llvm-project/lld/MachO/SyntheticSections.cpp

1758 lines
62 KiB
C++

//===- SyntheticSections.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "SyntheticSections.h"
#include "ConcatOutputSection.h"
#include "Config.h"
#include "ExportTrie.h"
#include "InputFiles.h"
#include "MachOStructs.h"
#include "OutputSegment.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "lld/Common/CommonLinkerContext.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/Parallel.h"
#include "llvm/Support/Path.h"
#if defined(__APPLE__)
#include <sys/mman.h>
#define COMMON_DIGEST_FOR_OPENSSL
#include <CommonCrypto/CommonDigest.h>
#else
#include "llvm/Support/SHA256.h"
#endif
#ifdef LLVM_HAVE_LIBXAR
#include <fcntl.h>
extern "C" {
#include <xar/xar.h>
}
#endif
using namespace llvm;
using namespace llvm::MachO;
using namespace llvm::support;
using namespace llvm::support::endian;
using namespace lld;
using namespace lld::macho;
// Reads `len` bytes at data and writes the 32-byte SHA256 checksum to `output`.
static void sha256(const uint8_t *data, size_t len, uint8_t *output) {
#if defined(__APPLE__)
// FIXME: Make LLVM's SHA256 faster and use it unconditionally. See PR56121
// for some notes on this.
CC_SHA256(data, len, output);
#else
ArrayRef<uint8_t> block(data, len);
std::array<uint8_t, 32> hash = SHA256::hash(block);
static_assert(hash.size() == CodeSignatureSection::hashSize, "");
memcpy(output, hash.data(), hash.size());
#endif
}
InStruct macho::in;
std::vector<SyntheticSection *> macho::syntheticSections;
SyntheticSection::SyntheticSection(const char *segname, const char *name)
: OutputSection(SyntheticKind, name) {
std::tie(this->segname, this->name) = maybeRenameSection({segname, name});
isec = makeSyntheticInputSection(segname, name);
isec->parent = this;
syntheticSections.push_back(this);
}
// dyld3's MachOLoaded::getSlide() assumes that the __TEXT segment starts
// from the beginning of the file (i.e. the header).
MachHeaderSection::MachHeaderSection()
: SyntheticSection(segment_names::text, section_names::header) {
// XXX: This is a hack. (See D97007)
// Setting the index to 1 to pretend that this section is the text
// section.
index = 1;
isec->isFinal = true;
}
void MachHeaderSection::addLoadCommand(LoadCommand *lc) {
loadCommands.push_back(lc);
sizeOfCmds += lc->getSize();
}
uint64_t MachHeaderSection::getSize() const {
uint64_t size = target->headerSize + sizeOfCmds + config->headerPad;
// If we are emitting an encryptable binary, our load commands must have a
// separate (non-encrypted) page to themselves.
if (config->emitEncryptionInfo)
size = alignTo(size, target->getPageSize());
return size;
}
static uint32_t cpuSubtype() {
uint32_t subtype = target->cpuSubtype;
if (config->outputType == MH_EXECUTE && !config->staticLink &&
target->cpuSubtype == CPU_SUBTYPE_X86_64_ALL &&
config->platform() == PLATFORM_MACOS &&
config->platformInfo.minimum >= VersionTuple(10, 5))
subtype |= CPU_SUBTYPE_LIB64;
return subtype;
}
void MachHeaderSection::writeTo(uint8_t *buf) const {
auto *hdr = reinterpret_cast<mach_header *>(buf);
hdr->magic = target->magic;
hdr->cputype = target->cpuType;
hdr->cpusubtype = cpuSubtype();
hdr->filetype = config->outputType;
hdr->ncmds = loadCommands.size();
hdr->sizeofcmds = sizeOfCmds;
hdr->flags = MH_DYLDLINK;
if (config->namespaceKind == NamespaceKind::twolevel)
hdr->flags |= MH_NOUNDEFS | MH_TWOLEVEL;
if (config->outputType == MH_DYLIB && !config->hasReexports)
hdr->flags |= MH_NO_REEXPORTED_DYLIBS;
if (config->markDeadStrippableDylib)
hdr->flags |= MH_DEAD_STRIPPABLE_DYLIB;
if (config->outputType == MH_EXECUTE && config->isPic)
hdr->flags |= MH_PIE;
if (config->outputType == MH_DYLIB && config->applicationExtension)
hdr->flags |= MH_APP_EXTENSION_SAFE;
if (in.exports->hasWeakSymbol || in.weakBinding->hasNonWeakDefinition())
hdr->flags |= MH_WEAK_DEFINES;
if (in.exports->hasWeakSymbol || in.weakBinding->hasEntry())
hdr->flags |= MH_BINDS_TO_WEAK;
for (const OutputSegment *seg : outputSegments) {
for (const OutputSection *osec : seg->getSections()) {
if (isThreadLocalVariables(osec->flags)) {
hdr->flags |= MH_HAS_TLV_DESCRIPTORS;
break;
}
}
}
uint8_t *p = reinterpret_cast<uint8_t *>(hdr) + target->headerSize;
for (const LoadCommand *lc : loadCommands) {
lc->writeTo(p);
p += lc->getSize();
}
}
PageZeroSection::PageZeroSection()
: SyntheticSection(segment_names::pageZero, section_names::pageZero) {}
RebaseSection::RebaseSection()
: LinkEditSection(segment_names::linkEdit, section_names::rebase) {}
namespace {
struct RebaseState {
uint64_t sequenceLength;
uint64_t skipLength;
};
} // namespace
static void emitIncrement(uint64_t incr, raw_svector_ostream &os) {
assert(incr != 0);
if ((incr >> target->p2WordSize) <= REBASE_IMMEDIATE_MASK &&
(incr % target->wordSize) == 0) {
os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_IMM_SCALED |
(incr >> target->p2WordSize));
} else {
os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_ULEB);
encodeULEB128(incr, os);
}
}
static void flushRebase(const RebaseState &state, raw_svector_ostream &os) {
assert(state.sequenceLength > 0);
if (state.skipLength == target->wordSize) {
if (state.sequenceLength <= REBASE_IMMEDIATE_MASK) {
os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_IMM_TIMES |
state.sequenceLength);
} else {
os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ULEB_TIMES);
encodeULEB128(state.sequenceLength, os);
}
} else if (state.sequenceLength == 1) {
os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB);
encodeULEB128(state.skipLength - target->wordSize, os);
} else {
os << static_cast<uint8_t>(
REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB);
encodeULEB128(state.sequenceLength, os);
encodeULEB128(state.skipLength - target->wordSize, os);
}
}
// Rebases are communicated to dyld using a bytecode, whose opcodes cause the
// memory location at a specific address to be rebased and/or the address to be
// incremented.
//
// Opcode REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB is the most generic
// one, encoding a series of evenly spaced addresses. This algorithm works by
// splitting up the sorted list of addresses into such chunks. If the locations
// are consecutive or the sequence consists of a single location, flushRebase
// will use a smaller, more specialized encoding.
static void encodeRebases(const OutputSegment *seg,
MutableArrayRef<Location> locations,
raw_svector_ostream &os) {
// dyld operates on segments. Translate section offsets into segment offsets.
for (Location &loc : locations)
loc.offset =
loc.isec->parent->getSegmentOffset() + loc.isec->getOffset(loc.offset);
// The algorithm assumes that locations are unique.
Location *end =
llvm::unique(locations, [](const Location &a, const Location &b) {
return a.offset == b.offset;
});
size_t count = end - locations.begin();
os << static_cast<uint8_t>(REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
seg->index);
assert(!locations.empty());
uint64_t offset = locations[0].offset;
encodeULEB128(offset, os);
RebaseState state{1, target->wordSize};
for (size_t i = 1; i < count; ++i) {
offset = locations[i].offset;
uint64_t skip = offset - locations[i - 1].offset;
assert(skip != 0 && "duplicate locations should have been weeded out");
if (skip == state.skipLength) {
++state.sequenceLength;
} else if (state.sequenceLength == 1) {
++state.sequenceLength;
state.skipLength = skip;
} else if (skip < state.skipLength) {
// The address is lower than what the rebase pointer would be if the last
// location would be part of a sequence. We start a new sequence from the
// previous location.
--state.sequenceLength;
flushRebase(state, os);
state.sequenceLength = 2;
state.skipLength = skip;
} else {
// The address is at some positive offset from the rebase pointer. We
// start a new sequence which begins with the current location.
flushRebase(state, os);
emitIncrement(skip - state.skipLength, os);
state.sequenceLength = 1;
state.skipLength = target->wordSize;
}
}
flushRebase(state, os);
}
void RebaseSection::finalizeContents() {
if (locations.empty())
return;
raw_svector_ostream os{contents};
os << static_cast<uint8_t>(REBASE_OPCODE_SET_TYPE_IMM | REBASE_TYPE_POINTER);
llvm::sort(locations, [](const Location &a, const Location &b) {
return a.isec->getVA(a.offset) < b.isec->getVA(b.offset);
});
for (size_t i = 0, count = locations.size(); i < count;) {
const OutputSegment *seg = locations[i].isec->parent->parent;
size_t j = i + 1;
while (j < count && locations[j].isec->parent->parent == seg)
++j;
encodeRebases(seg, {locations.data() + i, locations.data() + j}, os);
i = j;
}
os << static_cast<uint8_t>(REBASE_OPCODE_DONE);
}
void RebaseSection::writeTo(uint8_t *buf) const {
memcpy(buf, contents.data(), contents.size());
}
NonLazyPointerSectionBase::NonLazyPointerSectionBase(const char *segname,
const char *name)
: SyntheticSection(segname, name) {
align = target->wordSize;
}
void macho::addNonLazyBindingEntries(const Symbol *sym,
const InputSection *isec, uint64_t offset,
int64_t addend) {
if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) {
in.binding->addEntry(dysym, isec, offset, addend);
if (dysym->isWeakDef())
in.weakBinding->addEntry(sym, isec, offset, addend);
} else if (const auto *defined = dyn_cast<Defined>(sym)) {
in.rebase->addEntry(isec, offset);
if (defined->isExternalWeakDef())
in.weakBinding->addEntry(sym, isec, offset, addend);
else if (defined->interposable)
in.binding->addEntry(sym, isec, offset, addend);
} else {
// Undefined symbols are filtered out in scanRelocations(); we should never
// get here
llvm_unreachable("cannot bind to an undefined symbol");
}
}
void NonLazyPointerSectionBase::addEntry(Symbol *sym) {
if (entries.insert(sym)) {
assert(!sym->isInGot());
sym->gotIndex = entries.size() - 1;
addNonLazyBindingEntries(sym, isec, sym->gotIndex * target->wordSize);
}
}
void NonLazyPointerSectionBase::writeTo(uint8_t *buf) const {
for (size_t i = 0, n = entries.size(); i < n; ++i)
if (auto *defined = dyn_cast<Defined>(entries[i]))
write64le(&buf[i * target->wordSize], defined->getVA());
}
GotSection::GotSection()
: NonLazyPointerSectionBase(segment_names::data, section_names::got) {
flags = S_NON_LAZY_SYMBOL_POINTERS;
}
TlvPointerSection::TlvPointerSection()
: NonLazyPointerSectionBase(segment_names::data,
section_names::threadPtrs) {
flags = S_THREAD_LOCAL_VARIABLE_POINTERS;
}
BindingSection::BindingSection()
: LinkEditSection(segment_names::linkEdit, section_names::binding) {}
namespace {
struct Binding {
OutputSegment *segment = nullptr;
uint64_t offset = 0;
int64_t addend = 0;
};
struct BindIR {
// Default value of 0xF0 is not valid opcode and should make the program
// scream instead of accidentally writing "valid" values.
uint8_t opcode = 0xF0;
uint64_t data = 0;
uint64_t consecutiveCount = 0;
};
} // namespace
// Encode a sequence of opcodes that tell dyld to write the address of symbol +
// addend at osec->addr + outSecOff.
//
// The bind opcode "interpreter" remembers the values of each binding field, so
// we only need to encode the differences between bindings. Hence the use of
// lastBinding.
static void encodeBinding(const OutputSection *osec, uint64_t outSecOff,
int64_t addend, Binding &lastBinding,
std::vector<BindIR> &opcodes) {
OutputSegment *seg = osec->parent;
uint64_t offset = osec->getSegmentOffset() + outSecOff;
if (lastBinding.segment != seg) {
opcodes.push_back(
{static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
seg->index),
offset});
lastBinding.segment = seg;
lastBinding.offset = offset;
} else if (lastBinding.offset != offset) {
opcodes.push_back({BIND_OPCODE_ADD_ADDR_ULEB, offset - lastBinding.offset});
lastBinding.offset = offset;
}
if (lastBinding.addend != addend) {
opcodes.push_back(
{BIND_OPCODE_SET_ADDEND_SLEB, static_cast<uint64_t>(addend)});
lastBinding.addend = addend;
}
opcodes.push_back({BIND_OPCODE_DO_BIND, 0});
// DO_BIND causes dyld to both perform the binding and increment the offset
lastBinding.offset += target->wordSize;
}
static void optimizeOpcodes(std::vector<BindIR> &opcodes) {
// Pass 1: Combine bind/add pairs
size_t i;
int pWrite = 0;
for (i = 1; i < opcodes.size(); ++i, ++pWrite) {
if ((opcodes[i].opcode == BIND_OPCODE_ADD_ADDR_ULEB) &&
(opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND)) {
opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB;
opcodes[pWrite].data = opcodes[i].data;
++i;
} else {
opcodes[pWrite] = opcodes[i - 1];
}
}
if (i == opcodes.size())
opcodes[pWrite] = opcodes[i - 1];
opcodes.resize(pWrite + 1);
// Pass 2: Compress two or more bind_add opcodes
pWrite = 0;
for (i = 1; i < opcodes.size(); ++i, ++pWrite) {
if ((opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
(opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
(opcodes[i].data == opcodes[i - 1].data)) {
opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB;
opcodes[pWrite].consecutiveCount = 2;
opcodes[pWrite].data = opcodes[i].data;
++i;
while (i < opcodes.size() &&
(opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
(opcodes[i].data == opcodes[i - 1].data)) {
opcodes[pWrite].consecutiveCount++;
++i;
}
} else {
opcodes[pWrite] = opcodes[i - 1];
}
}
if (i == opcodes.size())
opcodes[pWrite] = opcodes[i - 1];
opcodes.resize(pWrite + 1);
// Pass 3: Use immediate encodings
// Every binding is the size of one pointer. If the next binding is a
// multiple of wordSize away that is within BIND_IMMEDIATE_MASK, the
// opcode can be scaled by wordSize into a single byte and dyld will
// expand it to the correct address.
for (auto &p : opcodes) {
// It's unclear why the check needs to be less than BIND_IMMEDIATE_MASK,
// but ld64 currently does this. This could be a potential bug, but
// for now, perform the same behavior to prevent mysterious bugs.
if ((p.opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
((p.data / target->wordSize) < BIND_IMMEDIATE_MASK) &&
((p.data % target->wordSize) == 0)) {
p.opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED;
p.data /= target->wordSize;
}
}
}
static void flushOpcodes(const BindIR &op, raw_svector_ostream &os) {
uint8_t opcode = op.opcode & BIND_OPCODE_MASK;
switch (opcode) {
case BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB:
case BIND_OPCODE_ADD_ADDR_ULEB:
case BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB:
os << op.opcode;
encodeULEB128(op.data, os);
break;
case BIND_OPCODE_SET_ADDEND_SLEB:
os << op.opcode;
encodeSLEB128(static_cast<int64_t>(op.data), os);
break;
case BIND_OPCODE_DO_BIND:
os << op.opcode;
break;
case BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB:
os << op.opcode;
encodeULEB128(op.consecutiveCount, os);
encodeULEB128(op.data, os);
break;
case BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED:
os << static_cast<uint8_t>(op.opcode | op.data);
break;
default:
llvm_unreachable("cannot bind to an unrecognized symbol");
}
}
// Non-weak bindings need to have their dylib ordinal encoded as well.
static int16_t ordinalForDylibSymbol(const DylibSymbol &dysym) {
if (config->namespaceKind == NamespaceKind::flat || dysym.isDynamicLookup())
return static_cast<int16_t>(BIND_SPECIAL_DYLIB_FLAT_LOOKUP);
assert(dysym.getFile()->isReferenced());
return dysym.getFile()->ordinal;
}
static int16_t ordinalForSymbol(const Symbol &sym) {
if (const auto *dysym = dyn_cast<DylibSymbol>(&sym))
return ordinalForDylibSymbol(*dysym);
assert(cast<Defined>(&sym)->interposable);
return BIND_SPECIAL_DYLIB_FLAT_LOOKUP;
}
static void encodeDylibOrdinal(int16_t ordinal, raw_svector_ostream &os) {
if (ordinal <= 0) {
os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_SPECIAL_IMM |
(ordinal & BIND_IMMEDIATE_MASK));
} else if (ordinal <= BIND_IMMEDIATE_MASK) {
os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_IMM | ordinal);
} else {
os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB);
encodeULEB128(ordinal, os);
}
}
static void encodeWeakOverride(const Defined *defined,
raw_svector_ostream &os) {
os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM |
BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION)
<< defined->getName() << '\0';
}
// Organize the bindings so we can encoded them with fewer opcodes.
//
// First, all bindings for a given symbol should be grouped together.
// BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM is the largest opcode (since it
// has an associated symbol string), so we only want to emit it once per symbol.
//
// Within each group, we sort the bindings by address. Since bindings are
// delta-encoded, sorting them allows for a more compact result. Note that
// sorting by address alone ensures that bindings for the same segment / section
// are located together, minimizing the number of times we have to emit
// BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB.
//
// Finally, we sort the symbols by the address of their first binding, again
// to facilitate the delta-encoding process.
template <class Sym>
std::vector<std::pair<const Sym *, std::vector<BindingEntry>>>
sortBindings(const BindingsMap<const Sym *> &bindingsMap) {
std::vector<std::pair<const Sym *, std::vector<BindingEntry>>> bindingsVec(
bindingsMap.begin(), bindingsMap.end());
for (auto &p : bindingsVec) {
std::vector<BindingEntry> &bindings = p.second;
llvm::sort(bindings, [](const BindingEntry &a, const BindingEntry &b) {
return a.target.getVA() < b.target.getVA();
});
}
llvm::sort(bindingsVec, [](const auto &a, const auto &b) {
return a.second[0].target.getVA() < b.second[0].target.getVA();
});
return bindingsVec;
}
// Emit bind opcodes, which are a stream of byte-sized opcodes that dyld
// interprets to update a record with the following fields:
// * segment index (of the segment to write the symbol addresses to, typically
// the __DATA_CONST segment which contains the GOT)
// * offset within the segment, indicating the next location to write a binding
// * symbol type
// * symbol library ordinal (the index of its library's LC_LOAD_DYLIB command)
// * symbol name
// * addend
// When dyld sees BIND_OPCODE_DO_BIND, it uses the current record state to bind
// a symbol in the GOT, and increments the segment offset to point to the next
// entry. It does *not* clear the record state after doing the bind, so
// subsequent opcodes only need to encode the differences between bindings.
void BindingSection::finalizeContents() {
raw_svector_ostream os{contents};
Binding lastBinding;
int16_t lastOrdinal = 0;
for (auto &p : sortBindings(bindingsMap)) {
const Symbol *sym = p.first;
std::vector<BindingEntry> &bindings = p.second;
uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM;
if (sym->isWeakRef())
flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT;
os << flags << sym->getName() << '\0'
<< static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER);
int16_t ordinal = ordinalForSymbol(*sym);
if (ordinal != lastOrdinal) {
encodeDylibOrdinal(ordinal, os);
lastOrdinal = ordinal;
}
std::vector<BindIR> opcodes;
for (const BindingEntry &b : bindings)
encodeBinding(b.target.isec->parent,
b.target.isec->getOffset(b.target.offset), b.addend,
lastBinding, opcodes);
if (config->optimize > 1)
optimizeOpcodes(opcodes);
for (const auto &op : opcodes)
flushOpcodes(op, os);
}
if (!bindingsMap.empty())
os << static_cast<uint8_t>(BIND_OPCODE_DONE);
}
void BindingSection::writeTo(uint8_t *buf) const {
memcpy(buf, contents.data(), contents.size());
}
WeakBindingSection::WeakBindingSection()
: LinkEditSection(segment_names::linkEdit, section_names::weakBinding) {}
void WeakBindingSection::finalizeContents() {
raw_svector_ostream os{contents};
Binding lastBinding;
for (const Defined *defined : definitions)
encodeWeakOverride(defined, os);
for (auto &p : sortBindings(bindingsMap)) {
const Symbol *sym = p.first;
std::vector<BindingEntry> &bindings = p.second;
os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM)
<< sym->getName() << '\0'
<< static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER);
std::vector<BindIR> opcodes;
for (const BindingEntry &b : bindings)
encodeBinding(b.target.isec->parent,
b.target.isec->getOffset(b.target.offset), b.addend,
lastBinding, opcodes);
if (config->optimize > 1)
optimizeOpcodes(opcodes);
for (const auto &op : opcodes)
flushOpcodes(op, os);
}
if (!bindingsMap.empty() || !definitions.empty())
os << static_cast<uint8_t>(BIND_OPCODE_DONE);
}
void WeakBindingSection::writeTo(uint8_t *buf) const {
memcpy(buf, contents.data(), contents.size());
}
StubsSection::StubsSection()
: SyntheticSection(segment_names::text, section_names::stubs) {
flags = S_SYMBOL_STUBS | S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS;
// The stubs section comprises machine instructions, which are aligned to
// 4 bytes on the archs we care about.
align = 4;
reserved2 = target->stubSize;
}
uint64_t StubsSection::getSize() const {
return entries.size() * target->stubSize;
}
void StubsSection::writeTo(uint8_t *buf) const {
size_t off = 0;
for (const Symbol *sym : entries) {
target->writeStub(buf + off, *sym);
off += target->stubSize;
}
}
void StubsSection::finalize() { isFinal = true; }
bool StubsSection::addEntry(Symbol *sym) {
bool inserted = entries.insert(sym);
if (inserted)
sym->stubsIndex = entries.size() - 1;
return inserted;
}
StubHelperSection::StubHelperSection()
: SyntheticSection(segment_names::text, section_names::stubHelper) {
flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS;
align = 4; // This section comprises machine instructions
}
uint64_t StubHelperSection::getSize() const {
return target->stubHelperHeaderSize +
in.lazyBinding->getEntries().size() * target->stubHelperEntrySize;
}
bool StubHelperSection::isNeeded() const { return in.lazyBinding->isNeeded(); }
void StubHelperSection::writeTo(uint8_t *buf) const {
target->writeStubHelperHeader(buf);
size_t off = target->stubHelperHeaderSize;
for (const Symbol *sym : in.lazyBinding->getEntries()) {
target->writeStubHelperEntry(buf + off, *sym, addr + off);
off += target->stubHelperEntrySize;
}
}
void StubHelperSection::setup() {
Symbol *binder = symtab->addUndefined("dyld_stub_binder", /*file=*/nullptr,
/*isWeakRef=*/false);
if (auto *undefined = dyn_cast<Undefined>(binder))
treatUndefinedSymbol(*undefined,
"lazy binding (normally in libSystem.dylib)");
// treatUndefinedSymbol() can replace binder with a DylibSymbol; re-check.
stubBinder = dyn_cast_or_null<DylibSymbol>(binder);
if (stubBinder == nullptr)
return;
in.got->addEntry(stubBinder);
in.imageLoaderCache->parent =
ConcatOutputSection::getOrCreateForInput(in.imageLoaderCache);
inputSections.push_back(in.imageLoaderCache);
// Since this isn't in the symbol table or in any input file, the noDeadStrip
// argument doesn't matter.
dyldPrivate =
make<Defined>("__dyld_private", nullptr, in.imageLoaderCache, 0, 0,
/*isWeakDef=*/false,
/*isExternal=*/false, /*isPrivateExtern=*/false,
/*includeInSymtab=*/true,
/*isThumb=*/false, /*isReferencedDynamically=*/false,
/*noDeadStrip=*/false);
dyldPrivate->used = true;
}
LazyPointerSection::LazyPointerSection()
: SyntheticSection(segment_names::data, section_names::lazySymbolPtr) {
align = target->wordSize;
flags = S_LAZY_SYMBOL_POINTERS;
}
uint64_t LazyPointerSection::getSize() const {
return in.stubs->getEntries().size() * target->wordSize;
}
bool LazyPointerSection::isNeeded() const {
return !in.stubs->getEntries().empty();
}
void LazyPointerSection::writeTo(uint8_t *buf) const {
size_t off = 0;
for (const Symbol *sym : in.stubs->getEntries()) {
if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) {
if (dysym->hasStubsHelper()) {
uint64_t stubHelperOffset =
target->stubHelperHeaderSize +
dysym->stubsHelperIndex * target->stubHelperEntrySize;
write64le(buf + off, in.stubHelper->addr + stubHelperOffset);
}
} else {
write64le(buf + off, sym->getVA());
}
off += target->wordSize;
}
}
LazyBindingSection::LazyBindingSection()
: LinkEditSection(segment_names::linkEdit, section_names::lazyBinding) {}
void LazyBindingSection::finalizeContents() {
// TODO: Just precompute output size here instead of writing to a temporary
// buffer
for (Symbol *sym : entries)
sym->lazyBindOffset = encode(*sym);
}
void LazyBindingSection::writeTo(uint8_t *buf) const {
memcpy(buf, contents.data(), contents.size());
}
void LazyBindingSection::addEntry(Symbol *sym) {
if (entries.insert(sym)) {
sym->stubsHelperIndex = entries.size() - 1;
in.rebase->addEntry(in.lazyPointers->isec,
sym->stubsIndex * target->wordSize);
}
}
// Unlike the non-lazy binding section, the bind opcodes in this section aren't
// interpreted all at once. Rather, dyld will start interpreting opcodes at a
// given offset, typically only binding a single symbol before it finds a
// BIND_OPCODE_DONE terminator. As such, unlike in the non-lazy-binding case,
// we cannot encode just the differences between symbols; we have to emit the
// complete bind information for each symbol.
uint32_t LazyBindingSection::encode(const Symbol &sym) {
uint32_t opstreamOffset = contents.size();
OutputSegment *dataSeg = in.lazyPointers->parent;
os << static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
dataSeg->index);
uint64_t offset =
in.lazyPointers->addr - dataSeg->addr + sym.stubsIndex * target->wordSize;
encodeULEB128(offset, os);
encodeDylibOrdinal(ordinalForSymbol(sym), os);
uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM;
if (sym.isWeakRef())
flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT;
os << flags << sym.getName() << '\0'
<< static_cast<uint8_t>(BIND_OPCODE_DO_BIND)
<< static_cast<uint8_t>(BIND_OPCODE_DONE);
return opstreamOffset;
}
ExportSection::ExportSection()
: LinkEditSection(segment_names::linkEdit, section_names::export_) {}
void ExportSection::finalizeContents() {
trieBuilder.setImageBase(in.header->addr);
for (const Symbol *sym : symtab->getSymbols()) {
if (const auto *defined = dyn_cast<Defined>(sym)) {
if (defined->privateExtern || !defined->isLive())
continue;
trieBuilder.addSymbol(*defined);
hasWeakSymbol = hasWeakSymbol || sym->isWeakDef();
}
}
size = trieBuilder.build();
}
void ExportSection::writeTo(uint8_t *buf) const { trieBuilder.writeTo(buf); }
DataInCodeSection::DataInCodeSection()
: LinkEditSection(segment_names::linkEdit, section_names::dataInCode) {}
template <class LP>
static std::vector<MachO::data_in_code_entry> collectDataInCodeEntries() {
std::vector<MachO::data_in_code_entry> dataInCodeEntries;
for (const InputFile *inputFile : inputFiles) {
if (!isa<ObjFile>(inputFile))
continue;
const ObjFile *objFile = cast<ObjFile>(inputFile);
ArrayRef<MachO::data_in_code_entry> entries = objFile->getDataInCode();
if (entries.empty())
continue;
assert(is_sorted(dataInCodeEntries, [](const data_in_code_entry &lhs,
const data_in_code_entry &rhs) {
return lhs.offset < rhs.offset;
}));
// For each code subsection find 'data in code' entries residing in it.
// Compute the new offset values as
// <offset within subsection> + <subsection address> - <__TEXT address>.
for (const Section *section : objFile->sections) {
for (const Subsection &subsec : section->subsections) {
const InputSection *isec = subsec.isec;
if (!isCodeSection(isec))
continue;
if (cast<ConcatInputSection>(isec)->shouldOmitFromOutput())
continue;
const uint64_t beginAddr = section->addr + subsec.offset;
auto it = llvm::lower_bound(
entries, beginAddr,
[](const MachO::data_in_code_entry &entry, uint64_t addr) {
return entry.offset < addr;
});
const uint64_t endAddr = beginAddr + isec->getSize();
for (const auto end = entries.end();
it != end && it->offset + it->length <= endAddr; ++it)
dataInCodeEntries.push_back(
{static_cast<uint32_t>(isec->getVA(it->offset - beginAddr) -
in.header->addr),
it->length, it->kind});
}
}
}
return dataInCodeEntries;
}
void DataInCodeSection::finalizeContents() {
entries = target->wordSize == 8 ? collectDataInCodeEntries<LP64>()
: collectDataInCodeEntries<ILP32>();
}
void DataInCodeSection::writeTo(uint8_t *buf) const {
if (!entries.empty())
memcpy(buf, entries.data(), getRawSize());
}
FunctionStartsSection::FunctionStartsSection()
: LinkEditSection(segment_names::linkEdit, section_names::functionStarts) {}
void FunctionStartsSection::finalizeContents() {
raw_svector_ostream os{contents};
std::vector<uint64_t> addrs;
for (const InputFile *file : inputFiles) {
if (auto *objFile = dyn_cast<ObjFile>(file)) {
for (const Symbol *sym : objFile->symbols) {
if (const auto *defined = dyn_cast_or_null<Defined>(sym)) {
if (!defined->isec || !isCodeSection(defined->isec) ||
!defined->isLive())
continue;
// TODO: Add support for thumbs, in that case
// the lowest bit of nextAddr needs to be set to 1.
addrs.push_back(defined->getVA());
}
}
}
}
llvm::sort(addrs);
uint64_t addr = in.header->addr;
for (uint64_t nextAddr : addrs) {
uint64_t delta = nextAddr - addr;
if (delta == 0)
continue;
encodeULEB128(delta, os);
addr = nextAddr;
}
os << '\0';
}
void FunctionStartsSection::writeTo(uint8_t *buf) const {
memcpy(buf, contents.data(), contents.size());
}
SymtabSection::SymtabSection(StringTableSection &stringTableSection)
: LinkEditSection(segment_names::linkEdit, section_names::symbolTable),
stringTableSection(stringTableSection) {}
void SymtabSection::emitBeginSourceStab(StringRef sourceFile) {
StabsEntry stab(N_SO);
stab.strx = stringTableSection.addString(saver().save(sourceFile));
stabs.emplace_back(std::move(stab));
}
void SymtabSection::emitEndSourceStab() {
StabsEntry stab(N_SO);
stab.sect = 1;
stabs.emplace_back(std::move(stab));
}
void SymtabSection::emitObjectFileStab(ObjFile *file) {
StabsEntry stab(N_OSO);
stab.sect = target->cpuSubtype;
SmallString<261> path(!file->archiveName.empty() ? file->archiveName
: file->getName());
std::error_code ec = sys::fs::make_absolute(path);
if (ec)
fatal("failed to get absolute path for " + path);
if (!file->archiveName.empty())
path.append({"(", file->getName(), ")"});
StringRef adjustedPath = saver().save(path.str());
adjustedPath.consume_front(config->osoPrefix);
stab.strx = stringTableSection.addString(adjustedPath);
stab.desc = 1;
stab.value = file->modTime;
stabs.emplace_back(std::move(stab));
}
void SymtabSection::emitEndFunStab(Defined *defined) {
StabsEntry stab(N_FUN);
stab.value = defined->size;
stabs.emplace_back(std::move(stab));
}
void SymtabSection::emitStabs() {
if (config->omitDebugInfo)
return;
for (const std::string &s : config->astPaths) {
StabsEntry astStab(N_AST);
astStab.strx = stringTableSection.addString(s);
stabs.emplace_back(std::move(astStab));
}
// Cache the file ID for each symbol in an std::pair for faster sorting.
using SortingPair = std::pair<Defined *, int>;
std::vector<SortingPair> symbolsNeedingStabs;
for (const SymtabEntry &entry :
concat<SymtabEntry>(localSymbols, externalSymbols)) {
Symbol *sym = entry.sym;
assert(sym->isLive() &&
"dead symbols should not be in localSymbols, externalSymbols");
if (auto *defined = dyn_cast<Defined>(sym)) {
// Excluded symbols should have been filtered out in finalizeContents().
assert(defined->includeInSymtab);
if (defined->isAbsolute())
continue;
// Constant-folded symbols go in the executable's symbol table, but don't
// get a stabs entry.
if (defined->wasIdenticalCodeFolded)
continue;
InputSection *isec = defined->isec;
ObjFile *file = dyn_cast_or_null<ObjFile>(isec->getFile());
if (!file || !file->compileUnit)
continue;
symbolsNeedingStabs.emplace_back(defined, defined->isec->getFile()->id);
}
}
llvm::stable_sort(symbolsNeedingStabs,
[&](const SortingPair &a, const SortingPair &b) {
return a.second < b.second;
});
// Emit STABS symbols so that dsymutil and/or the debugger can map address
// regions in the final binary to the source and object files from which they
// originated.
InputFile *lastFile = nullptr;
for (SortingPair &pair : symbolsNeedingStabs) {
Defined *defined = pair.first;
InputSection *isec = defined->isec;
ObjFile *file = cast<ObjFile>(isec->getFile());
if (lastFile == nullptr || lastFile != file) {
if (lastFile != nullptr)
emitEndSourceStab();
lastFile = file;
emitBeginSourceStab(file->sourceFile());
emitObjectFileStab(file);
}
StabsEntry symStab;
symStab.sect = defined->isec->parent->index;
symStab.strx = stringTableSection.addString(defined->getName());
symStab.value = defined->getVA();
if (isCodeSection(isec)) {
symStab.type = N_FUN;
stabs.emplace_back(std::move(symStab));
emitEndFunStab(defined);
} else {
symStab.type = defined->isExternal() ? N_GSYM : N_STSYM;
stabs.emplace_back(std::move(symStab));
}
}
if (!stabs.empty())
emitEndSourceStab();
}
void SymtabSection::finalizeContents() {
auto addSymbol = [&](std::vector<SymtabEntry> &symbols, Symbol *sym) {
uint32_t strx = stringTableSection.addString(sym->getName());
symbols.push_back({sym, strx});
};
std::function<void(Symbol *)> localSymbolsHandler;
switch (config->localSymbolsPresence) {
case SymtabPresence::All:
localSymbolsHandler = [&](Symbol *sym) { addSymbol(localSymbols, sym); };
break;
case SymtabPresence::None:
localSymbolsHandler = [&](Symbol *) { /* Do nothing*/ };
break;
case SymtabPresence::SelectivelyIncluded:
localSymbolsHandler = [&](Symbol *sym) {
if (config->localSymbolPatterns.match(sym->getName()))
addSymbol(localSymbols, sym);
};
break;
case SymtabPresence::SelectivelyExcluded:
localSymbolsHandler = [&](Symbol *sym) {
if (!config->localSymbolPatterns.match(sym->getName()))
addSymbol(localSymbols, sym);
};
break;
}
// Local symbols aren't in the SymbolTable, so we walk the list of object
// files to gather them.
// But if `-x` is set, then we don't need to. localSymbolsHandler() will do
// the right thing regardless, but this check is a perf optimization because
// iterating through all the input files and their symbols is expensive.
if (config->localSymbolsPresence != SymtabPresence::None) {
for (const InputFile *file : inputFiles) {
if (auto *objFile = dyn_cast<ObjFile>(file)) {
for (Symbol *sym : objFile->symbols) {
if (auto *defined = dyn_cast_or_null<Defined>(sym)) {
if (defined->isExternal() || !defined->isLive() ||
!defined->includeInSymtab)
continue;
localSymbolsHandler(sym);
}
}
}
}
}
// __dyld_private is a local symbol too. It's linker-created and doesn't
// exist in any object file.
if (Defined *dyldPrivate = in.stubHelper->dyldPrivate)
localSymbolsHandler(dyldPrivate);
for (Symbol *sym : symtab->getSymbols()) {
if (!sym->isLive())
continue;
if (auto *defined = dyn_cast<Defined>(sym)) {
if (!defined->includeInSymtab)
continue;
assert(defined->isExternal());
if (defined->privateExtern)
localSymbolsHandler(defined);
else
addSymbol(externalSymbols, defined);
} else if (auto *dysym = dyn_cast<DylibSymbol>(sym)) {
if (dysym->isReferenced())
addSymbol(undefinedSymbols, sym);
}
}
emitStabs();
uint32_t symtabIndex = stabs.size();
for (const SymtabEntry &entry :
concat<SymtabEntry>(localSymbols, externalSymbols, undefinedSymbols)) {
entry.sym->symtabIndex = symtabIndex++;
}
}
uint32_t SymtabSection::getNumSymbols() const {
return stabs.size() + localSymbols.size() + externalSymbols.size() +
undefinedSymbols.size();
}
// This serves to hide (type-erase) the template parameter from SymtabSection.
template <class LP> class SymtabSectionImpl final : public SymtabSection {
public:
SymtabSectionImpl(StringTableSection &stringTableSection)
: SymtabSection(stringTableSection) {}
uint64_t getRawSize() const override;
void writeTo(uint8_t *buf) const override;
};
template <class LP> uint64_t SymtabSectionImpl<LP>::getRawSize() const {
return getNumSymbols() * sizeof(typename LP::nlist);
}
template <class LP> void SymtabSectionImpl<LP>::writeTo(uint8_t *buf) const {
auto *nList = reinterpret_cast<typename LP::nlist *>(buf);
// Emit the stabs entries before the "real" symbols. We cannot emit them
// after as that would render Symbol::symtabIndex inaccurate.
for (const StabsEntry &entry : stabs) {
nList->n_strx = entry.strx;
nList->n_type = entry.type;
nList->n_sect = entry.sect;
nList->n_desc = entry.desc;
nList->n_value = entry.value;
++nList;
}
for (const SymtabEntry &entry : concat<const SymtabEntry>(
localSymbols, externalSymbols, undefinedSymbols)) {
nList->n_strx = entry.strx;
// TODO populate n_desc with more flags
if (auto *defined = dyn_cast<Defined>(entry.sym)) {
uint8_t scope = 0;
if (defined->privateExtern) {
// Private external -- dylib scoped symbol.
// Promote to non-external at link time.
scope = N_PEXT;
} else if (defined->isExternal()) {
// Normal global symbol.
scope = N_EXT;
} else {
// TU-local symbol from localSymbols.
scope = 0;
}
if (defined->isAbsolute()) {
nList->n_type = scope | N_ABS;
nList->n_sect = NO_SECT;
nList->n_value = defined->value;
} else {
nList->n_type = scope | N_SECT;
nList->n_sect = defined->isec->parent->index;
// For the N_SECT symbol type, n_value is the address of the symbol
nList->n_value = defined->getVA();
}
nList->n_desc |= defined->thumb ? N_ARM_THUMB_DEF : 0;
nList->n_desc |= defined->isExternalWeakDef() ? N_WEAK_DEF : 0;
nList->n_desc |=
defined->referencedDynamically ? REFERENCED_DYNAMICALLY : 0;
} else if (auto *dysym = dyn_cast<DylibSymbol>(entry.sym)) {
uint16_t n_desc = nList->n_desc;
int16_t ordinal = ordinalForDylibSymbol(*dysym);
if (ordinal == BIND_SPECIAL_DYLIB_FLAT_LOOKUP)
SET_LIBRARY_ORDINAL(n_desc, DYNAMIC_LOOKUP_ORDINAL);
else if (ordinal == BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE)
SET_LIBRARY_ORDINAL(n_desc, EXECUTABLE_ORDINAL);
else {
assert(ordinal > 0);
SET_LIBRARY_ORDINAL(n_desc, static_cast<uint8_t>(ordinal));
}
nList->n_type = N_EXT;
n_desc |= dysym->isWeakDef() ? N_WEAK_DEF : 0;
n_desc |= dysym->isWeakRef() ? N_WEAK_REF : 0;
nList->n_desc = n_desc;
}
++nList;
}
}
template <class LP>
SymtabSection *
macho::makeSymtabSection(StringTableSection &stringTableSection) {
return make<SymtabSectionImpl<LP>>(stringTableSection);
}
IndirectSymtabSection::IndirectSymtabSection()
: LinkEditSection(segment_names::linkEdit,
section_names::indirectSymbolTable) {}
uint32_t IndirectSymtabSection::getNumSymbols() const {
return in.got->getEntries().size() + in.tlvPointers->getEntries().size() +
2 * in.stubs->getEntries().size();
}
bool IndirectSymtabSection::isNeeded() const {
return in.got->isNeeded() || in.tlvPointers->isNeeded() ||
in.stubs->isNeeded();
}
void IndirectSymtabSection::finalizeContents() {
uint32_t off = 0;
in.got->reserved1 = off;
off += in.got->getEntries().size();
in.tlvPointers->reserved1 = off;
off += in.tlvPointers->getEntries().size();
in.stubs->reserved1 = off;
off += in.stubs->getEntries().size();
in.lazyPointers->reserved1 = off;
}
static uint32_t indirectValue(const Symbol *sym) {
if (sym->symtabIndex == UINT32_MAX)
return INDIRECT_SYMBOL_LOCAL;
if (auto *defined = dyn_cast<Defined>(sym))
if (defined->privateExtern)
return INDIRECT_SYMBOL_LOCAL;
return sym->symtabIndex;
}
void IndirectSymtabSection::writeTo(uint8_t *buf) const {
uint32_t off = 0;
for (const Symbol *sym : in.got->getEntries()) {
write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
++off;
}
for (const Symbol *sym : in.tlvPointers->getEntries()) {
write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
++off;
}
for (const Symbol *sym : in.stubs->getEntries()) {
write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
++off;
}
// There is a 1:1 correspondence between stubs and LazyPointerSection
// entries. But giving __stubs and __la_symbol_ptr the same reserved1
// (the offset into the indirect symbol table) so that they both refer
// to the same range of offsets confuses `strip`, so write the stubs
// symbol table offsets a second time.
for (const Symbol *sym : in.stubs->getEntries()) {
write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
++off;
}
}
StringTableSection::StringTableSection()
: LinkEditSection(segment_names::linkEdit, section_names::stringTable) {}
uint32_t StringTableSection::addString(StringRef str) {
uint32_t strx = size;
strings.push_back(str); // TODO: consider deduplicating strings
size += str.size() + 1; // account for null terminator
return strx;
}
void StringTableSection::writeTo(uint8_t *buf) const {
uint32_t off = 0;
for (StringRef str : strings) {
memcpy(buf + off, str.data(), str.size());
off += str.size() + 1; // account for null terminator
}
}
static_assert((CodeSignatureSection::blobHeadersSize % 8) == 0, "");
static_assert((CodeSignatureSection::fixedHeadersSize % 8) == 0, "");
CodeSignatureSection::CodeSignatureSection()
: LinkEditSection(segment_names::linkEdit, section_names::codeSignature) {
align = 16; // required by libstuff
// FIXME: Consider using finalOutput instead of outputFile.
fileName = config->outputFile;
size_t slashIndex = fileName.rfind("/");
if (slashIndex != std::string::npos)
fileName = fileName.drop_front(slashIndex + 1);
// NOTE: Any changes to these calculations should be repeated
// in llvm-objcopy's MachOLayoutBuilder::layoutTail.
allHeadersSize = alignTo<16>(fixedHeadersSize + fileName.size() + 1);
fileNamePad = allHeadersSize - fixedHeadersSize - fileName.size();
}
uint32_t CodeSignatureSection::getBlockCount() const {
return (fileOff + blockSize - 1) / blockSize;
}
uint64_t CodeSignatureSection::getRawSize() const {
return allHeadersSize + getBlockCount() * hashSize;
}
void CodeSignatureSection::writeHashes(uint8_t *buf) const {
// NOTE: Changes to this functionality should be repeated in llvm-objcopy's
// MachOWriter::writeSignatureData.
uint8_t *hashes = buf + fileOff + allHeadersSize;
parallelFor(0, getBlockCount(), [&](size_t i) {
sha256(buf + i * blockSize,
std::min(static_cast<size_t>(fileOff - i * blockSize),
static_cast<size_t>(blockSize)),
hashes + i * hashSize);
});
#if defined(__APPLE__)
// This is macOS-specific work-around and makes no sense for any
// other host OS. See https://openradar.appspot.com/FB8914231
//
// The macOS kernel maintains a signature-verification cache to
// quickly validate applications at time of execve(2). The trouble
// is that for the kernel creates the cache entry at the time of the
// mmap(2) call, before we have a chance to write either the code to
// sign or the signature header+hashes. The fix is to invalidate
// all cached data associated with the output file, thus discarding
// the bogus prematurely-cached signature.
msync(buf, fileOff + getSize(), MS_INVALIDATE);
#endif
}
void CodeSignatureSection::writeTo(uint8_t *buf) const {
// NOTE: Changes to this functionality should be repeated in llvm-objcopy's
// MachOWriter::writeSignatureData.
uint32_t signatureSize = static_cast<uint32_t>(getSize());
auto *superBlob = reinterpret_cast<CS_SuperBlob *>(buf);
write32be(&superBlob->magic, CSMAGIC_EMBEDDED_SIGNATURE);
write32be(&superBlob->length, signatureSize);
write32be(&superBlob->count, 1);
auto *blobIndex = reinterpret_cast<CS_BlobIndex *>(&superBlob[1]);
write32be(&blobIndex->type, CSSLOT_CODEDIRECTORY);
write32be(&blobIndex->offset, blobHeadersSize);
auto *codeDirectory =
reinterpret_cast<CS_CodeDirectory *>(buf + blobHeadersSize);
write32be(&codeDirectory->magic, CSMAGIC_CODEDIRECTORY);
write32be(&codeDirectory->length, signatureSize - blobHeadersSize);
write32be(&codeDirectory->version, CS_SUPPORTSEXECSEG);
write32be(&codeDirectory->flags, CS_ADHOC | CS_LINKER_SIGNED);
write32be(&codeDirectory->hashOffset,
sizeof(CS_CodeDirectory) + fileName.size() + fileNamePad);
write32be(&codeDirectory->identOffset, sizeof(CS_CodeDirectory));
codeDirectory->nSpecialSlots = 0;
write32be(&codeDirectory->nCodeSlots, getBlockCount());
write32be(&codeDirectory->codeLimit, fileOff);
codeDirectory->hashSize = static_cast<uint8_t>(hashSize);
codeDirectory->hashType = kSecCodeSignatureHashSHA256;
codeDirectory->platform = 0;
codeDirectory->pageSize = blockSizeShift;
codeDirectory->spare2 = 0;
codeDirectory->scatterOffset = 0;
codeDirectory->teamOffset = 0;
codeDirectory->spare3 = 0;
codeDirectory->codeLimit64 = 0;
OutputSegment *textSeg = getOrCreateOutputSegment(segment_names::text);
write64be(&codeDirectory->execSegBase, textSeg->fileOff);
write64be(&codeDirectory->execSegLimit, textSeg->fileSize);
write64be(&codeDirectory->execSegFlags,
config->outputType == MH_EXECUTE ? CS_EXECSEG_MAIN_BINARY : 0);
auto *id = reinterpret_cast<char *>(&codeDirectory[1]);
memcpy(id, fileName.begin(), fileName.size());
memset(id + fileName.size(), 0, fileNamePad);
}
BitcodeBundleSection::BitcodeBundleSection()
: SyntheticSection(segment_names::llvm, section_names::bitcodeBundle) {}
class ErrorCodeWrapper {
public:
explicit ErrorCodeWrapper(std::error_code ec) : errorCode(ec.value()) {}
explicit ErrorCodeWrapper(int ec) : errorCode(ec) {}
operator int() const { return errorCode; }
private:
int errorCode;
};
#define CHECK_EC(exp) \
do { \
ErrorCodeWrapper ec(exp); \
if (ec) \
fatal(Twine("operation failed with error code ") + Twine(ec) + ": " + \
#exp); \
} while (0);
void BitcodeBundleSection::finalize() {
#ifdef LLVM_HAVE_LIBXAR
using namespace llvm::sys::fs;
CHECK_EC(createTemporaryFile("bitcode-bundle", "xar", xarPath));
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdeprecated-declarations"
xar_t xar(xar_open(xarPath.data(), O_RDWR));
#pragma clang diagnostic pop
if (!xar)
fatal("failed to open XAR temporary file at " + xarPath);
CHECK_EC(xar_opt_set(xar, XAR_OPT_COMPRESSION, XAR_OPT_VAL_NONE));
// FIXME: add more data to XAR
CHECK_EC(xar_close(xar));
file_size(xarPath, xarSize);
#endif // defined(LLVM_HAVE_LIBXAR)
}
void BitcodeBundleSection::writeTo(uint8_t *buf) const {
using namespace llvm::sys::fs;
file_t handle =
CHECK(openNativeFile(xarPath, CD_OpenExisting, FA_Read, OF_None),
"failed to open XAR file");
std::error_code ec;
mapped_file_region xarMap(handle, mapped_file_region::mapmode::readonly,
xarSize, 0, ec);
if (ec)
fatal("failed to map XAR file");
memcpy(buf, xarMap.const_data(), xarSize);
closeFile(handle);
remove(xarPath);
}
CStringSection::CStringSection()
: SyntheticSection(segment_names::text, section_names::cString) {
flags = S_CSTRING_LITERALS;
}
void CStringSection::addInput(CStringInputSection *isec) {
isec->parent = this;
inputs.push_back(isec);
if (isec->align > align)
align = isec->align;
}
void CStringSection::writeTo(uint8_t *buf) const {
for (const CStringInputSection *isec : inputs) {
for (size_t i = 0, e = isec->pieces.size(); i != e; ++i) {
if (!isec->pieces[i].live)
continue;
StringRef string = isec->getStringRef(i);
memcpy(buf + isec->pieces[i].outSecOff, string.data(), string.size());
}
}
}
void CStringSection::finalizeContents() {
uint64_t offset = 0;
for (CStringInputSection *isec : inputs) {
for (size_t i = 0, e = isec->pieces.size(); i != e; ++i) {
if (!isec->pieces[i].live)
continue;
// See comment above DeduplicatedCStringSection for how alignment is
// handled.
uint32_t pieceAlign =
1 << countTrailingZeros(isec->align | isec->pieces[i].inSecOff);
offset = alignTo(offset, pieceAlign);
isec->pieces[i].outSecOff = offset;
isec->isFinal = true;
StringRef string = isec->getStringRef(i);
offset += string.size();
}
}
size = offset;
}
// Mergeable cstring literals are found under the __TEXT,__cstring section. In
// contrast to ELF, which puts strings that need different alignments into
// different sections, clang's Mach-O backend puts them all in one section.
// Strings that need to be aligned have the .p2align directive emitted before
// them, which simply translates into zero padding in the object file. In other
// words, we have to infer the desired alignment of these cstrings from their
// addresses.
//
// We differ slightly from ld64 in how we've chosen to align these cstrings.
// Both LLD and ld64 preserve the number of trailing zeros in each cstring's
// address in the input object files. When deduplicating identical cstrings,
// both linkers pick the cstring whose address has more trailing zeros, and
// preserve the alignment of that address in the final binary. However, ld64
// goes a step further and also preserves the offset of the cstring from the
// last section-aligned address. I.e. if a cstring is at offset 18 in the
// input, with a section alignment of 16, then both LLD and ld64 will ensure the
// final address is 2-byte aligned (since 18 == 16 + 2). But ld64 will also
// ensure that the final address is of the form 16 * k + 2 for some k.
//
// Note that ld64's heuristic means that a dedup'ed cstring's final address is
// dependent on the order of the input object files. E.g. if in addition to the
// cstring at offset 18 above, we have a duplicate one in another file with a
// `.cstring` section alignment of 2 and an offset of zero, then ld64 will pick
// the cstring from the object file earlier on the command line (since both have
// the same number of trailing zeros in their address). So the final cstring may
// either be at some address `16 * k + 2` or at some address `2 * k`.
//
// I've opted not to follow this behavior primarily for implementation
// simplicity, and secondarily to save a few more bytes. It's not clear to me
// that preserving the section alignment + offset is ever necessary, and there
// are many cases that are clearly redundant. In particular, if an x86_64 object
// file contains some strings that are accessed via SIMD instructions, then the
// .cstring section in the object file will be 16-byte-aligned (since SIMD
// requires its operand addresses to be 16-byte aligned). However, there will
// typically also be other cstrings in the same file that aren't used via SIMD
// and don't need this alignment. They will be emitted at some arbitrary address
// `A`, but ld64 will treat them as being 16-byte aligned with an offset of `16
// % A`.
void DeduplicatedCStringSection::finalizeContents() {
// Find the largest alignment required for each string.
for (const CStringInputSection *isec : inputs) {
for (size_t i = 0, e = isec->pieces.size(); i != e; ++i) {
const StringPiece &piece = isec->pieces[i];
if (!piece.live)
continue;
auto s = isec->getCachedHashStringRef(i);
assert(isec->align != 0);
uint8_t trailingZeros = countTrailingZeros(isec->align | piece.inSecOff);
auto it = stringOffsetMap.insert(
std::make_pair(s, StringOffset(trailingZeros)));
if (!it.second && it.first->second.trailingZeros < trailingZeros)
it.first->second.trailingZeros = trailingZeros;
}
}
// Assign an offset for each string and save it to the corresponding
// StringPieces for easy access.
for (CStringInputSection *isec : inputs) {
for (size_t i = 0, e = isec->pieces.size(); i != e; ++i) {
if (!isec->pieces[i].live)
continue;
auto s = isec->getCachedHashStringRef(i);
auto it = stringOffsetMap.find(s);
assert(it != stringOffsetMap.end());
StringOffset &offsetInfo = it->second;
if (offsetInfo.outSecOff == UINT64_MAX) {
offsetInfo.outSecOff = alignTo(size, 1ULL << offsetInfo.trailingZeros);
size = offsetInfo.outSecOff + s.size();
}
isec->pieces[i].outSecOff = offsetInfo.outSecOff;
}
isec->isFinal = true;
}
}
void DeduplicatedCStringSection::writeTo(uint8_t *buf) const {
for (const auto &p : stringOffsetMap) {
StringRef data = p.first.val();
uint64_t off = p.second.outSecOff;
if (!data.empty())
memcpy(buf + off, data.data(), data.size());
}
}
// This section is actually emitted as __TEXT,__const by ld64, but clang may
// emit input sections of that name, and LLD doesn't currently support mixing
// synthetic and concat-type OutputSections. To work around this, I've given
// our merged-literals section a different name.
WordLiteralSection::WordLiteralSection()
: SyntheticSection(segment_names::text, section_names::literals) {
align = 16;
}
void WordLiteralSection::addInput(WordLiteralInputSection *isec) {
isec->parent = this;
inputs.push_back(isec);
}
void WordLiteralSection::finalizeContents() {
for (WordLiteralInputSection *isec : inputs) {
// We do all processing of the InputSection here, so it will be effectively
// finalized.
isec->isFinal = true;
const uint8_t *buf = isec->data.data();
switch (sectionType(isec->getFlags())) {
case S_4BYTE_LITERALS: {
for (size_t off = 0, e = isec->data.size(); off < e; off += 4) {
if (!isec->isLive(off))
continue;
uint32_t value = *reinterpret_cast<const uint32_t *>(buf + off);
literal4Map.emplace(value, literal4Map.size());
}
break;
}
case S_8BYTE_LITERALS: {
for (size_t off = 0, e = isec->data.size(); off < e; off += 8) {
if (!isec->isLive(off))
continue;
uint64_t value = *reinterpret_cast<const uint64_t *>(buf + off);
literal8Map.emplace(value, literal8Map.size());
}
break;
}
case S_16BYTE_LITERALS: {
for (size_t off = 0, e = isec->data.size(); off < e; off += 16) {
if (!isec->isLive(off))
continue;
UInt128 value = *reinterpret_cast<const UInt128 *>(buf + off);
literal16Map.emplace(value, literal16Map.size());
}
break;
}
default:
llvm_unreachable("invalid literal section type");
}
}
}
void WordLiteralSection::writeTo(uint8_t *buf) const {
// Note that we don't attempt to do any endianness conversion in addInput(),
// so we don't do it here either -- just write out the original value,
// byte-for-byte.
for (const auto &p : literal16Map)
memcpy(buf + p.second * 16, &p.first, 16);
buf += literal16Map.size() * 16;
for (const auto &p : literal8Map)
memcpy(buf + p.second * 8, &p.first, 8);
buf += literal8Map.size() * 8;
for (const auto &p : literal4Map)
memcpy(buf + p.second * 4, &p.first, 4);
}
ObjCImageInfoSection::ObjCImageInfoSection()
: SyntheticSection(segment_names::data, section_names::objCImageInfo) {}
ObjCImageInfoSection::ImageInfo
ObjCImageInfoSection::parseImageInfo(const InputFile *file) {
ImageInfo info;
ArrayRef<uint8_t> data = file->objCImageInfo;
// The image info struct has the following layout:
// struct {
// uint32_t version;
// uint32_t flags;
// };
if (data.size() < 8) {
warn(toString(file) + ": invalid __objc_imageinfo size");
return info;
}
auto *buf = reinterpret_cast<const uint32_t *>(data.data());
if (read32le(buf) != 0) {
warn(toString(file) + ": invalid __objc_imageinfo version");
return info;
}
uint32_t flags = read32le(buf + 1);
info.swiftVersion = (flags >> 8) & 0xff;
info.hasCategoryClassProperties = flags & 0x40;
return info;
}
static std::string swiftVersionString(uint8_t version) {
switch (version) {
case 1:
return "1.0";
case 2:
return "1.1";
case 3:
return "2.0";
case 4:
return "3.0";
case 5:
return "4.0";
default:
return ("0x" + Twine::utohexstr(version)).str();
}
}
// Validate each object file's __objc_imageinfo and use them to generate the
// image info for the output binary. Only two pieces of info are relevant:
// 1. The Swift version (should be identical across inputs)
// 2. `bool hasCategoryClassProperties` (true only if true for all inputs)
void ObjCImageInfoSection::finalizeContents() {
assert(files.size() != 0); // should have already been checked via isNeeded()
info.hasCategoryClassProperties = true;
const InputFile *firstFile;
for (auto file : files) {
ImageInfo inputInfo = parseImageInfo(file);
info.hasCategoryClassProperties &= inputInfo.hasCategoryClassProperties;
// swiftVersion 0 means no Swift is present, so no version checking required
if (inputInfo.swiftVersion == 0)
continue;
if (info.swiftVersion != 0 && info.swiftVersion != inputInfo.swiftVersion) {
error("Swift version mismatch: " + toString(firstFile) + " has version " +
swiftVersionString(info.swiftVersion) + " but " + toString(file) +
" has version " + swiftVersionString(inputInfo.swiftVersion));
} else {
info.swiftVersion = inputInfo.swiftVersion;
firstFile = file;
}
}
}
void ObjCImageInfoSection::writeTo(uint8_t *buf) const {
uint32_t flags = info.hasCategoryClassProperties ? 0x40 : 0x0;
flags |= info.swiftVersion << 8;
write32le(buf + 4, flags);
}
void macho::createSyntheticSymbols() {
auto addHeaderSymbol = [](const char *name) {
symtab->addSynthetic(name, in.header->isec, /*value=*/0,
/*isPrivateExtern=*/true, /*includeInSymtab=*/false,
/*referencedDynamically=*/false);
};
switch (config->outputType) {
// FIXME: Assign the right address value for these symbols
// (rather than 0). But we need to do that after assignAddresses().
case MH_EXECUTE:
// If linking PIE, __mh_execute_header is a defined symbol in
// __TEXT, __text)
// Otherwise, it's an absolute symbol.
if (config->isPic)
symtab->addSynthetic("__mh_execute_header", in.header->isec, /*value=*/0,
/*isPrivateExtern=*/false, /*includeInSymtab=*/true,
/*referencedDynamically=*/true);
else
symtab->addSynthetic("__mh_execute_header", /*isec=*/nullptr, /*value=*/0,
/*isPrivateExtern=*/false, /*includeInSymtab=*/true,
/*referencedDynamically=*/true);
break;
// The following symbols are N_SECT symbols, even though the header is not
// part of any section and that they are private to the bundle/dylib/object
// they are part of.
case MH_BUNDLE:
addHeaderSymbol("__mh_bundle_header");
break;
case MH_DYLIB:
addHeaderSymbol("__mh_dylib_header");
break;
case MH_DYLINKER:
addHeaderSymbol("__mh_dylinker_header");
break;
case MH_OBJECT:
addHeaderSymbol("__mh_object_header");
break;
default:
llvm_unreachable("unexpected outputType");
break;
}
// The Itanium C++ ABI requires dylibs to pass a pointer to __cxa_atexit
// which does e.g. cleanup of static global variables. The ABI document
// says that the pointer can point to any address in one of the dylib's
// segments, but in practice ld64 seems to set it to point to the header,
// so that's what's implemented here.
addHeaderSymbol("___dso_handle");
}
template SymtabSection *macho::makeSymtabSection<LP64>(StringTableSection &);
template SymtabSection *macho::makeSymtabSection<ILP32>(StringTableSection &);