ExplodedNodeSet &destNodes) {
const LocationContext *LCtx = Pred->getLocationContext();
ProgramStateRef State = Pred->getState();
const MemRegion *Target = nullptr;
// FIXME: Handle arrays, which run the same constructor for every element.
// For now, we just run the first constructor (which should still invalidate
// the entire array).
EvalCallOptions CallOpts;
auto C = getCurrentCFGElement().getAs<CFGConstructor>();
assert(C || getCurrentCFGElement().getAs<CFGStmt>());
const ConstructionContext *CC = C ? C->getConstructionContext() : nullptr;
const CXXBindTemporaryExpr *BTE = nullptr;
const MaterializeTemporaryExpr *MTE = nullptr;
switch (CE->getConstructionKind()) {
case CXXConstructExpr::CK_Complete: {
Target = getRegionForConstructedObject(CE, Pred, CC, CallOpts);
// In case of temporary object construction, extract data necessary for
// destruction and lifetime extension.
if (const auto *TCC =
dyn_cast_or_null<TemporaryObjectConstructionContext>(CC)) {
assert(CallOpts.IsTemporaryCtorOrDtor);
assert(!CallOpts.IsCtorOrDtorWithImproperlyModeledTargetRegion);
if (AMgr.getAnalyzerOptions().includeTemporaryDtorsInCFG()) {
BTE = TCC->getCXXBindTemporaryExpr();
MTE = TCC->getMaterializedTemporaryExpr();
if (!BTE) {
// FIXME: lifetime extension for temporaries without destructors
// is not implemented yet.
MTE = nullptr;
}
if (MTE && MTE->getStorageDuration() != SD_FullExpression) {
// If the temporary is lifetime-extended, don't save the BTE,
// because we don't need a temporary destructor, but an automatic
// destructor.
BTE = nullptr;
}
}
}
break;
}
case CXXConstructExpr::CK_VirtualBase:
// Make sure we are not calling virtual base class initializers twice.
// Only the most-derived object should initialize virtual base classes.
if (const Stmt *Outer = LCtx->getCurrentStackFrame()->getCallSite()) {
const CXXConstructExpr *OuterCtor = dyn_cast<CXXConstructExpr>(Outer);
if (OuterCtor) {
switch (OuterCtor->getConstructionKind()) {
case CXXConstructExpr::CK_NonVirtualBase:
case CXXConstructExpr::CK_VirtualBase:
// Bail out!
destNodes.Add(Pred);
return;
case CXXConstructExpr::CK_Complete:
case CXXConstructExpr::CK_Delegating:
break;
}
}
}
// FALLTHROUGH
case CXXConstructExpr::CK_NonVirtualBase:
// In C++17, classes with non-virtual bases may be aggregates, so they would
// be initialized as aggregates without a constructor call, so we may have
// a base class constructed directly into an initializer list without
// having the derived-class constructor call on the previous stack frame.
// Initializer lists may be nested into more initializer lists that
// correspond to surrounding aggregate initializations.
// FIXME: For now this code essentially bails out. We need to find the
// correct target region and set it.
// FIXME: Instead of relying on the ParentMap, we should have the
// trigger-statement (InitListExpr in this case) passed down from CFG or
// otherwise always available during construction.
if (dyn_cast_or_null<InitListExpr>(LCtx->getParentMap().getParent(CE))) {
MemRegionManager &MRMgr = getSValBuilder().getRegionManager();
Target = MRMgr.getCXXTempObjectRegion(CE, LCtx);
CallOpts.IsCtorOrDtorWithImproperlyModeledTargetRegion = true;
break;
}
// FALLTHROUGH
case CXXConstructExpr::CK_Delegating: {
const CXXMethodDecl *CurCtor = cast<CXXMethodDecl>(LCtx->getDecl());
Loc ThisPtr = getSValBuilder().getCXXThis(CurCtor,
LCtx->getCurrentStackFrame());
SVal ThisVal = State->getSVal(ThisPtr);
if (CE->getConstructionKind() == CXXConstructExpr::CK_Delegating) {
Target = ThisVal.getAsRegion();
} else {
// Cast to the base type.
bool IsVirtual =
(CE->getConstructionKind() == CXXConstructExpr::CK_VirtualBase);
SVal BaseVal = getStoreManager().evalDerivedToBase(ThisVal, CE->getType(),
IsVirtual);
Target = BaseVal.getAsRegion();
}
break;
}
}
CallEventManager &CEMgr = getStateManager().getCallEventManager();
CallEventRef<CXXConstructorCall> Call =
CEMgr.getCXXConstructorCall(CE, Target, State, LCtx);
ExplodedNodeSet DstPreVisit;
getCheckerManager().runCheckersForPreStmt(DstPreVisit, Pred, CE, *this);
// FIXME: Is it possible and/or useful to do this before PreStmt?
ExplodedNodeSet PreInitialized;
{
StmtNodeBuilder Bldr(DstPreVisit, PreInitialized, *currBldrCtx);
for (ExplodedNodeSet::iterator I = DstPreVisit.begin(),
E = DstPreVisit.end();
I != E; ++I) {
ProgramStateRef State = (*I)->getState();
if (CE->requiresZeroInitialization()) {
// Type of the zero doesn't matter.
SVal ZeroVal = svalBuilder.makeZeroVal(getContext().CharTy);
// FIXME: Once we properly handle constructors in new-expressions, we'll
// need to invalidate the region before setting a default value, to make
// sure there aren't any lingering bindings around. This probably needs
// to happen regardless of whether or not the object is zero-initialized
// to handle random fields of a placement-initialized object picking up
// old bindings. We might only want to do it when we need to, though.
// FIXME: This isn't actually correct for arrays -- we need to zero-
// initialize the entire array, not just the first element -- but our
// handling of arrays everywhere else is weak as well, so this shouldn't
// actually make things worse. Placement new makes this tricky as well,
// since it's then possible to be initializing one part of a multi-
// dimensional array.
State = State->bindDefault(loc::MemRegionVal(Target), ZeroVal, LCtx);
}
if (BTE) {
State = addInitializedTemporary(State, BTE, LCtx,
cast<CXXTempObjectRegion>(Target));
}
if (MTE) {
State = addTemporaryMaterialization(State, MTE, LCtx,
cast<CXXTempObjectRegion>(Target));
}
Bldr.generateNode(CE, *I, State, /*tag=*/nullptr,
ProgramPoint::PreStmtKind);
}
}
ExplodedNodeSet DstPreCall;
getCheckerManager().runCheckersForPreCall(DstPreCall, PreInitialized,
*Call, *this);
ExplodedNodeSet DstEvaluated;
StmtNodeBuilder Bldr(DstPreCall, DstEvaluated, *currBldrCtx);
if (CE->getConstructor()->isTrivial() &&
CE->getConstructor()->isCopyOrMoveConstructor() &&
!CallOpts.IsArrayCtorOrDtor) {
// FIXME: Handle other kinds of trivial constructors as well.
for (ExplodedNodeSet::iterator I = DstPreCall.begin(), E = DstPreCall.end();
I != E; ++I)
performTrivialCopy(Bldr, *I, *Call);
} else {
for (ExplodedNodeSet::iterator I = DstPreCall.begin(), E = DstPreCall.end();
I != E; ++I)
defaultEvalCall(Bldr, *I, *Call, CallOpts);
}
// If the CFG was contructed without elements for temporary destructors
// and the just-called constructor created a temporary object then
// stop exploration if the temporary object has a noreturn constructor.
// This can lose coverage because the destructor, if it were present
// in the CFG, would be called at the end of the full expression or
// later (for life-time extended temporaries) -- but avoids infeasible
// paths when no-return temporary destructors are used for assertions.
const AnalysisDeclContext *ADC = LCtx->getAnalysisDeclContext();
if (!ADC->getCFGBuildOptions().AddTemporaryDtors) {
const MemRegion *Target = Call->getCXXThisVal().getAsRegion();
if (Target && isa<CXXTempObjectRegion>(Target) &&
Call->getDecl()->getParent()->isAnyDestructorNoReturn()) {
// If we've inlined the constructor, then DstEvaluated would be empty.
// In this case we still want a sink, which could be implemented
// in processCallExit. But we don't have that implemented at the moment,
// so if you hit this assertion, see if you can avoid inlining
// the respective constructor when analyzer-config cfg-temporary-dtors
// is set to false.
// Otherwise there's nothing wrong with inlining such constructor.
assert(!DstEvaluated.empty() &&
"We should not have inlined this constructor!");
for (ExplodedNode *N : DstEvaluated) {
Bldr.generateSink(CE, N, N->getState());
}
// There is no need to run the PostCall and PostStmt checker
// callbacks because we just generated sinks on all nodes in th
// frontier.
return;
}
}
ExplodedNodeSet DstPostCall;
getCheckerManager().runCheckersForPostCall(DstPostCall, DstEvaluated,
*Call, *this);
getCheckerManager().runCheckersForPostStmt(destNodes, DstPostCall, CE, *this);
}
void ExprEngine::VisitCXXDestructor(QualType ObjectType,
const MemRegion *Dest,
const Stmt *S,
bool IsBaseDtor,
ExplodedNode *Pred,
ExplodedNodeSet &Dst,
const EvalCallOptions &CallOpts) {
const LocationContext *LCtx = Pred->getLocationContext();
ProgramStateRef State = Pred->getState();
const CXXRecordDecl *RecordDecl = ObjectType->getAsCXXRecordDecl();
assert(RecordDecl && "Only CXXRecordDecls should have destructors");
const CXXDestructorDecl *DtorDecl = RecordDecl->getDestructor();
CallEventManager &CEMgr = getStateManager().getCallEventManager();
CallEventRef<CXXDestructorCall> Call =
CEMgr.getCXXDestructorCall(DtorDecl, S, Dest, IsBaseDtor, State, LCtx);
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
Call->getSourceRange().getBegin(),
"Error evaluating destructor");
ExplodedNodeSet DstPreCall;
getCheckerManager().runCheckersForPreCall(DstPreCall, Pred,
*Call, *this);
ExplodedNodeSet DstInvalidated;
StmtNodeBuilder Bldr(DstPreCall, DstInvalidated, *currBldrCtx);
for (ExplodedNodeSet::iterator I = DstPreCall.begin(), E = DstPreCall.end();
I != E; ++I)
defaultEvalCall(Bldr, *I, *Call, CallOpts);
ExplodedNodeSet DstPostCall;
getCheckerManager().runCheckersForPostCall(Dst, DstInvalidated,
*Call, *this);
}
void ExprEngine::VisitCXXNewAllocatorCall(const CXXNewExpr *CNE,
ExplodedNode *Pred,
ExplodedNodeSet &Dst) {
ProgramStateRef State = Pred->getState();
const LocationContext *LCtx = Pred->getLocationContext();
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
CNE->getStartLoc(),
"Error evaluating New Allocator Call");
CallEventManager &CEMgr = getStateManager().getCallEventManager();
CallEventRef<CXXAllocatorCall> Call =
CEMgr.getCXXAllocatorCall(CNE, State, LCtx);
ExplodedNodeSet DstPreCall;
getCheckerManager().runCheckersForPreCall(DstPreCall, Pred,
*Call, *this);
ExplodedNodeSet DstPostCall;
StmtNodeBuilder CallBldr(DstPreCall, DstPostCall, *currBldrCtx);
for (auto I : DstPreCall) {
// FIXME: Provide evalCall for checkers?
defaultEvalCall(CallBldr, I, *Call);
}
// If the call is inlined, DstPostCall will be empty and we bail out now.
// Store return value of operator new() for future use, until the actual
// CXXNewExpr gets processed.
ExplodedNodeSet DstPostValue;
StmtNodeBuilder ValueBldr(DstPostCall, DstPostValue, *currBldrCtx);
for (auto I : DstPostCall) {
// FIXME: Because CNE serves as the "call site" for the allocator (due to
// lack of a better expression in the AST), the conjured return value symbol
// is going to be of the same type (C++ object pointer type). Technically
// this is not correct because the operator new's prototype always says that
// it returns a 'void *'. So we should change the type of the symbol,
// and then evaluate the cast over the symbolic pointer from 'void *' to
// the object pointer type. But without changing the symbol's type it
// is breaking too much to evaluate the no-op symbolic cast over it, so we
// skip it for now.
ProgramStateRef State = I->getState();
SVal RetVal = State->getSVal(CNE, LCtx);
// If this allocation function is not declared as non-throwing, failures
// /must/ be signalled by exceptions, and thus the return value will never
// be NULL. -fno-exceptions does not influence this semantics.
// FIXME: GCC has a -fcheck-new option, which forces it to consider the case
// where new can return NULL. If we end up supporting that option, we can
// consider adding a check for it here.
// C++11 [basic.stc.dynamic.allocation]p3.
if (const FunctionDecl *FD = CNE->getOperatorNew()) {
QualType Ty = FD->getType();
if (const auto *ProtoType = Ty->getAs<FunctionProtoType>())
if (!ProtoType->isNothrow(getContext()))
State = State->assume(RetVal.castAs<DefinedOrUnknownSVal>(), true);
}
ValueBldr.generateNode(CNE, I,
setCXXNewAllocatorValue(State, CNE, LCtx, RetVal));
}
ExplodedNodeSet DstPostPostCallCallback;
getCheckerManager().runCheckersForPostCall(DstPostPostCallCallback,
DstPostValue, *Call, *this);
for (auto I : DstPostPostCallCallback) {
getCheckerManager().runCheckersForNewAllocator(
CNE, getCXXNewAllocatorValue(I->getState(), CNE, LCtx), Dst, I, *this);
}
}
void ExprEngine::VisitCXXNewExpr(const CXXNewExpr *CNE, ExplodedNode *Pred,
ExplodedNodeSet &Dst) {
// FIXME: Much of this should eventually migrate to CXXAllocatorCall.
// Also, we need to decide how allocators actually work -- they're not
// really part of the CXXNewExpr because they happen BEFORE the
// CXXConstructExpr subexpression. See PR12014 for some discussion.
unsigned blockCount = currBldrCtx->blockCount();
const LocationContext *LCtx = Pred->getLocationContext();
SVal symVal = UnknownVal();
FunctionDecl *FD = CNE->getOperatorNew();
bool IsStandardGlobalOpNewFunction =
FD->isReplaceableGlobalAllocationFunction();
ProgramStateRef State = Pred->getState();
// Retrieve the stored operator new() return value.
if (AMgr.getAnalyzerOptions().mayInlineCXXAllocator()) {
symVal = getCXXNewAllocatorValue(State, CNE, LCtx);
State = clearCXXNewAllocatorValue(State, CNE, LCtx);
}
// We assume all standard global 'operator new' functions allocate memory in
// heap. We realize this is an approximation that might not correctly model
// a custom global allocator.
if (symVal.isUnknown()) {
if (IsStandardGlobalOpNewFunction)
symVal = svalBuilder.getConjuredHeapSymbolVal(CNE, LCtx, blockCount);
else
symVal = svalBuilder.conjureSymbolVal(nullptr, CNE, LCtx, CNE->getType(),
blockCount);
}
CallEventManager &CEMgr = getStateManager().getCallEventManager();
CallEventRef<CXXAllocatorCall> Call =
CEMgr.getCXXAllocatorCall(CNE, State, LCtx);
if (!AMgr.getAnalyzerOptions().mayInlineCXXAllocator()) {
// Invalidate placement args.
// FIXME: Once we figure out how we want allocators to work,
// we should be using the usual pre-/(default-)eval-/post-call checks here.
State = Call->invalidateRegions(blockCount);
if (!State)
return;
// If this allocation function is not declared as non-throwing, failures
// /must/ be signalled by exceptions, and thus the return value will never
// be NULL. -fno-exceptions does not influence this semantics.
// FIXME: GCC has a -fcheck-new option, which forces it to consider the case
// where new can return NULL. If we end up supporting that option, we can
// consider adding a check for it here.
// C++11 [basic.stc.dynamic.allocation]p3.
if (FD) {
QualType Ty = FD->getType();
if (const auto *ProtoType = Ty->getAs<FunctionProtoType>())
if (!ProtoType->isNothrow(getContext()))
if (auto dSymVal = symVal.getAs<DefinedOrUnknownSVal>())
State = State->assume(*dSymVal, true);
}
}
StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
SVal Result = symVal;
if (CNE->isArray()) {
// FIXME: allocating an array requires simulating the constructors.
// For now, just return a symbolicated region.
if (const SubRegion *NewReg =
dyn_cast_or_null<SubRegion>(symVal.getAsRegion())) {
QualType ObjTy = CNE->getType()->getAs<PointerType>()->getPointeeType();
const ElementRegion *EleReg =
getStoreManager().GetElementZeroRegion(NewReg, ObjTy);
Result = loc::MemRegionVal(EleReg);
}
State = State->BindExpr(CNE, Pred->getLocationContext(), Result);
Bldr.generateNode(CNE, Pred, State);
return;
}
// FIXME: Once we have proper support for CXXConstructExprs inside
// CXXNewExpr, we need to make sure that the constructed object is not
// immediately invalidated here. (The placement call should happen before
// the constructor call anyway.)
if (FD && FD->isReservedGlobalPlacementOperator()) {
// Non-array placement new should always return the placement location.
SVal PlacementLoc = State->getSVal(CNE->getPlacementArg(0), LCtx);
Result = svalBuilder.evalCast(PlacementLoc, CNE->getType(),
CNE->getPlacementArg(0)->getType());
}
// Bind the address of the object, then check to see if we cached out.
State = State->BindExpr(CNE, LCtx, Result);
ExplodedNode *NewN = Bldr.generateNode(CNE, Pred, State);
if (!NewN)
return;
// If the type is not a record, we won't have a CXXConstructExpr as an
// initializer. Copy the value over.
if (const Expr *Init = CNE->getInitializer()) {
if (!isa<CXXConstructExpr>(Init)) {
assert(Bldr.getResults().size() == 1);
Bldr.takeNodes(NewN);
evalBind(Dst, CNE, NewN, Result, State->getSVal(Init, LCtx),
/*FirstInit=*/IsStandardGlobalOpNewFunction);
}
}
}
void ExprEngine::VisitCXXDeleteExpr(const CXXDeleteExpr *CDE,
ExplodedNode *Pred, ExplodedNodeSet &Dst) {
StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
ProgramStateRef state = Pred->getState();
Bldr.generateNode(CDE, Pred, state);
}
void ExprEngine::VisitCXXCatchStmt(const CXXCatchStmt *CS,
ExplodedNode *Pred,
ExplodedNodeSet &Dst) {
const VarDecl *VD = CS->getExceptionDecl();
if (!VD) {
Dst.Add(Pred);
return;
}
const LocationContext *LCtx = Pred->getLocationContext();
SVal V = svalBuilder.conjureSymbolVal(CS, LCtx, VD->getType(),
currBldrCtx->blockCount());
ProgramStateRef state = Pred->getState();
state = state->bindLoc(state->getLValue(VD, LCtx), V, LCtx);
StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
Bldr.generateNode(CS, Pred, state);
}
void ExprEngine::VisitCXXThisExpr(const CXXThisExpr *TE, ExplodedNode *Pred,
ExplodedNodeSet &Dst) {
StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
// Get the this object region from StoreManager.
const LocationContext *LCtx = Pred->getLocationContext();
const MemRegion *R =
svalBuilder.getRegionManager().getCXXThisRegion(
getContext().getCanonicalType(TE->getType()),
LCtx);
ProgramStateRef state = Pred->getState();
SVal V = state->getSVal(loc::MemRegionVal(R));
Bldr.generateNode(TE, Pred, state->BindExpr(TE, LCtx, V));
}
void ExprEngine::VisitLambdaExpr(const LambdaExpr *LE, ExplodedNode *Pred,
ExplodedNodeSet &Dst) {
const LocationContext *LocCtxt = Pred->getLocationContext();
// Get the region of the lambda itself.
const MemRegion *R = svalBuilder.getRegionManager().getCXXTempObjectRegion(
LE, LocCtxt);
SVal V = loc::MemRegionVal(R);
ProgramStateRef State = Pred->getState();
// If we created a new MemRegion for the lambda, we should explicitly bind
// the captures.
CXXRecordDecl::field_iterator CurField = LE->getLambdaClass()->field_begin();
for (LambdaExpr::const_capture_init_iterator i = LE->capture_init_begin(),
e = LE->capture_init_end();
i != e; ++i, ++CurField) {
FieldDecl *FieldForCapture = *CurField;
SVal FieldLoc = State->getLValue(FieldForCapture, V);
SVal InitVal;
if (!FieldForCapture->hasCapturedVLAType()) {
Expr *InitExpr = *i;
assert(InitExpr && "Capture missing initialization expression");
InitVal = State->getSVal(InitExpr, LocCtxt);
} else {
// The field stores the length of a captured variable-length array.
// These captures don't have initialization expressions; instead we
// get the length from the VLAType size expression.
Expr *SizeExpr = FieldForCapture->getCapturedVLAType()->getSizeExpr();
InitVal = State->getSVal(SizeExpr, LocCtxt);
}
State = State->bindLoc(FieldLoc, InitVal, LocCtxt);
}
// Decay the Loc into an RValue, because there might be a
// MaterializeTemporaryExpr node above this one which expects the bound value
// to be an RValue.
SVal LambdaRVal = State->getSVal(R);
ExplodedNodeSet Tmp;
StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
// FIXME: is this the right program point kind?
Bldr.generateNode(LE, Pred,
State->BindExpr(LE, LocCtxt, LambdaRVal),
nullptr, ProgramPoint::PostLValueKind);
// FIXME: Move all post/pre visits to ::Visit().
getCheckerManager().runCheckersForPostStmt(Dst, Tmp, LE, *this);
}