forked from OSchip/llvm-project
74 lines
3.0 KiB
LLVM
74 lines
3.0 KiB
LLVM
; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py
|
|
; RUN: opt < %s --data-layout="e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128" -S -analyze -enable-new-pm=0 -scalar-evolution | FileCheck %s
|
|
; RUN: opt < %s --data-layout="e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128" -S -disable-output "-passes=print<scalar-evolution>" 2>&1 | FileCheck %s
|
|
; RUN: opt < %s --data-layout="e-m:e-p:32:32-p270:32:32-p271:32:32-p272:64:64-f64:32:64-f80:32-n8:16:32-S128" -S -analyze -enable-new-pm=0 -scalar-evolution | FileCheck %s
|
|
; RUN: opt < %s --data-layout="e-m:e-p:32:32-p270:32:32-p271:32:32-p272:64:64-f64:32:64-f80:32-n8:16:32-S128" -S -disable-output "-passes=print<scalar-evolution>" 2>&1 | FileCheck %s
|
|
|
|
; In general, we can't deal with ashr.
|
|
define i32 @t0(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: 't0'
|
|
; CHECK-NEXT: Classifying expressions for: @t0
|
|
; CHECK-NEXT: %i0 = ashr i32 %x, %y
|
|
; CHECK-NEXT: --> %i0 U: full-set S: full-set
|
|
; CHECK-NEXT: Determining loop execution counts for: @t0
|
|
;
|
|
%i0 = ashr i32 %x, %y
|
|
ret i32 %i0
|
|
}
|
|
; Not even if we know it's exact
|
|
define i32 @t1(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: 't1'
|
|
; CHECK-NEXT: Classifying expressions for: @t1
|
|
; CHECK-NEXT: %i0 = ashr exact i32 %x, %y
|
|
; CHECK-NEXT: --> %i0 U: full-set S: full-set
|
|
; CHECK-NEXT: Determining loop execution counts for: @t1
|
|
;
|
|
%i0 = ashr exact i32 %x, %y
|
|
ret i32 %i0
|
|
}
|
|
; Not even if the shift amount is a constant.
|
|
define i32 @t2(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: 't2'
|
|
; CHECK-NEXT: Classifying expressions for: @t2
|
|
; CHECK-NEXT: %i0 = ashr i32 %x, 4
|
|
; CHECK-NEXT: --> %i0 U: [-134217728,134217728) S: [-134217728,134217728)
|
|
; CHECK-NEXT: Determining loop execution counts for: @t2
|
|
;
|
|
%i0 = ashr i32 %x, 4
|
|
ret i32 %i0
|
|
}
|
|
; However, if it's a constant AND the shift is exact, we can model it!
|
|
define i32 @t3(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: 't3'
|
|
; CHECK-NEXT: Classifying expressions for: @t3
|
|
; CHECK-NEXT: %i0 = ashr exact i32 %x, 4
|
|
; CHECK-NEXT: --> ((((-1 * %x) smax %x) /u 16) * (1 smin (-1 smax %x)))<nsw> U: [-268435455,268435456) S: [-268435455,268435456)
|
|
; CHECK-NEXT: Determining loop execution counts for: @t3
|
|
;
|
|
%i0 = ashr exact i32 %x, 4
|
|
ret i32 %i0
|
|
}
|
|
; As long as the shift amount is in-bounds
|
|
define i32 @t4(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: 't4'
|
|
; CHECK-NEXT: Classifying expressions for: @t4
|
|
; CHECK-NEXT: %i0 = ashr exact i32 %x, 32
|
|
; CHECK-NEXT: --> %i0 U: full-set S: full-set
|
|
; CHECK-NEXT: Determining loop execution counts for: @t4
|
|
;
|
|
%i0 = ashr exact i32 %x, 32
|
|
ret i32 %i0
|
|
}
|
|
|
|
; One more test, just to see that we model constant correctly
|
|
define i32 @t5(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: 't5'
|
|
; CHECK-NEXT: Classifying expressions for: @t5
|
|
; CHECK-NEXT: %i0 = ashr exact i32 %x, 5
|
|
; CHECK-NEXT: --> ((((-1 * %x) smax %x) /u 32) * (1 smin (-1 smax %x)))<nsw> U: [-134217727,134217728) S: [-134217727,134217728)
|
|
; CHECK-NEXT: Determining loop execution counts for: @t5
|
|
;
|
|
%i0 = ashr exact i32 %x, 5
|
|
ret i32 %i0
|
|
}
|