forked from OSchip/llvm-project
3235 lines
120 KiB
C++
3235 lines
120 KiB
C++
//=-- ExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ---*- C++ -*-=
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a meta-engine for path-sensitive dataflow analysis that
|
|
// is built on GREngine, but provides the boilerplate to execute transfer
|
|
// functions and build the ExplodedGraph at the expression level.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
|
|
#include "PrettyStackTraceLocationContext.h"
|
|
#include "clang/AST/CharUnits.h"
|
|
#include "clang/AST/ParentMap.h"
|
|
#include "clang/Analysis/CFGStmtMap.h"
|
|
#include "clang/AST/StmtCXX.h"
|
|
#include "clang/AST/StmtObjC.h"
|
|
#include "clang/Basic/Builtins.h"
|
|
#include "clang/Basic/PrettyStackTrace.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
|
|
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/LoopWidening.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/LoopUnrolling.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/SaveAndRestore.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#ifndef NDEBUG
|
|
#include "llvm/Support/GraphWriter.h"
|
|
#endif
|
|
|
|
using namespace clang;
|
|
using namespace ento;
|
|
using llvm::APSInt;
|
|
|
|
#define DEBUG_TYPE "ExprEngine"
|
|
|
|
STATISTIC(NumRemoveDeadBindings,
|
|
"The # of times RemoveDeadBindings is called");
|
|
STATISTIC(NumMaxBlockCountReached,
|
|
"The # of aborted paths due to reaching the maximum block count in "
|
|
"a top level function");
|
|
STATISTIC(NumMaxBlockCountReachedInInlined,
|
|
"The # of aborted paths due to reaching the maximum block count in "
|
|
"an inlined function");
|
|
STATISTIC(NumTimesRetriedWithoutInlining,
|
|
"The # of times we re-evaluated a call without inlining");
|
|
|
|
typedef llvm::ImmutableMap<std::pair<const CXXBindTemporaryExpr *,
|
|
const StackFrameContext *>,
|
|
const CXXTempObjectRegion *>
|
|
InitializedTemporariesMap;
|
|
|
|
// Keeps track of whether CXXBindTemporaryExpr nodes have been evaluated.
|
|
// The StackFrameContext assures that nested calls due to inlined recursive
|
|
// functions do not interfere.
|
|
REGISTER_TRAIT_WITH_PROGRAMSTATE(InitializedTemporaries,
|
|
InitializedTemporariesMap)
|
|
|
|
typedef llvm::ImmutableMap<std::pair<const MaterializeTemporaryExpr *,
|
|
const StackFrameContext *>,
|
|
const CXXTempObjectRegion *>
|
|
TemporaryMaterializationMap;
|
|
|
|
// Keeps track of temporaries that will need to be materialized later.
|
|
// The StackFrameContext assures that nested calls due to inlined recursive
|
|
// functions do not interfere.
|
|
REGISTER_TRAIT_WITH_PROGRAMSTATE(TemporaryMaterializations,
|
|
TemporaryMaterializationMap)
|
|
|
|
typedef llvm::ImmutableMap<std::pair<const CXXNewExpr *,
|
|
const LocationContext *>,
|
|
SVal>
|
|
CXXNewAllocatorValuesMap;
|
|
|
|
// Keeps track of return values of various operator new() calls between
|
|
// evaluation of the inlined operator new(), through the constructor call,
|
|
// to the actual evaluation of the CXXNewExpr.
|
|
// TODO: Refactor the key for this trait into a LocationContext sub-class,
|
|
// which would be put on the stack of location contexts before operator new()
|
|
// is evaluated, and removed from the stack when the whole CXXNewExpr
|
|
// is fully evaluated.
|
|
// Probably do something similar to the previous trait as well.
|
|
REGISTER_TRAIT_WITH_PROGRAMSTATE(CXXNewAllocatorValues,
|
|
CXXNewAllocatorValuesMap)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Engine construction and deletion.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static const char* TagProviderName = "ExprEngine";
|
|
|
|
ExprEngine::ExprEngine(AnalysisManager &mgr, bool gcEnabled,
|
|
SetOfConstDecls *VisitedCalleesIn,
|
|
FunctionSummariesTy *FS,
|
|
InliningModes HowToInlineIn)
|
|
: AMgr(mgr),
|
|
AnalysisDeclContexts(mgr.getAnalysisDeclContextManager()),
|
|
Engine(*this, FS, mgr.getAnalyzerOptions()),
|
|
G(Engine.getGraph()),
|
|
StateMgr(getContext(), mgr.getStoreManagerCreator(),
|
|
mgr.getConstraintManagerCreator(), G.getAllocator(),
|
|
this),
|
|
SymMgr(StateMgr.getSymbolManager()),
|
|
svalBuilder(StateMgr.getSValBuilder()),
|
|
currStmtIdx(0), currBldrCtx(nullptr),
|
|
ObjCNoRet(mgr.getASTContext()),
|
|
ObjCGCEnabled(gcEnabled), BR(mgr, *this),
|
|
VisitedCallees(VisitedCalleesIn),
|
|
HowToInline(HowToInlineIn)
|
|
{
|
|
unsigned TrimInterval = mgr.options.getGraphTrimInterval();
|
|
if (TrimInterval != 0) {
|
|
// Enable eager node reclaimation when constructing the ExplodedGraph.
|
|
G.enableNodeReclamation(TrimInterval);
|
|
}
|
|
}
|
|
|
|
ExprEngine::~ExprEngine() {
|
|
BR.FlushReports();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utility methods.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ProgramStateRef ExprEngine::getInitialState(const LocationContext *InitLoc) {
|
|
ProgramStateRef state = StateMgr.getInitialState(InitLoc);
|
|
const Decl *D = InitLoc->getDecl();
|
|
|
|
// Preconditions.
|
|
// FIXME: It would be nice if we had a more general mechanism to add
|
|
// such preconditions. Some day.
|
|
do {
|
|
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
// Precondition: the first argument of 'main' is an integer guaranteed
|
|
// to be > 0.
|
|
const IdentifierInfo *II = FD->getIdentifier();
|
|
if (!II || !(II->getName() == "main" && FD->getNumParams() > 0))
|
|
break;
|
|
|
|
const ParmVarDecl *PD = FD->getParamDecl(0);
|
|
QualType T = PD->getType();
|
|
const BuiltinType *BT = dyn_cast<BuiltinType>(T);
|
|
if (!BT || !BT->isInteger())
|
|
break;
|
|
|
|
const MemRegion *R = state->getRegion(PD, InitLoc);
|
|
if (!R)
|
|
break;
|
|
|
|
SVal V = state->getSVal(loc::MemRegionVal(R));
|
|
SVal Constraint_untested = evalBinOp(state, BO_GT, V,
|
|
svalBuilder.makeZeroVal(T),
|
|
svalBuilder.getConditionType());
|
|
|
|
Optional<DefinedOrUnknownSVal> Constraint =
|
|
Constraint_untested.getAs<DefinedOrUnknownSVal>();
|
|
|
|
if (!Constraint)
|
|
break;
|
|
|
|
if (ProgramStateRef newState = state->assume(*Constraint, true))
|
|
state = newState;
|
|
}
|
|
break;
|
|
}
|
|
while (0);
|
|
|
|
if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
|
|
// Precondition: 'self' is always non-null upon entry to an Objective-C
|
|
// method.
|
|
const ImplicitParamDecl *SelfD = MD->getSelfDecl();
|
|
const MemRegion *R = state->getRegion(SelfD, InitLoc);
|
|
SVal V = state->getSVal(loc::MemRegionVal(R));
|
|
|
|
if (Optional<Loc> LV = V.getAs<Loc>()) {
|
|
// Assume that the pointer value in 'self' is non-null.
|
|
state = state->assume(*LV, true);
|
|
assert(state && "'self' cannot be null");
|
|
}
|
|
}
|
|
|
|
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
|
|
if (!MD->isStatic()) {
|
|
// Precondition: 'this' is always non-null upon entry to the
|
|
// top-level function. This is our starting assumption for
|
|
// analyzing an "open" program.
|
|
const StackFrameContext *SFC = InitLoc->getCurrentStackFrame();
|
|
if (SFC->getParent() == nullptr) {
|
|
loc::MemRegionVal L = svalBuilder.getCXXThis(MD, SFC);
|
|
SVal V = state->getSVal(L);
|
|
if (Optional<Loc> LV = V.getAs<Loc>()) {
|
|
state = state->assume(*LV, true);
|
|
assert(state && "'this' cannot be null");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return state;
|
|
}
|
|
|
|
ProgramStateRef
|
|
ExprEngine::createTemporaryRegionIfNeeded(ProgramStateRef State,
|
|
const LocationContext *LC,
|
|
const Expr *InitWithAdjustments,
|
|
const Expr *Result) {
|
|
// FIXME: This function is a hack that works around the quirky AST
|
|
// we're often having with respect to C++ temporaries. If only we modelled
|
|
// the actual execution order of statements properly in the CFG,
|
|
// all the hassle with adjustments would not be necessary,
|
|
// and perhaps the whole function would be removed.
|
|
SVal InitValWithAdjustments = State->getSVal(InitWithAdjustments, LC);
|
|
if (!Result) {
|
|
// If we don't have an explicit result expression, we're in "if needed"
|
|
// mode. Only create a region if the current value is a NonLoc.
|
|
if (!InitValWithAdjustments.getAs<NonLoc>())
|
|
return State;
|
|
Result = InitWithAdjustments;
|
|
} else {
|
|
// We need to create a region no matter what. For sanity, make sure we don't
|
|
// try to stuff a Loc into a non-pointer temporary region.
|
|
assert(!InitValWithAdjustments.getAs<Loc>() ||
|
|
Loc::isLocType(Result->getType()) ||
|
|
Result->getType()->isMemberPointerType());
|
|
}
|
|
|
|
ProgramStateManager &StateMgr = State->getStateManager();
|
|
MemRegionManager &MRMgr = StateMgr.getRegionManager();
|
|
StoreManager &StoreMgr = StateMgr.getStoreManager();
|
|
|
|
// MaterializeTemporaryExpr may appear out of place, after a few field and
|
|
// base-class accesses have been made to the object, even though semantically
|
|
// it is the whole object that gets materialized and lifetime-extended.
|
|
//
|
|
// For example:
|
|
//
|
|
// `-MaterializeTemporaryExpr
|
|
// `-MemberExpr
|
|
// `-CXXTemporaryObjectExpr
|
|
//
|
|
// instead of the more natural
|
|
//
|
|
// `-MemberExpr
|
|
// `-MaterializeTemporaryExpr
|
|
// `-CXXTemporaryObjectExpr
|
|
//
|
|
// Use the usual methods for obtaining the expression of the base object,
|
|
// and record the adjustments that we need to make to obtain the sub-object
|
|
// that the whole expression 'Ex' refers to. This trick is usual,
|
|
// in the sense that CodeGen takes a similar route.
|
|
|
|
SmallVector<const Expr *, 2> CommaLHSs;
|
|
SmallVector<SubobjectAdjustment, 2> Adjustments;
|
|
|
|
const Expr *Init = InitWithAdjustments->skipRValueSubobjectAdjustments(
|
|
CommaLHSs, Adjustments);
|
|
|
|
// Take the region for Init, i.e. for the whole object. If we do not remember
|
|
// the region in which the object originally was constructed, come up with
|
|
// a new temporary region out of thin air and copy the contents of the object
|
|
// (which are currently present in the Environment, because Init is an rvalue)
|
|
// into that region. This is not correct, but it is better than nothing.
|
|
bool FoundOriginalMaterializationRegion = false;
|
|
const TypedValueRegion *TR = nullptr;
|
|
if (const MaterializeTemporaryExpr *MT =
|
|
dyn_cast<MaterializeTemporaryExpr>(Result)) {
|
|
auto Key = std::make_pair(MT, LC->getCurrentStackFrame());
|
|
if (const CXXTempObjectRegion *const *TRPtr =
|
|
State->get<TemporaryMaterializations>(Key)) {
|
|
FoundOriginalMaterializationRegion = true;
|
|
TR = *TRPtr;
|
|
assert(TR);
|
|
State = State->remove<TemporaryMaterializations>(Key);
|
|
} else {
|
|
StorageDuration SD = MT->getStorageDuration();
|
|
// If this object is bound to a reference with static storage duration, we
|
|
// put it in a different region to prevent "address leakage" warnings.
|
|
if (SD == SD_Static || SD == SD_Thread) {
|
|
TR = MRMgr.getCXXStaticTempObjectRegion(Init);
|
|
} else {
|
|
TR = MRMgr.getCXXTempObjectRegion(Init, LC);
|
|
}
|
|
}
|
|
} else {
|
|
TR = MRMgr.getCXXTempObjectRegion(Init, LC);
|
|
}
|
|
|
|
SVal Reg = loc::MemRegionVal(TR);
|
|
SVal BaseReg = Reg;
|
|
|
|
// Make the necessary adjustments to obtain the sub-object.
|
|
for (auto I = Adjustments.rbegin(), E = Adjustments.rend(); I != E; ++I) {
|
|
const SubobjectAdjustment &Adj = *I;
|
|
switch (Adj.Kind) {
|
|
case SubobjectAdjustment::DerivedToBaseAdjustment:
|
|
Reg = StoreMgr.evalDerivedToBase(Reg, Adj.DerivedToBase.BasePath);
|
|
break;
|
|
case SubobjectAdjustment::FieldAdjustment:
|
|
Reg = StoreMgr.getLValueField(Adj.Field, Reg);
|
|
break;
|
|
case SubobjectAdjustment::MemberPointerAdjustment:
|
|
// FIXME: Unimplemented.
|
|
State = State->bindDefault(Reg, UnknownVal(), LC);
|
|
return State;
|
|
}
|
|
}
|
|
|
|
if (!FoundOriginalMaterializationRegion) {
|
|
// What remains is to copy the value of the object to the new region.
|
|
// FIXME: In other words, what we should always do is copy value of the
|
|
// Init expression (which corresponds to the bigger object) to the whole
|
|
// temporary region TR. However, this value is often no longer present
|
|
// in the Environment. If it has disappeared, we instead invalidate TR.
|
|
// Still, what we can do is assign the value of expression Ex (which
|
|
// corresponds to the sub-object) to the TR's sub-region Reg. At least,
|
|
// values inside Reg would be correct.
|
|
SVal InitVal = State->getSVal(Init, LC);
|
|
if (InitVal.isUnknown()) {
|
|
InitVal = getSValBuilder().conjureSymbolVal(Result, LC, Init->getType(),
|
|
currBldrCtx->blockCount());
|
|
State = State->bindLoc(BaseReg.castAs<Loc>(), InitVal, LC, false);
|
|
|
|
// Then we'd need to take the value that certainly exists and bind it
|
|
// over.
|
|
if (InitValWithAdjustments.isUnknown()) {
|
|
// Try to recover some path sensitivity in case we couldn't
|
|
// compute the value.
|
|
InitValWithAdjustments = getSValBuilder().conjureSymbolVal(
|
|
Result, LC, InitWithAdjustments->getType(),
|
|
currBldrCtx->blockCount());
|
|
}
|
|
State =
|
|
State->bindLoc(Reg.castAs<Loc>(), InitValWithAdjustments, LC, false);
|
|
} else {
|
|
State = State->bindLoc(BaseReg.castAs<Loc>(), InitVal, LC, false);
|
|
}
|
|
}
|
|
|
|
// The result expression would now point to the correct sub-region of the
|
|
// newly created temporary region. Do this last in order to getSVal of Init
|
|
// correctly in case (Result == Init).
|
|
State = State->BindExpr(Result, LC, Reg);
|
|
|
|
if (!FoundOriginalMaterializationRegion) {
|
|
// Notify checkers once for two bindLoc()s.
|
|
State = processRegionChange(State, TR, LC);
|
|
}
|
|
|
|
return State;
|
|
}
|
|
|
|
ProgramStateRef ExprEngine::addInitializedTemporary(
|
|
ProgramStateRef State, const CXXBindTemporaryExpr *BTE,
|
|
const LocationContext *LC, const CXXTempObjectRegion *R) {
|
|
const auto &Key = std::make_pair(BTE, LC->getCurrentStackFrame());
|
|
if (!State->contains<InitializedTemporaries>(Key)) {
|
|
return State->set<InitializedTemporaries>(Key, R);
|
|
}
|
|
|
|
// FIXME: Currently the state might already contain the marker due to
|
|
// incorrect handling of temporaries bound to default parameters; for
|
|
// those, we currently skip the CXXBindTemporaryExpr but rely on adding
|
|
// temporary destructor nodes. Otherwise, this branch should be unreachable.
|
|
return State;
|
|
}
|
|
|
|
bool ExprEngine::areInitializedTemporariesClear(ProgramStateRef State,
|
|
const LocationContext *FromLC,
|
|
const LocationContext *ToLC) {
|
|
const LocationContext *LC = FromLC;
|
|
while (LC != ToLC) {
|
|
assert(LC && "ToLC must be a parent of FromLC!");
|
|
for (auto I : State->get<InitializedTemporaries>())
|
|
if (I.first.second == LC)
|
|
return false;
|
|
|
|
LC = LC->getParent();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
ProgramStateRef ExprEngine::addTemporaryMaterialization(
|
|
ProgramStateRef State, const MaterializeTemporaryExpr *MTE,
|
|
const LocationContext *LC, const CXXTempObjectRegion *R) {
|
|
const auto &Key = std::make_pair(MTE, LC->getCurrentStackFrame());
|
|
assert(!State->contains<TemporaryMaterializations>(Key));
|
|
return State->set<TemporaryMaterializations>(Key, R);
|
|
}
|
|
|
|
bool ExprEngine::areTemporaryMaterializationsClear(
|
|
ProgramStateRef State, const LocationContext *FromLC,
|
|
const LocationContext *ToLC) {
|
|
const LocationContext *LC = FromLC;
|
|
while (LC != ToLC) {
|
|
assert(LC && "ToLC must be a parent of FromLC!");
|
|
for (auto I : State->get<TemporaryMaterializations>())
|
|
if (I.first.second == LC)
|
|
return false;
|
|
|
|
LC = LC->getParent();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
ProgramStateRef
|
|
ExprEngine::setCXXNewAllocatorValue(ProgramStateRef State,
|
|
const CXXNewExpr *CNE,
|
|
const LocationContext *CallerLC, SVal V) {
|
|
assert(!State->get<CXXNewAllocatorValues>(std::make_pair(CNE, CallerLC)) &&
|
|
"Allocator value already set!");
|
|
return State->set<CXXNewAllocatorValues>(std::make_pair(CNE, CallerLC), V);
|
|
}
|
|
|
|
SVal ExprEngine::getCXXNewAllocatorValue(ProgramStateRef State,
|
|
const CXXNewExpr *CNE,
|
|
const LocationContext *CallerLC) {
|
|
return *State->get<CXXNewAllocatorValues>(std::make_pair(CNE, CallerLC));
|
|
}
|
|
|
|
ProgramStateRef
|
|
ExprEngine::clearCXXNewAllocatorValue(ProgramStateRef State,
|
|
const CXXNewExpr *CNE,
|
|
const LocationContext *CallerLC) {
|
|
return State->remove<CXXNewAllocatorValues>(std::make_pair(CNE, CallerLC));
|
|
}
|
|
|
|
bool ExprEngine::areCXXNewAllocatorValuesClear(ProgramStateRef State,
|
|
const LocationContext *FromLC,
|
|
const LocationContext *ToLC) {
|
|
const LocationContext *LC = FromLC;
|
|
while (LC != ToLC) {
|
|
assert(LC && "ToLC must be a parent of FromLC!");
|
|
for (auto I : State->get<CXXNewAllocatorValues>())
|
|
if (I.first.second == LC)
|
|
return false;
|
|
|
|
LC = LC->getParent();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top-level transfer function logic (Dispatcher).
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// evalAssume - Called by ConstraintManager. Used to call checker-specific
|
|
/// logic for handling assumptions on symbolic values.
|
|
ProgramStateRef ExprEngine::processAssume(ProgramStateRef state,
|
|
SVal cond, bool assumption) {
|
|
return getCheckerManager().runCheckersForEvalAssume(state, cond, assumption);
|
|
}
|
|
|
|
ProgramStateRef
|
|
ExprEngine::processRegionChanges(ProgramStateRef state,
|
|
const InvalidatedSymbols *invalidated,
|
|
ArrayRef<const MemRegion *> Explicits,
|
|
ArrayRef<const MemRegion *> Regions,
|
|
const LocationContext *LCtx,
|
|
const CallEvent *Call) {
|
|
return getCheckerManager().runCheckersForRegionChanges(state, invalidated,
|
|
Explicits, Regions,
|
|
LCtx, Call);
|
|
}
|
|
|
|
static void printInitializedTemporariesForContext(raw_ostream &Out,
|
|
ProgramStateRef State,
|
|
const char *NL,
|
|
const char *Sep,
|
|
const LocationContext *LC) {
|
|
PrintingPolicy PP =
|
|
LC->getAnalysisDeclContext()->getASTContext().getPrintingPolicy();
|
|
for (auto I : State->get<InitializedTemporaries>()) {
|
|
std::pair<const CXXBindTemporaryExpr *, const LocationContext *> Key =
|
|
I.first;
|
|
const MemRegion *Value = I.second;
|
|
if (Key.second != LC)
|
|
continue;
|
|
Out << '(' << Key.second << ',' << Key.first << ") ";
|
|
Key.first->printPretty(Out, nullptr, PP);
|
|
if (Value)
|
|
Out << " : " << Value;
|
|
Out << NL;
|
|
}
|
|
}
|
|
|
|
static void printTemporaryMaterializationsForContext(
|
|
raw_ostream &Out, ProgramStateRef State, const char *NL, const char *Sep,
|
|
const LocationContext *LC) {
|
|
PrintingPolicy PP =
|
|
LC->getAnalysisDeclContext()->getASTContext().getPrintingPolicy();
|
|
for (auto I : State->get<TemporaryMaterializations>()) {
|
|
std::pair<const MaterializeTemporaryExpr *, const LocationContext *> Key =
|
|
I.first;
|
|
const MemRegion *Value = I.second;
|
|
if (Key.second != LC)
|
|
continue;
|
|
Out << '(' << Key.second << ',' << Key.first << ") ";
|
|
Key.first->printPretty(Out, nullptr, PP);
|
|
assert(Value);
|
|
Out << " : " << Value << NL;
|
|
}
|
|
}
|
|
|
|
static void printCXXNewAllocatorValuesForContext(raw_ostream &Out,
|
|
ProgramStateRef State,
|
|
const char *NL,
|
|
const char *Sep,
|
|
const LocationContext *LC) {
|
|
PrintingPolicy PP =
|
|
LC->getAnalysisDeclContext()->getASTContext().getPrintingPolicy();
|
|
|
|
for (auto I : State->get<CXXNewAllocatorValues>()) {
|
|
std::pair<const CXXNewExpr *, const LocationContext *> Key = I.first;
|
|
SVal Value = I.second;
|
|
if (Key.second != LC)
|
|
continue;
|
|
Out << '(' << Key.second << ',' << Key.first << ") ";
|
|
Key.first->printPretty(Out, nullptr, PP);
|
|
Out << " : " << Value << NL;
|
|
}
|
|
}
|
|
|
|
void ExprEngine::printState(raw_ostream &Out, ProgramStateRef State,
|
|
const char *NL, const char *Sep,
|
|
const LocationContext *LCtx) {
|
|
if (LCtx) {
|
|
if (!State->get<InitializedTemporaries>().isEmpty()) {
|
|
Out << Sep << "Initialized temporaries:" << NL;
|
|
|
|
LCtx->dumpStack(Out, "", NL, Sep, [&](const LocationContext *LC) {
|
|
printInitializedTemporariesForContext(Out, State, NL, Sep, LC);
|
|
});
|
|
}
|
|
|
|
if (!State->get<TemporaryMaterializations>().isEmpty()) {
|
|
Out << Sep << "Temporaries to be materialized:" << NL;
|
|
|
|
LCtx->dumpStack(Out, "", NL, Sep, [&](const LocationContext *LC) {
|
|
printTemporaryMaterializationsForContext(Out, State, NL, Sep, LC);
|
|
});
|
|
}
|
|
|
|
if (!State->get<CXXNewAllocatorValues>().isEmpty()) {
|
|
Out << Sep << "operator new() allocator return values:" << NL;
|
|
|
|
LCtx->dumpStack(Out, "", NL, Sep, [&](const LocationContext *LC) {
|
|
printCXXNewAllocatorValuesForContext(Out, State, NL, Sep, LC);
|
|
});
|
|
}
|
|
}
|
|
|
|
getCheckerManager().runCheckersForPrintState(Out, State, NL, Sep);
|
|
}
|
|
|
|
void ExprEngine::processEndWorklist(bool hasWorkRemaining) {
|
|
getCheckerManager().runCheckersForEndAnalysis(G, BR, *this);
|
|
}
|
|
|
|
void ExprEngine::processCFGElement(const CFGElement E, ExplodedNode *Pred,
|
|
unsigned StmtIdx, NodeBuilderContext *Ctx) {
|
|
PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext());
|
|
currStmtIdx = StmtIdx;
|
|
currBldrCtx = Ctx;
|
|
|
|
switch (E.getKind()) {
|
|
case CFGElement::Statement:
|
|
case CFGElement::Constructor:
|
|
ProcessStmt(E.castAs<CFGStmt>().getStmt(), Pred);
|
|
return;
|
|
case CFGElement::Initializer:
|
|
ProcessInitializer(E.castAs<CFGInitializer>(), Pred);
|
|
return;
|
|
case CFGElement::NewAllocator:
|
|
ProcessNewAllocator(E.castAs<CFGNewAllocator>().getAllocatorExpr(),
|
|
Pred);
|
|
return;
|
|
case CFGElement::AutomaticObjectDtor:
|
|
case CFGElement::DeleteDtor:
|
|
case CFGElement::BaseDtor:
|
|
case CFGElement::MemberDtor:
|
|
case CFGElement::TemporaryDtor:
|
|
ProcessImplicitDtor(E.castAs<CFGImplicitDtor>(), Pred);
|
|
return;
|
|
case CFGElement::LoopExit:
|
|
ProcessLoopExit(E.castAs<CFGLoopExit>().getLoopStmt(), Pred);
|
|
return;
|
|
case CFGElement::LifetimeEnds:
|
|
return;
|
|
}
|
|
}
|
|
|
|
static bool shouldRemoveDeadBindings(AnalysisManager &AMgr,
|
|
const Stmt *S,
|
|
const ExplodedNode *Pred,
|
|
const LocationContext *LC) {
|
|
|
|
// Are we never purging state values?
|
|
if (AMgr.options.AnalysisPurgeOpt == PurgeNone)
|
|
return false;
|
|
|
|
// Is this the beginning of a basic block?
|
|
if (Pred->getLocation().getAs<BlockEntrance>())
|
|
return true;
|
|
|
|
// Is this on a non-expression?
|
|
if (!isa<Expr>(S))
|
|
return true;
|
|
|
|
// Run before processing a call.
|
|
if (CallEvent::isCallStmt(S))
|
|
return true;
|
|
|
|
// Is this an expression that is consumed by another expression? If so,
|
|
// postpone cleaning out the state.
|
|
ParentMap &PM = LC->getAnalysisDeclContext()->getParentMap();
|
|
return !PM.isConsumedExpr(cast<Expr>(S));
|
|
}
|
|
|
|
void ExprEngine::removeDead(ExplodedNode *Pred, ExplodedNodeSet &Out,
|
|
const Stmt *ReferenceStmt,
|
|
const LocationContext *LC,
|
|
const Stmt *DiagnosticStmt,
|
|
ProgramPoint::Kind K) {
|
|
assert((K == ProgramPoint::PreStmtPurgeDeadSymbolsKind ||
|
|
ReferenceStmt == nullptr || isa<ReturnStmt>(ReferenceStmt))
|
|
&& "PostStmt is not generally supported by the SymbolReaper yet");
|
|
assert(LC && "Must pass the current (or expiring) LocationContext");
|
|
|
|
if (!DiagnosticStmt) {
|
|
DiagnosticStmt = ReferenceStmt;
|
|
assert(DiagnosticStmt && "Required for clearing a LocationContext");
|
|
}
|
|
|
|
NumRemoveDeadBindings++;
|
|
ProgramStateRef CleanedState = Pred->getState();
|
|
|
|
// LC is the location context being destroyed, but SymbolReaper wants a
|
|
// location context that is still live. (If this is the top-level stack
|
|
// frame, this will be null.)
|
|
if (!ReferenceStmt) {
|
|
assert(K == ProgramPoint::PostStmtPurgeDeadSymbolsKind &&
|
|
"Use PostStmtPurgeDeadSymbolsKind for clearing a LocationContext");
|
|
LC = LC->getParent();
|
|
}
|
|
|
|
const StackFrameContext *SFC = LC ? LC->getCurrentStackFrame() : nullptr;
|
|
SymbolReaper SymReaper(SFC, ReferenceStmt, SymMgr, getStoreManager());
|
|
|
|
for (auto I : CleanedState->get<InitializedTemporaries>())
|
|
if (I.second)
|
|
SymReaper.markLive(I.second);
|
|
|
|
for (auto I : CleanedState->get<TemporaryMaterializations>())
|
|
if (I.second)
|
|
SymReaper.markLive(I.second);
|
|
|
|
for (auto I : CleanedState->get<CXXNewAllocatorValues>()) {
|
|
if (SymbolRef Sym = I.second.getAsSymbol())
|
|
SymReaper.markLive(Sym);
|
|
if (const MemRegion *MR = I.second.getAsRegion())
|
|
SymReaper.markElementIndicesLive(MR);
|
|
}
|
|
|
|
getCheckerManager().runCheckersForLiveSymbols(CleanedState, SymReaper);
|
|
|
|
// Create a state in which dead bindings are removed from the environment
|
|
// and the store. TODO: The function should just return new env and store,
|
|
// not a new state.
|
|
CleanedState = StateMgr.removeDeadBindings(CleanedState, SFC, SymReaper);
|
|
|
|
// Process any special transfer function for dead symbols.
|
|
// A tag to track convenience transitions, which can be removed at cleanup.
|
|
static SimpleProgramPointTag cleanupTag(TagProviderName, "Clean Node");
|
|
if (!SymReaper.hasDeadSymbols()) {
|
|
// Generate a CleanedNode that has the environment and store cleaned
|
|
// up. Since no symbols are dead, we can optimize and not clean out
|
|
// the constraint manager.
|
|
StmtNodeBuilder Bldr(Pred, Out, *currBldrCtx);
|
|
Bldr.generateNode(DiagnosticStmt, Pred, CleanedState, &cleanupTag, K);
|
|
|
|
} else {
|
|
// Call checkers with the non-cleaned state so that they could query the
|
|
// values of the soon to be dead symbols.
|
|
ExplodedNodeSet CheckedSet;
|
|
getCheckerManager().runCheckersForDeadSymbols(CheckedSet, Pred, SymReaper,
|
|
DiagnosticStmt, *this, K);
|
|
|
|
// For each node in CheckedSet, generate CleanedNodes that have the
|
|
// environment, the store, and the constraints cleaned up but have the
|
|
// user-supplied states as the predecessors.
|
|
StmtNodeBuilder Bldr(CheckedSet, Out, *currBldrCtx);
|
|
for (ExplodedNodeSet::const_iterator
|
|
I = CheckedSet.begin(), E = CheckedSet.end(); I != E; ++I) {
|
|
ProgramStateRef CheckerState = (*I)->getState();
|
|
|
|
// The constraint manager has not been cleaned up yet, so clean up now.
|
|
CheckerState = getConstraintManager().removeDeadBindings(CheckerState,
|
|
SymReaper);
|
|
|
|
assert(StateMgr.haveEqualEnvironments(CheckerState, Pred->getState()) &&
|
|
"Checkers are not allowed to modify the Environment as a part of "
|
|
"checkDeadSymbols processing.");
|
|
assert(StateMgr.haveEqualStores(CheckerState, Pred->getState()) &&
|
|
"Checkers are not allowed to modify the Store as a part of "
|
|
"checkDeadSymbols processing.");
|
|
|
|
// Create a state based on CleanedState with CheckerState GDM and
|
|
// generate a transition to that state.
|
|
ProgramStateRef CleanedCheckerSt =
|
|
StateMgr.getPersistentStateWithGDM(CleanedState, CheckerState);
|
|
Bldr.generateNode(DiagnosticStmt, *I, CleanedCheckerSt, &cleanupTag, K);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ExprEngine::ProcessStmt(const Stmt *currStmt, ExplodedNode *Pred) {
|
|
// Reclaim any unnecessary nodes in the ExplodedGraph.
|
|
G.reclaimRecentlyAllocatedNodes();
|
|
|
|
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
|
|
currStmt->getLocStart(),
|
|
"Error evaluating statement");
|
|
|
|
// Remove dead bindings and symbols.
|
|
ExplodedNodeSet CleanedStates;
|
|
if (shouldRemoveDeadBindings(AMgr, currStmt, Pred,
|
|
Pred->getLocationContext())) {
|
|
removeDead(Pred, CleanedStates, currStmt,
|
|
Pred->getLocationContext());
|
|
} else
|
|
CleanedStates.Add(Pred);
|
|
|
|
// Visit the statement.
|
|
ExplodedNodeSet Dst;
|
|
for (ExplodedNodeSet::iterator I = CleanedStates.begin(),
|
|
E = CleanedStates.end(); I != E; ++I) {
|
|
ExplodedNodeSet DstI;
|
|
// Visit the statement.
|
|
Visit(currStmt, *I, DstI);
|
|
Dst.insert(DstI);
|
|
}
|
|
|
|
// Enqueue the new nodes onto the work list.
|
|
Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx);
|
|
}
|
|
|
|
void ExprEngine::ProcessLoopExit(const Stmt* S, ExplodedNode *Pred) {
|
|
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
|
|
S->getLocStart(),
|
|
"Error evaluating end of the loop");
|
|
ExplodedNodeSet Dst;
|
|
Dst.Add(Pred);
|
|
NodeBuilder Bldr(Pred, Dst, *currBldrCtx);
|
|
ProgramStateRef NewState = Pred->getState();
|
|
|
|
if(AMgr.options.shouldUnrollLoops())
|
|
NewState = processLoopEnd(S, NewState);
|
|
|
|
LoopExit PP(S, Pred->getLocationContext());
|
|
Bldr.generateNode(PP, NewState, Pred);
|
|
// Enqueue the new nodes onto the work list.
|
|
Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx);
|
|
}
|
|
|
|
void ExprEngine::ProcessInitializer(const CFGInitializer Init,
|
|
ExplodedNode *Pred) {
|
|
const CXXCtorInitializer *BMI = Init.getInitializer();
|
|
|
|
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
|
|
BMI->getSourceLocation(),
|
|
"Error evaluating initializer");
|
|
|
|
// We don't clean up dead bindings here.
|
|
const StackFrameContext *stackFrame =
|
|
cast<StackFrameContext>(Pred->getLocationContext());
|
|
const CXXConstructorDecl *decl =
|
|
cast<CXXConstructorDecl>(stackFrame->getDecl());
|
|
|
|
ProgramStateRef State = Pred->getState();
|
|
SVal thisVal = State->getSVal(svalBuilder.getCXXThis(decl, stackFrame));
|
|
|
|
ExplodedNodeSet Tmp(Pred);
|
|
SVal FieldLoc;
|
|
|
|
// Evaluate the initializer, if necessary
|
|
if (BMI->isAnyMemberInitializer()) {
|
|
// Constructors build the object directly in the field,
|
|
// but non-objects must be copied in from the initializer.
|
|
if (auto *CtorExpr = findDirectConstructorForCurrentCFGElement()) {
|
|
assert(BMI->getInit()->IgnoreImplicit() == CtorExpr);
|
|
(void)CtorExpr;
|
|
// The field was directly constructed, so there is no need to bind.
|
|
} else {
|
|
const Expr *Init = BMI->getInit()->IgnoreImplicit();
|
|
const ValueDecl *Field;
|
|
if (BMI->isIndirectMemberInitializer()) {
|
|
Field = BMI->getIndirectMember();
|
|
FieldLoc = State->getLValue(BMI->getIndirectMember(), thisVal);
|
|
} else {
|
|
Field = BMI->getMember();
|
|
FieldLoc = State->getLValue(BMI->getMember(), thisVal);
|
|
}
|
|
|
|
SVal InitVal;
|
|
if (Init->getType()->isArrayType()) {
|
|
// Handle arrays of trivial type. We can represent this with a
|
|
// primitive load/copy from the base array region.
|
|
const ArraySubscriptExpr *ASE;
|
|
while ((ASE = dyn_cast<ArraySubscriptExpr>(Init)))
|
|
Init = ASE->getBase()->IgnoreImplicit();
|
|
|
|
SVal LValue = State->getSVal(Init, stackFrame);
|
|
if (!Field->getType()->isReferenceType())
|
|
if (Optional<Loc> LValueLoc = LValue.getAs<Loc>())
|
|
InitVal = State->getSVal(*LValueLoc);
|
|
|
|
// If we fail to get the value for some reason, use a symbolic value.
|
|
if (InitVal.isUnknownOrUndef()) {
|
|
SValBuilder &SVB = getSValBuilder();
|
|
InitVal = SVB.conjureSymbolVal(BMI->getInit(), stackFrame,
|
|
Field->getType(),
|
|
currBldrCtx->blockCount());
|
|
}
|
|
} else {
|
|
InitVal = State->getSVal(BMI->getInit(), stackFrame);
|
|
}
|
|
|
|
assert(Tmp.size() == 1 && "have not generated any new nodes yet");
|
|
assert(*Tmp.begin() == Pred && "have not generated any new nodes yet");
|
|
Tmp.clear();
|
|
|
|
PostInitializer PP(BMI, FieldLoc.getAsRegion(), stackFrame);
|
|
evalBind(Tmp, Init, Pred, FieldLoc, InitVal, /*isInit=*/true, &PP);
|
|
}
|
|
} else {
|
|
assert(BMI->isBaseInitializer() || BMI->isDelegatingInitializer());
|
|
// We already did all the work when visiting the CXXConstructExpr.
|
|
}
|
|
|
|
// Construct PostInitializer nodes whether the state changed or not,
|
|
// so that the diagnostics don't get confused.
|
|
PostInitializer PP(BMI, FieldLoc.getAsRegion(), stackFrame);
|
|
ExplodedNodeSet Dst;
|
|
NodeBuilder Bldr(Tmp, Dst, *currBldrCtx);
|
|
for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E; ++I) {
|
|
ExplodedNode *N = *I;
|
|
Bldr.generateNode(PP, N->getState(), N);
|
|
}
|
|
|
|
// Enqueue the new nodes onto the work list.
|
|
Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx);
|
|
}
|
|
|
|
void ExprEngine::ProcessImplicitDtor(const CFGImplicitDtor D,
|
|
ExplodedNode *Pred) {
|
|
ExplodedNodeSet Dst;
|
|
switch (D.getKind()) {
|
|
case CFGElement::AutomaticObjectDtor:
|
|
ProcessAutomaticObjDtor(D.castAs<CFGAutomaticObjDtor>(), Pred, Dst);
|
|
break;
|
|
case CFGElement::BaseDtor:
|
|
ProcessBaseDtor(D.castAs<CFGBaseDtor>(), Pred, Dst);
|
|
break;
|
|
case CFGElement::MemberDtor:
|
|
ProcessMemberDtor(D.castAs<CFGMemberDtor>(), Pred, Dst);
|
|
break;
|
|
case CFGElement::TemporaryDtor:
|
|
ProcessTemporaryDtor(D.castAs<CFGTemporaryDtor>(), Pred, Dst);
|
|
break;
|
|
case CFGElement::DeleteDtor:
|
|
ProcessDeleteDtor(D.castAs<CFGDeleteDtor>(), Pred, Dst);
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unexpected dtor kind.");
|
|
}
|
|
|
|
// Enqueue the new nodes onto the work list.
|
|
Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx);
|
|
}
|
|
|
|
void ExprEngine::ProcessNewAllocator(const CXXNewExpr *NE,
|
|
ExplodedNode *Pred) {
|
|
ExplodedNodeSet Dst;
|
|
AnalysisManager &AMgr = getAnalysisManager();
|
|
AnalyzerOptions &Opts = AMgr.options;
|
|
// TODO: We're not evaluating allocators for all cases just yet as
|
|
// we're not handling the return value correctly, which causes false
|
|
// positives when the alpha.cplusplus.NewDeleteLeaks check is on.
|
|
if (Opts.mayInlineCXXAllocator())
|
|
VisitCXXNewAllocatorCall(NE, Pred, Dst);
|
|
else {
|
|
NodeBuilder Bldr(Pred, Dst, *currBldrCtx);
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
PostImplicitCall PP(NE->getOperatorNew(), NE->getLocStart(), LCtx);
|
|
Bldr.generateNode(PP, Pred->getState(), Pred);
|
|
}
|
|
Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx);
|
|
}
|
|
|
|
void ExprEngine::ProcessAutomaticObjDtor(const CFGAutomaticObjDtor Dtor,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
const VarDecl *varDecl = Dtor.getVarDecl();
|
|
QualType varType = varDecl->getType();
|
|
|
|
ProgramStateRef state = Pred->getState();
|
|
SVal dest = state->getLValue(varDecl, Pred->getLocationContext());
|
|
const MemRegion *Region = dest.castAs<loc::MemRegionVal>().getRegion();
|
|
|
|
if (varType->isReferenceType()) {
|
|
const MemRegion *ValueRegion = state->getSVal(Region).getAsRegion();
|
|
if (!ValueRegion) {
|
|
// FIXME: This should not happen. The language guarantees a presence
|
|
// of a valid initializer here, so the reference shall not be undefined.
|
|
// It seems that we're calling destructors over variables that
|
|
// were not initialized yet.
|
|
return;
|
|
}
|
|
Region = ValueRegion->getBaseRegion();
|
|
varType = cast<TypedValueRegion>(Region)->getValueType();
|
|
}
|
|
|
|
// FIXME: We need to run the same destructor on every element of the array.
|
|
// This workaround will just run the first destructor (which will still
|
|
// invalidate the entire array).
|
|
EvalCallOptions CallOpts;
|
|
Region = makeZeroElementRegion(state, loc::MemRegionVal(Region), varType,
|
|
CallOpts.IsArrayCtorOrDtor).getAsRegion();
|
|
|
|
VisitCXXDestructor(varType, Region, Dtor.getTriggerStmt(), /*IsBase=*/ false,
|
|
Pred, Dst, CallOpts);
|
|
}
|
|
|
|
void ExprEngine::ProcessDeleteDtor(const CFGDeleteDtor Dtor,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
ProgramStateRef State = Pred->getState();
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
const CXXDeleteExpr *DE = Dtor.getDeleteExpr();
|
|
const Stmt *Arg = DE->getArgument();
|
|
QualType DTy = DE->getDestroyedType();
|
|
SVal ArgVal = State->getSVal(Arg, LCtx);
|
|
|
|
// If the argument to delete is known to be a null value,
|
|
// don't run destructor.
|
|
if (State->isNull(ArgVal).isConstrainedTrue()) {
|
|
QualType BTy = getContext().getBaseElementType(DTy);
|
|
const CXXRecordDecl *RD = BTy->getAsCXXRecordDecl();
|
|
const CXXDestructorDecl *Dtor = RD->getDestructor();
|
|
|
|
PostImplicitCall PP(Dtor, DE->getLocStart(), LCtx);
|
|
NodeBuilder Bldr(Pred, Dst, *currBldrCtx);
|
|
Bldr.generateNode(PP, Pred->getState(), Pred);
|
|
return;
|
|
}
|
|
|
|
EvalCallOptions CallOpts;
|
|
const MemRegion *ArgR = ArgVal.getAsRegion();
|
|
if (DE->isArrayForm()) {
|
|
// FIXME: We need to run the same destructor on every element of the array.
|
|
// This workaround will just run the first destructor (which will still
|
|
// invalidate the entire array).
|
|
CallOpts.IsArrayCtorOrDtor = true;
|
|
if (ArgR)
|
|
ArgR = getStoreManager().GetElementZeroRegion(cast<SubRegion>(ArgR), DTy);
|
|
}
|
|
|
|
VisitCXXDestructor(DE->getDestroyedType(), ArgR, DE, /*IsBase=*/false,
|
|
Pred, Dst, CallOpts);
|
|
}
|
|
|
|
void ExprEngine::ProcessBaseDtor(const CFGBaseDtor D,
|
|
ExplodedNode *Pred, ExplodedNodeSet &Dst) {
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
|
|
const CXXDestructorDecl *CurDtor = cast<CXXDestructorDecl>(LCtx->getDecl());
|
|
Loc ThisPtr = getSValBuilder().getCXXThis(CurDtor,
|
|
LCtx->getCurrentStackFrame());
|
|
SVal ThisVal = Pred->getState()->getSVal(ThisPtr);
|
|
|
|
// Create the base object region.
|
|
const CXXBaseSpecifier *Base = D.getBaseSpecifier();
|
|
QualType BaseTy = Base->getType();
|
|
SVal BaseVal = getStoreManager().evalDerivedToBase(ThisVal, BaseTy,
|
|
Base->isVirtual());
|
|
|
|
VisitCXXDestructor(BaseTy, BaseVal.castAs<loc::MemRegionVal>().getRegion(),
|
|
CurDtor->getBody(), /*IsBase=*/ true, Pred, Dst, {});
|
|
}
|
|
|
|
void ExprEngine::ProcessMemberDtor(const CFGMemberDtor D,
|
|
ExplodedNode *Pred, ExplodedNodeSet &Dst) {
|
|
const FieldDecl *Member = D.getFieldDecl();
|
|
QualType T = Member->getType();
|
|
ProgramStateRef State = Pred->getState();
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
|
|
const CXXDestructorDecl *CurDtor = cast<CXXDestructorDecl>(LCtx->getDecl());
|
|
Loc ThisVal = getSValBuilder().getCXXThis(CurDtor,
|
|
LCtx->getCurrentStackFrame());
|
|
SVal FieldVal =
|
|
State->getLValue(Member, State->getSVal(ThisVal).castAs<Loc>());
|
|
|
|
// FIXME: We need to run the same destructor on every element of the array.
|
|
// This workaround will just run the first destructor (which will still
|
|
// invalidate the entire array).
|
|
EvalCallOptions CallOpts;
|
|
FieldVal = makeZeroElementRegion(State, FieldVal, T,
|
|
CallOpts.IsArrayCtorOrDtor);
|
|
|
|
VisitCXXDestructor(T, FieldVal.castAs<loc::MemRegionVal>().getRegion(),
|
|
CurDtor->getBody(), /*IsBase=*/false, Pred, Dst, CallOpts);
|
|
}
|
|
|
|
void ExprEngine::ProcessTemporaryDtor(const CFGTemporaryDtor D,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
ExplodedNodeSet CleanDtorState;
|
|
StmtNodeBuilder StmtBldr(Pred, CleanDtorState, *currBldrCtx);
|
|
ProgramStateRef State = Pred->getState();
|
|
const MemRegion *MR = nullptr;
|
|
if (const CXXTempObjectRegion *const *MRPtr =
|
|
State->get<InitializedTemporaries>(std::make_pair(
|
|
D.getBindTemporaryExpr(), Pred->getStackFrame()))) {
|
|
// FIXME: Currently we insert temporary destructors for default parameters,
|
|
// but we don't insert the constructors, so the entry in
|
|
// InitializedTemporaries may be missing.
|
|
State = State->remove<InitializedTemporaries>(
|
|
std::make_pair(D.getBindTemporaryExpr(), Pred->getStackFrame()));
|
|
// *MRPtr may still be null when the construction context for the temporary
|
|
// was not implemented.
|
|
MR = *MRPtr;
|
|
}
|
|
StmtBldr.generateNode(D.getBindTemporaryExpr(), Pred, State);
|
|
|
|
QualType T = D.getBindTemporaryExpr()->getSubExpr()->getType();
|
|
// FIXME: Currently CleanDtorState can be empty here due to temporaries being
|
|
// bound to default parameters.
|
|
assert(CleanDtorState.size() <= 1);
|
|
ExplodedNode *CleanPred =
|
|
CleanDtorState.empty() ? Pred : *CleanDtorState.begin();
|
|
|
|
EvalCallOptions CallOpts;
|
|
CallOpts.IsTemporaryCtorOrDtor = true;
|
|
if (!MR) {
|
|
CallOpts.IsCtorOrDtorWithImproperlyModeledTargetRegion = true;
|
|
|
|
// If we have no MR, we still need to unwrap the array to avoid destroying
|
|
// the whole array at once. Regardless, we'd eventually need to model array
|
|
// destructors properly, element-by-element.
|
|
while (const ArrayType *AT = getContext().getAsArrayType(T)) {
|
|
T = AT->getElementType();
|
|
CallOpts.IsArrayCtorOrDtor = true;
|
|
}
|
|
} else {
|
|
// We'd eventually need to makeZeroElementRegion() trick here,
|
|
// but for now we don't have the respective construction contexts,
|
|
// so MR would always be null in this case. Do nothing for now.
|
|
}
|
|
VisitCXXDestructor(T, MR, D.getBindTemporaryExpr(),
|
|
/*IsBase=*/false, CleanPred, Dst, CallOpts);
|
|
}
|
|
|
|
void ExprEngine::processCleanupTemporaryBranch(const CXXBindTemporaryExpr *BTE,
|
|
NodeBuilderContext &BldCtx,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst,
|
|
const CFGBlock *DstT,
|
|
const CFGBlock *DstF) {
|
|
BranchNodeBuilder TempDtorBuilder(Pred, Dst, BldCtx, DstT, DstF);
|
|
if (Pred->getState()->contains<InitializedTemporaries>(
|
|
std::make_pair(BTE, Pred->getStackFrame()))) {
|
|
TempDtorBuilder.markInfeasible(false);
|
|
TempDtorBuilder.generateNode(Pred->getState(), true, Pred);
|
|
} else {
|
|
TempDtorBuilder.markInfeasible(true);
|
|
TempDtorBuilder.generateNode(Pred->getState(), false, Pred);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
class CollectReachableSymbolsCallback final : public SymbolVisitor {
|
|
InvalidatedSymbols Symbols;
|
|
|
|
public:
|
|
explicit CollectReachableSymbolsCallback(ProgramStateRef State) {}
|
|
const InvalidatedSymbols &getSymbols() const { return Symbols; }
|
|
|
|
bool VisitSymbol(SymbolRef Sym) override {
|
|
Symbols.insert(Sym);
|
|
return true;
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
void ExprEngine::Visit(const Stmt *S, ExplodedNode *Pred,
|
|
ExplodedNodeSet &DstTop) {
|
|
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
|
|
S->getLocStart(),
|
|
"Error evaluating statement");
|
|
ExplodedNodeSet Dst;
|
|
StmtNodeBuilder Bldr(Pred, DstTop, *currBldrCtx);
|
|
|
|
assert(!isa<Expr>(S) || S == cast<Expr>(S)->IgnoreParens());
|
|
|
|
switch (S->getStmtClass()) {
|
|
// C++, OpenMP and ARC stuff we don't support yet.
|
|
case Expr::ObjCIndirectCopyRestoreExprClass:
|
|
case Stmt::CXXDependentScopeMemberExprClass:
|
|
case Stmt::CXXInheritedCtorInitExprClass:
|
|
case Stmt::CXXTryStmtClass:
|
|
case Stmt::CXXTypeidExprClass:
|
|
case Stmt::CXXUuidofExprClass:
|
|
case Stmt::CXXFoldExprClass:
|
|
case Stmt::MSPropertyRefExprClass:
|
|
case Stmt::MSPropertySubscriptExprClass:
|
|
case Stmt::CXXUnresolvedConstructExprClass:
|
|
case Stmt::DependentScopeDeclRefExprClass:
|
|
case Stmt::ArrayTypeTraitExprClass:
|
|
case Stmt::ExpressionTraitExprClass:
|
|
case Stmt::UnresolvedLookupExprClass:
|
|
case Stmt::UnresolvedMemberExprClass:
|
|
case Stmt::TypoExprClass:
|
|
case Stmt::CXXNoexceptExprClass:
|
|
case Stmt::PackExpansionExprClass:
|
|
case Stmt::SubstNonTypeTemplateParmPackExprClass:
|
|
case Stmt::FunctionParmPackExprClass:
|
|
case Stmt::CoroutineBodyStmtClass:
|
|
case Stmt::CoawaitExprClass:
|
|
case Stmt::DependentCoawaitExprClass:
|
|
case Stmt::CoreturnStmtClass:
|
|
case Stmt::CoyieldExprClass:
|
|
case Stmt::SEHTryStmtClass:
|
|
case Stmt::SEHExceptStmtClass:
|
|
case Stmt::SEHLeaveStmtClass:
|
|
case Stmt::SEHFinallyStmtClass:
|
|
case Stmt::OMPParallelDirectiveClass:
|
|
case Stmt::OMPSimdDirectiveClass:
|
|
case Stmt::OMPForDirectiveClass:
|
|
case Stmt::OMPForSimdDirectiveClass:
|
|
case Stmt::OMPSectionsDirectiveClass:
|
|
case Stmt::OMPSectionDirectiveClass:
|
|
case Stmt::OMPSingleDirectiveClass:
|
|
case Stmt::OMPMasterDirectiveClass:
|
|
case Stmt::OMPCriticalDirectiveClass:
|
|
case Stmt::OMPParallelForDirectiveClass:
|
|
case Stmt::OMPParallelForSimdDirectiveClass:
|
|
case Stmt::OMPParallelSectionsDirectiveClass:
|
|
case Stmt::OMPTaskDirectiveClass:
|
|
case Stmt::OMPTaskyieldDirectiveClass:
|
|
case Stmt::OMPBarrierDirectiveClass:
|
|
case Stmt::OMPTaskwaitDirectiveClass:
|
|
case Stmt::OMPTaskgroupDirectiveClass:
|
|
case Stmt::OMPFlushDirectiveClass:
|
|
case Stmt::OMPOrderedDirectiveClass:
|
|
case Stmt::OMPAtomicDirectiveClass:
|
|
case Stmt::OMPTargetDirectiveClass:
|
|
case Stmt::OMPTargetDataDirectiveClass:
|
|
case Stmt::OMPTargetEnterDataDirectiveClass:
|
|
case Stmt::OMPTargetExitDataDirectiveClass:
|
|
case Stmt::OMPTargetParallelDirectiveClass:
|
|
case Stmt::OMPTargetParallelForDirectiveClass:
|
|
case Stmt::OMPTargetUpdateDirectiveClass:
|
|
case Stmt::OMPTeamsDirectiveClass:
|
|
case Stmt::OMPCancellationPointDirectiveClass:
|
|
case Stmt::OMPCancelDirectiveClass:
|
|
case Stmt::OMPTaskLoopDirectiveClass:
|
|
case Stmt::OMPTaskLoopSimdDirectiveClass:
|
|
case Stmt::OMPDistributeDirectiveClass:
|
|
case Stmt::OMPDistributeParallelForDirectiveClass:
|
|
case Stmt::OMPDistributeParallelForSimdDirectiveClass:
|
|
case Stmt::OMPDistributeSimdDirectiveClass:
|
|
case Stmt::OMPTargetParallelForSimdDirectiveClass:
|
|
case Stmt::OMPTargetSimdDirectiveClass:
|
|
case Stmt::OMPTeamsDistributeDirectiveClass:
|
|
case Stmt::OMPTeamsDistributeSimdDirectiveClass:
|
|
case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
|
|
case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
|
|
case Stmt::OMPTargetTeamsDirectiveClass:
|
|
case Stmt::OMPTargetTeamsDistributeDirectiveClass:
|
|
case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
|
|
case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
|
|
case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
|
|
case Stmt::CapturedStmtClass:
|
|
{
|
|
const ExplodedNode *node = Bldr.generateSink(S, Pred, Pred->getState());
|
|
Engine.addAbortedBlock(node, currBldrCtx->getBlock());
|
|
break;
|
|
}
|
|
|
|
case Stmt::ParenExprClass:
|
|
llvm_unreachable("ParenExprs already handled.");
|
|
case Stmt::GenericSelectionExprClass:
|
|
llvm_unreachable("GenericSelectionExprs already handled.");
|
|
// Cases that should never be evaluated simply because they shouldn't
|
|
// appear in the CFG.
|
|
case Stmt::BreakStmtClass:
|
|
case Stmt::CaseStmtClass:
|
|
case Stmt::CompoundStmtClass:
|
|
case Stmt::ContinueStmtClass:
|
|
case Stmt::CXXForRangeStmtClass:
|
|
case Stmt::DefaultStmtClass:
|
|
case Stmt::DoStmtClass:
|
|
case Stmt::ForStmtClass:
|
|
case Stmt::GotoStmtClass:
|
|
case Stmt::IfStmtClass:
|
|
case Stmt::IndirectGotoStmtClass:
|
|
case Stmt::LabelStmtClass:
|
|
case Stmt::NoStmtClass:
|
|
case Stmt::NullStmtClass:
|
|
case Stmt::SwitchStmtClass:
|
|
case Stmt::WhileStmtClass:
|
|
case Expr::MSDependentExistsStmtClass:
|
|
llvm_unreachable("Stmt should not be in analyzer evaluation loop");
|
|
|
|
case Stmt::ObjCSubscriptRefExprClass:
|
|
case Stmt::ObjCPropertyRefExprClass:
|
|
llvm_unreachable("These are handled by PseudoObjectExpr");
|
|
|
|
case Stmt::GNUNullExprClass: {
|
|
// GNU __null is a pointer-width integer, not an actual pointer.
|
|
ProgramStateRef state = Pred->getState();
|
|
state = state->BindExpr(S, Pred->getLocationContext(),
|
|
svalBuilder.makeIntValWithPtrWidth(0, false));
|
|
Bldr.generateNode(S, Pred, state);
|
|
break;
|
|
}
|
|
|
|
case Stmt::ObjCAtSynchronizedStmtClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::ExprWithCleanupsClass:
|
|
// Handled due to fully linearised CFG.
|
|
break;
|
|
|
|
case Stmt::CXXBindTemporaryExprClass: {
|
|
Bldr.takeNodes(Pred);
|
|
ExplodedNodeSet PreVisit;
|
|
getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this);
|
|
getCheckerManager().runCheckersForPostStmt(Dst, PreVisit, S, *this);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
// Cases not handled yet; but will handle some day.
|
|
case Stmt::DesignatedInitExprClass:
|
|
case Stmt::DesignatedInitUpdateExprClass:
|
|
case Stmt::ArrayInitLoopExprClass:
|
|
case Stmt::ArrayInitIndexExprClass:
|
|
case Stmt::ExtVectorElementExprClass:
|
|
case Stmt::ImaginaryLiteralClass:
|
|
case Stmt::ObjCAtCatchStmtClass:
|
|
case Stmt::ObjCAtFinallyStmtClass:
|
|
case Stmt::ObjCAtTryStmtClass:
|
|
case Stmt::ObjCAutoreleasePoolStmtClass:
|
|
case Stmt::ObjCEncodeExprClass:
|
|
case Stmt::ObjCIsaExprClass:
|
|
case Stmt::ObjCProtocolExprClass:
|
|
case Stmt::ObjCSelectorExprClass:
|
|
case Stmt::ParenListExprClass:
|
|
case Stmt::ShuffleVectorExprClass:
|
|
case Stmt::ConvertVectorExprClass:
|
|
case Stmt::VAArgExprClass:
|
|
case Stmt::CUDAKernelCallExprClass:
|
|
case Stmt::OpaqueValueExprClass:
|
|
case Stmt::AsTypeExprClass:
|
|
// Fall through.
|
|
|
|
// Cases we intentionally don't evaluate, since they don't need
|
|
// to be explicitly evaluated.
|
|
case Stmt::PredefinedExprClass:
|
|
case Stmt::AddrLabelExprClass:
|
|
case Stmt::AttributedStmtClass:
|
|
case Stmt::IntegerLiteralClass:
|
|
case Stmt::CharacterLiteralClass:
|
|
case Stmt::ImplicitValueInitExprClass:
|
|
case Stmt::CXXScalarValueInitExprClass:
|
|
case Stmt::CXXBoolLiteralExprClass:
|
|
case Stmt::ObjCBoolLiteralExprClass:
|
|
case Stmt::ObjCAvailabilityCheckExprClass:
|
|
case Stmt::FloatingLiteralClass:
|
|
case Stmt::NoInitExprClass:
|
|
case Stmt::SizeOfPackExprClass:
|
|
case Stmt::StringLiteralClass:
|
|
case Stmt::ObjCStringLiteralClass:
|
|
case Stmt::CXXPseudoDestructorExprClass:
|
|
case Stmt::SubstNonTypeTemplateParmExprClass:
|
|
case Stmt::CXXNullPtrLiteralExprClass:
|
|
case Stmt::OMPArraySectionExprClass:
|
|
case Stmt::TypeTraitExprClass: {
|
|
Bldr.takeNodes(Pred);
|
|
ExplodedNodeSet preVisit;
|
|
getCheckerManager().runCheckersForPreStmt(preVisit, Pred, S, *this);
|
|
getCheckerManager().runCheckersForPostStmt(Dst, preVisit, S, *this);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::CXXDefaultArgExprClass:
|
|
case Stmt::CXXDefaultInitExprClass: {
|
|
Bldr.takeNodes(Pred);
|
|
ExplodedNodeSet PreVisit;
|
|
getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this);
|
|
|
|
ExplodedNodeSet Tmp;
|
|
StmtNodeBuilder Bldr2(PreVisit, Tmp, *currBldrCtx);
|
|
|
|
const Expr *ArgE;
|
|
if (const CXXDefaultArgExpr *DefE = dyn_cast<CXXDefaultArgExpr>(S))
|
|
ArgE = DefE->getExpr();
|
|
else if (const CXXDefaultInitExpr *DefE = dyn_cast<CXXDefaultInitExpr>(S))
|
|
ArgE = DefE->getExpr();
|
|
else
|
|
llvm_unreachable("unknown constant wrapper kind");
|
|
|
|
bool IsTemporary = false;
|
|
if (const MaterializeTemporaryExpr *MTE =
|
|
dyn_cast<MaterializeTemporaryExpr>(ArgE)) {
|
|
ArgE = MTE->GetTemporaryExpr();
|
|
IsTemporary = true;
|
|
}
|
|
|
|
Optional<SVal> ConstantVal = svalBuilder.getConstantVal(ArgE);
|
|
if (!ConstantVal)
|
|
ConstantVal = UnknownVal();
|
|
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
for (ExplodedNodeSet::iterator I = PreVisit.begin(), E = PreVisit.end();
|
|
I != E; ++I) {
|
|
ProgramStateRef State = (*I)->getState();
|
|
State = State->BindExpr(S, LCtx, *ConstantVal);
|
|
if (IsTemporary)
|
|
State = createTemporaryRegionIfNeeded(State, LCtx,
|
|
cast<Expr>(S),
|
|
cast<Expr>(S));
|
|
Bldr2.generateNode(S, *I, State);
|
|
}
|
|
|
|
getCheckerManager().runCheckersForPostStmt(Dst, Tmp, S, *this);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
// Cases we evaluate as opaque expressions, conjuring a symbol.
|
|
case Stmt::CXXStdInitializerListExprClass:
|
|
case Expr::ObjCArrayLiteralClass:
|
|
case Expr::ObjCDictionaryLiteralClass:
|
|
case Expr::ObjCBoxedExprClass: {
|
|
Bldr.takeNodes(Pred);
|
|
|
|
ExplodedNodeSet preVisit;
|
|
getCheckerManager().runCheckersForPreStmt(preVisit, Pred, S, *this);
|
|
|
|
ExplodedNodeSet Tmp;
|
|
StmtNodeBuilder Bldr2(preVisit, Tmp, *currBldrCtx);
|
|
|
|
const Expr *Ex = cast<Expr>(S);
|
|
QualType resultType = Ex->getType();
|
|
|
|
for (ExplodedNodeSet::iterator it = preVisit.begin(), et = preVisit.end();
|
|
it != et; ++it) {
|
|
ExplodedNode *N = *it;
|
|
const LocationContext *LCtx = N->getLocationContext();
|
|
SVal result = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx,
|
|
resultType,
|
|
currBldrCtx->blockCount());
|
|
ProgramStateRef State = N->getState()->BindExpr(Ex, LCtx, result);
|
|
|
|
// Escape pointers passed into the list, unless it's an ObjC boxed
|
|
// expression which is not a boxable C structure.
|
|
if (!(isa<ObjCBoxedExpr>(Ex) &&
|
|
!cast<ObjCBoxedExpr>(Ex)->getSubExpr()
|
|
->getType()->isRecordType()))
|
|
for (auto Child : Ex->children()) {
|
|
assert(Child);
|
|
|
|
SVal Val = State->getSVal(Child, LCtx);
|
|
|
|
CollectReachableSymbolsCallback Scanner =
|
|
State->scanReachableSymbols<CollectReachableSymbolsCallback>(
|
|
Val);
|
|
const InvalidatedSymbols &EscapedSymbols = Scanner.getSymbols();
|
|
|
|
State = getCheckerManager().runCheckersForPointerEscape(
|
|
State, EscapedSymbols,
|
|
/*CallEvent*/ nullptr, PSK_EscapeOther, nullptr);
|
|
}
|
|
|
|
Bldr2.generateNode(S, N, State);
|
|
}
|
|
|
|
getCheckerManager().runCheckersForPostStmt(Dst, Tmp, S, *this);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::ArraySubscriptExprClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::GCCAsmStmtClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitGCCAsmStmt(cast<GCCAsmStmt>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::MSAsmStmtClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitMSAsmStmt(cast<MSAsmStmt>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::BlockExprClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitBlockExpr(cast<BlockExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::LambdaExprClass:
|
|
if (AMgr.options.shouldInlineLambdas()) {
|
|
Bldr.takeNodes(Pred);
|
|
VisitLambdaExpr(cast<LambdaExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
} else {
|
|
const ExplodedNode *node = Bldr.generateSink(S, Pred, Pred->getState());
|
|
Engine.addAbortedBlock(node, currBldrCtx->getBlock());
|
|
}
|
|
break;
|
|
|
|
case Stmt::BinaryOperatorClass: {
|
|
const BinaryOperator* B = cast<BinaryOperator>(S);
|
|
if (B->isLogicalOp()) {
|
|
Bldr.takeNodes(Pred);
|
|
VisitLogicalExpr(B, Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
else if (B->getOpcode() == BO_Comma) {
|
|
ProgramStateRef state = Pred->getState();
|
|
Bldr.generateNode(B, Pred,
|
|
state->BindExpr(B, Pred->getLocationContext(),
|
|
state->getSVal(B->getRHS(),
|
|
Pred->getLocationContext())));
|
|
break;
|
|
}
|
|
|
|
Bldr.takeNodes(Pred);
|
|
|
|
if (AMgr.options.eagerlyAssumeBinOpBifurcation &&
|
|
(B->isRelationalOp() || B->isEqualityOp())) {
|
|
ExplodedNodeSet Tmp;
|
|
VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Tmp);
|
|
evalEagerlyAssumeBinOpBifurcation(Dst, Tmp, cast<Expr>(S));
|
|
}
|
|
else
|
|
VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
|
|
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::CXXOperatorCallExprClass: {
|
|
const CXXOperatorCallExpr *OCE = cast<CXXOperatorCallExpr>(S);
|
|
|
|
// For instance method operators, make sure the 'this' argument has a
|
|
// valid region.
|
|
const Decl *Callee = OCE->getCalleeDecl();
|
|
if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Callee)) {
|
|
if (MD->isInstance()) {
|
|
ProgramStateRef State = Pred->getState();
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
ProgramStateRef NewState =
|
|
createTemporaryRegionIfNeeded(State, LCtx, OCE->getArg(0));
|
|
if (NewState != State) {
|
|
Pred = Bldr.generateNode(OCE, Pred, NewState, /*Tag=*/nullptr,
|
|
ProgramPoint::PreStmtKind);
|
|
// Did we cache out?
|
|
if (!Pred)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// FALLTHROUGH
|
|
LLVM_FALLTHROUGH;
|
|
}
|
|
case Stmt::CallExprClass:
|
|
case Stmt::CXXMemberCallExprClass:
|
|
case Stmt::UserDefinedLiteralClass: {
|
|
Bldr.takeNodes(Pred);
|
|
VisitCallExpr(cast<CallExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::CXXCatchStmtClass: {
|
|
Bldr.takeNodes(Pred);
|
|
VisitCXXCatchStmt(cast<CXXCatchStmt>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::CXXTemporaryObjectExprClass:
|
|
case Stmt::CXXConstructExprClass: {
|
|
Bldr.takeNodes(Pred);
|
|
VisitCXXConstructExpr(cast<CXXConstructExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::CXXNewExprClass: {
|
|
Bldr.takeNodes(Pred);
|
|
|
|
ExplodedNodeSet PreVisit;
|
|
getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this);
|
|
|
|
ExplodedNodeSet PostVisit;
|
|
for (ExplodedNodeSet::iterator i = PreVisit.begin(),
|
|
e = PreVisit.end(); i != e ; ++i) {
|
|
VisitCXXNewExpr(cast<CXXNewExpr>(S), *i, PostVisit);
|
|
}
|
|
|
|
getCheckerManager().runCheckersForPostStmt(Dst, PostVisit, S, *this);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::CXXDeleteExprClass: {
|
|
Bldr.takeNodes(Pred);
|
|
ExplodedNodeSet PreVisit;
|
|
const CXXDeleteExpr *CDE = cast<CXXDeleteExpr>(S);
|
|
getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this);
|
|
|
|
for (ExplodedNodeSet::iterator i = PreVisit.begin(),
|
|
e = PreVisit.end(); i != e ; ++i)
|
|
VisitCXXDeleteExpr(CDE, *i, Dst);
|
|
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
// FIXME: ChooseExpr is really a constant. We need to fix
|
|
// the CFG do not model them as explicit control-flow.
|
|
|
|
case Stmt::ChooseExprClass: { // __builtin_choose_expr
|
|
Bldr.takeNodes(Pred);
|
|
const ChooseExpr *C = cast<ChooseExpr>(S);
|
|
VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::CompoundAssignOperatorClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::CompoundLiteralExprClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitCompoundLiteralExpr(cast<CompoundLiteralExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::BinaryConditionalOperatorClass:
|
|
case Stmt::ConditionalOperatorClass: { // '?' operator
|
|
Bldr.takeNodes(Pred);
|
|
const AbstractConditionalOperator *C
|
|
= cast<AbstractConditionalOperator>(S);
|
|
VisitGuardedExpr(C, C->getTrueExpr(), C->getFalseExpr(), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::CXXThisExprClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitCXXThisExpr(cast<CXXThisExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::DeclRefExprClass: {
|
|
Bldr.takeNodes(Pred);
|
|
const DeclRefExpr *DE = cast<DeclRefExpr>(S);
|
|
VisitCommonDeclRefExpr(DE, DE->getDecl(), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::DeclStmtClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitDeclStmt(cast<DeclStmt>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::ImplicitCastExprClass:
|
|
case Stmt::CStyleCastExprClass:
|
|
case Stmt::CXXStaticCastExprClass:
|
|
case Stmt::CXXDynamicCastExprClass:
|
|
case Stmt::CXXReinterpretCastExprClass:
|
|
case Stmt::CXXConstCastExprClass:
|
|
case Stmt::CXXFunctionalCastExprClass:
|
|
case Stmt::ObjCBridgedCastExprClass: {
|
|
Bldr.takeNodes(Pred);
|
|
const CastExpr *C = cast<CastExpr>(S);
|
|
ExplodedNodeSet dstExpr;
|
|
VisitCast(C, C->getSubExpr(), Pred, dstExpr);
|
|
|
|
// Handle the postvisit checks.
|
|
getCheckerManager().runCheckersForPostStmt(Dst, dstExpr, C, *this);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Expr::MaterializeTemporaryExprClass: {
|
|
Bldr.takeNodes(Pred);
|
|
const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(S);
|
|
ExplodedNodeSet dstPrevisit;
|
|
getCheckerManager().runCheckersForPreStmt(dstPrevisit, Pred, MTE, *this);
|
|
ExplodedNodeSet dstExpr;
|
|
for (ExplodedNodeSet::iterator i = dstPrevisit.begin(),
|
|
e = dstPrevisit.end(); i != e ; ++i) {
|
|
CreateCXXTemporaryObject(MTE, *i, dstExpr);
|
|
}
|
|
getCheckerManager().runCheckersForPostStmt(Dst, dstExpr, MTE, *this);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::InitListExprClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitInitListExpr(cast<InitListExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::MemberExprClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitMemberExpr(cast<MemberExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::AtomicExprClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitAtomicExpr(cast<AtomicExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::ObjCIvarRefExprClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitLvalObjCIvarRefExpr(cast<ObjCIvarRefExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::ObjCForCollectionStmtClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::ObjCMessageExprClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitObjCMessage(cast<ObjCMessageExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::ObjCAtThrowStmtClass:
|
|
case Stmt::CXXThrowExprClass:
|
|
// FIXME: This is not complete. We basically treat @throw as
|
|
// an abort.
|
|
Bldr.generateSink(S, Pred, Pred->getState());
|
|
break;
|
|
|
|
case Stmt::ReturnStmtClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitReturnStmt(cast<ReturnStmt>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::OffsetOfExprClass: {
|
|
Bldr.takeNodes(Pred);
|
|
ExplodedNodeSet PreVisit;
|
|
getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this);
|
|
|
|
ExplodedNodeSet PostVisit;
|
|
for (ExplodedNode *Node : PreVisit)
|
|
VisitOffsetOfExpr(cast<OffsetOfExpr>(S), Node, PostVisit);
|
|
|
|
getCheckerManager().runCheckersForPostStmt(Dst, PostVisit, S, *this);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
case Stmt::UnaryExprOrTypeTraitExprClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
|
|
Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::StmtExprClass: {
|
|
const StmtExpr *SE = cast<StmtExpr>(S);
|
|
|
|
if (SE->getSubStmt()->body_empty()) {
|
|
// Empty statement expression.
|
|
assert(SE->getType() == getContext().VoidTy
|
|
&& "Empty statement expression must have void type.");
|
|
break;
|
|
}
|
|
|
|
if (Expr *LastExpr = dyn_cast<Expr>(*SE->getSubStmt()->body_rbegin())) {
|
|
ProgramStateRef state = Pred->getState();
|
|
Bldr.generateNode(SE, Pred,
|
|
state->BindExpr(SE, Pred->getLocationContext(),
|
|
state->getSVal(LastExpr,
|
|
Pred->getLocationContext())));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Stmt::UnaryOperatorClass: {
|
|
Bldr.takeNodes(Pred);
|
|
const UnaryOperator *U = cast<UnaryOperator>(S);
|
|
if (AMgr.options.eagerlyAssumeBinOpBifurcation && (U->getOpcode() == UO_LNot)) {
|
|
ExplodedNodeSet Tmp;
|
|
VisitUnaryOperator(U, Pred, Tmp);
|
|
evalEagerlyAssumeBinOpBifurcation(Dst, Tmp, U);
|
|
}
|
|
else
|
|
VisitUnaryOperator(U, Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::PseudoObjectExprClass: {
|
|
Bldr.takeNodes(Pred);
|
|
ProgramStateRef state = Pred->getState();
|
|
const PseudoObjectExpr *PE = cast<PseudoObjectExpr>(S);
|
|
if (const Expr *Result = PE->getResultExpr()) {
|
|
SVal V = state->getSVal(Result, Pred->getLocationContext());
|
|
Bldr.generateNode(S, Pred,
|
|
state->BindExpr(S, Pred->getLocationContext(), V));
|
|
}
|
|
else
|
|
Bldr.generateNode(S, Pred,
|
|
state->BindExpr(S, Pred->getLocationContext(),
|
|
UnknownVal()));
|
|
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool ExprEngine::replayWithoutInlining(ExplodedNode *N,
|
|
const LocationContext *CalleeLC) {
|
|
const StackFrameContext *CalleeSF = CalleeLC->getCurrentStackFrame();
|
|
const StackFrameContext *CallerSF = CalleeSF->getParent()->getCurrentStackFrame();
|
|
assert(CalleeSF && CallerSF);
|
|
ExplodedNode *BeforeProcessingCall = nullptr;
|
|
const Stmt *CE = CalleeSF->getCallSite();
|
|
|
|
// Find the first node before we started processing the call expression.
|
|
while (N) {
|
|
ProgramPoint L = N->getLocation();
|
|
BeforeProcessingCall = N;
|
|
N = N->pred_empty() ? nullptr : *(N->pred_begin());
|
|
|
|
// Skip the nodes corresponding to the inlined code.
|
|
if (L.getLocationContext()->getCurrentStackFrame() != CallerSF)
|
|
continue;
|
|
// We reached the caller. Find the node right before we started
|
|
// processing the call.
|
|
if (L.isPurgeKind())
|
|
continue;
|
|
if (L.getAs<PreImplicitCall>())
|
|
continue;
|
|
if (L.getAs<CallEnter>())
|
|
continue;
|
|
if (Optional<StmtPoint> SP = L.getAs<StmtPoint>())
|
|
if (SP->getStmt() == CE)
|
|
continue;
|
|
break;
|
|
}
|
|
|
|
if (!BeforeProcessingCall)
|
|
return false;
|
|
|
|
// TODO: Clean up the unneeded nodes.
|
|
|
|
// Build an Epsilon node from which we will restart the analyzes.
|
|
// Note that CE is permitted to be NULL!
|
|
ProgramPoint NewNodeLoc =
|
|
EpsilonPoint(BeforeProcessingCall->getLocationContext(), CE);
|
|
// Add the special flag to GDM to signal retrying with no inlining.
|
|
// Note, changing the state ensures that we are not going to cache out.
|
|
ProgramStateRef NewNodeState = BeforeProcessingCall->getState();
|
|
NewNodeState =
|
|
NewNodeState->set<ReplayWithoutInlining>(const_cast<Stmt *>(CE));
|
|
|
|
// Make the new node a successor of BeforeProcessingCall.
|
|
bool IsNew = false;
|
|
ExplodedNode *NewNode = G.getNode(NewNodeLoc, NewNodeState, false, &IsNew);
|
|
// We cached out at this point. Caching out is common due to us backtracking
|
|
// from the inlined function, which might spawn several paths.
|
|
if (!IsNew)
|
|
return true;
|
|
|
|
NewNode->addPredecessor(BeforeProcessingCall, G);
|
|
|
|
// Add the new node to the work list.
|
|
Engine.enqueueStmtNode(NewNode, CalleeSF->getCallSiteBlock(),
|
|
CalleeSF->getIndex());
|
|
NumTimesRetriedWithoutInlining++;
|
|
return true;
|
|
}
|
|
|
|
/// Block entrance. (Update counters).
|
|
void ExprEngine::processCFGBlockEntrance(const BlockEdge &L,
|
|
NodeBuilderWithSinks &nodeBuilder,
|
|
ExplodedNode *Pred) {
|
|
PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext());
|
|
// If we reach a loop which has a known bound (and meets
|
|
// other constraints) then consider completely unrolling it.
|
|
if(AMgr.options.shouldUnrollLoops()) {
|
|
unsigned maxBlockVisitOnPath = AMgr.options.maxBlockVisitOnPath;
|
|
const Stmt *Term = nodeBuilder.getContext().getBlock()->getTerminator();
|
|
if (Term) {
|
|
ProgramStateRef NewState = updateLoopStack(Term, AMgr.getASTContext(),
|
|
Pred, maxBlockVisitOnPath);
|
|
if (NewState != Pred->getState()) {
|
|
ExplodedNode *UpdatedNode = nodeBuilder.generateNode(NewState, Pred);
|
|
if (!UpdatedNode)
|
|
return;
|
|
Pred = UpdatedNode;
|
|
}
|
|
}
|
|
// Is we are inside an unrolled loop then no need the check the counters.
|
|
if(isUnrolledState(Pred->getState()))
|
|
return;
|
|
}
|
|
|
|
// If this block is terminated by a loop and it has already been visited the
|
|
// maximum number of times, widen the loop.
|
|
unsigned int BlockCount = nodeBuilder.getContext().blockCount();
|
|
if (BlockCount == AMgr.options.maxBlockVisitOnPath - 1 &&
|
|
AMgr.options.shouldWidenLoops()) {
|
|
const Stmt *Term = nodeBuilder.getContext().getBlock()->getTerminator();
|
|
if (!(Term &&
|
|
(isa<ForStmt>(Term) || isa<WhileStmt>(Term) || isa<DoStmt>(Term))))
|
|
return;
|
|
// Widen.
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
ProgramStateRef WidenedState =
|
|
getWidenedLoopState(Pred->getState(), LCtx, BlockCount, Term);
|
|
nodeBuilder.generateNode(WidenedState, Pred);
|
|
return;
|
|
}
|
|
|
|
// FIXME: Refactor this into a checker.
|
|
if (BlockCount >= AMgr.options.maxBlockVisitOnPath) {
|
|
static SimpleProgramPointTag tag(TagProviderName, "Block count exceeded");
|
|
const ExplodedNode *Sink =
|
|
nodeBuilder.generateSink(Pred->getState(), Pred, &tag);
|
|
|
|
// Check if we stopped at the top level function or not.
|
|
// Root node should have the location context of the top most function.
|
|
const LocationContext *CalleeLC = Pred->getLocation().getLocationContext();
|
|
const LocationContext *CalleeSF = CalleeLC->getCurrentStackFrame();
|
|
const LocationContext *RootLC =
|
|
(*G.roots_begin())->getLocation().getLocationContext();
|
|
if (RootLC->getCurrentStackFrame() != CalleeSF) {
|
|
Engine.FunctionSummaries->markReachedMaxBlockCount(CalleeSF->getDecl());
|
|
|
|
// Re-run the call evaluation without inlining it, by storing the
|
|
// no-inlining policy in the state and enqueuing the new work item on
|
|
// the list. Replay should almost never fail. Use the stats to catch it
|
|
// if it does.
|
|
if ((!AMgr.options.NoRetryExhausted &&
|
|
replayWithoutInlining(Pred, CalleeLC)))
|
|
return;
|
|
NumMaxBlockCountReachedInInlined++;
|
|
} else
|
|
NumMaxBlockCountReached++;
|
|
|
|
// Make sink nodes as exhausted(for stats) only if retry failed.
|
|
Engine.blocksExhausted.push_back(std::make_pair(L, Sink));
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Branch processing.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// RecoverCastedSymbol - A helper function for ProcessBranch that is used
|
|
/// to try to recover some path-sensitivity for casts of symbolic
|
|
/// integers that promote their values (which are currently not tracked well).
|
|
/// This function returns the SVal bound to Condition->IgnoreCasts if all the
|
|
// cast(s) did was sign-extend the original value.
|
|
static SVal RecoverCastedSymbol(ProgramStateManager& StateMgr,
|
|
ProgramStateRef state,
|
|
const Stmt *Condition,
|
|
const LocationContext *LCtx,
|
|
ASTContext &Ctx) {
|
|
|
|
const Expr *Ex = dyn_cast<Expr>(Condition);
|
|
if (!Ex)
|
|
return UnknownVal();
|
|
|
|
uint64_t bits = 0;
|
|
bool bitsInit = false;
|
|
|
|
while (const CastExpr *CE = dyn_cast<CastExpr>(Ex)) {
|
|
QualType T = CE->getType();
|
|
|
|
if (!T->isIntegralOrEnumerationType())
|
|
return UnknownVal();
|
|
|
|
uint64_t newBits = Ctx.getTypeSize(T);
|
|
if (!bitsInit || newBits < bits) {
|
|
bitsInit = true;
|
|
bits = newBits;
|
|
}
|
|
|
|
Ex = CE->getSubExpr();
|
|
}
|
|
|
|
// We reached a non-cast. Is it a symbolic value?
|
|
QualType T = Ex->getType();
|
|
|
|
if (!bitsInit || !T->isIntegralOrEnumerationType() ||
|
|
Ctx.getTypeSize(T) > bits)
|
|
return UnknownVal();
|
|
|
|
return state->getSVal(Ex, LCtx);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
static const Stmt *getRightmostLeaf(const Stmt *Condition) {
|
|
while (Condition) {
|
|
const BinaryOperator *BO = dyn_cast<BinaryOperator>(Condition);
|
|
if (!BO || !BO->isLogicalOp()) {
|
|
return Condition;
|
|
}
|
|
Condition = BO->getRHS()->IgnoreParens();
|
|
}
|
|
return nullptr;
|
|
}
|
|
#endif
|
|
|
|
// Returns the condition the branch at the end of 'B' depends on and whose value
|
|
// has been evaluated within 'B'.
|
|
// In most cases, the terminator condition of 'B' will be evaluated fully in
|
|
// the last statement of 'B'; in those cases, the resolved condition is the
|
|
// given 'Condition'.
|
|
// If the condition of the branch is a logical binary operator tree, the CFG is
|
|
// optimized: in that case, we know that the expression formed by all but the
|
|
// rightmost leaf of the logical binary operator tree must be true, and thus
|
|
// the branch condition is at this point equivalent to the truth value of that
|
|
// rightmost leaf; the CFG block thus only evaluates this rightmost leaf
|
|
// expression in its final statement. As the full condition in that case was
|
|
// not evaluated, and is thus not in the SVal cache, we need to use that leaf
|
|
// expression to evaluate the truth value of the condition in the current state
|
|
// space.
|
|
static const Stmt *ResolveCondition(const Stmt *Condition,
|
|
const CFGBlock *B) {
|
|
if (const Expr *Ex = dyn_cast<Expr>(Condition))
|
|
Condition = Ex->IgnoreParens();
|
|
|
|
const BinaryOperator *BO = dyn_cast<BinaryOperator>(Condition);
|
|
if (!BO || !BO->isLogicalOp())
|
|
return Condition;
|
|
|
|
assert(!B->getTerminator().isTemporaryDtorsBranch() &&
|
|
"Temporary destructor branches handled by processBindTemporary.");
|
|
|
|
// For logical operations, we still have the case where some branches
|
|
// use the traditional "merge" approach and others sink the branch
|
|
// directly into the basic blocks representing the logical operation.
|
|
// We need to distinguish between those two cases here.
|
|
|
|
// The invariants are still shifting, but it is possible that the
|
|
// last element in a CFGBlock is not a CFGStmt. Look for the last
|
|
// CFGStmt as the value of the condition.
|
|
CFGBlock::const_reverse_iterator I = B->rbegin(), E = B->rend();
|
|
for (; I != E; ++I) {
|
|
CFGElement Elem = *I;
|
|
Optional<CFGStmt> CS = Elem.getAs<CFGStmt>();
|
|
if (!CS)
|
|
continue;
|
|
const Stmt *LastStmt = CS->getStmt();
|
|
assert(LastStmt == Condition || LastStmt == getRightmostLeaf(Condition));
|
|
return LastStmt;
|
|
}
|
|
llvm_unreachable("could not resolve condition");
|
|
}
|
|
|
|
void ExprEngine::processBranch(const Stmt *Condition, const Stmt *Term,
|
|
NodeBuilderContext& BldCtx,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst,
|
|
const CFGBlock *DstT,
|
|
const CFGBlock *DstF) {
|
|
assert((!Condition || !isa<CXXBindTemporaryExpr>(Condition)) &&
|
|
"CXXBindTemporaryExprs are handled by processBindTemporary.");
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
PrettyStackTraceLocationContext StackCrashInfo(LCtx);
|
|
currBldrCtx = &BldCtx;
|
|
|
|
// Check for NULL conditions; e.g. "for(;;)"
|
|
if (!Condition) {
|
|
BranchNodeBuilder NullCondBldr(Pred, Dst, BldCtx, DstT, DstF);
|
|
NullCondBldr.markInfeasible(false);
|
|
NullCondBldr.generateNode(Pred->getState(), true, Pred);
|
|
return;
|
|
}
|
|
|
|
if (const Expr *Ex = dyn_cast<Expr>(Condition))
|
|
Condition = Ex->IgnoreParens();
|
|
|
|
Condition = ResolveCondition(Condition, BldCtx.getBlock());
|
|
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
|
|
Condition->getLocStart(),
|
|
"Error evaluating branch");
|
|
|
|
ExplodedNodeSet CheckersOutSet;
|
|
getCheckerManager().runCheckersForBranchCondition(Condition, CheckersOutSet,
|
|
Pred, *this);
|
|
// We generated only sinks.
|
|
if (CheckersOutSet.empty())
|
|
return;
|
|
|
|
BranchNodeBuilder builder(CheckersOutSet, Dst, BldCtx, DstT, DstF);
|
|
for (NodeBuilder::iterator I = CheckersOutSet.begin(),
|
|
E = CheckersOutSet.end(); E != I; ++I) {
|
|
ExplodedNode *PredI = *I;
|
|
|
|
if (PredI->isSink())
|
|
continue;
|
|
|
|
ProgramStateRef PrevState = PredI->getState();
|
|
SVal X = PrevState->getSVal(Condition, PredI->getLocationContext());
|
|
|
|
if (X.isUnknownOrUndef()) {
|
|
// Give it a chance to recover from unknown.
|
|
if (const Expr *Ex = dyn_cast<Expr>(Condition)) {
|
|
if (Ex->getType()->isIntegralOrEnumerationType()) {
|
|
// Try to recover some path-sensitivity. Right now casts of symbolic
|
|
// integers that promote their values are currently not tracked well.
|
|
// If 'Condition' is such an expression, try and recover the
|
|
// underlying value and use that instead.
|
|
SVal recovered = RecoverCastedSymbol(getStateManager(),
|
|
PrevState, Condition,
|
|
PredI->getLocationContext(),
|
|
getContext());
|
|
|
|
if (!recovered.isUnknown()) {
|
|
X = recovered;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the condition is still unknown, give up.
|
|
if (X.isUnknownOrUndef()) {
|
|
builder.generateNode(PrevState, true, PredI);
|
|
builder.generateNode(PrevState, false, PredI);
|
|
continue;
|
|
}
|
|
|
|
DefinedSVal V = X.castAs<DefinedSVal>();
|
|
|
|
ProgramStateRef StTrue, StFalse;
|
|
std::tie(StTrue, StFalse) = PrevState->assume(V);
|
|
|
|
// Process the true branch.
|
|
if (builder.isFeasible(true)) {
|
|
if (StTrue)
|
|
builder.generateNode(StTrue, true, PredI);
|
|
else
|
|
builder.markInfeasible(true);
|
|
}
|
|
|
|
// Process the false branch.
|
|
if (builder.isFeasible(false)) {
|
|
if (StFalse)
|
|
builder.generateNode(StFalse, false, PredI);
|
|
else
|
|
builder.markInfeasible(false);
|
|
}
|
|
}
|
|
currBldrCtx = nullptr;
|
|
}
|
|
|
|
/// The GDM component containing the set of global variables which have been
|
|
/// previously initialized with explicit initializers.
|
|
REGISTER_TRAIT_WITH_PROGRAMSTATE(InitializedGlobalsSet,
|
|
llvm::ImmutableSet<const VarDecl *>)
|
|
|
|
void ExprEngine::processStaticInitializer(const DeclStmt *DS,
|
|
NodeBuilderContext &BuilderCtx,
|
|
ExplodedNode *Pred,
|
|
clang::ento::ExplodedNodeSet &Dst,
|
|
const CFGBlock *DstT,
|
|
const CFGBlock *DstF) {
|
|
PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext());
|
|
currBldrCtx = &BuilderCtx;
|
|
|
|
const VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
|
|
ProgramStateRef state = Pred->getState();
|
|
bool initHasRun = state->contains<InitializedGlobalsSet>(VD);
|
|
BranchNodeBuilder builder(Pred, Dst, BuilderCtx, DstT, DstF);
|
|
|
|
if (!initHasRun) {
|
|
state = state->add<InitializedGlobalsSet>(VD);
|
|
}
|
|
|
|
builder.generateNode(state, initHasRun, Pred);
|
|
builder.markInfeasible(!initHasRun);
|
|
|
|
currBldrCtx = nullptr;
|
|
}
|
|
|
|
/// processIndirectGoto - Called by CoreEngine. Used to generate successor
|
|
/// nodes by processing the 'effects' of a computed goto jump.
|
|
void ExprEngine::processIndirectGoto(IndirectGotoNodeBuilder &builder) {
|
|
|
|
ProgramStateRef state = builder.getState();
|
|
SVal V = state->getSVal(builder.getTarget(), builder.getLocationContext());
|
|
|
|
// Three possibilities:
|
|
//
|
|
// (1) We know the computed label.
|
|
// (2) The label is NULL (or some other constant), or Undefined.
|
|
// (3) We have no clue about the label. Dispatch to all targets.
|
|
//
|
|
|
|
typedef IndirectGotoNodeBuilder::iterator iterator;
|
|
|
|
if (Optional<loc::GotoLabel> LV = V.getAs<loc::GotoLabel>()) {
|
|
const LabelDecl *L = LV->getLabel();
|
|
|
|
for (iterator I = builder.begin(), E = builder.end(); I != E; ++I) {
|
|
if (I.getLabel() == L) {
|
|
builder.generateNode(I, state);
|
|
return;
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("No block with label.");
|
|
}
|
|
|
|
if (V.getAs<loc::ConcreteInt>() || V.getAs<UndefinedVal>()) {
|
|
// Dispatch to the first target and mark it as a sink.
|
|
//ExplodedNode* N = builder.generateNode(builder.begin(), state, true);
|
|
// FIXME: add checker visit.
|
|
// UndefBranches.insert(N);
|
|
return;
|
|
}
|
|
|
|
// This is really a catch-all. We don't support symbolics yet.
|
|
// FIXME: Implement dispatch for symbolic pointers.
|
|
|
|
for (iterator I=builder.begin(), E=builder.end(); I != E; ++I)
|
|
builder.generateNode(I, state);
|
|
}
|
|
|
|
void ExprEngine::processBeginOfFunction(NodeBuilderContext &BC,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst,
|
|
const BlockEdge &L) {
|
|
SaveAndRestore<const NodeBuilderContext *> NodeContextRAII(currBldrCtx, &BC);
|
|
getCheckerManager().runCheckersForBeginFunction(Dst, L, Pred, *this);
|
|
}
|
|
|
|
/// ProcessEndPath - Called by CoreEngine. Used to generate end-of-path
|
|
/// nodes when the control reaches the end of a function.
|
|
void ExprEngine::processEndOfFunction(NodeBuilderContext& BC,
|
|
ExplodedNode *Pred,
|
|
const ReturnStmt *RS) {
|
|
// See if we have any stale C++ allocator values.
|
|
assert(areCXXNewAllocatorValuesClear(Pred->getState(),
|
|
Pred->getLocationContext(),
|
|
Pred->getStackFrame()->getParent()));
|
|
|
|
// FIXME: We currently assert that temporaries are clear, as lifetime extended
|
|
// temporaries are not always modelled correctly. In some cases when we
|
|
// materialize the temporary, we do createTemporaryRegionIfNeeded(), and
|
|
// the region changes, and also the respective destructor becomes automatic
|
|
// from temporary. So for now clean up the state manually before asserting.
|
|
// Ideally, the code above the assertion should go away, but the assertion
|
|
// should remain.
|
|
{
|
|
ExplodedNodeSet CleanUpTemporaries;
|
|
NodeBuilder Bldr(Pred, CleanUpTemporaries, BC);
|
|
ProgramStateRef State = Pred->getState();
|
|
const LocationContext *FromLC = Pred->getLocationContext();
|
|
const LocationContext *ToLC = FromLC->getCurrentStackFrame()->getParent();
|
|
const LocationContext *LC = FromLC;
|
|
while (LC != ToLC) {
|
|
assert(LC && "ToLC must be a parent of FromLC!");
|
|
for (auto I : State->get<InitializedTemporaries>())
|
|
if (I.first.second == LC)
|
|
State = State->remove<InitializedTemporaries>(I.first);
|
|
|
|
LC = LC->getParent();
|
|
}
|
|
if (State != Pred->getState()) {
|
|
Bldr.generateNode(Pred->getLocation(), State, Pred);
|
|
assert(CleanUpTemporaries.size() <= 1);
|
|
Pred = CleanUpTemporaries.empty() ? Pred : *CleanUpTemporaries.begin();
|
|
}
|
|
}
|
|
assert(areInitializedTemporariesClear(Pred->getState(),
|
|
Pred->getLocationContext(),
|
|
Pred->getStackFrame()->getParent()));
|
|
assert(areTemporaryMaterializationsClear(Pred->getState(),
|
|
Pred->getLocationContext(),
|
|
Pred->getStackFrame()->getParent()));
|
|
|
|
PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext());
|
|
StateMgr.EndPath(Pred->getState());
|
|
|
|
ExplodedNodeSet Dst;
|
|
if (Pred->getLocationContext()->inTopFrame()) {
|
|
// Remove dead symbols.
|
|
ExplodedNodeSet AfterRemovedDead;
|
|
removeDeadOnEndOfFunction(BC, Pred, AfterRemovedDead);
|
|
|
|
// Notify checkers.
|
|
for (ExplodedNodeSet::iterator I = AfterRemovedDead.begin(),
|
|
E = AfterRemovedDead.end(); I != E; ++I) {
|
|
getCheckerManager().runCheckersForEndFunction(BC, Dst, *I, *this);
|
|
}
|
|
} else {
|
|
getCheckerManager().runCheckersForEndFunction(BC, Dst, Pred, *this);
|
|
}
|
|
|
|
Engine.enqueueEndOfFunction(Dst, RS);
|
|
}
|
|
|
|
/// ProcessSwitch - Called by CoreEngine. Used to generate successor
|
|
/// nodes by processing the 'effects' of a switch statement.
|
|
void ExprEngine::processSwitch(SwitchNodeBuilder& builder) {
|
|
typedef SwitchNodeBuilder::iterator iterator;
|
|
ProgramStateRef state = builder.getState();
|
|
const Expr *CondE = builder.getCondition();
|
|
SVal CondV_untested = state->getSVal(CondE, builder.getLocationContext());
|
|
|
|
if (CondV_untested.isUndef()) {
|
|
//ExplodedNode* N = builder.generateDefaultCaseNode(state, true);
|
|
// FIXME: add checker
|
|
//UndefBranches.insert(N);
|
|
|
|
return;
|
|
}
|
|
DefinedOrUnknownSVal CondV = CondV_untested.castAs<DefinedOrUnknownSVal>();
|
|
|
|
ProgramStateRef DefaultSt = state;
|
|
|
|
iterator I = builder.begin(), EI = builder.end();
|
|
bool defaultIsFeasible = I == EI;
|
|
|
|
for ( ; I != EI; ++I) {
|
|
// Successor may be pruned out during CFG construction.
|
|
if (!I.getBlock())
|
|
continue;
|
|
|
|
const CaseStmt *Case = I.getCase();
|
|
|
|
// Evaluate the LHS of the case value.
|
|
llvm::APSInt V1 = Case->getLHS()->EvaluateKnownConstInt(getContext());
|
|
assert(V1.getBitWidth() == getContext().getIntWidth(CondE->getType()));
|
|
|
|
// Get the RHS of the case, if it exists.
|
|
llvm::APSInt V2;
|
|
if (const Expr *E = Case->getRHS())
|
|
V2 = E->EvaluateKnownConstInt(getContext());
|
|
else
|
|
V2 = V1;
|
|
|
|
ProgramStateRef StateCase;
|
|
if (Optional<NonLoc> NL = CondV.getAs<NonLoc>())
|
|
std::tie(StateCase, DefaultSt) =
|
|
DefaultSt->assumeInclusiveRange(*NL, V1, V2);
|
|
else // UnknownVal
|
|
StateCase = DefaultSt;
|
|
|
|
if (StateCase)
|
|
builder.generateCaseStmtNode(I, StateCase);
|
|
|
|
// Now "assume" that the case doesn't match. Add this state
|
|
// to the default state (if it is feasible).
|
|
if (DefaultSt)
|
|
defaultIsFeasible = true;
|
|
else {
|
|
defaultIsFeasible = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!defaultIsFeasible)
|
|
return;
|
|
|
|
// If we have switch(enum value), the default branch is not
|
|
// feasible if all of the enum constants not covered by 'case:' statements
|
|
// are not feasible values for the switch condition.
|
|
//
|
|
// Note that this isn't as accurate as it could be. Even if there isn't
|
|
// a case for a particular enum value as long as that enum value isn't
|
|
// feasible then it shouldn't be considered for making 'default:' reachable.
|
|
const SwitchStmt *SS = builder.getSwitch();
|
|
const Expr *CondExpr = SS->getCond()->IgnoreParenImpCasts();
|
|
if (CondExpr->getType()->getAs<EnumType>()) {
|
|
if (SS->isAllEnumCasesCovered())
|
|
return;
|
|
}
|
|
|
|
builder.generateDefaultCaseNode(DefaultSt);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Transfer functions: Loads and stores.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ExprEngine::VisitCommonDeclRefExpr(const Expr *Ex, const NamedDecl *D,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
|
|
|
|
ProgramStateRef state = Pred->getState();
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
|
|
// C permits "extern void v", and if you cast the address to a valid type,
|
|
// you can even do things with it. We simply pretend
|
|
assert(Ex->isGLValue() || VD->getType()->isVoidType());
|
|
const LocationContext *LocCtxt = Pred->getLocationContext();
|
|
const Decl *D = LocCtxt->getDecl();
|
|
const auto *MD = D ? dyn_cast<CXXMethodDecl>(D) : nullptr;
|
|
const auto *DeclRefEx = dyn_cast<DeclRefExpr>(Ex);
|
|
SVal V;
|
|
bool IsReference;
|
|
if (AMgr.options.shouldInlineLambdas() && DeclRefEx &&
|
|
DeclRefEx->refersToEnclosingVariableOrCapture() && MD &&
|
|
MD->getParent()->isLambda()) {
|
|
// Lookup the field of the lambda.
|
|
const CXXRecordDecl *CXXRec = MD->getParent();
|
|
llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
|
|
FieldDecl *LambdaThisCaptureField;
|
|
CXXRec->getCaptureFields(LambdaCaptureFields, LambdaThisCaptureField);
|
|
const FieldDecl *FD = LambdaCaptureFields[VD];
|
|
if (!FD) {
|
|
// When a constant is captured, sometimes no corresponding field is
|
|
// created in the lambda object.
|
|
assert(VD->getType().isConstQualified());
|
|
V = state->getLValue(VD, LocCtxt);
|
|
IsReference = false;
|
|
} else {
|
|
Loc CXXThis =
|
|
svalBuilder.getCXXThis(MD, LocCtxt->getCurrentStackFrame());
|
|
SVal CXXThisVal = state->getSVal(CXXThis);
|
|
V = state->getLValue(FD, CXXThisVal);
|
|
IsReference = FD->getType()->isReferenceType();
|
|
}
|
|
} else {
|
|
V = state->getLValue(VD, LocCtxt);
|
|
IsReference = VD->getType()->isReferenceType();
|
|
}
|
|
|
|
// For references, the 'lvalue' is the pointer address stored in the
|
|
// reference region.
|
|
if (IsReference) {
|
|
if (const MemRegion *R = V.getAsRegion())
|
|
V = state->getSVal(R);
|
|
else
|
|
V = UnknownVal();
|
|
}
|
|
|
|
Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), nullptr,
|
|
ProgramPoint::PostLValueKind);
|
|
return;
|
|
}
|
|
if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D)) {
|
|
assert(!Ex->isGLValue());
|
|
SVal V = svalBuilder.makeIntVal(ED->getInitVal());
|
|
Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V));
|
|
return;
|
|
}
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
SVal V = svalBuilder.getFunctionPointer(FD);
|
|
Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), nullptr,
|
|
ProgramPoint::PostLValueKind);
|
|
return;
|
|
}
|
|
if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) {
|
|
// FIXME: Compute lvalue of field pointers-to-member.
|
|
// Right now we just use a non-null void pointer, so that it gives proper
|
|
// results in boolean contexts.
|
|
// FIXME: Maybe delegate this to the surrounding operator&.
|
|
// Note how this expression is lvalue, however pointer-to-member is NonLoc.
|
|
SVal V = svalBuilder.conjureSymbolVal(Ex, LCtx, getContext().VoidPtrTy,
|
|
currBldrCtx->blockCount());
|
|
state = state->assume(V.castAs<DefinedOrUnknownSVal>(), true);
|
|
Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), nullptr,
|
|
ProgramPoint::PostLValueKind);
|
|
return;
|
|
}
|
|
|
|
llvm_unreachable("Support for this Decl not implemented.");
|
|
}
|
|
|
|
/// VisitArraySubscriptExpr - Transfer function for array accesses
|
|
void ExprEngine::VisitArraySubscriptExpr(const ArraySubscriptExpr *A,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst){
|
|
const Expr *Base = A->getBase()->IgnoreParens();
|
|
const Expr *Idx = A->getIdx()->IgnoreParens();
|
|
|
|
ExplodedNodeSet CheckerPreStmt;
|
|
getCheckerManager().runCheckersForPreStmt(CheckerPreStmt, Pred, A, *this);
|
|
|
|
ExplodedNodeSet EvalSet;
|
|
StmtNodeBuilder Bldr(CheckerPreStmt, EvalSet, *currBldrCtx);
|
|
|
|
bool IsVectorType = A->getBase()->getType()->isVectorType();
|
|
|
|
// The "like" case is for situations where C standard prohibits the type to
|
|
// be an lvalue, e.g. taking the address of a subscript of an expression of
|
|
// type "void *".
|
|
bool IsGLValueLike = A->isGLValue() ||
|
|
(A->getType().isCForbiddenLValueType() && !AMgr.getLangOpts().CPlusPlus);
|
|
|
|
for (auto *Node : CheckerPreStmt) {
|
|
const LocationContext *LCtx = Node->getLocationContext();
|
|
ProgramStateRef state = Node->getState();
|
|
|
|
if (IsGLValueLike) {
|
|
QualType T = A->getType();
|
|
|
|
// One of the forbidden LValue types! We still need to have sensible
|
|
// symbolic locations to represent this stuff. Note that arithmetic on
|
|
// void pointers is a GCC extension.
|
|
if (T->isVoidType())
|
|
T = getContext().CharTy;
|
|
|
|
SVal V = state->getLValue(T,
|
|
state->getSVal(Idx, LCtx),
|
|
state->getSVal(Base, LCtx));
|
|
Bldr.generateNode(A, Node, state->BindExpr(A, LCtx, V), nullptr,
|
|
ProgramPoint::PostLValueKind);
|
|
} else if (IsVectorType) {
|
|
// FIXME: non-glvalue vector reads are not modelled.
|
|
Bldr.generateNode(A, Node, state, nullptr);
|
|
} else {
|
|
llvm_unreachable("Array subscript should be an lValue when not \
|
|
a vector and not a forbidden lvalue type");
|
|
}
|
|
}
|
|
|
|
getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, A, *this);
|
|
}
|
|
|
|
/// VisitMemberExpr - Transfer function for member expressions.
|
|
void ExprEngine::VisitMemberExpr(const MemberExpr *M, ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
|
|
// FIXME: Prechecks eventually go in ::Visit().
|
|
ExplodedNodeSet CheckedSet;
|
|
getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, M, *this);
|
|
|
|
ExplodedNodeSet EvalSet;
|
|
ValueDecl *Member = M->getMemberDecl();
|
|
|
|
// Handle static member variables and enum constants accessed via
|
|
// member syntax.
|
|
if (isa<VarDecl>(Member) || isa<EnumConstantDecl>(Member)) {
|
|
for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
|
|
I != E; ++I) {
|
|
VisitCommonDeclRefExpr(M, Member, *I, EvalSet);
|
|
}
|
|
} else {
|
|
StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
|
|
ExplodedNodeSet Tmp;
|
|
|
|
for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
|
|
I != E; ++I) {
|
|
ProgramStateRef state = (*I)->getState();
|
|
const LocationContext *LCtx = (*I)->getLocationContext();
|
|
Expr *BaseExpr = M->getBase();
|
|
|
|
// Handle C++ method calls.
|
|
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member)) {
|
|
if (MD->isInstance())
|
|
state = createTemporaryRegionIfNeeded(state, LCtx, BaseExpr);
|
|
|
|
SVal MDVal = svalBuilder.getFunctionPointer(MD);
|
|
state = state->BindExpr(M, LCtx, MDVal);
|
|
|
|
Bldr.generateNode(M, *I, state);
|
|
continue;
|
|
}
|
|
|
|
// Handle regular struct fields / member variables.
|
|
state = createTemporaryRegionIfNeeded(state, LCtx, BaseExpr);
|
|
SVal baseExprVal = state->getSVal(BaseExpr, LCtx);
|
|
|
|
FieldDecl *field = cast<FieldDecl>(Member);
|
|
SVal L = state->getLValue(field, baseExprVal);
|
|
|
|
if (M->isGLValue() || M->getType()->isArrayType()) {
|
|
// We special-case rvalues of array type because the analyzer cannot
|
|
// reason about them, since we expect all regions to be wrapped in Locs.
|
|
// We instead treat these as lvalues and assume that they will decay to
|
|
// pointers as soon as they are used.
|
|
if (!M->isGLValue()) {
|
|
assert(M->getType()->isArrayType());
|
|
const ImplicitCastExpr *PE =
|
|
dyn_cast<ImplicitCastExpr>((*I)->getParentMap().getParentIgnoreParens(M));
|
|
if (!PE || PE->getCastKind() != CK_ArrayToPointerDecay) {
|
|
llvm_unreachable("should always be wrapped in ArrayToPointerDecay");
|
|
}
|
|
}
|
|
|
|
if (field->getType()->isReferenceType()) {
|
|
if (const MemRegion *R = L.getAsRegion())
|
|
L = state->getSVal(R);
|
|
else
|
|
L = UnknownVal();
|
|
}
|
|
|
|
Bldr.generateNode(M, *I, state->BindExpr(M, LCtx, L), nullptr,
|
|
ProgramPoint::PostLValueKind);
|
|
} else {
|
|
Bldr.takeNodes(*I);
|
|
evalLoad(Tmp, M, M, *I, state, L);
|
|
Bldr.addNodes(Tmp);
|
|
}
|
|
}
|
|
}
|
|
|
|
getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, M, *this);
|
|
}
|
|
|
|
void ExprEngine::VisitAtomicExpr(const AtomicExpr *AE, ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
ExplodedNodeSet AfterPreSet;
|
|
getCheckerManager().runCheckersForPreStmt(AfterPreSet, Pred, AE, *this);
|
|
|
|
// For now, treat all the arguments to C11 atomics as escaping.
|
|
// FIXME: Ideally we should model the behavior of the atomics precisely here.
|
|
|
|
ExplodedNodeSet AfterInvalidateSet;
|
|
StmtNodeBuilder Bldr(AfterPreSet, AfterInvalidateSet, *currBldrCtx);
|
|
|
|
for (ExplodedNodeSet::iterator I = AfterPreSet.begin(), E = AfterPreSet.end();
|
|
I != E; ++I) {
|
|
ProgramStateRef State = (*I)->getState();
|
|
const LocationContext *LCtx = (*I)->getLocationContext();
|
|
|
|
SmallVector<SVal, 8> ValuesToInvalidate;
|
|
for (unsigned SI = 0, Count = AE->getNumSubExprs(); SI != Count; SI++) {
|
|
const Expr *SubExpr = AE->getSubExprs()[SI];
|
|
SVal SubExprVal = State->getSVal(SubExpr, LCtx);
|
|
ValuesToInvalidate.push_back(SubExprVal);
|
|
}
|
|
|
|
State = State->invalidateRegions(ValuesToInvalidate, AE,
|
|
currBldrCtx->blockCount(),
|
|
LCtx,
|
|
/*CausedByPointerEscape*/true,
|
|
/*Symbols=*/nullptr);
|
|
|
|
SVal ResultVal = UnknownVal();
|
|
State = State->BindExpr(AE, LCtx, ResultVal);
|
|
Bldr.generateNode(AE, *I, State, nullptr,
|
|
ProgramPoint::PostStmtKind);
|
|
}
|
|
|
|
getCheckerManager().runCheckersForPostStmt(Dst, AfterInvalidateSet, AE, *this);
|
|
}
|
|
|
|
// A value escapes in three possible cases:
|
|
// (1) We are binding to something that is not a memory region.
|
|
// (2) We are binding to a MemrRegion that does not have stack storage.
|
|
// (3) We are binding to a MemRegion with stack storage that the store
|
|
// does not understand.
|
|
ProgramStateRef ExprEngine::processPointerEscapedOnBind(ProgramStateRef State,
|
|
SVal Loc,
|
|
SVal Val,
|
|
const LocationContext *LCtx) {
|
|
// Are we storing to something that causes the value to "escape"?
|
|
bool escapes = true;
|
|
|
|
// TODO: Move to StoreManager.
|
|
if (Optional<loc::MemRegionVal> regionLoc = Loc.getAs<loc::MemRegionVal>()) {
|
|
escapes = !regionLoc->getRegion()->hasStackStorage();
|
|
|
|
if (!escapes) {
|
|
// To test (3), generate a new state with the binding added. If it is
|
|
// the same state, then it escapes (since the store cannot represent
|
|
// the binding).
|
|
// Do this only if we know that the store is not supposed to generate the
|
|
// same state.
|
|
SVal StoredVal = State->getSVal(regionLoc->getRegion());
|
|
if (StoredVal != Val)
|
|
escapes = (State == (State->bindLoc(*regionLoc, Val, LCtx)));
|
|
}
|
|
}
|
|
|
|
// If our store can represent the binding and we aren't storing to something
|
|
// that doesn't have local storage then just return and have the simulation
|
|
// state continue as is.
|
|
if (!escapes)
|
|
return State;
|
|
|
|
// Otherwise, find all symbols referenced by 'val' that we are tracking
|
|
// and stop tracking them.
|
|
CollectReachableSymbolsCallback Scanner =
|
|
State->scanReachableSymbols<CollectReachableSymbolsCallback>(Val);
|
|
const InvalidatedSymbols &EscapedSymbols = Scanner.getSymbols();
|
|
State = getCheckerManager().runCheckersForPointerEscape(State,
|
|
EscapedSymbols,
|
|
/*CallEvent*/ nullptr,
|
|
PSK_EscapeOnBind,
|
|
nullptr);
|
|
|
|
return State;
|
|
}
|
|
|
|
ProgramStateRef
|
|
ExprEngine::notifyCheckersOfPointerEscape(ProgramStateRef State,
|
|
const InvalidatedSymbols *Invalidated,
|
|
ArrayRef<const MemRegion *> ExplicitRegions,
|
|
ArrayRef<const MemRegion *> Regions,
|
|
const CallEvent *Call,
|
|
RegionAndSymbolInvalidationTraits &ITraits) {
|
|
|
|
if (!Invalidated || Invalidated->empty())
|
|
return State;
|
|
|
|
if (!Call)
|
|
return getCheckerManager().runCheckersForPointerEscape(State,
|
|
*Invalidated,
|
|
nullptr,
|
|
PSK_EscapeOther,
|
|
&ITraits);
|
|
|
|
// If the symbols were invalidated by a call, we want to find out which ones
|
|
// were invalidated directly due to being arguments to the call.
|
|
InvalidatedSymbols SymbolsDirectlyInvalidated;
|
|
for (ArrayRef<const MemRegion *>::iterator I = ExplicitRegions.begin(),
|
|
E = ExplicitRegions.end(); I != E; ++I) {
|
|
if (const SymbolicRegion *R = (*I)->StripCasts()->getAs<SymbolicRegion>())
|
|
SymbolsDirectlyInvalidated.insert(R->getSymbol());
|
|
}
|
|
|
|
InvalidatedSymbols SymbolsIndirectlyInvalidated;
|
|
for (InvalidatedSymbols::const_iterator I=Invalidated->begin(),
|
|
E = Invalidated->end(); I!=E; ++I) {
|
|
SymbolRef sym = *I;
|
|
if (SymbolsDirectlyInvalidated.count(sym))
|
|
continue;
|
|
SymbolsIndirectlyInvalidated.insert(sym);
|
|
}
|
|
|
|
if (!SymbolsDirectlyInvalidated.empty())
|
|
State = getCheckerManager().runCheckersForPointerEscape(State,
|
|
SymbolsDirectlyInvalidated, Call, PSK_DirectEscapeOnCall, &ITraits);
|
|
|
|
// Notify about the symbols that get indirectly invalidated by the call.
|
|
if (!SymbolsIndirectlyInvalidated.empty())
|
|
State = getCheckerManager().runCheckersForPointerEscape(State,
|
|
SymbolsIndirectlyInvalidated, Call, PSK_IndirectEscapeOnCall, &ITraits);
|
|
|
|
return State;
|
|
}
|
|
|
|
/// evalBind - Handle the semantics of binding a value to a specific location.
|
|
/// This method is used by evalStore and (soon) VisitDeclStmt, and others.
|
|
void ExprEngine::evalBind(ExplodedNodeSet &Dst, const Stmt *StoreE,
|
|
ExplodedNode *Pred,
|
|
SVal location, SVal Val,
|
|
bool atDeclInit, const ProgramPoint *PP) {
|
|
|
|
const LocationContext *LC = Pred->getLocationContext();
|
|
PostStmt PS(StoreE, LC);
|
|
if (!PP)
|
|
PP = &PS;
|
|
|
|
// Do a previsit of the bind.
|
|
ExplodedNodeSet CheckedSet;
|
|
getCheckerManager().runCheckersForBind(CheckedSet, Pred, location, Val,
|
|
StoreE, *this, *PP);
|
|
|
|
StmtNodeBuilder Bldr(CheckedSet, Dst, *currBldrCtx);
|
|
|
|
// If the location is not a 'Loc', it will already be handled by
|
|
// the checkers. There is nothing left to do.
|
|
if (!location.getAs<Loc>()) {
|
|
const ProgramPoint L = PostStore(StoreE, LC, /*Loc*/nullptr,
|
|
/*tag*/nullptr);
|
|
ProgramStateRef state = Pred->getState();
|
|
state = processPointerEscapedOnBind(state, location, Val, LC);
|
|
Bldr.generateNode(L, state, Pred);
|
|
return;
|
|
}
|
|
|
|
for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
|
|
I!=E; ++I) {
|
|
ExplodedNode *PredI = *I;
|
|
ProgramStateRef state = PredI->getState();
|
|
|
|
state = processPointerEscapedOnBind(state, location, Val, LC);
|
|
|
|
// When binding the value, pass on the hint that this is a initialization.
|
|
// For initializations, we do not need to inform clients of region
|
|
// changes.
|
|
state = state->bindLoc(location.castAs<Loc>(),
|
|
Val, LC, /* notifyChanges = */ !atDeclInit);
|
|
|
|
const MemRegion *LocReg = nullptr;
|
|
if (Optional<loc::MemRegionVal> LocRegVal =
|
|
location.getAs<loc::MemRegionVal>()) {
|
|
LocReg = LocRegVal->getRegion();
|
|
}
|
|
|
|
const ProgramPoint L = PostStore(StoreE, LC, LocReg, nullptr);
|
|
Bldr.generateNode(L, state, PredI);
|
|
}
|
|
}
|
|
|
|
/// evalStore - Handle the semantics of a store via an assignment.
|
|
/// @param Dst The node set to store generated state nodes
|
|
/// @param AssignE The assignment expression if the store happens in an
|
|
/// assignment.
|
|
/// @param LocationE The location expression that is stored to.
|
|
/// @param state The current simulation state
|
|
/// @param location The location to store the value
|
|
/// @param Val The value to be stored
|
|
void ExprEngine::evalStore(ExplodedNodeSet &Dst, const Expr *AssignE,
|
|
const Expr *LocationE,
|
|
ExplodedNode *Pred,
|
|
ProgramStateRef state, SVal location, SVal Val,
|
|
const ProgramPointTag *tag) {
|
|
// Proceed with the store. We use AssignE as the anchor for the PostStore
|
|
// ProgramPoint if it is non-NULL, and LocationE otherwise.
|
|
const Expr *StoreE = AssignE ? AssignE : LocationE;
|
|
|
|
// Evaluate the location (checks for bad dereferences).
|
|
ExplodedNodeSet Tmp;
|
|
evalLocation(Tmp, AssignE, LocationE, Pred, state, location, tag, false);
|
|
|
|
if (Tmp.empty())
|
|
return;
|
|
|
|
if (location.isUndef())
|
|
return;
|
|
|
|
for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI)
|
|
evalBind(Dst, StoreE, *NI, location, Val, false);
|
|
}
|
|
|
|
void ExprEngine::evalLoad(ExplodedNodeSet &Dst,
|
|
const Expr *NodeEx,
|
|
const Expr *BoundEx,
|
|
ExplodedNode *Pred,
|
|
ProgramStateRef state,
|
|
SVal location,
|
|
const ProgramPointTag *tag,
|
|
QualType LoadTy)
|
|
{
|
|
assert(!location.getAs<NonLoc>() && "location cannot be a NonLoc.");
|
|
|
|
// Are we loading from a region? This actually results in two loads; one
|
|
// to fetch the address of the referenced value and one to fetch the
|
|
// referenced value.
|
|
if (const TypedValueRegion *TR =
|
|
dyn_cast_or_null<TypedValueRegion>(location.getAsRegion())) {
|
|
|
|
QualType ValTy = TR->getValueType();
|
|
if (const ReferenceType *RT = ValTy->getAs<ReferenceType>()) {
|
|
static SimpleProgramPointTag
|
|
loadReferenceTag(TagProviderName, "Load Reference");
|
|
ExplodedNodeSet Tmp;
|
|
evalLoadCommon(Tmp, NodeEx, BoundEx, Pred, state,
|
|
location, &loadReferenceTag,
|
|
getContext().getPointerType(RT->getPointeeType()));
|
|
|
|
// Perform the load from the referenced value.
|
|
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end() ; I!=E; ++I) {
|
|
state = (*I)->getState();
|
|
location = state->getSVal(BoundEx, (*I)->getLocationContext());
|
|
evalLoadCommon(Dst, NodeEx, BoundEx, *I, state, location, tag, LoadTy);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
evalLoadCommon(Dst, NodeEx, BoundEx, Pred, state, location, tag, LoadTy);
|
|
}
|
|
|
|
void ExprEngine::evalLoadCommon(ExplodedNodeSet &Dst,
|
|
const Expr *NodeEx,
|
|
const Expr *BoundEx,
|
|
ExplodedNode *Pred,
|
|
ProgramStateRef state,
|
|
SVal location,
|
|
const ProgramPointTag *tag,
|
|
QualType LoadTy) {
|
|
assert(NodeEx);
|
|
assert(BoundEx);
|
|
// Evaluate the location (checks for bad dereferences).
|
|
ExplodedNodeSet Tmp;
|
|
evalLocation(Tmp, NodeEx, BoundEx, Pred, state, location, tag, true);
|
|
if (Tmp.empty())
|
|
return;
|
|
|
|
StmtNodeBuilder Bldr(Tmp, Dst, *currBldrCtx);
|
|
if (location.isUndef())
|
|
return;
|
|
|
|
// Proceed with the load.
|
|
for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) {
|
|
state = (*NI)->getState();
|
|
const LocationContext *LCtx = (*NI)->getLocationContext();
|
|
|
|
SVal V = UnknownVal();
|
|
if (location.isValid()) {
|
|
if (LoadTy.isNull())
|
|
LoadTy = BoundEx->getType();
|
|
V = state->getSVal(location.castAs<Loc>(), LoadTy);
|
|
}
|
|
|
|
Bldr.generateNode(NodeEx, *NI, state->BindExpr(BoundEx, LCtx, V), tag,
|
|
ProgramPoint::PostLoadKind);
|
|
}
|
|
}
|
|
|
|
void ExprEngine::evalLocation(ExplodedNodeSet &Dst,
|
|
const Stmt *NodeEx,
|
|
const Stmt *BoundEx,
|
|
ExplodedNode *Pred,
|
|
ProgramStateRef state,
|
|
SVal location,
|
|
const ProgramPointTag *tag,
|
|
bool isLoad) {
|
|
StmtNodeBuilder BldrTop(Pred, Dst, *currBldrCtx);
|
|
// Early checks for performance reason.
|
|
if (location.isUnknown()) {
|
|
return;
|
|
}
|
|
|
|
ExplodedNodeSet Src;
|
|
BldrTop.takeNodes(Pred);
|
|
StmtNodeBuilder Bldr(Pred, Src, *currBldrCtx);
|
|
if (Pred->getState() != state) {
|
|
// Associate this new state with an ExplodedNode.
|
|
// FIXME: If I pass null tag, the graph is incorrect, e.g for
|
|
// int *p;
|
|
// p = 0;
|
|
// *p = 0xDEADBEEF;
|
|
// "p = 0" is not noted as "Null pointer value stored to 'p'" but
|
|
// instead "int *p" is noted as
|
|
// "Variable 'p' initialized to a null pointer value"
|
|
|
|
static SimpleProgramPointTag tag(TagProviderName, "Location");
|
|
Bldr.generateNode(NodeEx, Pred, state, &tag);
|
|
}
|
|
ExplodedNodeSet Tmp;
|
|
getCheckerManager().runCheckersForLocation(Tmp, Src, location, isLoad,
|
|
NodeEx, BoundEx, *this);
|
|
BldrTop.addNodes(Tmp);
|
|
}
|
|
|
|
std::pair<const ProgramPointTag *, const ProgramPointTag*>
|
|
ExprEngine::geteagerlyAssumeBinOpBifurcationTags() {
|
|
static SimpleProgramPointTag
|
|
eagerlyAssumeBinOpBifurcationTrue(TagProviderName,
|
|
"Eagerly Assume True"),
|
|
eagerlyAssumeBinOpBifurcationFalse(TagProviderName,
|
|
"Eagerly Assume False");
|
|
return std::make_pair(&eagerlyAssumeBinOpBifurcationTrue,
|
|
&eagerlyAssumeBinOpBifurcationFalse);
|
|
}
|
|
|
|
void ExprEngine::evalEagerlyAssumeBinOpBifurcation(ExplodedNodeSet &Dst,
|
|
ExplodedNodeSet &Src,
|
|
const Expr *Ex) {
|
|
StmtNodeBuilder Bldr(Src, Dst, *currBldrCtx);
|
|
|
|
for (ExplodedNodeSet::iterator I=Src.begin(), E=Src.end(); I!=E; ++I) {
|
|
ExplodedNode *Pred = *I;
|
|
// Test if the previous node was as the same expression. This can happen
|
|
// when the expression fails to evaluate to anything meaningful and
|
|
// (as an optimization) we don't generate a node.
|
|
ProgramPoint P = Pred->getLocation();
|
|
if (!P.getAs<PostStmt>() || P.castAs<PostStmt>().getStmt() != Ex) {
|
|
continue;
|
|
}
|
|
|
|
ProgramStateRef state = Pred->getState();
|
|
SVal V = state->getSVal(Ex, Pred->getLocationContext());
|
|
Optional<nonloc::SymbolVal> SEV = V.getAs<nonloc::SymbolVal>();
|
|
if (SEV && SEV->isExpression()) {
|
|
const std::pair<const ProgramPointTag *, const ProgramPointTag*> &tags =
|
|
geteagerlyAssumeBinOpBifurcationTags();
|
|
|
|
ProgramStateRef StateTrue, StateFalse;
|
|
std::tie(StateTrue, StateFalse) = state->assume(*SEV);
|
|
|
|
// First assume that the condition is true.
|
|
if (StateTrue) {
|
|
SVal Val = svalBuilder.makeIntVal(1U, Ex->getType());
|
|
StateTrue = StateTrue->BindExpr(Ex, Pred->getLocationContext(), Val);
|
|
Bldr.generateNode(Ex, Pred, StateTrue, tags.first);
|
|
}
|
|
|
|
// Next, assume that the condition is false.
|
|
if (StateFalse) {
|
|
SVal Val = svalBuilder.makeIntVal(0U, Ex->getType());
|
|
StateFalse = StateFalse->BindExpr(Ex, Pred->getLocationContext(), Val);
|
|
Bldr.generateNode(Ex, Pred, StateFalse, tags.second);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ExprEngine::VisitGCCAsmStmt(const GCCAsmStmt *A, ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
|
|
// We have processed both the inputs and the outputs. All of the outputs
|
|
// should evaluate to Locs. Nuke all of their values.
|
|
|
|
// FIXME: Some day in the future it would be nice to allow a "plug-in"
|
|
// which interprets the inline asm and stores proper results in the
|
|
// outputs.
|
|
|
|
ProgramStateRef state = Pred->getState();
|
|
|
|
for (const Expr *O : A->outputs()) {
|
|
SVal X = state->getSVal(O, Pred->getLocationContext());
|
|
assert (!X.getAs<NonLoc>()); // Should be an Lval, or unknown, undef.
|
|
|
|
if (Optional<Loc> LV = X.getAs<Loc>())
|
|
state = state->bindLoc(*LV, UnknownVal(), Pred->getLocationContext());
|
|
}
|
|
|
|
Bldr.generateNode(A, Pred, state);
|
|
}
|
|
|
|
void ExprEngine::VisitMSAsmStmt(const MSAsmStmt *A, ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
|
|
Bldr.generateNode(A, Pred, Pred->getState());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Visualization.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef NDEBUG
|
|
static ExprEngine* GraphPrintCheckerState;
|
|
static SourceManager* GraphPrintSourceManager;
|
|
|
|
namespace llvm {
|
|
template<>
|
|
struct DOTGraphTraits<ExplodedNode*> :
|
|
public DefaultDOTGraphTraits {
|
|
|
|
DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
|
|
|
|
// FIXME: Since we do not cache error nodes in ExprEngine now, this does not
|
|
// work.
|
|
static std::string getNodeAttributes(const ExplodedNode *N, void*) {
|
|
return "";
|
|
}
|
|
|
|
// De-duplicate some source location pretty-printing.
|
|
static void printLocation(raw_ostream &Out, SourceLocation SLoc) {
|
|
if (SLoc.isFileID()) {
|
|
Out << "\\lline="
|
|
<< GraphPrintSourceManager->getExpansionLineNumber(SLoc)
|
|
<< " col="
|
|
<< GraphPrintSourceManager->getExpansionColumnNumber(SLoc)
|
|
<< "\\l";
|
|
}
|
|
}
|
|
|
|
static std::string getNodeLabel(const ExplodedNode *N, void*){
|
|
|
|
std::string sbuf;
|
|
llvm::raw_string_ostream Out(sbuf);
|
|
|
|
// Program Location.
|
|
ProgramPoint Loc = N->getLocation();
|
|
|
|
switch (Loc.getKind()) {
|
|
case ProgramPoint::BlockEntranceKind: {
|
|
Out << "Block Entrance: B"
|
|
<< Loc.castAs<BlockEntrance>().getBlock()->getBlockID();
|
|
break;
|
|
}
|
|
|
|
case ProgramPoint::BlockExitKind:
|
|
assert (false);
|
|
break;
|
|
|
|
case ProgramPoint::CallEnterKind:
|
|
Out << "CallEnter";
|
|
break;
|
|
|
|
case ProgramPoint::CallExitBeginKind:
|
|
Out << "CallExitBegin";
|
|
break;
|
|
|
|
case ProgramPoint::CallExitEndKind:
|
|
Out << "CallExitEnd";
|
|
break;
|
|
|
|
case ProgramPoint::PostStmtPurgeDeadSymbolsKind:
|
|
Out << "PostStmtPurgeDeadSymbols";
|
|
break;
|
|
|
|
case ProgramPoint::PreStmtPurgeDeadSymbolsKind:
|
|
Out << "PreStmtPurgeDeadSymbols";
|
|
break;
|
|
|
|
case ProgramPoint::EpsilonKind:
|
|
Out << "Epsilon Point";
|
|
break;
|
|
|
|
case ProgramPoint::LoopExitKind: {
|
|
LoopExit LE = Loc.castAs<LoopExit>();
|
|
Out << "LoopExit: " << LE.getLoopStmt()->getStmtClassName();
|
|
break;
|
|
}
|
|
|
|
case ProgramPoint::PreImplicitCallKind: {
|
|
ImplicitCallPoint PC = Loc.castAs<ImplicitCallPoint>();
|
|
Out << "PreCall: ";
|
|
|
|
// FIXME: Get proper printing options.
|
|
PC.getDecl()->print(Out, LangOptions());
|
|
printLocation(Out, PC.getLocation());
|
|
break;
|
|
}
|
|
|
|
case ProgramPoint::PostImplicitCallKind: {
|
|
ImplicitCallPoint PC = Loc.castAs<ImplicitCallPoint>();
|
|
Out << "PostCall: ";
|
|
|
|
// FIXME: Get proper printing options.
|
|
PC.getDecl()->print(Out, LangOptions());
|
|
printLocation(Out, PC.getLocation());
|
|
break;
|
|
}
|
|
|
|
case ProgramPoint::PostInitializerKind: {
|
|
Out << "PostInitializer: ";
|
|
const CXXCtorInitializer *Init =
|
|
Loc.castAs<PostInitializer>().getInitializer();
|
|
if (const FieldDecl *FD = Init->getAnyMember())
|
|
Out << *FD;
|
|
else {
|
|
QualType Ty = Init->getTypeSourceInfo()->getType();
|
|
Ty = Ty.getLocalUnqualifiedType();
|
|
LangOptions LO; // FIXME.
|
|
Ty.print(Out, LO);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ProgramPoint::BlockEdgeKind: {
|
|
const BlockEdge &E = Loc.castAs<BlockEdge>();
|
|
Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B"
|
|
<< E.getDst()->getBlockID() << ')';
|
|
|
|
if (const Stmt *T = E.getSrc()->getTerminator()) {
|
|
SourceLocation SLoc = T->getLocStart();
|
|
|
|
Out << "\\|Terminator: ";
|
|
LangOptions LO; // FIXME.
|
|
E.getSrc()->printTerminator(Out, LO);
|
|
|
|
if (SLoc.isFileID()) {
|
|
Out << "\\lline="
|
|
<< GraphPrintSourceManager->getExpansionLineNumber(SLoc)
|
|
<< " col="
|
|
<< GraphPrintSourceManager->getExpansionColumnNumber(SLoc);
|
|
}
|
|
|
|
if (isa<SwitchStmt>(T)) {
|
|
const Stmt *Label = E.getDst()->getLabel();
|
|
|
|
if (Label) {
|
|
if (const CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
|
|
Out << "\\lcase ";
|
|
LangOptions LO; // FIXME.
|
|
if (C->getLHS())
|
|
C->getLHS()->printPretty(Out, nullptr, PrintingPolicy(LO));
|
|
|
|
if (const Stmt *RHS = C->getRHS()) {
|
|
Out << " .. ";
|
|
RHS->printPretty(Out, nullptr, PrintingPolicy(LO));
|
|
}
|
|
|
|
Out << ":";
|
|
}
|
|
else {
|
|
assert (isa<DefaultStmt>(Label));
|
|
Out << "\\ldefault:";
|
|
}
|
|
}
|
|
else
|
|
Out << "\\l(implicit) default:";
|
|
}
|
|
else if (isa<IndirectGotoStmt>(T)) {
|
|
// FIXME
|
|
}
|
|
else {
|
|
Out << "\\lCondition: ";
|
|
if (*E.getSrc()->succ_begin() == E.getDst())
|
|
Out << "true";
|
|
else
|
|
Out << "false";
|
|
}
|
|
|
|
Out << "\\l";
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
default: {
|
|
const Stmt *S = Loc.castAs<StmtPoint>().getStmt();
|
|
assert(S != nullptr && "Expecting non-null Stmt");
|
|
|
|
Out << S->getStmtClassName() << ' ' << (const void*) S << ' ';
|
|
LangOptions LO; // FIXME.
|
|
S->printPretty(Out, nullptr, PrintingPolicy(LO));
|
|
printLocation(Out, S->getLocStart());
|
|
|
|
if (Loc.getAs<PreStmt>())
|
|
Out << "\\lPreStmt\\l;";
|
|
else if (Loc.getAs<PostLoad>())
|
|
Out << "\\lPostLoad\\l;";
|
|
else if (Loc.getAs<PostStore>())
|
|
Out << "\\lPostStore\\l";
|
|
else if (Loc.getAs<PostLValue>())
|
|
Out << "\\lPostLValue\\l";
|
|
else if (Loc.getAs<PostAllocatorCall>())
|
|
Out << "\\lPostAllocatorCall\\l";
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
ProgramStateRef state = N->getState();
|
|
Out << "\\|StateID: " << (const void*) state.get()
|
|
<< " NodeID: " << (const void*) N << "\\|";
|
|
|
|
state->printDOT(Out, N->getLocationContext());
|
|
|
|
Out << "\\l";
|
|
|
|
if (const ProgramPointTag *tag = Loc.getTag()) {
|
|
Out << "\\|Tag: " << tag->getTagDescription();
|
|
Out << "\\l";
|
|
}
|
|
return Out.str();
|
|
}
|
|
};
|
|
} // end llvm namespace
|
|
#endif
|
|
|
|
void ExprEngine::ViewGraph(bool trim) {
|
|
#ifndef NDEBUG
|
|
if (trim) {
|
|
std::vector<const ExplodedNode*> Src;
|
|
|
|
// Flush any outstanding reports to make sure we cover all the nodes.
|
|
// This does not cause them to get displayed.
|
|
for (BugReporter::iterator I=BR.begin(), E=BR.end(); I!=E; ++I)
|
|
const_cast<BugType*>(*I)->FlushReports(BR);
|
|
|
|
// Iterate through the reports and get their nodes.
|
|
for (BugReporter::EQClasses_iterator
|
|
EI = BR.EQClasses_begin(), EE = BR.EQClasses_end(); EI != EE; ++EI) {
|
|
ExplodedNode *N = const_cast<ExplodedNode*>(EI->begin()->getErrorNode());
|
|
if (N) Src.push_back(N);
|
|
}
|
|
|
|
ViewGraph(Src);
|
|
}
|
|
else {
|
|
GraphPrintCheckerState = this;
|
|
GraphPrintSourceManager = &getContext().getSourceManager();
|
|
|
|
llvm::ViewGraph(*G.roots_begin(), "ExprEngine");
|
|
|
|
GraphPrintCheckerState = nullptr;
|
|
GraphPrintSourceManager = nullptr;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void ExprEngine::ViewGraph(ArrayRef<const ExplodedNode*> Nodes) {
|
|
#ifndef NDEBUG
|
|
GraphPrintCheckerState = this;
|
|
GraphPrintSourceManager = &getContext().getSourceManager();
|
|
|
|
std::unique_ptr<ExplodedGraph> TrimmedG(G.trim(Nodes));
|
|
|
|
if (!TrimmedG.get())
|
|
llvm::errs() << "warning: Trimmed ExplodedGraph is empty.\n";
|
|
else
|
|
llvm::ViewGraph(*TrimmedG->roots_begin(), "TrimmedExprEngine");
|
|
|
|
GraphPrintCheckerState = nullptr;
|
|
GraphPrintSourceManager = nullptr;
|
|
#endif
|
|
}
|