llvm-project/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp

7465 lines
294 KiB
C++

//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
// and generates target-independent LLVM-IR.
// The vectorizer uses the TargetTransformInfo analysis to estimate the costs
// of instructions in order to estimate the profitability of vectorization.
//
// The loop vectorizer combines consecutive loop iterations into a single
// 'wide' iteration. After this transformation the index is incremented
// by the SIMD vector width, and not by one.
//
// This pass has three parts:
// 1. The main loop pass that drives the different parts.
// 2. LoopVectorizationLegality - A unit that checks for the legality
// of the vectorization.
// 3. InnerLoopVectorizer - A unit that performs the actual
// widening of instructions.
// 4. LoopVectorizationCostModel - A unit that checks for the profitability
// of vectorization. It decides on the optimal vector width, which
// can be one, if vectorization is not profitable.
//
//===----------------------------------------------------------------------===//
//
// The reduction-variable vectorization is based on the paper:
// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
//
// Variable uniformity checks are inspired by:
// Karrenberg, R. and Hack, S. Whole Function Vectorization.
//
// The interleaved access vectorization is based on the paper:
// Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved
// Data for SIMD
//
// Other ideas/concepts are from:
// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
//
// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
// Vectorizing Compilers.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Vectorize/LoopVectorize.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Pass.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/LoopVersioning.h"
#include "llvm/Transforms/Vectorize.h"
#include <algorithm>
#include <map>
#include <tuple>
using namespace llvm;
using namespace llvm::PatternMatch;
#define LV_NAME "loop-vectorize"
#define DEBUG_TYPE LV_NAME
STATISTIC(LoopsVectorized, "Number of loops vectorized");
STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
static cl::opt<bool>
EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
cl::desc("Enable if-conversion during vectorization."));
/// We don't vectorize loops with a known constant trip count below this number.
static cl::opt<unsigned> TinyTripCountVectorThreshold(
"vectorizer-min-trip-count", cl::init(16), cl::Hidden,
cl::desc("Don't vectorize loops with a constant "
"trip count that is smaller than this "
"value."));
static cl::opt<bool> MaximizeBandwidth(
"vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
cl::desc("Maximize bandwidth when selecting vectorization factor which "
"will be determined by the smallest type in loop."));
static cl::opt<bool> EnableInterleavedMemAccesses(
"enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
/// Maximum factor for an interleaved memory access.
static cl::opt<unsigned> MaxInterleaveGroupFactor(
"max-interleave-group-factor", cl::Hidden,
cl::desc("Maximum factor for an interleaved access group (default = 8)"),
cl::init(8));
/// We don't interleave loops with a known constant trip count below this
/// number.
static const unsigned TinyTripCountInterleaveThreshold = 128;
static cl::opt<unsigned> ForceTargetNumScalarRegs(
"force-target-num-scalar-regs", cl::init(0), cl::Hidden,
cl::desc("A flag that overrides the target's number of scalar registers."));
static cl::opt<unsigned> ForceTargetNumVectorRegs(
"force-target-num-vector-regs", cl::init(0), cl::Hidden,
cl::desc("A flag that overrides the target's number of vector registers."));
/// Maximum vectorization interleave count.
static const unsigned MaxInterleaveFactor = 16;
static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
"force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
cl::desc("A flag that overrides the target's max interleave factor for "
"scalar loops."));
static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
"force-target-max-vector-interleave", cl::init(0), cl::Hidden,
cl::desc("A flag that overrides the target's max interleave factor for "
"vectorized loops."));
static cl::opt<unsigned> ForceTargetInstructionCost(
"force-target-instruction-cost", cl::init(0), cl::Hidden,
cl::desc("A flag that overrides the target's expected cost for "
"an instruction to a single constant value. Mostly "
"useful for getting consistent testing."));
static cl::opt<unsigned> SmallLoopCost(
"small-loop-cost", cl::init(20), cl::Hidden,
cl::desc(
"The cost of a loop that is considered 'small' by the interleaver."));
static cl::opt<bool> LoopVectorizeWithBlockFrequency(
"loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden,
cl::desc("Enable the use of the block frequency analysis to access PGO "
"heuristics minimizing code growth in cold regions and being more "
"aggressive in hot regions."));
// Runtime interleave loops for load/store throughput.
static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
"enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
cl::desc(
"Enable runtime interleaving until load/store ports are saturated"));
/// The number of stores in a loop that are allowed to need predication.
static cl::opt<unsigned> NumberOfStoresToPredicate(
"vectorize-num-stores-pred", cl::init(1), cl::Hidden,
cl::desc("Max number of stores to be predicated behind an if."));
static cl::opt<bool> EnableIndVarRegisterHeur(
"enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
cl::desc("Count the induction variable only once when interleaving"));
static cl::opt<bool> EnableCondStoresVectorization(
"enable-cond-stores-vec", cl::init(false), cl::Hidden,
cl::desc("Enable if predication of stores during vectorization."));
static cl::opt<unsigned> MaxNestedScalarReductionIC(
"max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
cl::desc("The maximum interleave count to use when interleaving a scalar "
"reduction in a nested loop."));
static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
"pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
cl::desc("The maximum allowed number of runtime memory checks with a "
"vectorize(enable) pragma."));
static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
"vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
cl::desc("The maximum number of SCEV checks allowed."));
static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
"pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
cl::desc("The maximum number of SCEV checks allowed with a "
"vectorize(enable) pragma"));
/// Create an analysis remark that explains why vectorization failed
///
/// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p
/// RemarkName is the identifier for the remark. If \p I is passed it is an
/// instruction that prevents vectorization. Otherwise \p TheLoop is used for
/// the location of the remark. \return the remark object that can be
/// streamed to.
static OptimizationRemarkAnalysis
createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop,
Instruction *I = nullptr) {
Value *CodeRegion = TheLoop->getHeader();
DebugLoc DL = TheLoop->getStartLoc();
if (I) {
CodeRegion = I->getParent();
// If there is no debug location attached to the instruction, revert back to
// using the loop's.
if (I->getDebugLoc())
DL = I->getDebugLoc();
}
OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
R << "loop not vectorized: ";
return R;
}
namespace {
// Forward declarations.
class LoopVectorizeHints;
class LoopVectorizationLegality;
class LoopVectorizationCostModel;
class LoopVectorizationRequirements;
/// Returns true if the given loop body has a cycle, excluding the loop
/// itself.
static bool hasCyclesInLoopBody(const Loop &L) {
if (!L.empty())
return true;
for (const auto &SCC :
make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L),
scc_iterator<Loop, LoopBodyTraits>::end(L))) {
if (SCC.size() > 1) {
DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n");
DEBUG(L.dump());
return true;
}
}
return false;
}
/// \brief This modifies LoopAccessReport to initialize message with
/// loop-vectorizer-specific part.
class VectorizationReport : public LoopAccessReport {
public:
VectorizationReport(Instruction *I = nullptr)
: LoopAccessReport("loop not vectorized: ", I) {}
/// \brief This allows promotion of the loop-access analysis report into the
/// loop-vectorizer report. It modifies the message to add the
/// loop-vectorizer-specific part of the message.
explicit VectorizationReport(const LoopAccessReport &R)
: LoopAccessReport(Twine("loop not vectorized: ") + R.str(),
R.getInstr()) {}
};
/// A helper function for converting Scalar types to vector types.
/// If the incoming type is void, we return void. If the VF is 1, we return
/// the scalar type.
static Type *ToVectorTy(Type *Scalar, unsigned VF) {
if (Scalar->isVoidTy() || VF == 1)
return Scalar;
return VectorType::get(Scalar, VF);
}
/// A helper function that returns GEP instruction and knows to skip a
/// 'bitcast'. The 'bitcast' may be skipped if the source and the destination
/// pointee types of the 'bitcast' have the same size.
/// For example:
/// bitcast double** %var to i64* - can be skipped
/// bitcast double** %var to i8* - can not
static GetElementPtrInst *getGEPInstruction(Value *Ptr) {
if (isa<GetElementPtrInst>(Ptr))
return cast<GetElementPtrInst>(Ptr);
if (isa<BitCastInst>(Ptr) &&
isa<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0))) {
Type *BitcastTy = Ptr->getType();
Type *GEPTy = cast<BitCastInst>(Ptr)->getSrcTy();
if (!isa<PointerType>(BitcastTy) || !isa<PointerType>(GEPTy))
return nullptr;
Type *Pointee1Ty = cast<PointerType>(BitcastTy)->getPointerElementType();
Type *Pointee2Ty = cast<PointerType>(GEPTy)->getPointerElementType();
const DataLayout &DL = cast<BitCastInst>(Ptr)->getModule()->getDataLayout();
if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty))
return cast<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0));
}
return nullptr;
}
/// A helper function that returns the pointer operand of a load or store
/// instruction.
static Value *getPointerOperand(Value *I) {
if (auto *LI = dyn_cast<LoadInst>(I))
return LI->getPointerOperand();
if (auto *SI = dyn_cast<StoreInst>(I))
return SI->getPointerOperand();
return nullptr;
}
/// A helper function that returns true if the given type is irregular. The
/// type is irregular if its allocated size doesn't equal the store size of an
/// element of the corresponding vector type at the given vectorization factor.
static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) {
// Determine if an array of VF elements of type Ty is "bitcast compatible"
// with a <VF x Ty> vector.
if (VF > 1) {
auto *VectorTy = VectorType::get(Ty, VF);
return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy);
}
// If the vectorization factor is one, we just check if an array of type Ty
// requires padding between elements.
return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
}
/// A helper function that returns the reciprocal of the block probability of
/// predicated blocks. If we return X, we are assuming the predicated block
/// will execute once for for every X iterations of the loop header.
///
/// TODO: We should use actual block probability here, if available. Currently,
/// we always assume predicated blocks have a 50% chance of executing.
static unsigned getReciprocalPredBlockProb() { return 2; }
/// InnerLoopVectorizer vectorizes loops which contain only one basic
/// block to a specified vectorization factor (VF).
/// This class performs the widening of scalars into vectors, or multiple
/// scalars. This class also implements the following features:
/// * It inserts an epilogue loop for handling loops that don't have iteration
/// counts that are known to be a multiple of the vectorization factor.
/// * It handles the code generation for reduction variables.
/// * Scalarization (implementation using scalars) of un-vectorizable
/// instructions.
/// InnerLoopVectorizer does not perform any vectorization-legality
/// checks, and relies on the caller to check for the different legality
/// aspects. The InnerLoopVectorizer relies on the
/// LoopVectorizationLegality class to provide information about the induction
/// and reduction variables that were found to a given vectorization factor.
class InnerLoopVectorizer {
public:
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
LoopInfo *LI, DominatorTree *DT,
const TargetLibraryInfo *TLI,
const TargetTransformInfo *TTI, AssumptionCache *AC,
OptimizationRemarkEmitter *ORE, unsigned VecWidth,
unsigned UnrollFactor, LoopVectorizationLegality *LVL,
LoopVectorizationCostModel *CM)
: OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
Builder(PSE.getSE()->getContext()), Induction(nullptr),
OldInduction(nullptr), VectorLoopValueMap(UnrollFactor, VecWidth),
TripCount(nullptr), VectorTripCount(nullptr), Legal(LVL), Cost(CM),
AddedSafetyChecks(false) {}
// Perform the actual loop widening (vectorization).
void vectorize() {
// Create a new empty loop. Unlink the old loop and connect the new one.
createEmptyLoop();
// Widen each instruction in the old loop to a new one in the new loop.
vectorizeLoop();
}
// Return true if any runtime check is added.
bool areSafetyChecksAdded() { return AddedSafetyChecks; }
virtual ~InnerLoopVectorizer() {}
protected:
/// A small list of PHINodes.
typedef SmallVector<PHINode *, 4> PhiVector;
/// A type for vectorized values in the new loop. Each value from the
/// original loop, when vectorized, is represented by UF vector values in the
/// new unrolled loop, where UF is the unroll factor.
typedef SmallVector<Value *, 2> VectorParts;
/// A type for scalarized values in the new loop. Each value from the
/// original loop, when scalarized, is represented by UF x VF scalar values
/// in the new unrolled loop, where UF is the unroll factor and VF is the
/// vectorization factor.
typedef SmallVector<SmallVector<Value *, 4>, 2> ScalarParts;
// When we if-convert we need to create edge masks. We have to cache values
// so that we don't end up with exponential recursion/IR.
typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts>
EdgeMaskCache;
/// Create an empty loop, based on the loop ranges of the old loop.
void createEmptyLoop();
/// Set up the values of the IVs correctly when exiting the vector loop.
void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
Value *CountRoundDown, Value *EndValue,
BasicBlock *MiddleBlock);
/// Create a new induction variable inside L.
PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
Value *Step, Instruction *DL);
/// Copy and widen the instructions from the old loop.
virtual void vectorizeLoop();
/// Fix a first-order recurrence. This is the second phase of vectorizing
/// this phi node.
void fixFirstOrderRecurrence(PHINode *Phi);
/// \brief The Loop exit block may have single value PHI nodes where the
/// incoming value is 'Undef'. While vectorizing we only handled real values
/// that were defined inside the loop. Here we fix the 'undef case'.
/// See PR14725.
void fixLCSSAPHIs();
/// Iteratively sink the scalarized operands of a predicated instruction into
/// the block that was created for it.
void sinkScalarOperands(Instruction *PredInst);
/// Predicate conditional instructions that require predication on their
/// respective conditions.
void predicateInstructions();
/// Collect the instructions from the original loop that would be trivially
/// dead in the vectorized loop if generated.
void collectTriviallyDeadInstructions();
/// Shrinks vector element sizes to the smallest bitwidth they can be legally
/// represented as.
void truncateToMinimalBitwidths();
/// A helper function that computes the predicate of the block BB, assuming
/// that the header block of the loop is set to True. It returns the *entry*
/// mask for the block BB.
VectorParts createBlockInMask(BasicBlock *BB);
/// A helper function that computes the predicate of the edge between SRC
/// and DST.
VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
/// A helper function to vectorize a single BB within the innermost loop.
void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV);
/// Vectorize a single PHINode in a block. This method handles the induction
/// variable canonicalization. It supports both VF = 1 for unrolled loops and
/// arbitrary length vectors.
void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF,
PhiVector *PV);
/// Insert the new loop to the loop hierarchy and pass manager
/// and update the analysis passes.
void updateAnalysis();
/// This instruction is un-vectorizable. Implement it as a sequence
/// of scalars. If \p IfPredicateInstr is true we need to 'hide' each
/// scalarized instruction behind an if block predicated on the control
/// dependence of the instruction.
virtual void scalarizeInstruction(Instruction *Instr,
bool IfPredicateInstr = false);
/// Vectorize Load and Store instructions,
virtual void vectorizeMemoryInstruction(Instruction *Instr);
/// Create a broadcast instruction. This method generates a broadcast
/// instruction (shuffle) for loop invariant values and for the induction
/// value. If this is the induction variable then we extend it to N, N+1, ...
/// this is needed because each iteration in the loop corresponds to a SIMD
/// element.
virtual Value *getBroadcastInstrs(Value *V);
/// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...)
/// to each vector element of Val. The sequence starts at StartIndex.
/// \p Opcode is relevant for FP induction variable.
virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
Instruction::BinaryOps Opcode =
Instruction::BinaryOpsEnd);
/// Compute scalar induction steps. \p ScalarIV is the scalar induction
/// variable on which to base the steps, \p Step is the size of the step, and
/// \p EntryVal is the value from the original loop that maps to the steps.
/// Note that \p EntryVal doesn't have to be an induction variable (e.g., it
/// can be a truncate instruction).
void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal);
/// Create a vector induction phi node based on an existing scalar one. This
/// currently only works for integer induction variables with a constant
/// step. \p EntryVal is the value from the original loop that maps to the
/// vector phi node. If \p EntryVal is a truncate instruction, instead of
/// widening the original IV, we widen a version of the IV truncated to \p
/// EntryVal's type.
void createVectorIntInductionPHI(const InductionDescriptor &II,
Instruction *EntryVal);
/// Widen an integer induction variable \p IV. If \p Trunc is provided, the
/// induction variable will first be truncated to the corresponding type.
void widenIntInduction(PHINode *IV, TruncInst *Trunc = nullptr);
/// Returns true if we should generate a scalar version of \p IV.
bool needsScalarInduction(Instruction *IV) const;
/// Return a constant reference to the VectorParts corresponding to \p V from
/// the original loop. If the value has already been vectorized, the
/// corresponding vector entry in VectorLoopValueMap is returned. If,
/// however, the value has a scalar entry in VectorLoopValueMap, we construct
/// new vector values on-demand by inserting the scalar values into vectors
/// with an insertelement sequence. If the value has been neither vectorized
/// nor scalarized, it must be loop invariant, so we simply broadcast the
/// value into vectors.
const VectorParts &getVectorValue(Value *V);
/// Return a value in the new loop corresponding to \p V from the original
/// loop at unroll index \p Part and vector index \p Lane. If the value has
/// been vectorized but not scalarized, the necessary extractelement
/// instruction will be generated.
Value *getScalarValue(Value *V, unsigned Part, unsigned Lane);
/// Try to vectorize the interleaved access group that \p Instr belongs to.
void vectorizeInterleaveGroup(Instruction *Instr);
/// Generate a shuffle sequence that will reverse the vector Vec.
virtual Value *reverseVector(Value *Vec);
/// Returns (and creates if needed) the original loop trip count.
Value *getOrCreateTripCount(Loop *NewLoop);
/// Returns (and creates if needed) the trip count of the widened loop.
Value *getOrCreateVectorTripCount(Loop *NewLoop);
/// Emit a bypass check to see if the trip count would overflow, or we
/// wouldn't have enough iterations to execute one vector loop.
void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
/// Emit a bypass check to see if the vector trip count is nonzero.
void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass);
/// Emit a bypass check to see if all of the SCEV assumptions we've
/// had to make are correct.
void emitSCEVChecks(Loop *L, BasicBlock *Bypass);
/// Emit bypass checks to check any memory assumptions we may have made.
void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
/// Add additional metadata to \p To that was not present on \p Orig.
///
/// Currently this is used to add the noalias annotations based on the
/// inserted memchecks. Use this for instructions that are *cloned* into the
/// vector loop.
void addNewMetadata(Instruction *To, const Instruction *Orig);
/// Add metadata from one instruction to another.
///
/// This includes both the original MDs from \p From and additional ones (\see
/// addNewMetadata). Use this for *newly created* instructions in the vector
/// loop.
void addMetadata(Instruction *To, Instruction *From);
/// \brief Similar to the previous function but it adds the metadata to a
/// vector of instructions.
void addMetadata(ArrayRef<Value *> To, Instruction *From);
/// This is a helper class for maintaining vectorization state. It's used for
/// mapping values from the original loop to their corresponding values in
/// the new loop. Two mappings are maintained: one for vectorized values and
/// one for scalarized values. Vectorized values are represented with UF
/// vector values in the new loop, and scalarized values are represented with
/// UF x VF scalar values in the new loop. UF and VF are the unroll and
/// vectorization factors, respectively.
///
/// Entries can be added to either map with initVector and initScalar, which
/// initialize and return a constant reference to the new entry. If a
/// non-constant reference to a vector entry is required, getVector can be
/// used to retrieve a mutable entry. We currently directly modify the mapped
/// values during "fix-up" operations that occur once the first phase of
/// widening is complete. These operations include type truncation and the
/// second phase of recurrence widening.
///
/// Otherwise, entries from either map should be accessed using the
/// getVectorValue or getScalarValue functions from InnerLoopVectorizer.
/// getVectorValue and getScalarValue coordinate to generate a vector or
/// scalar value on-demand if one is not yet available. When vectorizing a
/// loop, we visit the definition of an instruction before its uses. When
/// visiting the definition, we either vectorize or scalarize the
/// instruction, creating an entry for it in the corresponding map. (In some
/// cases, such as induction variables, we will create both vector and scalar
/// entries.) Then, as we encounter uses of the definition, we derive values
/// for each scalar or vector use unless such a value is already available.
/// For example, if we scalarize a definition and one of its uses is vector,
/// we build the required vector on-demand with an insertelement sequence
/// when visiting the use. Otherwise, if the use is scalar, we can use the
/// existing scalar definition.
struct ValueMap {
/// Construct an empty map with the given unroll and vectorization factors.
ValueMap(unsigned UnrollFactor, unsigned VecWidth)
: UF(UnrollFactor), VF(VecWidth) {
// The unroll and vectorization factors are only used in asserts builds
// to verify map entries are sized appropriately.
(void)UF;
(void)VF;
}
/// \return True if the map has a vector entry for \p Key.
bool hasVector(Value *Key) const { return VectorMapStorage.count(Key); }
/// \return True if the map has a scalar entry for \p Key.
bool hasScalar(Value *Key) const { return ScalarMapStorage.count(Key); }
/// \brief Map \p Key to the given VectorParts \p Entry, and return a
/// constant reference to the new vector map entry. The given key should
/// not already be in the map, and the given VectorParts should be
/// correctly sized for the current unroll factor.
const VectorParts &initVector(Value *Key, const VectorParts &Entry) {
assert(!hasVector(Key) && "Vector entry already initialized");
assert(Entry.size() == UF && "VectorParts has wrong dimensions");
VectorMapStorage[Key] = Entry;
return VectorMapStorage[Key];
}
/// \brief Map \p Key to the given ScalarParts \p Entry, and return a
/// constant reference to the new scalar map entry. The given key should
/// not already be in the map, and the given ScalarParts should be
/// correctly sized for the current unroll and vectorization factors.
const ScalarParts &initScalar(Value *Key, const ScalarParts &Entry) {
assert(!hasScalar(Key) && "Scalar entry already initialized");
assert(Entry.size() == UF &&
all_of(make_range(Entry.begin(), Entry.end()),
[&](const SmallVectorImpl<Value *> &Values) -> bool {
return Values.size() == VF;
}) &&
"ScalarParts has wrong dimensions");
ScalarMapStorage[Key] = Entry;
return ScalarMapStorage[Key];
}
/// \return A reference to the vector map entry corresponding to \p Key.
/// The key should already be in the map. This function should only be used
/// when it's necessary to update values that have already been vectorized.
/// This is the case for "fix-up" operations including type truncation and
/// the second phase of recurrence vectorization. If a non-const reference
/// isn't required, getVectorValue should be used instead.
VectorParts &getVector(Value *Key) {
assert(hasVector(Key) && "Vector entry not initialized");
return VectorMapStorage.find(Key)->second;
}
/// Retrieve an entry from the vector or scalar maps. The preferred way to
/// access an existing mapped entry is with getVectorValue or
/// getScalarValue from InnerLoopVectorizer. Until those functions can be
/// moved inside ValueMap, we have to declare them as friends.
friend const VectorParts &InnerLoopVectorizer::getVectorValue(Value *V);
friend Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part,
unsigned Lane);
private:
/// The unroll factor. Each entry in the vector map contains UF vector
/// values.
unsigned UF;
/// The vectorization factor. Each entry in the scalar map contains UF x VF
/// scalar values.
unsigned VF;
/// The vector and scalar map storage. We use std::map and not DenseMap
/// because insertions to DenseMap invalidate its iterators.
std::map<Value *, VectorParts> VectorMapStorage;
std::map<Value *, ScalarParts> ScalarMapStorage;
};
/// The original loop.
Loop *OrigLoop;
/// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
/// dynamic knowledge to simplify SCEV expressions and converts them to a
/// more usable form.
PredicatedScalarEvolution &PSE;
/// Loop Info.
LoopInfo *LI;
/// Dominator Tree.
DominatorTree *DT;
/// Alias Analysis.
AliasAnalysis *AA;
/// Target Library Info.
const TargetLibraryInfo *TLI;
/// Target Transform Info.
const TargetTransformInfo *TTI;
/// Assumption Cache.
AssumptionCache *AC;
/// Interface to emit optimization remarks.
OptimizationRemarkEmitter *ORE;
/// \brief LoopVersioning. It's only set up (non-null) if memchecks were
/// used.
///
/// This is currently only used to add no-alias metadata based on the
/// memchecks. The actually versioning is performed manually.
std::unique_ptr<LoopVersioning> LVer;
/// The vectorization SIMD factor to use. Each vector will have this many
/// vector elements.
unsigned VF;
protected:
/// The vectorization unroll factor to use. Each scalar is vectorized to this
/// many different vector instructions.
unsigned UF;
/// The builder that we use
IRBuilder<> Builder;
// --- Vectorization state ---
/// The vector-loop preheader.
BasicBlock *LoopVectorPreHeader;
/// The scalar-loop preheader.
BasicBlock *LoopScalarPreHeader;
/// Middle Block between the vector and the scalar.
BasicBlock *LoopMiddleBlock;
/// The ExitBlock of the scalar loop.
BasicBlock *LoopExitBlock;
/// The vector loop body.
BasicBlock *LoopVectorBody;
/// The scalar loop body.
BasicBlock *LoopScalarBody;
/// A list of all bypass blocks. The first block is the entry of the loop.
SmallVector<BasicBlock *, 4> LoopBypassBlocks;
/// The new Induction variable which was added to the new block.
PHINode *Induction;
/// The induction variable of the old basic block.
PHINode *OldInduction;
/// Maps values from the original loop to their corresponding values in the
/// vectorized loop. A key value can map to either vector values, scalar
/// values or both kinds of values, depending on whether the key was
/// vectorized and scalarized.
ValueMap VectorLoopValueMap;
/// Store instructions that should be predicated, as a pair
/// <StoreInst, Predicate>
SmallVector<std::pair<Instruction *, Value *>, 4> PredicatedInstructions;
EdgeMaskCache MaskCache;
/// Trip count of the original loop.
Value *TripCount;
/// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
Value *VectorTripCount;
/// The legality analysis.
LoopVectorizationLegality *Legal;
/// The profitablity analysis.
LoopVectorizationCostModel *Cost;
// Record whether runtime checks are added.
bool AddedSafetyChecks;
// Holds instructions from the original loop whose counterparts in the
// vectorized loop would be trivially dead if generated. For example,
// original induction update instructions can become dead because we
// separately emit induction "steps" when generating code for the new loop.
// Similarly, we create a new latch condition when setting up the structure
// of the new loop, so the old one can become dead.
SmallPtrSet<Instruction *, 4> DeadInstructions;
};
class InnerLoopUnroller : public InnerLoopVectorizer {
public:
InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
LoopInfo *LI, DominatorTree *DT,
const TargetLibraryInfo *TLI,
const TargetTransformInfo *TTI, AssumptionCache *AC,
OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
LoopVectorizationLegality *LVL,
LoopVectorizationCostModel *CM)
: InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1,
UnrollFactor, LVL, CM) {}
private:
void scalarizeInstruction(Instruction *Instr,
bool IfPredicateInstr = false) override;
void vectorizeMemoryInstruction(Instruction *Instr) override;
Value *getBroadcastInstrs(Value *V) override;
Value *getStepVector(Value *Val, int StartIdx, Value *Step,
Instruction::BinaryOps Opcode =
Instruction::BinaryOpsEnd) override;
Value *reverseVector(Value *Vec) override;
};
/// \brief Look for a meaningful debug location on the instruction or it's
/// operands.
static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
if (!I)
return I;
DebugLoc Empty;
if (I->getDebugLoc() != Empty)
return I;
for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
if (OpInst->getDebugLoc() != Empty)
return OpInst;
}
return I;
}
/// \brief Set the debug location in the builder using the debug location in the
/// instruction.
static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr))
B.SetCurrentDebugLocation(Inst->getDebugLoc());
else
B.SetCurrentDebugLocation(DebugLoc());
}
#ifndef NDEBUG
/// \return string containing a file name and a line # for the given loop.
static std::string getDebugLocString(const Loop *L) {
std::string Result;
if (L) {
raw_string_ostream OS(Result);
if (const DebugLoc LoopDbgLoc = L->getStartLoc())
LoopDbgLoc.print(OS);
else
// Just print the module name.
OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
OS.flush();
}
return Result;
}
#endif
void InnerLoopVectorizer::addNewMetadata(Instruction *To,
const Instruction *Orig) {
// If the loop was versioned with memchecks, add the corresponding no-alias
// metadata.
if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
LVer->annotateInstWithNoAlias(To, Orig);
}
void InnerLoopVectorizer::addMetadata(Instruction *To,
Instruction *From) {
propagateMetadata(To, From);
addNewMetadata(To, From);
}
void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
Instruction *From) {
for (Value *V : To) {
if (Instruction *I = dyn_cast<Instruction>(V))
addMetadata(I, From);
}
}
/// \brief The group of interleaved loads/stores sharing the same stride and
/// close to each other.
///
/// Each member in this group has an index starting from 0, and the largest
/// index should be less than interleaved factor, which is equal to the absolute
/// value of the access's stride.
///
/// E.g. An interleaved load group of factor 4:
/// for (unsigned i = 0; i < 1024; i+=4) {
/// a = A[i]; // Member of index 0
/// b = A[i+1]; // Member of index 1
/// d = A[i+3]; // Member of index 3
/// ...
/// }
///
/// An interleaved store group of factor 4:
/// for (unsigned i = 0; i < 1024; i+=4) {
/// ...
/// A[i] = a; // Member of index 0
/// A[i+1] = b; // Member of index 1
/// A[i+2] = c; // Member of index 2
/// A[i+3] = d; // Member of index 3
/// }
///
/// Note: the interleaved load group could have gaps (missing members), but
/// the interleaved store group doesn't allow gaps.
class InterleaveGroup {
public:
InterleaveGroup(Instruction *Instr, int Stride, unsigned Align)
: Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) {
assert(Align && "The alignment should be non-zero");
Factor = std::abs(Stride);
assert(Factor > 1 && "Invalid interleave factor");
Reverse = Stride < 0;
Members[0] = Instr;
}
bool isReverse() const { return Reverse; }
unsigned getFactor() const { return Factor; }
unsigned getAlignment() const { return Align; }
unsigned getNumMembers() const { return Members.size(); }
/// \brief Try to insert a new member \p Instr with index \p Index and
/// alignment \p NewAlign. The index is related to the leader and it could be
/// negative if it is the new leader.
///
/// \returns false if the instruction doesn't belong to the group.
bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) {
assert(NewAlign && "The new member's alignment should be non-zero");
int Key = Index + SmallestKey;
// Skip if there is already a member with the same index.
if (Members.count(Key))
return false;
if (Key > LargestKey) {
// The largest index is always less than the interleave factor.
if (Index >= static_cast<int>(Factor))
return false;
LargestKey = Key;
} else if (Key < SmallestKey) {
// The largest index is always less than the interleave factor.
if (LargestKey - Key >= static_cast<int>(Factor))
return false;
SmallestKey = Key;
}
// It's always safe to select the minimum alignment.
Align = std::min(Align, NewAlign);
Members[Key] = Instr;
return true;
}
/// \brief Get the member with the given index \p Index
///
/// \returns nullptr if contains no such member.
Instruction *getMember(unsigned Index) const {
int Key = SmallestKey + Index;
if (!Members.count(Key))
return nullptr;
return Members.find(Key)->second;
}
/// \brief Get the index for the given member. Unlike the key in the member
/// map, the index starts from 0.
unsigned getIndex(Instruction *Instr) const {
for (auto I : Members)
if (I.second == Instr)
return I.first - SmallestKey;
llvm_unreachable("InterleaveGroup contains no such member");
}
Instruction *getInsertPos() const { return InsertPos; }
void setInsertPos(Instruction *Inst) { InsertPos = Inst; }
private:
unsigned Factor; // Interleave Factor.
bool Reverse;
unsigned Align;
DenseMap<int, Instruction *> Members;
int SmallestKey;
int LargestKey;
// To avoid breaking dependences, vectorized instructions of an interleave
// group should be inserted at either the first load or the last store in
// program order.
//
// E.g. %even = load i32 // Insert Position
// %add = add i32 %even // Use of %even
// %odd = load i32
//
// store i32 %even
// %odd = add i32 // Def of %odd
// store i32 %odd // Insert Position
Instruction *InsertPos;
};
/// \brief Drive the analysis of interleaved memory accesses in the loop.
///
/// Use this class to analyze interleaved accesses only when we can vectorize
/// a loop. Otherwise it's meaningless to do analysis as the vectorization
/// on interleaved accesses is unsafe.
///
/// The analysis collects interleave groups and records the relationships
/// between the member and the group in a map.
class InterleavedAccessInfo {
public:
InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L,
DominatorTree *DT, LoopInfo *LI)
: PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(nullptr),
RequiresScalarEpilogue(false) {}
~InterleavedAccessInfo() {
SmallSet<InterleaveGroup *, 4> DelSet;
// Avoid releasing a pointer twice.
for (auto &I : InterleaveGroupMap)
DelSet.insert(I.second);
for (auto *Ptr : DelSet)
delete Ptr;
}
/// \brief Analyze the interleaved accesses and collect them in interleave
/// groups. Substitute symbolic strides using \p Strides.
void analyzeInterleaving(const ValueToValueMap &Strides);
/// \brief Check if \p Instr belongs to any interleave group.
bool isInterleaved(Instruction *Instr) const {
return InterleaveGroupMap.count(Instr);
}
/// \brief Return the maximum interleave factor of all interleaved groups.
unsigned getMaxInterleaveFactor() const {
unsigned MaxFactor = 1;
for (auto &Entry : InterleaveGroupMap)
MaxFactor = std::max(MaxFactor, Entry.second->getFactor());
return MaxFactor;
}
/// \brief Get the interleave group that \p Instr belongs to.
///
/// \returns nullptr if doesn't have such group.
InterleaveGroup *getInterleaveGroup(Instruction *Instr) const {
if (InterleaveGroupMap.count(Instr))
return InterleaveGroupMap.find(Instr)->second;
return nullptr;
}
/// \brief Returns true if an interleaved group that may access memory
/// out-of-bounds requires a scalar epilogue iteration for correctness.
bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; }
/// \brief Initialize the LoopAccessInfo used for dependence checking.
void setLAI(const LoopAccessInfo *Info) { LAI = Info; }
private:
/// A wrapper around ScalarEvolution, used to add runtime SCEV checks.
/// Simplifies SCEV expressions in the context of existing SCEV assumptions.
/// The interleaved access analysis can also add new predicates (for example
/// by versioning strides of pointers).
PredicatedScalarEvolution &PSE;
Loop *TheLoop;
DominatorTree *DT;
LoopInfo *LI;
const LoopAccessInfo *LAI;
/// True if the loop may contain non-reversed interleaved groups with
/// out-of-bounds accesses. We ensure we don't speculatively access memory
/// out-of-bounds by executing at least one scalar epilogue iteration.
bool RequiresScalarEpilogue;
/// Holds the relationships between the members and the interleave group.
DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap;
/// Holds dependences among the memory accesses in the loop. It maps a source
/// access to a set of dependent sink accesses.
DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences;
/// \brief The descriptor for a strided memory access.
struct StrideDescriptor {
StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size,
unsigned Align)
: Stride(Stride), Scev(Scev), Size(Size), Align(Align) {}
StrideDescriptor() = default;
// The access's stride. It is negative for a reverse access.
int64_t Stride = 0;
const SCEV *Scev = nullptr; // The scalar expression of this access
uint64_t Size = 0; // The size of the memory object.
unsigned Align = 0; // The alignment of this access.
};
/// \brief A type for holding instructions and their stride descriptors.
typedef std::pair<Instruction *, StrideDescriptor> StrideEntry;
/// \brief Create a new interleave group with the given instruction \p Instr,
/// stride \p Stride and alignment \p Align.
///
/// \returns the newly created interleave group.
InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride,
unsigned Align) {
assert(!InterleaveGroupMap.count(Instr) &&
"Already in an interleaved access group");
InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align);
return InterleaveGroupMap[Instr];
}
/// \brief Release the group and remove all the relationships.
void releaseGroup(InterleaveGroup *Group) {
for (unsigned i = 0; i < Group->getFactor(); i++)
if (Instruction *Member = Group->getMember(i))
InterleaveGroupMap.erase(Member);
delete Group;
}
/// \brief Collect all the accesses with a constant stride in program order.
void collectConstStrideAccesses(
MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
const ValueToValueMap &Strides);
/// \brief Returns true if \p Stride is allowed in an interleaved group.
static bool isStrided(int Stride) {
unsigned Factor = std::abs(Stride);
return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
}
/// \brief Returns true if \p BB is a predicated block.
bool isPredicated(BasicBlock *BB) const {
return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
}
/// \brief Returns true if LoopAccessInfo can be used for dependence queries.
bool areDependencesValid() const {
return LAI && LAI->getDepChecker().getDependences();
}
/// \brief Returns true if memory accesses \p A and \p B can be reordered, if
/// necessary, when constructing interleaved groups.
///
/// \p A must precede \p B in program order. We return false if reordering is
/// not necessary or is prevented because \p A and \p B may be dependent.
bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A,
StrideEntry *B) const {
// Code motion for interleaved accesses can potentially hoist strided loads
// and sink strided stores. The code below checks the legality of the
// following two conditions:
//
// 1. Potentially moving a strided load (B) before any store (A) that
// precedes B, or
//
// 2. Potentially moving a strided store (A) after any load or store (B)
// that A precedes.
//
// It's legal to reorder A and B if we know there isn't a dependence from A
// to B. Note that this determination is conservative since some
// dependences could potentially be reordered safely.
// A is potentially the source of a dependence.
auto *Src = A->first;
auto SrcDes = A->second;
// B is potentially the sink of a dependence.
auto *Sink = B->first;
auto SinkDes = B->second;
// Code motion for interleaved accesses can't violate WAR dependences.
// Thus, reordering is legal if the source isn't a write.
if (!Src->mayWriteToMemory())
return true;
// At least one of the accesses must be strided.
if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride))
return true;
// If dependence information is not available from LoopAccessInfo,
// conservatively assume the instructions can't be reordered.
if (!areDependencesValid())
return false;
// If we know there is a dependence from source to sink, assume the
// instructions can't be reordered. Otherwise, reordering is legal.
return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink);
}
/// \brief Collect the dependences from LoopAccessInfo.
///
/// We process the dependences once during the interleaved access analysis to
/// enable constant-time dependence queries.
void collectDependences() {
if (!areDependencesValid())
return;
auto *Deps = LAI->getDepChecker().getDependences();
for (auto Dep : *Deps)
Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI));
}
};
/// Utility class for getting and setting loop vectorizer hints in the form
/// of loop metadata.
/// This class keeps a number of loop annotations locally (as member variables)
/// and can, upon request, write them back as metadata on the loop. It will
/// initially scan the loop for existing metadata, and will update the local
/// values based on information in the loop.
/// We cannot write all values to metadata, as the mere presence of some info,
/// for example 'force', means a decision has been made. So, we need to be
/// careful NOT to add them if the user hasn't specifically asked so.
class LoopVectorizeHints {
enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE };
/// Hint - associates name and validation with the hint value.
struct Hint {
const char *Name;
unsigned Value; // This may have to change for non-numeric values.
HintKind Kind;
Hint(const char *Name, unsigned Value, HintKind Kind)
: Name(Name), Value(Value), Kind(Kind) {}
bool validate(unsigned Val) {
switch (Kind) {
case HK_WIDTH:
return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
case HK_UNROLL:
return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
case HK_FORCE:
return (Val <= 1);
}
return false;
}
};
/// Vectorization width.
Hint Width;
/// Vectorization interleave factor.
Hint Interleave;
/// Vectorization forced
Hint Force;
/// Return the loop metadata prefix.
static StringRef Prefix() { return "llvm.loop."; }
/// True if there is any unsafe math in the loop.
bool PotentiallyUnsafe;
public:
enum ForceKind {
FK_Undefined = -1, ///< Not selected.
FK_Disabled = 0, ///< Forcing disabled.
FK_Enabled = 1, ///< Forcing enabled.
};
LoopVectorizeHints(const Loop *L, bool DisableInterleaving,
OptimizationRemarkEmitter &ORE)
: Width("vectorize.width", VectorizerParams::VectorizationFactor,
HK_WIDTH),
Interleave("interleave.count", DisableInterleaving, HK_UNROLL),
Force("vectorize.enable", FK_Undefined, HK_FORCE),
PotentiallyUnsafe(false), TheLoop(L), ORE(ORE) {
// Populate values with existing loop metadata.
getHintsFromMetadata();
// force-vector-interleave overrides DisableInterleaving.
if (VectorizerParams::isInterleaveForced())
Interleave.Value = VectorizerParams::VectorizationInterleave;
DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs()
<< "LV: Interleaving disabled by the pass manager\n");
}
/// Mark the loop L as already vectorized by setting the width to 1.
void setAlreadyVectorized() {
Width.Value = Interleave.Value = 1;
Hint Hints[] = {Width, Interleave};
writeHintsToMetadata(Hints);
}
bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const {
if (getForce() == LoopVectorizeHints::FK_Disabled) {
DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
emitRemarkWithHints();
return false;
}
if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) {
DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
emitRemarkWithHints();
return false;
}
if (getWidth() == 1 && getInterleave() == 1) {
// FIXME: Add a separate metadata to indicate when the loop has already
// been vectorized instead of setting width and count to 1.
DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
// FIXME: Add interleave.disable metadata. This will allow
// vectorize.disable to be used without disabling the pass and errors
// to differentiate between disabled vectorization and a width of 1.
ORE.emit(OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
"AllDisabled", L->getStartLoc(),
L->getHeader())
<< "loop not vectorized: vectorization and interleaving are "
"explicitly disabled, or vectorize width and interleave "
"count are both set to 1");
return false;
}
return true;
}
/// Dumps all the hint information.
void emitRemarkWithHints() const {
using namespace ore;
if (Force.Value == LoopVectorizeHints::FK_Disabled)
ORE.emit(OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
TheLoop->getStartLoc(),
TheLoop->getHeader())
<< "loop not vectorized: vectorization is explicitly disabled");
else {
OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
TheLoop->getStartLoc(), TheLoop->getHeader());
R << "loop not vectorized: use -Rpass-analysis=loop-vectorize for more "
"info";
if (Force.Value == LoopVectorizeHints::FK_Enabled) {
R << " (Force=" << NV("Force", true);
if (Width.Value != 0)
R << ", Vector Width=" << NV("VectorWidth", Width.Value);
if (Interleave.Value != 0)
R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value);
R << ")";
}
ORE.emit(R);
}
}
unsigned getWidth() const { return Width.Value; }
unsigned getInterleave() const { return Interleave.Value; }
enum ForceKind getForce() const { return (ForceKind)Force.Value; }
/// \brief If hints are provided that force vectorization, use the AlwaysPrint
/// pass name to force the frontend to print the diagnostic.
const char *vectorizeAnalysisPassName() const {
if (getWidth() == 1)
return LV_NAME;
if (getForce() == LoopVectorizeHints::FK_Disabled)
return LV_NAME;
if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
return LV_NAME;
return OptimizationRemarkAnalysis::AlwaysPrint;
}
bool allowReordering() const {
// When enabling loop hints are provided we allow the vectorizer to change
// the order of operations that is given by the scalar loop. This is not
// enabled by default because can be unsafe or inefficient. For example,
// reordering floating-point operations will change the way round-off
// error accumulates in the loop.
return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1;
}
bool isPotentiallyUnsafe() const {
// Avoid FP vectorization if the target is unsure about proper support.
// This may be related to the SIMD unit in the target not handling
// IEEE 754 FP ops properly, or bad single-to-double promotions.
// Otherwise, a sequence of vectorized loops, even without reduction,
// could lead to different end results on the destination vectors.
return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe;
}
void setPotentiallyUnsafe() { PotentiallyUnsafe = true; }
private:
/// Find hints specified in the loop metadata and update local values.
void getHintsFromMetadata() {
MDNode *LoopID = TheLoop->getLoopID();
if (!LoopID)
return;
// First operand should refer to the loop id itself.
assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
const MDString *S = nullptr;
SmallVector<Metadata *, 4> Args;
// The expected hint is either a MDString or a MDNode with the first
// operand a MDString.
if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
if (!MD || MD->getNumOperands() == 0)
continue;
S = dyn_cast<MDString>(MD->getOperand(0));
for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
Args.push_back(MD->getOperand(i));
} else {
S = dyn_cast<MDString>(LoopID->getOperand(i));
assert(Args.size() == 0 && "too many arguments for MDString");
}
if (!S)
continue;
// Check if the hint starts with the loop metadata prefix.
StringRef Name = S->getString();
if (Args.size() == 1)
setHint(Name, Args[0]);
}
}
/// Checks string hint with one operand and set value if valid.
void setHint(StringRef Name, Metadata *Arg) {
if (!Name.startswith(Prefix()))
return;
Name = Name.substr(Prefix().size(), StringRef::npos);
const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
if (!C)
return;
unsigned Val = C->getZExtValue();
Hint *Hints[] = {&Width, &Interleave, &Force};
for (auto H : Hints) {
if (Name == H->Name) {
if (H->validate(Val))
H->Value = Val;
else
DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
break;
}
}
}
/// Create a new hint from name / value pair.
MDNode *createHintMetadata(StringRef Name, unsigned V) const {
LLVMContext &Context = TheLoop->getHeader()->getContext();
Metadata *MDs[] = {MDString::get(Context, Name),
ConstantAsMetadata::get(
ConstantInt::get(Type::getInt32Ty(Context), V))};
return MDNode::get(Context, MDs);
}
/// Matches metadata with hint name.
bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) {
MDString *Name = dyn_cast<MDString>(Node->getOperand(0));
if (!Name)
return false;
for (auto H : HintTypes)
if (Name->getString().endswith(H.Name))
return true;
return false;
}
/// Sets current hints into loop metadata, keeping other values intact.
void writeHintsToMetadata(ArrayRef<Hint> HintTypes) {
if (HintTypes.size() == 0)
return;
// Reserve the first element to LoopID (see below).
SmallVector<Metadata *, 4> MDs(1);
// If the loop already has metadata, then ignore the existing operands.
MDNode *LoopID = TheLoop->getLoopID();
if (LoopID) {
for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
// If node in update list, ignore old value.
if (!matchesHintMetadataName(Node, HintTypes))
MDs.push_back(Node);
}
}
// Now, add the missing hints.
for (auto H : HintTypes)
MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value));
// Replace current metadata node with new one.
LLVMContext &Context = TheLoop->getHeader()->getContext();
MDNode *NewLoopID = MDNode::get(Context, MDs);
// Set operand 0 to refer to the loop id itself.
NewLoopID->replaceOperandWith(0, NewLoopID);
TheLoop->setLoopID(NewLoopID);
}
/// The loop these hints belong to.
const Loop *TheLoop;
/// Interface to emit optimization remarks.
OptimizationRemarkEmitter &ORE;
};
static void emitAnalysisDiag(const Loop *TheLoop,
const LoopVectorizeHints &Hints,
OptimizationRemarkEmitter &ORE,
const LoopAccessReport &Message) {
const char *Name = Hints.vectorizeAnalysisPassName();
LoopAccessReport::emitAnalysis(Message, TheLoop, Name, ORE);
}
static void emitMissedWarning(Function *F, Loop *L,
const LoopVectorizeHints &LH,
OptimizationRemarkEmitter *ORE) {
LH.emitRemarkWithHints();
if (LH.getForce() == LoopVectorizeHints::FK_Enabled) {
if (LH.getWidth() != 1)
emitLoopVectorizeWarning(
F->getContext(), *F, L->getStartLoc(),
"failed explicitly specified loop vectorization");
else if (LH.getInterleave() != 1)
emitLoopInterleaveWarning(
F->getContext(), *F, L->getStartLoc(),
"failed explicitly specified loop interleaving");
}
}
/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
/// to what vectorization factor.
/// This class does not look at the profitability of vectorization, only the
/// legality. This class has two main kinds of checks:
/// * Memory checks - The code in canVectorizeMemory checks if vectorization
/// will change the order of memory accesses in a way that will change the
/// correctness of the program.
/// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
/// checks for a number of different conditions, such as the availability of a
/// single induction variable, that all types are supported and vectorize-able,
/// etc. This code reflects the capabilities of InnerLoopVectorizer.
/// This class is also used by InnerLoopVectorizer for identifying
/// induction variable and the different reduction variables.
class LoopVectorizationLegality {
public:
LoopVectorizationLegality(
Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT,
TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F,
const TargetTransformInfo *TTI,
std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI,
OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R,
LoopVectorizeHints *H)
: NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT),
GetLAA(GetLAA), LAI(nullptr), ORE(ORE), InterleaveInfo(PSE, L, DT, LI),
Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false),
Requirements(R), Hints(H) {}
/// ReductionList contains the reduction descriptors for all
/// of the reductions that were found in the loop.
typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList;
/// InductionList saves induction variables and maps them to the
/// induction descriptor.
typedef MapVector<PHINode *, InductionDescriptor> InductionList;
/// RecurrenceSet contains the phi nodes that are recurrences other than
/// inductions and reductions.
typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet;
/// Returns true if it is legal to vectorize this loop.
/// This does not mean that it is profitable to vectorize this
/// loop, only that it is legal to do so.
bool canVectorize();
/// Returns the Induction variable.
PHINode *getInduction() { return Induction; }
/// Returns the reduction variables found in the loop.
ReductionList *getReductionVars() { return &Reductions; }
/// Returns the induction variables found in the loop.
InductionList *getInductionVars() { return &Inductions; }
/// Return the first-order recurrences found in the loop.
RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; }
/// Returns the widest induction type.
Type *getWidestInductionType() { return WidestIndTy; }
/// Returns True if V is an induction variable in this loop.
bool isInductionVariable(const Value *V);
/// Returns True if PN is a reduction variable in this loop.
bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); }
/// Returns True if Phi is a first-order recurrence in this loop.
bool isFirstOrderRecurrence(const PHINode *Phi);
/// Return true if the block BB needs to be predicated in order for the loop
/// to be vectorized.
bool blockNeedsPredication(BasicBlock *BB);
/// Check if this pointer is consecutive when vectorizing. This happens
/// when the last index of the GEP is the induction variable, or that the
/// pointer itself is an induction variable.
/// This check allows us to vectorize A[idx] into a wide load/store.
/// Returns:
/// 0 - Stride is unknown or non-consecutive.
/// 1 - Address is consecutive.
/// -1 - Address is consecutive, and decreasing.
int isConsecutivePtr(Value *Ptr);
/// Returns true if the value V is uniform within the loop.
bool isUniform(Value *V);
/// Returns true if \p I is known to be uniform after vectorization.
bool isUniformAfterVectorization(Instruction *I) { return Uniforms.count(I); }
/// Returns true if \p I is known to be scalar after vectorization.
bool isScalarAfterVectorization(Instruction *I) { return Scalars.count(I); }
/// Returns the information that we collected about runtime memory check.
const RuntimePointerChecking *getRuntimePointerChecking() const {
return LAI->getRuntimePointerChecking();
}
const LoopAccessInfo *getLAI() const { return LAI; }
/// \brief Check if \p Instr belongs to any interleaved access group.
bool isAccessInterleaved(Instruction *Instr) {
return InterleaveInfo.isInterleaved(Instr);
}
/// \brief Return the maximum interleave factor of all interleaved groups.
unsigned getMaxInterleaveFactor() const {
return InterleaveInfo.getMaxInterleaveFactor();
}
/// \brief Get the interleaved access group that \p Instr belongs to.
const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) {
return InterleaveInfo.getInterleaveGroup(Instr);
}
/// \brief Returns true if an interleaved group requires a scalar iteration
/// to handle accesses with gaps.
bool requiresScalarEpilogue() const {
return InterleaveInfo.requiresScalarEpilogue();
}
unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); }
bool hasStride(Value *V) { return LAI->hasStride(V); }
/// Returns true if the target machine supports masked store operation
/// for the given \p DataType and kind of access to \p Ptr.
bool isLegalMaskedStore(Type *DataType, Value *Ptr) {
return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType);
}
/// Returns true if the target machine supports masked load operation
/// for the given \p DataType and kind of access to \p Ptr.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr) {
return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType);
}
/// Returns true if the target machine supports masked scatter operation
/// for the given \p DataType.
bool isLegalMaskedScatter(Type *DataType) {
return TTI->isLegalMaskedScatter(DataType);
}
/// Returns true if the target machine supports masked gather operation
/// for the given \p DataType.
bool isLegalMaskedGather(Type *DataType) {
return TTI->isLegalMaskedGather(DataType);
}
/// Returns true if the target machine can represent \p V as a masked gather
/// or scatter operation.
bool isLegalGatherOrScatter(Value *V) {
auto *LI = dyn_cast<LoadInst>(V);
auto *SI = dyn_cast<StoreInst>(V);
if (!LI && !SI)
return false;
auto *Ptr = getPointerOperand(V);
auto *Ty = cast<PointerType>(Ptr->getType())->getElementType();
return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty));
}
/// Returns true if vector representation of the instruction \p I
/// requires mask.
bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); }
unsigned getNumStores() const { return LAI->getNumStores(); }
unsigned getNumLoads() const { return LAI->getNumLoads(); }
unsigned getNumPredStores() const { return NumPredStores; }
/// Returns true if \p I is an instruction that will be scalarized with
/// predication. Such instructions include conditional stores and
/// instructions that may divide by zero.
bool isScalarWithPredication(Instruction *I);
/// Returns true if \p I is a memory instruction that has a consecutive or
/// consecutive-like pointer operand. Consecutive-like pointers are pointers
/// that are treated like consecutive pointers during vectorization. The
/// pointer operands of interleaved accesses are an example.
bool hasConsecutiveLikePtrOperand(Instruction *I);
/// Returns true if \p I is a memory instruction that must be scalarized
/// during vectorization.
bool memoryInstructionMustBeScalarized(Instruction *I, unsigned VF = 1);
private:
/// Check if a single basic block loop is vectorizable.
/// At this point we know that this is a loop with a constant trip count
/// and we only need to check individual instructions.
bool canVectorizeInstrs();
/// When we vectorize loops we may change the order in which
/// we read and write from memory. This method checks if it is
/// legal to vectorize the code, considering only memory constrains.
/// Returns true if the loop is vectorizable
bool canVectorizeMemory();
/// Return true if we can vectorize this loop using the IF-conversion
/// transformation.
bool canVectorizeWithIfConvert();
/// Collect the instructions that are uniform after vectorization. An
/// instruction is uniform if we represent it with a single scalar value in
/// the vectorized loop corresponding to each vector iteration. Examples of
/// uniform instructions include pointer operands of consecutive or
/// interleaved memory accesses. Note that although uniformity implies an
/// instruction will be scalar, the reverse is not true. In general, a
/// scalarized instruction will be represented by VF scalar values in the
/// vectorized loop, each corresponding to an iteration of the original
/// scalar loop.
void collectLoopUniforms();
/// Collect the instructions that are scalar after vectorization. An
/// instruction is scalar if it is known to be uniform or will be scalarized
/// during vectorization. Non-uniform scalarized instructions will be
/// represented by VF values in the vectorized loop, each corresponding to an
/// iteration of the original scalar loop.
void collectLoopScalars();
/// Return true if all of the instructions in the block can be speculatively
/// executed. \p SafePtrs is a list of addresses that are known to be legal
/// and we know that we can read from them without segfault.
bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs);
/// Updates the vectorization state by adding \p Phi to the inductions list.
/// This can set \p Phi as the main induction of the loop if \p Phi is a
/// better choice for the main induction than the existing one.
void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID,
SmallPtrSetImpl<Value *> &AllowedExit);
/// Report an analysis message to assist the user in diagnosing loops that are
/// not vectorized. These are handled as LoopAccessReport rather than
/// VectorizationReport because the << operator of VectorizationReport returns
/// LoopAccessReport.
void emitAnalysis(const LoopAccessReport &Message) const {
emitAnalysisDiag(TheLoop, *Hints, *ORE, Message);
}
/// Create an analysis remark that explains why vectorization failed
///
/// \p RemarkName is the identifier for the remark. If \p I is passed it is
/// an instruction that prevents vectorization. Otherwise the loop is used
/// for the location of the remark. \return the remark object that can be
/// streamed to.
OptimizationRemarkAnalysis
createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const {
return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(),
RemarkName, TheLoop, I);
}
/// \brief If an access has a symbolic strides, this maps the pointer value to
/// the stride symbol.
const ValueToValueMap *getSymbolicStrides() {
// FIXME: Currently, the set of symbolic strides is sometimes queried before
// it's collected. This happens from canVectorizeWithIfConvert, when the
// pointer is checked to reference consecutive elements suitable for a
// masked access.
return LAI ? &LAI->getSymbolicStrides() : nullptr;
}
unsigned NumPredStores;
/// The loop that we evaluate.
Loop *TheLoop;
/// A wrapper around ScalarEvolution used to add runtime SCEV checks.
/// Applies dynamic knowledge to simplify SCEV expressions in the context
/// of existing SCEV assumptions. The analysis will also add a minimal set
/// of new predicates if this is required to enable vectorization and
/// unrolling.
PredicatedScalarEvolution &PSE;
/// Target Library Info.
TargetLibraryInfo *TLI;
/// Target Transform Info
const TargetTransformInfo *TTI;
/// Dominator Tree.
DominatorTree *DT;
// LoopAccess analysis.
std::function<const LoopAccessInfo &(Loop &)> *GetLAA;
// And the loop-accesses info corresponding to this loop. This pointer is
// null until canVectorizeMemory sets it up.
const LoopAccessInfo *LAI;
/// Interface to emit optimization remarks.
OptimizationRemarkEmitter *ORE;
/// The interleave access information contains groups of interleaved accesses
/// with the same stride and close to each other.
InterleavedAccessInfo InterleaveInfo;
// --- vectorization state --- //
/// Holds the integer induction variable. This is the counter of the
/// loop.
PHINode *Induction;
/// Holds the reduction variables.
ReductionList Reductions;
/// Holds all of the induction variables that we found in the loop.
/// Notice that inductions don't need to start at zero and that induction
/// variables can be pointers.
InductionList Inductions;
/// Holds the phi nodes that are first-order recurrences.
RecurrenceSet FirstOrderRecurrences;
/// Holds the widest induction type encountered.
Type *WidestIndTy;
/// Allowed outside users. This holds the induction and reduction
/// vars which can be accessed from outside the loop.
SmallPtrSet<Value *, 4> AllowedExit;
/// Holds the instructions known to be uniform after vectorization.
SmallPtrSet<Instruction *, 4> Uniforms;
/// Holds the instructions known to be scalar after vectorization.
SmallPtrSet<Instruction *, 4> Scalars;
/// Can we assume the absence of NaNs.
bool HasFunNoNaNAttr;
/// Vectorization requirements that will go through late-evaluation.
LoopVectorizationRequirements *Requirements;
/// Used to emit an analysis of any legality issues.
LoopVectorizeHints *Hints;
/// While vectorizing these instructions we have to generate a
/// call to the appropriate masked intrinsic
SmallPtrSet<const Instruction *, 8> MaskedOp;
};
/// LoopVectorizationCostModel - estimates the expected speedups due to
/// vectorization.
/// In many cases vectorization is not profitable. This can happen because of
/// a number of reasons. In this class we mainly attempt to predict the
/// expected speedup/slowdowns due to the supported instruction set. We use the
/// TargetTransformInfo to query the different backends for the cost of
/// different operations.
class LoopVectorizationCostModel {
public:
LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE,
LoopInfo *LI, LoopVectorizationLegality *Legal,
const TargetTransformInfo &TTI,
const TargetLibraryInfo *TLI, DemandedBits *DB,
AssumptionCache *AC,
OptimizationRemarkEmitter *ORE, const Function *F,
const LoopVectorizeHints *Hints)
: TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB),
AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {}
/// Information about vectorization costs
struct VectorizationFactor {
unsigned Width; // Vector width with best cost
unsigned Cost; // Cost of the loop with that width
};
/// \return The most profitable vectorization factor and the cost of that VF.
/// This method checks every power of two up to VF. If UserVF is not ZERO
/// then this vectorization factor will be selected if vectorization is
/// possible.
VectorizationFactor selectVectorizationFactor(bool OptForSize);
/// \return The size (in bits) of the smallest and widest types in the code
/// that needs to be vectorized. We ignore values that remain scalar such as
/// 64 bit loop indices.
std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
/// \return The desired interleave count.
/// If interleave count has been specified by metadata it will be returned.
/// Otherwise, the interleave count is computed and returned. VF and LoopCost
/// are the selected vectorization factor and the cost of the selected VF.
unsigned selectInterleaveCount(bool OptForSize, unsigned VF,
unsigned LoopCost);
/// \return The most profitable unroll factor.
/// This method finds the best unroll-factor based on register pressure and
/// other parameters. VF and LoopCost are the selected vectorization factor
/// and the cost of the selected VF.
unsigned computeInterleaveCount(bool OptForSize, unsigned VF,
unsigned LoopCost);
/// \brief A struct that represents some properties of the register usage
/// of a loop.
struct RegisterUsage {
/// Holds the number of loop invariant values that are used in the loop.
unsigned LoopInvariantRegs;
/// Holds the maximum number of concurrent live intervals in the loop.
unsigned MaxLocalUsers;
/// Holds the number of instructions in the loop.
unsigned NumInstructions;
};
/// \return Returns information about the register usages of the loop for the
/// given vectorization factors.
SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs);
/// Collect values we want to ignore in the cost model.
void collectValuesToIgnore();
/// \returns The smallest bitwidth each instruction can be represented with.
/// The vector equivalents of these instructions should be truncated to this
/// type.
const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
return MinBWs;
}
private:
/// The vectorization cost is a combination of the cost itself and a boolean
/// indicating whether any of the contributing operations will actually
/// operate on
/// vector values after type legalization in the backend. If this latter value
/// is
/// false, then all operations will be scalarized (i.e. no vectorization has
/// actually taken place).
typedef std::pair<unsigned, bool> VectorizationCostTy;
/// Returns the expected execution cost. The unit of the cost does
/// not matter because we use the 'cost' units to compare different
/// vector widths. The cost that is returned is *not* normalized by
/// the factor width.
VectorizationCostTy expectedCost(unsigned VF);
/// Returns the execution time cost of an instruction for a given vector
/// width. Vector width of one means scalar.
VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF);
/// The cost-computation logic from getInstructionCost which provides
/// the vector type as an output parameter.
unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy);
/// Returns whether the instruction is a load or store and will be a emitted
/// as a vector operation.
bool isConsecutiveLoadOrStore(Instruction *I);
/// Create an analysis remark that explains why vectorization failed
///
/// \p RemarkName is the identifier for the remark. \return the remark object
/// that can be streamed to.
OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) {
return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(),
RemarkName, TheLoop);
}
/// Map of scalar integer values to the smallest bitwidth they can be legally
/// represented as. The vector equivalents of these values should be truncated
/// to this type.
MapVector<Instruction *, uint64_t> MinBWs;
public:
/// The loop that we evaluate.
Loop *TheLoop;
/// Predicated scalar evolution analysis.
PredicatedScalarEvolution &PSE;
/// Loop Info analysis.
LoopInfo *LI;
/// Vectorization legality.
LoopVectorizationLegality *Legal;
/// Vector target information.
const TargetTransformInfo &TTI;
/// Target Library Info.
const TargetLibraryInfo *TLI;
/// Demanded bits analysis.
DemandedBits *DB;
/// Assumption cache.
AssumptionCache *AC;
/// Interface to emit optimization remarks.
OptimizationRemarkEmitter *ORE;
const Function *TheFunction;
/// Loop Vectorize Hint.
const LoopVectorizeHints *Hints;
/// Values to ignore in the cost model.
SmallPtrSet<const Value *, 16> ValuesToIgnore;
/// Values to ignore in the cost model when VF > 1.
SmallPtrSet<const Value *, 16> VecValuesToIgnore;
};
/// \brief This holds vectorization requirements that must be verified late in
/// the process. The requirements are set by legalize and costmodel. Once
/// vectorization has been determined to be possible and profitable the
/// requirements can be verified by looking for metadata or compiler options.
/// For example, some loops require FP commutativity which is only allowed if
/// vectorization is explicitly specified or if the fast-math compiler option
/// has been provided.
/// Late evaluation of these requirements allows helpful diagnostics to be
/// composed that tells the user what need to be done to vectorize the loop. For
/// example, by specifying #pragma clang loop vectorize or -ffast-math. Late
/// evaluation should be used only when diagnostics can generated that can be
/// followed by a non-expert user.
class LoopVectorizationRequirements {
public:
LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE)
: NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr), ORE(ORE) {}
void addUnsafeAlgebraInst(Instruction *I) {
// First unsafe algebra instruction.
if (!UnsafeAlgebraInst)
UnsafeAlgebraInst = I;
}
void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; }
bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) {
const char *PassName = Hints.vectorizeAnalysisPassName();
bool Failed = false;
if (UnsafeAlgebraInst && !Hints.allowReordering()) {
ORE.emit(
OptimizationRemarkAnalysisFPCommute(PassName, "CantReorderFPOps",
UnsafeAlgebraInst->getDebugLoc(),
UnsafeAlgebraInst->getParent())
<< "loop not vectorized: cannot prove it is safe to reorder "
"floating-point operations");
Failed = true;
}
// Test if runtime memcheck thresholds are exceeded.
bool PragmaThresholdReached =
NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
bool ThresholdReached =
NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
if ((ThresholdReached && !Hints.allowReordering()) ||
PragmaThresholdReached) {
ORE.emit(OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps",
L->getStartLoc(),
L->getHeader())
<< "loop not vectorized: cannot prove it is safe to reorder "
"memory operations");
DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
Failed = true;
}
return Failed;
}
private:
unsigned NumRuntimePointerChecks;
Instruction *UnsafeAlgebraInst;
/// Interface to emit optimization remarks.
OptimizationRemarkEmitter &ORE;
};
static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) {
if (L.empty()) {
if (!hasCyclesInLoopBody(L))
V.push_back(&L);
return;
}
for (Loop *InnerL : L)
addAcyclicInnerLoop(*InnerL, V);
}
/// The LoopVectorize Pass.
struct LoopVectorize : public FunctionPass {
/// Pass identification, replacement for typeid
static char ID;
explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true)
: FunctionPass(ID) {
Impl.DisableUnrolling = NoUnrolling;
Impl.AlwaysVectorize = AlwaysVectorize;
initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
}
LoopVectorizePass Impl;
bool runOnFunction(Function &F) override {
if (skipFunction(F))
return false;
auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
std::function<const LoopAccessInfo &(Loop &)> GetLAA =
[&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
GetLAA, *ORE);
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AssumptionCacheTracker>();
AU.addRequiredID(LoopSimplifyID);
AU.addRequiredID(LCSSAID);
AU.addRequired<BlockFrequencyInfoWrapperPass>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<ScalarEvolutionWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addRequired<AAResultsWrapperPass>();
AU.addRequired<LoopAccessLegacyAnalysis>();
AU.addRequired<DemandedBitsWrapperPass>();
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
AU.addPreserved<LoopInfoWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addPreserved<BasicAAWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
// LoopVectorizationCostModel.
//===----------------------------------------------------------------------===//
Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
// We need to place the broadcast of invariant variables outside the loop.
Instruction *Instr = dyn_cast<Instruction>(V);
bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody);
bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
// Place the code for broadcasting invariant variables in the new preheader.
IRBuilder<>::InsertPointGuard Guard(Builder);
if (Invariant)
Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
// Broadcast the scalar into all locations in the vector.
Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
return Shuf;
}
void InnerLoopVectorizer::createVectorIntInductionPHI(
const InductionDescriptor &II, Instruction *EntryVal) {
Value *Start = II.getStartValue();
ConstantInt *Step = II.getConstIntStepValue();
assert(Step && "Can not widen an IV with a non-constant step");
// Construct the initial value of the vector IV in the vector loop preheader
auto CurrIP = Builder.saveIP();
Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
if (isa<TruncInst>(EntryVal)) {
auto *TruncType = cast<IntegerType>(EntryVal->getType());
Step = ConstantInt::getSigned(TruncType, Step->getSExtValue());
Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
}
Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
Value *SteppedStart = getStepVector(SplatStart, 0, Step);
Builder.restoreIP(CurrIP);
Value *SplatVF =
ConstantVector::getSplat(VF, ConstantInt::getSigned(Start->getType(),
VF * Step->getSExtValue()));
// We may need to add the step a number of times, depending on the unroll
// factor. The last of those goes into the PHI.
PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
&*LoopVectorBody->getFirstInsertionPt());
Instruction *LastInduction = VecInd;
VectorParts Entry(UF);
for (unsigned Part = 0; Part < UF; ++Part) {
Entry[Part] = LastInduction;
LastInduction = cast<Instruction>(
Builder.CreateAdd(LastInduction, SplatVF, "step.add"));
}
VectorLoopValueMap.initVector(EntryVal, Entry);
if (isa<TruncInst>(EntryVal))
addMetadata(Entry, EntryVal);
// Move the last step to the end of the latch block. This ensures consistent
// placement of all induction updates.
auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
auto *ICmp = cast<Instruction>(Br->getCondition());
LastInduction->moveBefore(ICmp);
LastInduction->setName("vec.ind.next");
VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
VecInd->addIncoming(LastInduction, LoopVectorLatch);
}
bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
if (Legal->isScalarAfterVectorization(IV))
return true;
auto isScalarInst = [&](User *U) -> bool {
auto *I = cast<Instruction>(U);
return (OrigLoop->contains(I) && Legal->isScalarAfterVectorization(I));
};
return any_of(IV->users(), isScalarInst);
}
void InnerLoopVectorizer::widenIntInduction(PHINode *IV, TruncInst *Trunc) {
auto II = Legal->getInductionVars()->find(IV);
assert(II != Legal->getInductionVars()->end() && "IV is not an induction");
auto ID = II->second;
assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
// The scalar value to broadcast. This will be derived from the canonical
// induction variable.
Value *ScalarIV = nullptr;
// The step of the induction.
Value *Step = nullptr;
// The value from the original loop to which we are mapping the new induction
// variable.
Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
// True if we have vectorized the induction variable.
auto VectorizedIV = false;
// Determine if we want a scalar version of the induction variable. This is
// true if the induction variable itself is not widened, or if it has at
// least one user in the loop that is not widened.
auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal);
// If the induction variable has a constant integer step value, go ahead and
// get it now.
if (ID.getConstIntStepValue())
Step = ID.getConstIntStepValue();
// Try to create a new independent vector induction variable. If we can't
// create the phi node, we will splat the scalar induction variable in each
// loop iteration.
if (VF > 1 && IV->getType() == Induction->getType() && Step &&
!Legal->isScalarAfterVectorization(EntryVal)) {
createVectorIntInductionPHI(ID, EntryVal);
VectorizedIV = true;
}
// If we haven't yet vectorized the induction variable, or if we will create
// a scalar one, we need to define the scalar induction variable and step
// values. If we were given a truncation type, truncate the canonical
// induction variable and constant step. Otherwise, derive these values from
// the induction descriptor.
if (!VectorizedIV || NeedsScalarIV) {
if (Trunc) {
auto *TruncType = cast<IntegerType>(Trunc->getType());
assert(Step && "Truncation requires constant integer step");
auto StepInt = cast<ConstantInt>(Step)->getSExtValue();
ScalarIV = Builder.CreateCast(Instruction::Trunc, Induction, TruncType);
Step = ConstantInt::getSigned(TruncType, StepInt);
} else {
ScalarIV = Induction;
auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
if (IV != OldInduction) {
ScalarIV = Builder.CreateSExtOrTrunc(ScalarIV, IV->getType());
ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL);
ScalarIV->setName("offset.idx");
}
if (!Step) {
SCEVExpander Exp(*PSE.getSE(), DL, "induction");
Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(),
&*Builder.GetInsertPoint());
}
}
}
// If we haven't yet vectorized the induction variable, splat the scalar
// induction variable, and build the necessary step vectors.
if (!VectorizedIV) {
Value *Broadcasted = getBroadcastInstrs(ScalarIV);
VectorParts Entry(UF);
for (unsigned Part = 0; Part < UF; ++Part)
Entry[Part] = getStepVector(Broadcasted, VF * Part, Step);
VectorLoopValueMap.initVector(EntryVal, Entry);
if (Trunc)
addMetadata(Entry, Trunc);
}
// If an induction variable is only used for counting loop iterations or
// calculating addresses, it doesn't need to be widened. Create scalar steps
// that can be used by instructions we will later scalarize. Note that the
// addition of the scalar steps will not increase the number of instructions
// in the loop in the common case prior to InstCombine. We will be trading
// one vector extract for each scalar step.
if (NeedsScalarIV)
buildScalarSteps(ScalarIV, Step, EntryVal);
}
Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
Instruction::BinaryOps BinOp) {
// Create and check the types.
assert(Val->getType()->isVectorTy() && "Must be a vector");
int VLen = Val->getType()->getVectorNumElements();
Type *STy = Val->getType()->getScalarType();
assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
"Induction Step must be an integer or FP");
assert(Step->getType() == STy && "Step has wrong type");
SmallVector<Constant *, 8> Indices;
if (STy->isIntegerTy()) {
// Create a vector of consecutive numbers from zero to VF.
for (int i = 0; i < VLen; ++i)
Indices.push_back(ConstantInt::get(STy, StartIdx + i));
// Add the consecutive indices to the vector value.
Constant *Cv = ConstantVector::get(Indices);
assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
Step = Builder.CreateVectorSplat(VLen, Step);
assert(Step->getType() == Val->getType() && "Invalid step vec");
// FIXME: The newly created binary instructions should contain nsw/nuw flags,
// which can be found from the original scalar operations.
Step = Builder.CreateMul(Cv, Step);
return Builder.CreateAdd(Val, Step, "induction");
}
// Floating point induction.
assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
"Binary Opcode should be specified for FP induction");
// Create a vector of consecutive numbers from zero to VF.
for (int i = 0; i < VLen; ++i)
Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i)));
// Add the consecutive indices to the vector value.
Constant *Cv = ConstantVector::get(Indices);
Step = Builder.CreateVectorSplat(VLen, Step);
// Floating point operations had to be 'fast' to enable the induction.
FastMathFlags Flags;
Flags.setUnsafeAlgebra();
Value *MulOp = Builder.CreateFMul(Cv, Step);
if (isa<Instruction>(MulOp))
// Have to check, MulOp may be a constant
cast<Instruction>(MulOp)->setFastMathFlags(Flags);
Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
if (isa<Instruction>(BOp))
cast<Instruction>(BOp)->setFastMathFlags(Flags);
return BOp;
}
void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
Value *EntryVal) {
// We shouldn't have to build scalar steps if we aren't vectorizing.
assert(VF > 1 && "VF should be greater than one");
// Get the value type and ensure it and the step have the same integer type.
Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
assert(ScalarIVTy->isIntegerTy() && ScalarIVTy == Step->getType() &&
"Val and Step should have the same integer type");
// Determine the number of scalars we need to generate for each unroll
// iteration. If EntryVal is uniform, we only need to generate the first
// lane. Otherwise, we generate all VF values.
unsigned Lanes =
Legal->isUniformAfterVectorization(cast<Instruction>(EntryVal)) ? 1 : VF;
// Compute the scalar steps and save the results in VectorLoopValueMap.
ScalarParts Entry(UF);
for (unsigned Part = 0; Part < UF; ++Part) {
Entry[Part].resize(VF);
for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
auto *StartIdx = ConstantInt::get(ScalarIVTy, VF * Part + Lane);
auto *Mul = Builder.CreateMul(StartIdx, Step);
auto *Add = Builder.CreateAdd(ScalarIV, Mul);
Entry[Part][Lane] = Add;
}
}
VectorLoopValueMap.initScalar(EntryVal, Entry);
}
int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() :
ValueToValueMap();
int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false);
if (Stride == 1 || Stride == -1)
return Stride;
return 0;
}
bool LoopVectorizationLegality::isUniform(Value *V) {
return LAI->isUniform(V);
}
const InnerLoopVectorizer::VectorParts &
InnerLoopVectorizer::getVectorValue(Value *V) {
assert(V != Induction && "The new induction variable should not be used.");
assert(!V->getType()->isVectorTy() && "Can't widen a vector");
assert(!V->getType()->isVoidTy() && "Type does not produce a value");
// If we have a stride that is replaced by one, do it here.
if (Legal->hasStride(V))
V = ConstantInt::get(V->getType(), 1);
// If we have this scalar in the map, return it.
if (VectorLoopValueMap.hasVector(V))
return VectorLoopValueMap.VectorMapStorage[V];
// If the value has not been vectorized, check if it has been scalarized
// instead. If it has been scalarized, and we actually need the value in
// vector form, we will construct the vector values on demand.
if (VectorLoopValueMap.hasScalar(V)) {
// Initialize a new vector map entry.
VectorParts Entry(UF);
// If we've scalarized a value, that value should be an instruction.
auto *I = cast<Instruction>(V);
// If we aren't vectorizing, we can just copy the scalar map values over to
// the vector map.
if (VF == 1) {
for (unsigned Part = 0; Part < UF; ++Part)
Entry[Part] = getScalarValue(V, Part, 0);
return VectorLoopValueMap.initVector(V, Entry);
}
// Get the last scalar instruction we generated for V. If the value is
// known to be uniform after vectorization, this corresponds to lane zero
// of the last unroll iteration. Otherwise, the last instruction is the one
// we created for the last vector lane of the last unroll iteration.
unsigned LastLane = Legal->isUniformAfterVectorization(I) ? 0 : VF - 1;
auto *LastInst = cast<Instruction>(getScalarValue(V, UF - 1, LastLane));
// Set the insert point after the last scalarized instruction. This ensures
// the insertelement sequence will directly follow the scalar definitions.
auto OldIP = Builder.saveIP();
auto NewIP = std::next(BasicBlock::iterator(LastInst));
Builder.SetInsertPoint(&*NewIP);
// However, if we are vectorizing, we need to construct the vector values.
// If the value is known to be uniform after vectorization, we can just
// broadcast the scalar value corresponding to lane zero for each unroll
// iteration. Otherwise, we construct the vector values using insertelement
// instructions. Since the resulting vectors are stored in
// VectorLoopValueMap, we will only generate the insertelements once.
for (unsigned Part = 0; Part < UF; ++Part) {
Value *VectorValue = nullptr;
if (Legal->isUniformAfterVectorization(I)) {
VectorValue = getBroadcastInstrs(getScalarValue(V, Part, 0));
} else {
VectorValue = UndefValue::get(VectorType::get(V->getType(), VF));
for (unsigned Lane = 0; Lane < VF; ++Lane)
VectorValue = Builder.CreateInsertElement(
VectorValue, getScalarValue(V, Part, Lane),
Builder.getInt32(Lane));
}
Entry[Part] = VectorValue;
}
Builder.restoreIP(OldIP);
return VectorLoopValueMap.initVector(V, Entry);
}
// If this scalar is unknown, assume that it is a constant or that it is
// loop invariant. Broadcast V and save the value for future uses.
Value *B = getBroadcastInstrs(V);
return VectorLoopValueMap.initVector(V, VectorParts(UF, B));
}
Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part,
unsigned Lane) {
// If the value is not an instruction contained in the loop, it should
// already be scalar.
if (OrigLoop->isLoopInvariant(V))
return V;
assert(Lane > 0 ? !Legal->isUniformAfterVectorization(cast<Instruction>(V))
: true && "Uniform values only have lane zero");
// If the value from the original loop has not been vectorized, it is
// represented by UF x VF scalar values in the new loop. Return the requested
// scalar value.
if (VectorLoopValueMap.hasScalar(V))
return VectorLoopValueMap.ScalarMapStorage[V][Part][Lane];
// If the value has not been scalarized, get its entry in VectorLoopValueMap
// for the given unroll part. If this entry is not a vector type (i.e., the
// vectorization factor is one), there is no need to generate an
// extractelement instruction.
auto *U = getVectorValue(V)[Part];
if (!U->getType()->isVectorTy()) {
assert(VF == 1 && "Value not scalarized has non-vector type");
return U;
}
// Otherwise, the value from the original loop has been vectorized and is
// represented by UF vector values. Extract and return the requested scalar
// value from the appropriate vector lane.
return Builder.CreateExtractElement(U, Builder.getInt32(Lane));
}
Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
assert(Vec->getType()->isVectorTy() && "Invalid type");
SmallVector<Constant *, 8> ShuffleMask;
for (unsigned i = 0; i < VF; ++i)
ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
ConstantVector::get(ShuffleMask),
"reverse");
}
// Get a mask to interleave \p NumVec vectors into a wide vector.
// I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...>
// E.g. For 2 interleaved vectors, if VF is 4, the mask is:
// <0, 4, 1, 5, 2, 6, 3, 7>
static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF,
unsigned NumVec) {
SmallVector<Constant *, 16> Mask;
for (unsigned i = 0; i < VF; i++)
for (unsigned j = 0; j < NumVec; j++)
Mask.push_back(Builder.getInt32(j * VF + i));
return ConstantVector::get(Mask);
}
// Get the strided mask starting from index \p Start.
// I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)>
static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start,
unsigned Stride, unsigned VF) {
SmallVector<Constant *, 16> Mask;
for (unsigned i = 0; i < VF; i++)
Mask.push_back(Builder.getInt32(Start + i * Stride));
return ConstantVector::get(Mask);
}
// Get a mask of two parts: The first part consists of sequential integers
// starting from 0, The second part consists of UNDEFs.
// I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef>
static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt,
unsigned NumUndef) {
SmallVector<Constant *, 16> Mask;
for (unsigned i = 0; i < NumInt; i++)
Mask.push_back(Builder.getInt32(i));
Constant *Undef = UndefValue::get(Builder.getInt32Ty());
for (unsigned i = 0; i < NumUndef; i++)
Mask.push_back(Undef);
return ConstantVector::get(Mask);
}
// Concatenate two vectors with the same element type. The 2nd vector should
// not have more elements than the 1st vector. If the 2nd vector has less
// elements, extend it with UNDEFs.
static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1,
Value *V2) {
VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
assert(VecTy1 && VecTy2 &&
VecTy1->getScalarType() == VecTy2->getScalarType() &&
"Expect two vectors with the same element type");
unsigned NumElts1 = VecTy1->getNumElements();
unsigned NumElts2 = VecTy2->getNumElements();
assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
if (NumElts1 > NumElts2) {
// Extend with UNDEFs.
Constant *ExtMask =
getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2);
V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask);
}
Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0);
return Builder.CreateShuffleVector(V1, V2, Mask);
}
// Concatenate vectors in the given list. All vectors have the same type.
static Value *ConcatenateVectors(IRBuilder<> &Builder,
ArrayRef<Value *> InputList) {
unsigned NumVec = InputList.size();
assert(NumVec > 1 && "Should be at least two vectors");
SmallVector<Value *, 8> ResList;
ResList.append(InputList.begin(), InputList.end());
do {
SmallVector<Value *, 8> TmpList;
for (unsigned i = 0; i < NumVec - 1; i += 2) {
Value *V0 = ResList[i], *V1 = ResList[i + 1];
assert((V0->getType() == V1->getType() || i == NumVec - 2) &&
"Only the last vector may have a different type");
TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1));
}
// Push the last vector if the total number of vectors is odd.
if (NumVec % 2 != 0)
TmpList.push_back(ResList[NumVec - 1]);
ResList = TmpList;
NumVec = ResList.size();
} while (NumVec > 1);
return ResList[0];
}
// Try to vectorize the interleave group that \p Instr belongs to.
//
// E.g. Translate following interleaved load group (factor = 3):
// for (i = 0; i < N; i+=3) {
// R = Pic[i]; // Member of index 0
// G = Pic[i+1]; // Member of index 1
// B = Pic[i+2]; // Member of index 2
// ... // do something to R, G, B
// }
// To:
// %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B
// %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements
// %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements
// %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements
//
// Or translate following interleaved store group (factor = 3):
// for (i = 0; i < N; i+=3) {
// ... do something to R, G, B
// Pic[i] = R; // Member of index 0
// Pic[i+1] = G; // Member of index 1
// Pic[i+2] = B; // Member of index 2
// }
// To:
// %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
// %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u>
// %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements
// store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B
void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) {
const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr);
assert(Group && "Fail to get an interleaved access group.");
// Skip if current instruction is not the insert position.
if (Instr != Group->getInsertPos())
return;
LoadInst *LI = dyn_cast<LoadInst>(Instr);
StoreInst *SI = dyn_cast<StoreInst>(Instr);
Value *Ptr = getPointerOperand(Instr);
// Prepare for the vector type of the interleaved load/store.
Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
unsigned InterleaveFactor = Group->getFactor();
Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF);
Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace());
// Prepare for the new pointers.
setDebugLocFromInst(Builder, Ptr);
SmallVector<Value *, 2> NewPtrs;
unsigned Index = Group->getIndex(Instr);
// If the group is reverse, adjust the index to refer to the last vector lane
// instead of the first. We adjust the index from the first vector lane,
// rather than directly getting the pointer for lane VF - 1, because the
// pointer operand of the interleaved access is supposed to be uniform. For
// uniform instructions, we're only required to generate a value for the
// first vector lane in each unroll iteration.
if (Group->isReverse())
Index += (VF - 1) * Group->getFactor();
for (unsigned Part = 0; Part < UF; Part++) {
Value *NewPtr = getScalarValue(Ptr, Part, 0);
// Notice current instruction could be any index. Need to adjust the address
// to the member of index 0.
//
// E.g. a = A[i+1]; // Member of index 1 (Current instruction)
// b = A[i]; // Member of index 0
// Current pointer is pointed to A[i+1], adjust it to A[i].
//
// E.g. A[i+1] = a; // Member of index 1
// A[i] = b; // Member of index 0
// A[i+2] = c; // Member of index 2 (Current instruction)
// Current pointer is pointed to A[i+2], adjust it to A[i].
NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index));
// Cast to the vector pointer type.
NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy));
}
setDebugLocFromInst(Builder, Instr);
Value *UndefVec = UndefValue::get(VecTy);
// Vectorize the interleaved load group.
if (LI) {
// For each unroll part, create a wide load for the group.
SmallVector<Value *, 2> NewLoads;
for (unsigned Part = 0; Part < UF; Part++) {
auto *NewLoad = Builder.CreateAlignedLoad(
NewPtrs[Part], Group->getAlignment(), "wide.vec");
addMetadata(NewLoad, Instr);
NewLoads.push_back(NewLoad);
}
// For each member in the group, shuffle out the appropriate data from the
// wide loads.
for (unsigned I = 0; I < InterleaveFactor; ++I) {
Instruction *Member = Group->getMember(I);
// Skip the gaps in the group.
if (!Member)
continue;
VectorParts Entry(UF);
Constant *StrideMask = getStridedMask(Builder, I, InterleaveFactor, VF);
for (unsigned Part = 0; Part < UF; Part++) {
Value *StridedVec = Builder.CreateShuffleVector(
NewLoads[Part], UndefVec, StrideMask, "strided.vec");
// If this member has different type, cast the result type.
if (Member->getType() != ScalarTy) {
VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy);
}
Entry[Part] =
Group->isReverse() ? reverseVector(StridedVec) : StridedVec;
}
VectorLoopValueMap.initVector(Member, Entry);
}
return;
}
// The sub vector type for current instruction.
VectorType *SubVT = VectorType::get(ScalarTy, VF);
// Vectorize the interleaved store group.
for (unsigned Part = 0; Part < UF; Part++) {
// Collect the stored vector from each member.
SmallVector<Value *, 4> StoredVecs;
for (unsigned i = 0; i < InterleaveFactor; i++) {
// Interleaved store group doesn't allow a gap, so each index has a member
Instruction *Member = Group->getMember(i);
assert(Member && "Fail to get a member from an interleaved store group");
Value *StoredVec =
getVectorValue(cast<StoreInst>(Member)->getValueOperand())[Part];
if (Group->isReverse())
StoredVec = reverseVector(StoredVec);
// If this member has different type, cast it to an unified type.
if (StoredVec->getType() != SubVT)
StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT);
StoredVecs.push_back(StoredVec);
}
// Concatenate all vectors into a wide vector.
Value *WideVec = ConcatenateVectors(Builder, StoredVecs);
// Interleave the elements in the wide vector.
Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor);
Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask,
"interleaved.vec");
Instruction *NewStoreInstr =
Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment());
addMetadata(NewStoreInstr, Instr);
}
}
void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
// Attempt to issue a wide load.
LoadInst *LI = dyn_cast<LoadInst>(Instr);
StoreInst *SI = dyn_cast<StoreInst>(Instr);
assert((LI || SI) && "Invalid Load/Store instruction");
// Try to vectorize the interleave group if this access is interleaved.
if (Legal->isAccessInterleaved(Instr))
return vectorizeInterleaveGroup(Instr);
Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
Type *DataTy = VectorType::get(ScalarDataTy, VF);
Value *Ptr = getPointerOperand(Instr);
unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
// An alignment of 0 means target abi alignment. We need to use the scalar's
// target abi alignment in such a case.
const DataLayout &DL = Instr->getModule()->getDataLayout();
if (!Alignment)
Alignment = DL.getABITypeAlignment(ScalarDataTy);
unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
// Scalarize the memory instruction if necessary.
if (Legal->memoryInstructionMustBeScalarized(Instr, VF))
return scalarizeInstruction(Instr, Legal->isScalarWithPredication(Instr));
// Determine if the pointer operand of the access is either consecutive or
// reverse consecutive.
int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
bool Reverse = ConsecutiveStride < 0;
// Determine if either a gather or scatter operation is legal.
bool CreateGatherScatter =
!ConsecutiveStride && Legal->isLegalGatherOrScatter(Instr);
VectorParts VectorGep;
// Handle consecutive loads/stores.
GetElementPtrInst *Gep = getGEPInstruction(Ptr);
if (ConsecutiveStride) {
if (Gep) {
unsigned NumOperands = Gep->getNumOperands();
#ifndef NDEBUG
// The original GEP that identified as a consecutive memory access
// should have only one loop-variant operand.
unsigned NumOfLoopVariantOps = 0;
for (unsigned i = 0; i < NumOperands; ++i)
if (!PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)),
OrigLoop))
NumOfLoopVariantOps++;
assert(NumOfLoopVariantOps == 1 &&
"Consecutive GEP should have only one loop-variant operand");
#endif
GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
Gep2->setName("gep.indvar");
// A new GEP is created for a 0-lane value of the first unroll iteration.
// The GEPs for the rest of the unroll iterations are computed below as an
// offset from this GEP.
for (unsigned i = 0; i < NumOperands; ++i)
// We can apply getScalarValue() for all GEP indices. It returns an
// original value for loop-invariant operand and 0-lane for consecutive
// operand.
Gep2->setOperand(i, getScalarValue(Gep->getOperand(i),
0, /* First unroll iteration */
0 /* 0-lane of the vector */ ));
setDebugLocFromInst(Builder, Gep);
Ptr = Builder.Insert(Gep2);
} else { // No GEP
setDebugLocFromInst(Builder, Ptr);
Ptr = getScalarValue(Ptr, 0, 0);
}
} else {
// At this point we should vector version of GEP for Gather or Scatter
assert(CreateGatherScatter && "The instruction should be scalarized");
if (Gep) {
// Vectorizing GEP, across UF parts. We want to get a vector value for base
// and each index that's defined inside the loop, even if it is
// loop-invariant but wasn't hoisted out. Otherwise we want to keep them
// scalar.
SmallVector<VectorParts, 4> OpsV;
for (Value *Op : Gep->operands()) {
Instruction *SrcInst = dyn_cast<Instruction>(Op);
if (SrcInst && OrigLoop->contains(SrcInst))
OpsV.push_back(getVectorValue(Op));
else
OpsV.push_back(VectorParts(UF, Op));
}
for (unsigned Part = 0; Part < UF; ++Part) {
SmallVector<Value *, 4> Ops;
Value *GEPBasePtr = OpsV[0][Part];
for (unsigned i = 1; i < Gep->getNumOperands(); i++)
Ops.push_back(OpsV[i][Part]);
Value *NewGep = Builder.CreateGEP(GEPBasePtr, Ops, "VectorGep");
cast<GetElementPtrInst>(NewGep)->setIsInBounds(Gep->isInBounds());
assert(NewGep->getType()->isVectorTy() && "Expected vector GEP");
NewGep =
Builder.CreateBitCast(NewGep, VectorType::get(Ptr->getType(), VF));
VectorGep.push_back(NewGep);
}
} else
VectorGep = getVectorValue(Ptr);
}
VectorParts Mask = createBlockInMask(Instr->getParent());
// Handle Stores:
if (SI) {
assert(!Legal->isUniform(SI->getPointerOperand()) &&
"We do not allow storing to uniform addresses");
setDebugLocFromInst(Builder, SI);
// We don't want to update the value in the map as it might be used in
// another expression. So don't use a reference type for "StoredVal".
VectorParts StoredVal = getVectorValue(SI->getValueOperand());
for (unsigned Part = 0; Part < UF; ++Part) {
Instruction *NewSI = nullptr;
if (CreateGatherScatter) {
Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr;
NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part],
Alignment, MaskPart);
} else {
// Calculate the pointer for the specific unroll-part.
Value *PartPtr =
Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF));
if (Reverse) {
// If we store to reverse consecutive memory locations, then we need
// to reverse the order of elements in the stored value.
StoredVal[Part] = reverseVector(StoredVal[Part]);
// If the address is consecutive but reversed, then the
// wide store needs to start at the last vector element.
PartPtr =
Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF));
PartPtr =
Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF));
Mask[Part] = reverseVector(Mask[Part]);
}
Value *VecPtr =
Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
if (Legal->isMaskRequired(SI))
NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment,
Mask[Part]);
else
NewSI =
Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment);
}
addMetadata(NewSI, SI);
}
return;
}
// Handle loads.
assert(LI && "Must have a load instruction");
setDebugLocFromInst(Builder, LI);
VectorParts Entry(UF);
for (unsigned Part = 0; Part < UF; ++Part) {
Instruction *NewLI;
if (CreateGatherScatter) {
Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr;
NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, MaskPart,
0, "wide.masked.gather");
Entry[Part] = NewLI;
} else {
// Calculate the pointer for the specific unroll-part.
Value *PartPtr =
Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF));
if (Reverse) {
// If the address is consecutive but reversed, then the
// wide load needs to start at the last vector element.
PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF));
PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF));
Mask[Part] = reverseVector(Mask[Part]);
}
Value *VecPtr =
Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
if (Legal->isMaskRequired(LI))
NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part],
UndefValue::get(DataTy),
"wide.masked.load");
else
NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load");
Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI;
}
addMetadata(NewLI, LI);
}
VectorLoopValueMap.initVector(Instr, Entry);
}
void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
bool IfPredicateInstr) {
assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
DEBUG(dbgs() << "LV: Scalarizing"
<< (IfPredicateInstr ? " and predicating:" : ":") << *Instr
<< '\n');
// Holds vector parameters or scalars, in case of uniform vals.
SmallVector<VectorParts, 4> Params;
setDebugLocFromInst(Builder, Instr);
// Does this instruction return a value ?
bool IsVoidRetTy = Instr->getType()->isVoidTy();
// Initialize a new scalar map entry.
ScalarParts Entry(UF);
VectorParts Cond;
if (IfPredicateInstr)
Cond = createBlockInMask(Instr->getParent());
// Determine the number of scalars we need to generate for each unroll
// iteration. If the instruction is uniform, we only need to generate the
// first lane. Otherwise, we generate all VF values.
unsigned Lanes = Legal->isUniformAfterVectorization(Instr) ? 1 : VF;
// For each vector unroll 'part':
for (unsigned Part = 0; Part < UF; ++Part) {
Entry[Part].resize(VF);
// For each scalar that we create:
for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
// Start if-block.
Value *Cmp = nullptr;
if (IfPredicateInstr) {
Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Lane));
Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp,
ConstantInt::get(Cmp->getType(), 1));
}
Instruction *Cloned = Instr->clone();
if (!IsVoidRetTy)
Cloned->setName(Instr->getName() + ".cloned");
// Replace the operands of the cloned instructions with their scalar
// equivalents in the new loop.
for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
auto *NewOp = getScalarValue(Instr->getOperand(op), Part, Lane);
Cloned->setOperand(op, NewOp);
}
addNewMetadata(Cloned, Instr);
// Place the cloned scalar in the new loop.
Builder.Insert(Cloned);
// Add the cloned scalar to the scalar map entry.
Entry[Part][Lane] = Cloned;
// If we just cloned a new assumption, add it the assumption cache.
if (auto *II = dyn_cast<IntrinsicInst>(Cloned))
if (II->getIntrinsicID() == Intrinsic::assume)
AC->registerAssumption(II);
// End if-block.
if (IfPredicateInstr)
PredicatedInstructions.push_back(std::make_pair(Cloned, Cmp));
}
}
VectorLoopValueMap.initScalar(Instr, Entry);
}
PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
Value *End, Value *Step,
Instruction *DL) {
BasicBlock *Header = L->getHeader();
BasicBlock *Latch = L->getLoopLatch();
// As we're just creating this loop, it's possible no latch exists
// yet. If so, use the header as this will be a single block loop.
if (!Latch)
Latch = Header;
IRBuilder<> Builder(&*Header->getFirstInsertionPt());
setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction));
auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
Builder.SetInsertPoint(Latch->getTerminator());
// Create i+1 and fill the PHINode.
Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
Induction->addIncoming(Start, L->getLoopPreheader());
Induction->addIncoming(Next, Latch);
// Create the compare.
Value *ICmp = Builder.CreateICmpEQ(Next, End);
Builder.CreateCondBr(ICmp, L->getExitBlock(), Header);
// Now we have two terminators. Remove the old one from the block.
Latch->getTerminator()->eraseFromParent();
return Induction;
}
Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
if (TripCount)
return TripCount;
IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
// Find the loop boundaries.
ScalarEvolution *SE = PSE.getSE();
const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
assert(BackedgeTakenCount != SE->getCouldNotCompute() &&
"Invalid loop count");
Type *IdxTy = Legal->getWidestInductionType();
// The exit count might have the type of i64 while the phi is i32. This can
// happen if we have an induction variable that is sign extended before the
// compare. The only way that we get a backedge taken count is that the
// induction variable was signed and as such will not overflow. In such a case
// truncation is legal.
if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() >
IdxTy->getPrimitiveSizeInBits())
BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
// Get the total trip count from the count by adding 1.
const SCEV *ExitCount = SE->getAddExpr(
BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
// Expand the trip count and place the new instructions in the preheader.
// Notice that the pre-header does not change, only the loop body.
SCEVExpander Exp(*SE, DL, "induction");
// Count holds the overall loop count (N).
TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
L->getLoopPreheader()->getTerminator());
if (TripCount->getType()->isPointerTy())
TripCount =
CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
L->getLoopPreheader()->getTerminator());
return TripCount;
}
Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
if (VectorTripCount)
return VectorTripCount;
Value *TC = getOrCreateTripCount(L);
IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
// Now we need to generate the expression for the part of the loop that the
// vectorized body will execute. This is equal to N - (N % Step) if scalar
// iterations are not required for correctness, or N - Step, otherwise. Step
// is equal to the vectorization factor (number of SIMD elements) times the
// unroll factor (number of SIMD instructions).
Constant *Step = ConstantInt::get(TC->getType(), VF * UF);
Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
// If there is a non-reversed interleaved group that may speculatively access
// memory out-of-bounds, we need to ensure that there will be at least one
// iteration of the scalar epilogue loop. Thus, if the step evenly divides
// the trip count, we set the remainder to be equal to the step. If the step
// does not evenly divide the trip count, no adjustment is necessary since
// there will already be scalar iterations. Note that the minimum iterations
// check ensures that N >= Step.
if (VF > 1 && Legal->requiresScalarEpilogue()) {
auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
R = Builder.CreateSelect(IsZero, Step, R);
}
VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
return VectorTripCount;
}
void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
BasicBlock *Bypass) {
Value *Count = getOrCreateTripCount(L);
BasicBlock *BB = L->getLoopPreheader();
IRBuilder<> Builder(BB->getTerminator());
// Generate code to check that the loop's trip count that we computed by
// adding one to the backedge-taken count will not overflow.
Value *CheckMinIters = Builder.CreateICmpULT(
Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check");
BasicBlock *NewBB =
BB->splitBasicBlock(BB->getTerminator(), "min.iters.checked");
// Update dominator tree immediately if the generated block is a
// LoopBypassBlock because SCEV expansions to generate loop bypass
// checks may query it before the current function is finished.
DT->addNewBlock(NewBB, BB);
if (L->getParentLoop())
L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
ReplaceInstWithInst(BB->getTerminator(),
BranchInst::Create(Bypass, NewBB, CheckMinIters));
LoopBypassBlocks.push_back(BB);
}
void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L,
BasicBlock *Bypass) {
Value *TC = getOrCreateVectorTripCount(L);
BasicBlock *BB = L->getLoopPreheader();
IRBuilder<> Builder(BB->getTerminator());
// Now, compare the new count to zero. If it is zero skip the vector loop and
// jump to the scalar loop.
Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()),
"cmp.zero");
// Generate code to check that the loop's trip count that we computed by
// adding one to the backedge-taken count will not overflow.
BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
// Update dominator tree immediately if the generated block is a
// LoopBypassBlock because SCEV expansions to generate loop bypass
// checks may query it before the current function is finished.
DT->addNewBlock(NewBB, BB);
if (L->getParentLoop())
L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
ReplaceInstWithInst(BB->getTerminator(),
BranchInst::Create(Bypass, NewBB, Cmp));
LoopBypassBlocks.push_back(BB);
}
void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
BasicBlock *BB = L->getLoopPreheader();
// Generate the code to check that the SCEV assumptions that we made.
// We want the new basic block to start at the first instruction in a
// sequence of instructions that form a check.
SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(),
"scev.check");
Value *SCEVCheck =
Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator());
if (auto *C = dyn_cast<ConstantInt>(SCEVCheck))
if (C->isZero())
return;
// Create a new block containing the stride check.
BB->setName("vector.scevcheck");
auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
// Update dominator tree immediately if the generated block is a
// LoopBypassBlock because SCEV expansions to generate loop bypass
// checks may query it before the current function is finished.
DT->addNewBlock(NewBB, BB);
if (L->getParentLoop())
L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
ReplaceInstWithInst(BB->getTerminator(),
BranchInst::Create(Bypass, NewBB, SCEVCheck));
LoopBypassBlocks.push_back(BB);
AddedSafetyChecks = true;
}
void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) {
BasicBlock *BB = L->getLoopPreheader();
// Generate the code that checks in runtime if arrays overlap. We put the
// checks into a separate block to make the more common case of few elements
// faster.
Instruction *FirstCheckInst;
Instruction *MemRuntimeCheck;
std::tie(FirstCheckInst, MemRuntimeCheck) =
Legal->getLAI()->addRuntimeChecks(BB->getTerminator());
if (!MemRuntimeCheck)
return;
// Create a new block containing the memory check.
BB->setName("vector.memcheck");
auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
// Update dominator tree immediately if the generated block is a
// LoopBypassBlock because SCEV expansions to generate loop bypass
// checks may query it before the current function is finished.
DT->addNewBlock(NewBB, BB);
if (L->getParentLoop())
L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
ReplaceInstWithInst(BB->getTerminator(),
BranchInst::Create(Bypass, NewBB, MemRuntimeCheck));
LoopBypassBlocks.push_back(BB);
AddedSafetyChecks = true;
// We currently don't use LoopVersioning for the actual loop cloning but we
// still use it to add the noalias metadata.
LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT,
PSE.getSE());
LVer->prepareNoAliasMetadata();
}
void InnerLoopVectorizer::createEmptyLoop() {
/*
In this function we generate a new loop. The new loop will contain
the vectorized instructions while the old loop will continue to run the
scalar remainder.
[ ] <-- loop iteration number check.
/ |
/ v
| [ ] <-- vector loop bypass (may consist of multiple blocks).
| / |
| / v
|| [ ] <-- vector pre header.
|/ |
| v
| [ ] \
| [ ]_| <-- vector loop.
| |
| v
| -[ ] <--- middle-block.
| / |
| / v
-|- >[ ] <--- new preheader.
| |
| v
| [ ] \
| [ ]_| <-- old scalar loop to handle remainder.
\ |
\ v
>[ ] <-- exit block.
...
*/
BasicBlock *OldBasicBlock = OrigLoop->getHeader();
BasicBlock *VectorPH = OrigLoop->getLoopPreheader();
BasicBlock *ExitBlock = OrigLoop->getExitBlock();
assert(VectorPH && "Invalid loop structure");
assert(ExitBlock && "Must have an exit block");
// Some loops have a single integer induction variable, while other loops
// don't. One example is c++ iterators that often have multiple pointer
// induction variables. In the code below we also support a case where we
// don't have a single induction variable.
//
// We try to obtain an induction variable from the original loop as hard
// as possible. However if we don't find one that:
// - is an integer
// - counts from zero, stepping by one
// - is the size of the widest induction variable type
// then we create a new one.
OldInduction = Legal->getInduction();
Type *IdxTy = Legal->getWidestInductionType();
// Split the single block loop into the two loop structure described above.
BasicBlock *VecBody =
VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
BasicBlock *MiddleBlock =
VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
BasicBlock *ScalarPH =
MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
// Create and register the new vector loop.
Loop *Lp = new Loop();
Loop *ParentLoop = OrigLoop->getParentLoop();
// Insert the new loop into the loop nest and register the new basic blocks
// before calling any utilities such as SCEV that require valid LoopInfo.
if (ParentLoop) {
ParentLoop->addChildLoop(Lp);
ParentLoop->addBasicBlockToLoop(ScalarPH, *LI);
ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI);
} else {
LI->addTopLevelLoop(Lp);
}
Lp->addBasicBlockToLoop(VecBody, *LI);
// Find the loop boundaries.
Value *Count = getOrCreateTripCount(Lp);
Value *StartIdx = ConstantInt::get(IdxTy, 0);
// We need to test whether the backedge-taken count is uint##_max. Adding one
// to it will cause overflow and an incorrect loop trip count in the vector
// body. In case of overflow we want to directly jump to the scalar remainder
// loop.
emitMinimumIterationCountCheck(Lp, ScalarPH);
// Now, compare the new count to zero. If it is zero skip the vector loop and
// jump to the scalar loop.
emitVectorLoopEnteredCheck(Lp, ScalarPH);
// Generate the code to check any assumptions that we've made for SCEV
// expressions.
emitSCEVChecks(Lp, ScalarPH);
// Generate the code that checks in runtime if arrays overlap. We put the
// checks into a separate block to make the more common case of few elements
// faster.
emitMemRuntimeChecks(Lp, ScalarPH);
// Generate the induction variable.
// The loop step is equal to the vectorization factor (num of SIMD elements)
// times the unroll factor (num of SIMD instructions).
Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
Constant *Step = ConstantInt::get(IdxTy, VF * UF);
Induction =
createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
getDebugLocFromInstOrOperands(OldInduction));
// We are going to resume the execution of the scalar loop.
// Go over all of the induction variables that we found and fix the
// PHIs that are left in the scalar version of the loop.
// The starting values of PHI nodes depend on the counter of the last
// iteration in the vectorized loop.
// If we come from a bypass edge then we need to start from the original
// start value.
// This variable saves the new starting index for the scalar loop. It is used
// to test if there are any tail iterations left once the vector loop has
// completed.
LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
for (auto &InductionEntry : *List) {
PHINode *OrigPhi = InductionEntry.first;
InductionDescriptor II = InductionEntry.second;
// Create phi nodes to merge from the backedge-taken check block.
PHINode *BCResumeVal = PHINode::Create(
OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator());
Value *EndValue;
if (OrigPhi == OldInduction) {
// We know what the end value is.
EndValue = CountRoundDown;
} else {
IRBuilder<> B(LoopBypassBlocks.back()->getTerminator());
Type *StepType = II.getStep()->getType();
Instruction::CastOps CastOp =
CastInst::getCastOpcode(CountRoundDown, true, StepType, true);
Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd");
const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
EndValue = II.transform(B, CRD, PSE.getSE(), DL);
EndValue->setName("ind.end");
}
// The new PHI merges the original incoming value, in case of a bypass,
// or the value at the end of the vectorized loop.
BCResumeVal->addIncoming(EndValue, MiddleBlock);
// Fix up external users of the induction variable.
fixupIVUsers(OrigPhi, II, CountRoundDown, EndValue, MiddleBlock);
// Fix the scalar body counter (PHI node).
unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
// The old induction's phi node in the scalar body needs the truncated
// value.
for (BasicBlock *BB : LoopBypassBlocks)
BCResumeVal->addIncoming(II.getStartValue(), BB);
OrigPhi->setIncomingValue(BlockIdx, BCResumeVal);
}
// Add a check in the middle block to see if we have completed
// all of the iterations in the first vector loop.
// If (N - N%VF) == N, then we *don't* need to run the remainder.
Value *CmpN =
CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count,
CountRoundDown, "cmp.n", MiddleBlock->getTerminator());
ReplaceInstWithInst(MiddleBlock->getTerminator(),
BranchInst::Create(ExitBlock, ScalarPH, CmpN));
// Get ready to start creating new instructions into the vectorized body.
Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt());
// Save the state.
LoopVectorPreHeader = Lp->getLoopPreheader();
LoopScalarPreHeader = ScalarPH;
LoopMiddleBlock = MiddleBlock;
LoopExitBlock = ExitBlock;
LoopVectorBody = VecBody;
LoopScalarBody = OldBasicBlock;
// Keep all loop hints from the original loop on the vector loop (we'll
// replace the vectorizer-specific hints below).
if (MDNode *LID = OrigLoop->getLoopID())
Lp->setLoopID(LID);
LoopVectorizeHints Hints(Lp, true, *ORE);
Hints.setAlreadyVectorized();
}
// Fix up external users of the induction variable. At this point, we are
// in LCSSA form, with all external PHIs that use the IV having one input value,
// coming from the remainder loop. We need those PHIs to also have a correct
// value for the IV when arriving directly from the middle block.
void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
const InductionDescriptor &II,
Value *CountRoundDown, Value *EndValue,
BasicBlock *MiddleBlock) {
// There are two kinds of external IV usages - those that use the value
// computed in the last iteration (the PHI) and those that use the penultimate
// value (the value that feeds into the phi from the loop latch).
// We allow both, but they, obviously, have different values.
assert(OrigLoop->getExitBlock() && "Expected a single exit block");
DenseMap<Value *, Value *> MissingVals;
// An external user of the last iteration's value should see the value that
// the remainder loop uses to initialize its own IV.
Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
for (User *U : PostInc->users()) {
Instruction *UI = cast<Instruction>(U);
if (!OrigLoop->contains(UI)) {
assert(isa<PHINode>(UI) && "Expected LCSSA form");
MissingVals[UI] = EndValue;
}
}
// An external user of the penultimate value need to see EndValue - Step.
// The simplest way to get this is to recompute it from the constituent SCEVs,
// that is Start + (Step * (CRD - 1)).
for (User *U : OrigPhi->users()) {
auto *UI = cast<Instruction>(U);
if (!OrigLoop->contains(UI)) {
const DataLayout &DL =
OrigLoop->getHeader()->getModule()->getDataLayout();
assert(isa<PHINode>(UI) && "Expected LCSSA form");
IRBuilder<> B(MiddleBlock->getTerminator());
Value *CountMinusOne = B.CreateSub(
CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
Value *CMO = B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType(),
"cast.cmo");
Value *Escape = II.transform(B, CMO, PSE.getSE(), DL);
Escape->setName("ind.escape");
MissingVals[UI] = Escape;
}
}
for (auto &I : MissingVals) {
PHINode *PHI = cast<PHINode>(I.first);
// One corner case we have to handle is two IVs "chasing" each-other,
// that is %IV2 = phi [...], [ %IV1, %latch ]
// In this case, if IV1 has an external use, we need to avoid adding both
// "last value of IV1" and "penultimate value of IV2". So, verify that we
// don't already have an incoming value for the middle block.
if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
PHI->addIncoming(I.second, MiddleBlock);
}
}
namespace {
struct CSEDenseMapInfo {
static bool canHandle(Instruction *I) {
return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
}
static inline Instruction *getEmptyKey() {
return DenseMapInfo<Instruction *>::getEmptyKey();
}
static inline Instruction *getTombstoneKey() {
return DenseMapInfo<Instruction *>::getTombstoneKey();
}
static unsigned getHashValue(Instruction *I) {
assert(canHandle(I) && "Unknown instruction!");
return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
I->value_op_end()));
}
static bool isEqual(Instruction *LHS, Instruction *RHS) {
if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
LHS == getTombstoneKey() || RHS == getTombstoneKey())
return LHS == RHS;
return LHS->isIdenticalTo(RHS);
}
};
}
///\brief Perform cse of induction variable instructions.
static void cse(BasicBlock *BB) {
// Perform simple cse.
SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
Instruction *In = &*I++;
if (!CSEDenseMapInfo::canHandle(In))
continue;
// Check if we can replace this instruction with any of the
// visited instructions.
if (Instruction *V = CSEMap.lookup(In)) {
In->replaceAllUsesWith(V);
In->eraseFromParent();
continue;
}
CSEMap[In] = In;
}
}
/// \brief Adds a 'fast' flag to floating point operations.
static Value *addFastMathFlag(Value *V) {
if (isa<FPMathOperator>(V)) {
FastMathFlags Flags;
Flags.setUnsafeAlgebra();
cast<Instruction>(V)->setFastMathFlags(Flags);
}
return V;
}
/// \brief Estimate the overhead of scalarizing a value based on its type.
/// Insert and Extract are set if the result needs to be inserted and/or
/// extracted from vectors.
static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract,
const TargetTransformInfo &TTI) {
if (Ty->isVoidTy())
return 0;
assert(Ty->isVectorTy() && "Can only scalarize vectors");
unsigned Cost = 0;
for (unsigned I = 0, E = Ty->getVectorNumElements(); I < E; ++I) {
if (Extract)
Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, I);
if (Insert)
Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, I);
}
return Cost;
}
/// \brief Estimate the overhead of scalarizing an Instruction based on the
/// types of its operands and return value.
static unsigned getScalarizationOverhead(SmallVectorImpl<Type *> &OpTys,
Type *RetTy,
const TargetTransformInfo &TTI) {
unsigned ScalarizationCost =
getScalarizationOverhead(RetTy, true, false, TTI);
for (Type *Ty : OpTys)
ScalarizationCost += getScalarizationOverhead(Ty, false, true, TTI);
return ScalarizationCost;
}
/// \brief Estimate the overhead of scalarizing an instruction. This is a
/// convenience wrapper for the type-based getScalarizationOverhead API.
static unsigned getScalarizationOverhead(Instruction *I, unsigned VF,
const TargetTransformInfo &TTI) {
if (VF == 1)
return 0;
Type *RetTy = ToVectorTy(I->getType(), VF);
SmallVector<Type *, 4> OpTys;
unsigned OperandsNum = I->getNumOperands();
for (unsigned OpInd = 0; OpInd < OperandsNum; ++OpInd)
OpTys.push_back(ToVectorTy(I->getOperand(OpInd)->getType(), VF));
return getScalarizationOverhead(OpTys, RetTy, TTI);
}
// Estimate cost of a call instruction CI if it were vectorized with factor VF.
// Return the cost of the instruction, including scalarization overhead if it's
// needed. The flag NeedToScalarize shows if the call needs to be scalarized -
// i.e. either vector version isn't available, or is too expensive.
static unsigned getVectorCallCost(CallInst *CI, unsigned VF,
const TargetTransformInfo &TTI,
const TargetLibraryInfo *TLI,
bool &NeedToScalarize) {
Function *F = CI->getCalledFunction();
StringRef FnName = CI->getCalledFunction()->getName();
Type *ScalarRetTy = CI->getType();
SmallVector<Type *, 4> Tys, ScalarTys;
for (auto &ArgOp : CI->arg_operands())
ScalarTys.push_back(ArgOp->getType());
// Estimate cost of scalarized vector call. The source operands are assumed
// to be vectors, so we need to extract individual elements from there,
// execute VF scalar calls, and then gather the result into the vector return
// value.
unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys);
if (VF == 1)
return ScalarCallCost;
// Compute corresponding vector type for return value and arguments.
Type *RetTy = ToVectorTy(ScalarRetTy, VF);
for (Type *ScalarTy : ScalarTys)
Tys.push_back(ToVectorTy(ScalarTy, VF));
// Compute costs of unpacking argument values for the scalar calls and
// packing the return values to a vector.
unsigned ScalarizationCost = getScalarizationOverhead(Tys, RetTy, TTI);
unsigned Cost = ScalarCallCost * VF + ScalarizationCost;
// If we can't emit a vector call for this function, then the currently found
// cost is the cost we need to return.
NeedToScalarize = true;
if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin())
return Cost;
// If the corresponding vector cost is cheaper, return its cost.
unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys);
if (VectorCallCost < Cost) {
NeedToScalarize = false;
return VectorCallCost;
}
return Cost;
}
// Estimate cost of an intrinsic call instruction CI if it were vectorized with
// factor VF. Return the cost of the instruction, including scalarization
// overhead if it's needed.
static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF,
const TargetTransformInfo &TTI,
const TargetLibraryInfo *TLI) {
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
assert(ID && "Expected intrinsic call!");
Type *RetTy = ToVectorTy(CI->getType(), VF);
SmallVector<Type *, 4> Tys;
for (Value *ArgOperand : CI->arg_operands())
Tys.push_back(ToVectorTy(ArgOperand->getType(), VF));
FastMathFlags FMF;
if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
FMF = FPMO->getFastMathFlags();
return TTI.getIntrinsicInstrCost(ID, RetTy, Tys, FMF);
}
static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
auto *I1 = cast<IntegerType>(T1->getVectorElementType());
auto *I2 = cast<IntegerType>(T2->getVectorElementType());
return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
}
static Type *largestIntegerVectorType(Type *T1, Type *T2) {
auto *I1 = cast<IntegerType>(T1->getVectorElementType());
auto *I2 = cast<IntegerType>(T2->getVectorElementType());
return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
}
void InnerLoopVectorizer::truncateToMinimalBitwidths() {
// For every instruction `I` in MinBWs, truncate the operands, create a
// truncated version of `I` and reextend its result. InstCombine runs
// later and will remove any ext/trunc pairs.
//
SmallPtrSet<Value *, 4> Erased;
for (const auto &KV : Cost->getMinimalBitwidths()) {
VectorParts &Parts = VectorLoopValueMap.getVector(KV.first);
for (Value *&I : Parts) {
if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
continue;
Type *OriginalTy = I->getType();
Type *ScalarTruncatedTy =
IntegerType::get(OriginalTy->getContext(), KV.second);
Type *TruncatedTy = VectorType::get(ScalarTruncatedTy,
OriginalTy->getVectorNumElements());
if (TruncatedTy == OriginalTy)
continue;
IRBuilder<> B(cast<Instruction>(I));
auto ShrinkOperand = [&](Value *V) -> Value * {
if (auto *ZI = dyn_cast<ZExtInst>(V))
if (ZI->getSrcTy() == TruncatedTy)
return ZI->getOperand(0);
return B.CreateZExtOrTrunc(V, TruncatedTy);
};
// The actual instruction modification depends on the instruction type,
// unfortunately.
Value *NewI = nullptr;
if (auto *BO = dyn_cast<BinaryOperator>(I)) {
NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
ShrinkOperand(BO->getOperand(1)));
cast<BinaryOperator>(NewI)->copyIRFlags(I);
} else if (auto *CI = dyn_cast<ICmpInst>(I)) {
NewI =
B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
ShrinkOperand(CI->getOperand(1)));
} else if (auto *SI = dyn_cast<SelectInst>(I)) {
NewI = B.CreateSelect(SI->getCondition(),
ShrinkOperand(SI->getTrueValue()),
ShrinkOperand(SI->getFalseValue()));
} else if (auto *CI = dyn_cast<CastInst>(I)) {
switch (CI->getOpcode()) {
default:
llvm_unreachable("Unhandled cast!");
case Instruction::Trunc:
NewI = ShrinkOperand(CI->getOperand(0));
break;
case Instruction::SExt:
NewI = B.CreateSExtOrTrunc(
CI->getOperand(0),
smallestIntegerVectorType(OriginalTy, TruncatedTy));
break;
case Instruction::ZExt:
NewI = B.CreateZExtOrTrunc(
CI->getOperand(0),
smallestIntegerVectorType(OriginalTy, TruncatedTy));
break;
}
} else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements();
auto *O0 = B.CreateZExtOrTrunc(
SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements();
auto *O1 = B.CreateZExtOrTrunc(
SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
NewI = B.CreateShuffleVector(O0, O1, SI->getMask());
} else if (isa<LoadInst>(I)) {
// Don't do anything with the operands, just extend the result.
continue;
} else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
auto Elements = IE->getOperand(0)->getType()->getVectorNumElements();
auto *O0 = B.CreateZExtOrTrunc(
IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
} else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
auto Elements = EE->getOperand(0)->getType()->getVectorNumElements();
auto *O0 = B.CreateZExtOrTrunc(
EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
NewI = B.CreateExtractElement(O0, EE->getOperand(2));
} else {
llvm_unreachable("Unhandled instruction type!");
}
// Lastly, extend the result.
NewI->takeName(cast<Instruction>(I));
Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
I->replaceAllUsesWith(Res);
cast<Instruction>(I)->eraseFromParent();
Erased.insert(I);
I = Res;
}
}
// We'll have created a bunch of ZExts that are now parentless. Clean up.
for (const auto &KV : Cost->getMinimalBitwidths()) {
VectorParts &Parts = VectorLoopValueMap.getVector(KV.first);
for (Value *&I : Parts) {
ZExtInst *Inst = dyn_cast<ZExtInst>(I);
if (Inst && Inst->use_empty()) {
Value *NewI = Inst->getOperand(0);
Inst->eraseFromParent();
I = NewI;
}
}
}
}
void InnerLoopVectorizer::vectorizeLoop() {
//===------------------------------------------------===//
//
// Notice: any optimization or new instruction that go
// into the code below should be also be implemented in
// the cost-model.
//
//===------------------------------------------------===//
Constant *Zero = Builder.getInt32(0);
// In order to support recurrences we need to be able to vectorize Phi nodes.
// Phi nodes have cycles, so we need to vectorize them in two stages. First,
// we create a new vector PHI node with no incoming edges. We use this value
// when we vectorize all of the instructions that use the PHI. Next, after
// all of the instructions in the block are complete we add the new incoming
// edges to the PHI. At this point all of the instructions in the basic block
// are vectorized, so we can use them to construct the PHI.
PhiVector PHIsToFix;
// Collect instructions from the original loop that will become trivially
// dead in the vectorized loop. We don't need to vectorize these
// instructions.
collectTriviallyDeadInstructions();
// Scan the loop in a topological order to ensure that defs are vectorized
// before users.
LoopBlocksDFS DFS(OrigLoop);
DFS.perform(LI);
// Vectorize all of the blocks in the original loop.
for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
vectorizeBlockInLoop(BB, &PHIsToFix);
// Insert truncates and extends for any truncated instructions as hints to
// InstCombine.
if (VF > 1)
truncateToMinimalBitwidths();
// At this point every instruction in the original loop is widened to a
// vector form. Now we need to fix the recurrences in PHIsToFix. These PHI
// nodes are currently empty because we did not want to introduce cycles.
// This is the second stage of vectorizing recurrences.
for (PHINode *Phi : PHIsToFix) {
assert(Phi && "Unable to recover vectorized PHI");
// Handle first-order recurrences that need to be fixed.
if (Legal->isFirstOrderRecurrence(Phi)) {
fixFirstOrderRecurrence(Phi);
continue;
}
// If the phi node is not a first-order recurrence, it must be a reduction.
// Get it's reduction variable descriptor.
assert(Legal->isReductionVariable(Phi) &&
"Unable to find the reduction variable");
RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi];
RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind =
RdxDesc.getMinMaxRecurrenceKind();
setDebugLocFromInst(Builder, ReductionStartValue);
// We need to generate a reduction vector from the incoming scalar.
// To do so, we need to generate the 'identity' vector and override
// one of the elements with the incoming scalar reduction. We need
// to do it in the vector-loop preheader.
Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator());
// This is the vector-clone of the value that leaves the loop.
const VectorParts &VectorExit = getVectorValue(LoopExitInst);
Type *VecTy = VectorExit[0]->getType();
// Find the reduction identity variable. Zero for addition, or, xor,
// one for multiplication, -1 for And.
Value *Identity;
Value *VectorStart;
if (RK == RecurrenceDescriptor::RK_IntegerMinMax ||
RK == RecurrenceDescriptor::RK_FloatMinMax) {
// MinMax reduction have the start value as their identify.
if (VF == 1) {
VectorStart = Identity = ReductionStartValue;
} else {
VectorStart = Identity =
Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident");
}
} else {
// Handle other reduction kinds:
Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
RK, VecTy->getScalarType());
if (VF == 1) {
Identity = Iden;
// This vector is the Identity vector where the first element is the
// incoming scalar reduction.
VectorStart = ReductionStartValue;
} else {
Identity = ConstantVector::getSplat(VF, Iden);
// This vector is the Identity vector where the first element is the
// incoming scalar reduction.
VectorStart =
Builder.CreateInsertElement(Identity, ReductionStartValue, Zero);
}
}
// Fix the vector-loop phi.
// Reductions do not have to start at zero. They can start with
// any loop invariant values.
const VectorParts &VecRdxPhi = getVectorValue(Phi);
BasicBlock *Latch = OrigLoop->getLoopLatch();
Value *LoopVal = Phi->getIncomingValueForBlock(Latch);
const VectorParts &Val = getVectorValue(LoopVal);
for (unsigned part = 0; part < UF; ++part) {
// Make sure to add the reduction stat value only to the
// first unroll part.
Value *StartVal = (part == 0) ? VectorStart : Identity;
cast<PHINode>(VecRdxPhi[part])
->addIncoming(StartVal, LoopVectorPreHeader);
cast<PHINode>(VecRdxPhi[part])
->addIncoming(Val[part], LoopVectorBody);
}
// Before each round, move the insertion point right between
// the PHIs and the values we are going to write.
// This allows us to write both PHINodes and the extractelement
// instructions.
Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
VectorParts &RdxParts = VectorLoopValueMap.getVector(LoopExitInst);
setDebugLocFromInst(Builder, LoopExitInst);
// If the vector reduction can be performed in a smaller type, we truncate
// then extend the loop exit value to enable InstCombine to evaluate the
// entire expression in the smaller type.
if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) {
Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
Builder.SetInsertPoint(LoopVectorBody->getTerminator());
for (unsigned part = 0; part < UF; ++part) {
Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy);
Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
: Builder.CreateZExt(Trunc, VecTy);
for (Value::user_iterator UI = RdxParts[part]->user_begin();
UI != RdxParts[part]->user_end();)
if (*UI != Trunc) {
(*UI++)->replaceUsesOfWith(RdxParts[part], Extnd);
RdxParts[part] = Extnd;
} else {
++UI;
}
}
Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
for (unsigned part = 0; part < UF; ++part)
RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy);
}
// Reduce all of the unrolled parts into a single vector.
Value *ReducedPartRdx = RdxParts[0];
unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK);
setDebugLocFromInst(Builder, ReducedPartRdx);
for (unsigned part = 1; part < UF; ++part) {
if (Op != Instruction::ICmp && Op != Instruction::FCmp)
// Floating point operations had to be 'fast' to enable the reduction.
ReducedPartRdx = addFastMathFlag(
Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part],
ReducedPartRdx, "bin.rdx"));
else
ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp(
Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]);
}
if (VF > 1) {
// VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
// and vector ops, reducing the set of values being computed by half each
// round.
assert(isPowerOf2_32(VF) &&
"Reduction emission only supported for pow2 vectors!");
Value *TmpVec = ReducedPartRdx;
SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
for (unsigned i = VF; i != 1; i >>= 1) {
// Move the upper half of the vector to the lower half.
for (unsigned j = 0; j != i / 2; ++j)
ShuffleMask[j] = Builder.getInt32(i / 2 + j);
// Fill the rest of the mask with undef.
std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
UndefValue::get(Builder.getInt32Ty()));
Value *Shuf = Builder.CreateShuffleVector(
TmpVec, UndefValue::get(TmpVec->getType()),
ConstantVector::get(ShuffleMask), "rdx.shuf");
if (Op != Instruction::ICmp && Op != Instruction::FCmp)
// Floating point operations had to be 'fast' to enable the reduction.
TmpVec = addFastMathFlag(Builder.CreateBinOp(
(Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx"));
else
TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind,
TmpVec, Shuf);
}
// The result is in the first element of the vector.
ReducedPartRdx =
Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
// If the reduction can be performed in a smaller type, we need to extend
// the reduction to the wider type before we branch to the original loop.
if (Phi->getType() != RdxDesc.getRecurrenceType())
ReducedPartRdx =
RdxDesc.isSigned()
? Builder.CreateSExt(ReducedPartRdx, Phi->getType())
: Builder.CreateZExt(ReducedPartRdx, Phi->getType());
}
// Create a phi node that merges control-flow from the backedge-taken check
// block and the middle block.
PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx",
LoopScalarPreHeader->getTerminator());
for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
// Now, we need to fix the users of the reduction variable
// inside and outside of the scalar remainder loop.
// We know that the loop is in LCSSA form. We need to update the
// PHI nodes in the exit blocks.
for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
LEE = LoopExitBlock->end();
LEI != LEE; ++LEI) {
PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
if (!LCSSAPhi)
break;
// All PHINodes need to have a single entry edge, or two if
// we already fixed them.
assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
// We found our reduction value exit-PHI. Update it with the
// incoming bypass edge.
if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) {
// Add an edge coming from the bypass.
LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
break;
}
} // end of the LCSSA phi scan.
// Fix the scalar loop reduction variable with the incoming reduction sum
// from the vector body and from the backedge value.
int IncomingEdgeBlockIdx =
Phi->getBasicBlockIndex(OrigLoop->getLoopLatch());
assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
// Pick the other block.
int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
} // end of for each Phi in PHIsToFix.
fixLCSSAPHIs();
// Make sure DomTree is updated.
updateAnalysis();
predicateInstructions();
// Remove redundant induction instructions.
cse(LoopVectorBody);
}
void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) {
// This is the second phase of vectorizing first-order recurrences. An
// overview of the transformation is described below. Suppose we have the
// following loop.
//
// for (int i = 0; i < n; ++i)
// b[i] = a[i] - a[i - 1];
//
// There is a first-order recurrence on "a". For this loop, the shorthand
// scalar IR looks like:
//
// scalar.ph:
// s_init = a[-1]
// br scalar.body
//
// scalar.body:
// i = phi [0, scalar.ph], [i+1, scalar.body]
// s1 = phi [s_init, scalar.ph], [s2, scalar.body]
// s2 = a[i]
// b[i] = s2 - s1
// br cond, scalar.body, ...
//
// In this example, s1 is a recurrence because it's value depends on the
// previous iteration. In the first phase of vectorization, we created a
// temporary value for s1. We now complete the vectorization and produce the
// shorthand vector IR shown below (for VF = 4, UF = 1).
//
// vector.ph:
// v_init = vector(..., ..., ..., a[-1])
// br vector.body
//
// vector.body
// i = phi [0, vector.ph], [i+4, vector.body]
// v1 = phi [v_init, vector.ph], [v2, vector.body]
// v2 = a[i, i+1, i+2, i+3];
// v3 = vector(v1(3), v2(0, 1, 2))
// b[i, i+1, i+2, i+3] = v2 - v3
// br cond, vector.body, middle.block
//
// middle.block:
// x = v2(3)
// br scalar.ph
//
// scalar.ph:
// s_init = phi [x, middle.block], [a[-1], otherwise]
// br scalar.body
//
// After execution completes the vector loop, we extract the next value of
// the recurrence (x) to use as the initial value in the scalar loop.
// Get the original loop preheader and single loop latch.
auto *Preheader = OrigLoop->getLoopPreheader();
auto *Latch = OrigLoop->getLoopLatch();
// Get the initial and previous values of the scalar recurrence.
auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader);
auto *Previous = Phi->getIncomingValueForBlock(Latch);
// Create a vector from the initial value.
auto *VectorInit = ScalarInit;
if (VF > 1) {
Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
VectorInit = Builder.CreateInsertElement(
UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit,
Builder.getInt32(VF - 1), "vector.recur.init");
}
// We constructed a temporary phi node in the first phase of vectorization.
// This phi node will eventually be deleted.
VectorParts &PhiParts = VectorLoopValueMap.getVector(Phi);
Builder.SetInsertPoint(cast<Instruction>(PhiParts[0]));
// Create a phi node for the new recurrence. The current value will either be
// the initial value inserted into a vector or loop-varying vector value.
auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);
// Get the vectorized previous value. We ensured the previous values was an
// instruction when detecting the recurrence.
auto &PreviousParts = getVectorValue(Previous);
// Set the insertion point to be after this instruction. We ensured the
// previous value dominated all uses of the phi when detecting the
// recurrence.
Builder.SetInsertPoint(
&*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1])));
// We will construct a vector for the recurrence by combining the values for
// the current and previous iterations. This is the required shuffle mask.
SmallVector<Constant *, 8> ShuffleMask(VF);
ShuffleMask[0] = Builder.getInt32(VF - 1);
for (unsigned I = 1; I < VF; ++I)
ShuffleMask[I] = Builder.getInt32(I + VF - 1);
// The vector from which to take the initial value for the current iteration
// (actual or unrolled). Initially, this is the vector phi node.
Value *Incoming = VecPhi;
// Shuffle the current and previous vector and update the vector parts.
for (unsigned Part = 0; Part < UF; ++Part) {
auto *Shuffle =
VF > 1
? Builder.CreateShuffleVector(Incoming, PreviousParts[Part],
ConstantVector::get(ShuffleMask))
: Incoming;
PhiParts[Part]->replaceAllUsesWith(Shuffle);
cast<Instruction>(PhiParts[Part])->eraseFromParent();
PhiParts[Part] = Shuffle;
Incoming = PreviousParts[Part];
}
// Fix the latch value of the new recurrence in the vector loop.
VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
// Extract the last vector element in the middle block. This will be the
// initial value for the recurrence when jumping to the scalar loop.
auto *Extract = Incoming;
if (VF > 1) {
Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
Extract = Builder.CreateExtractElement(Extract, Builder.getInt32(VF - 1),
"vector.recur.extract");
}
// Fix the initial value of the original recurrence in the scalar loop.
Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
for (auto *BB : predecessors(LoopScalarPreHeader)) {
auto *Incoming = BB == LoopMiddleBlock ? Extract : ScalarInit;
Start->addIncoming(Incoming, BB);
}
Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start);
Phi->setName("scalar.recur");
// Finally, fix users of the recurrence outside the loop. The users will need
// either the last value of the scalar recurrence or the last value of the
// vector recurrence we extracted in the middle block. Since the loop is in
// LCSSA form, we just need to find the phi node for the original scalar
// recurrence in the exit block, and then add an edge for the middle block.
for (auto &I : *LoopExitBlock) {
auto *LCSSAPhi = dyn_cast<PHINode>(&I);
if (!LCSSAPhi)
break;
if (LCSSAPhi->getIncomingValue(0) == Phi) {
LCSSAPhi->addIncoming(Extract, LoopMiddleBlock);
break;
}
}
}
void InnerLoopVectorizer::fixLCSSAPHIs() {
for (Instruction &LEI : *LoopExitBlock) {
auto *LCSSAPhi = dyn_cast<PHINode>(&LEI);
if (!LCSSAPhi)
break;
if (LCSSAPhi->getNumIncomingValues() == 1)
LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
LoopMiddleBlock);
}
}
void InnerLoopVectorizer::collectTriviallyDeadInstructions() {
BasicBlock *Latch = OrigLoop->getLoopLatch();
// We create new control-flow for the vectorized loop, so the original
// condition will be dead after vectorization if it's only used by the
// branch.
auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
if (Cmp && Cmp->hasOneUse())
DeadInstructions.insert(Cmp);
// We create new "steps" for induction variable updates to which the original
// induction variables map. An original update instruction will be dead if
// all its users except the induction variable are dead.
for (auto &Induction : *Legal->getInductionVars()) {
PHINode *Ind = Induction.first;
auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
if (all_of(IndUpdate->users(), [&](User *U) -> bool {
return U == Ind || DeadInstructions.count(cast<Instruction>(U));
}))
DeadInstructions.insert(IndUpdate);
}
}
void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
// The basic block and loop containing the predicated instruction.
auto *PredBB = PredInst->getParent();
auto *VectorLoop = LI->getLoopFor(PredBB);
// Initialize a worklist with the operands of the predicated instruction.
SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
// Holds instructions that we need to analyze again. An instruction may be
// reanalyzed if we don't yet know if we can sink it or not.
SmallVector<Instruction *, 8> InstsToReanalyze;
// Returns true if a given use occurs in the predicated block. Phi nodes use
// their operands in their corresponding predecessor blocks.
auto isBlockOfUsePredicated = [&](Use &U) -> bool {
auto *I = cast<Instruction>(U.getUser());
BasicBlock *BB = I->getParent();
if (auto *Phi = dyn_cast<PHINode>(I))
BB = Phi->getIncomingBlock(
PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
return BB == PredBB;
};
// Iteratively sink the scalarized operands of the predicated instruction
// into the block we created for it. When an instruction is sunk, it's
// operands are then added to the worklist. The algorithm ends after one pass
// through the worklist doesn't sink a single instruction.
bool Changed;
do {
// Add the instructions that need to be reanalyzed to the worklist, and
// reset the changed indicator.
Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
InstsToReanalyze.clear();
Changed = false;
while (!Worklist.empty()) {
auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
// We can't sink an instruction if it is a phi node, is already in the
// predicated block, is not in the loop, or may have side effects.
if (!I || isa<PHINode>(I) || I->getParent() == PredBB ||
!VectorLoop->contains(I) || I->mayHaveSideEffects())
continue;
// It's legal to sink the instruction if all its uses occur in the
// predicated block. Otherwise, there's nothing to do yet, and we may
// need to reanalyze the instruction.
if (!all_of(I->uses(), isBlockOfUsePredicated)) {
InstsToReanalyze.push_back(I);
continue;
}
// Move the instruction to the beginning of the predicated block, and add
// it's operands to the worklist.
I->moveBefore(&*PredBB->getFirstInsertionPt());
Worklist.insert(I->op_begin(), I->op_end());
// The sinking may have enabled other instructions to be sunk, so we will
// need to iterate.
Changed = true;
}
} while (Changed);
}
void InnerLoopVectorizer::predicateInstructions() {
// For each instruction I marked for predication on value C, split I into its
// own basic block to form an if-then construct over C. Since I may be fed by
// an extractelement instruction or other scalar operand, we try to
// iteratively sink its scalar operands into the predicated block. If I feeds
// an insertelement instruction, we try to move this instruction into the
// predicated block as well. For non-void types, a phi node will be created
// for the resulting value (either vector or scalar).
//
// So for some predicated instruction, e.g. the conditional sdiv in:
//
// for.body:
// ...
// %add = add nsw i32 %mul, %0
// %cmp5 = icmp sgt i32 %2, 7
// br i1 %cmp5, label %if.then, label %if.end
//
// if.then:
// %div = sdiv i32 %0, %1
// br label %if.end
//
// if.end:
// %x.0 = phi i32 [ %div, %if.then ], [ %add, %for.body ]
//
// the sdiv at this point is scalarized and if-converted using a select.
// The inactive elements in the vector are not used, but the predicated
// instruction is still executed for all vector elements, essentially:
//
// vector.body:
// ...
// %17 = add nsw <2 x i32> %16, %wide.load
// %29 = extractelement <2 x i32> %wide.load, i32 0
// %30 = extractelement <2 x i32> %wide.load51, i32 0
// %31 = sdiv i32 %29, %30
// %32 = insertelement <2 x i32> undef, i32 %31, i32 0
// %35 = extractelement <2 x i32> %wide.load, i32 1
// %36 = extractelement <2 x i32> %wide.load51, i32 1
// %37 = sdiv i32 %35, %36
// %38 = insertelement <2 x i32> %32, i32 %37, i32 1
// %predphi = select <2 x i1> %26, <2 x i32> %38, <2 x i32> %17
//
// Predication will now re-introduce the original control flow to avoid false
// side-effects by the sdiv instructions on the inactive elements, yielding
// (after cleanup):
//
// vector.body:
// ...
// %5 = add nsw <2 x i32> %4, %wide.load
// %8 = icmp sgt <2 x i32> %wide.load52, <i32 7, i32 7>
// %9 = extractelement <2 x i1> %8, i32 0
// br i1 %9, label %pred.sdiv.if, label %pred.sdiv.continue
//
// pred.sdiv.if:
// %10 = extractelement <2 x i32> %wide.load, i32 0
// %11 = extractelement <2 x i32> %wide.load51, i32 0
// %12 = sdiv i32 %10, %11
// %13 = insertelement <2 x i32> undef, i32 %12, i32 0
// br label %pred.sdiv.continue
//
// pred.sdiv.continue:
// %14 = phi <2 x i32> [ undef, %vector.body ], [ %13, %pred.sdiv.if ]
// %15 = extractelement <2 x i1> %8, i32 1
// br i1 %15, label %pred.sdiv.if54, label %pred.sdiv.continue55
//
// pred.sdiv.if54:
// %16 = extractelement <2 x i32> %wide.load, i32 1
// %17 = extractelement <2 x i32> %wide.load51, i32 1
// %18 = sdiv i32 %16, %17
// %19 = insertelement <2 x i32> %14, i32 %18, i32 1
// br label %pred.sdiv.continue55
//
// pred.sdiv.continue55:
// %20 = phi <2 x i32> [ %14, %pred.sdiv.continue ], [ %19, %pred.sdiv.if54 ]
// %predphi = select <2 x i1> %8, <2 x i32> %20, <2 x i32> %5
for (auto KV : PredicatedInstructions) {
BasicBlock::iterator I(KV.first);
BasicBlock *Head = I->getParent();
auto *BB = SplitBlock(Head, &*std::next(I), DT, LI);
auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false,
/*BranchWeights=*/nullptr, DT, LI);
I->moveBefore(T);
sinkScalarOperands(&*I);
I->getParent()->setName(Twine("pred.") + I->getOpcodeName() + ".if");
BB->setName(Twine("pred.") + I->getOpcodeName() + ".continue");
// If the instruction is non-void create a Phi node at reconvergence point.
if (!I->getType()->isVoidTy()) {
Value *IncomingTrue = nullptr;
Value *IncomingFalse = nullptr;
if (I->hasOneUse() && isa<InsertElementInst>(*I->user_begin())) {
// If the predicated instruction is feeding an insert-element, move it
// into the Then block; Phi node will be created for the vector.
InsertElementInst *IEI = cast<InsertElementInst>(*I->user_begin());
IEI->moveBefore(T);
IncomingTrue = IEI; // the new vector with the inserted element.
IncomingFalse = IEI->getOperand(0); // the unmodified vector
} else {
// Phi node will be created for the scalar predicated instruction.
IncomingTrue = &*I;
IncomingFalse = UndefValue::get(I->getType());
}
BasicBlock *PostDom = I->getParent()->getSingleSuccessor();
assert(PostDom && "Then block has multiple successors");
PHINode *Phi =
PHINode::Create(IncomingTrue->getType(), 2, "", &PostDom->front());
IncomingTrue->replaceAllUsesWith(Phi);
Phi->addIncoming(IncomingFalse, Head);
Phi->addIncoming(IncomingTrue, I->getParent());
}
}
DEBUG(DT->verifyDomTree());
}
InnerLoopVectorizer::VectorParts
InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
// Look for cached value.
std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge);
if (ECEntryIt != MaskCache.end())
return ECEntryIt->second;
VectorParts SrcMask = createBlockInMask(Src);
// The terminator has to be a branch inst!
BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
assert(BI && "Unexpected terminator found");
if (BI->isConditional()) {
VectorParts EdgeMask = getVectorValue(BI->getCondition());
if (BI->getSuccessor(0) != Dst)
for (unsigned part = 0; part < UF; ++part)
EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
for (unsigned part = 0; part < UF; ++part)
EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
MaskCache[Edge] = EdgeMask;
return EdgeMask;
}
MaskCache[Edge] = SrcMask;
return SrcMask;
}
InnerLoopVectorizer::VectorParts
InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
// Loop incoming mask is all-one.
if (OrigLoop->getHeader() == BB) {
Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
return getVectorValue(C);
}
// This is the block mask. We OR all incoming edges, and with zero.
Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
VectorParts BlockMask = getVectorValue(Zero);
// For each pred:
for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
VectorParts EM = createEdgeMask(*it, BB);
for (unsigned part = 0; part < UF; ++part)
BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
}
return BlockMask;
}
void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF,
unsigned VF, PhiVector *PV) {
PHINode *P = cast<PHINode>(PN);
// Handle recurrences.
if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) {
VectorParts Entry(UF);
for (unsigned part = 0; part < UF; ++part) {
// This is phase one of vectorizing PHIs.
Type *VecTy =
(VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF);
Entry[part] = PHINode::Create(
VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt());
}
VectorLoopValueMap.initVector(P, Entry);
PV->push_back(P);
return;
}
setDebugLocFromInst(Builder, P);
// Check for PHI nodes that are lowered to vector selects.
if (P->getParent() != OrigLoop->getHeader()) {
// We know that all PHIs in non-header blocks are converted into
// selects, so we don't have to worry about the insertion order and we
// can just use the builder.
// At this point we generate the predication tree. There may be
// duplications since this is a simple recursive scan, but future
// optimizations will clean it up.
unsigned NumIncoming = P->getNumIncomingValues();
// Generate a sequence of selects of the form:
// SELECT(Mask3, In3,
// SELECT(Mask2, In2,
// ( ...)))
VectorParts Entry(UF);
for (unsigned In = 0; In < NumIncoming; In++) {
VectorParts Cond =
createEdgeMask(P->getIncomingBlock(In), P->getParent());
const VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
for (unsigned part = 0; part < UF; ++part) {
// We might have single edge PHIs (blocks) - use an identity
// 'select' for the first PHI operand.
if (In == 0)
Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In0[part]);
else
// Select between the current value and the previous incoming edge
// based on the incoming mask.
Entry[part] = Builder.CreateSelect(Cond[part], In0[part], Entry[part],
"predphi");
}
}
VectorLoopValueMap.initVector(P, Entry);
return;
}
// This PHINode must be an induction variable.
// Make sure that we know about it.
assert(Legal->getInductionVars()->count(P) && "Not an induction variable");
InductionDescriptor II = Legal->getInductionVars()->lookup(P);
const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
// FIXME: The newly created binary instructions should contain nsw/nuw flags,
// which can be found from the original scalar operations.
switch (II.getKind()) {
case InductionDescriptor::IK_NoInduction:
llvm_unreachable("Unknown induction");
case InductionDescriptor::IK_IntInduction:
return widenIntInduction(P);
case InductionDescriptor::IK_PtrInduction: {
// Handle the pointer induction variable case.
assert(P->getType()->isPointerTy() && "Unexpected type.");
// This is the normalized GEP that starts counting at zero.
Value *PtrInd = Induction;
PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType());
// Determine the number of scalars we need to generate for each unroll
// iteration. If the instruction is uniform, we only need to generate the
// first lane. Otherwise, we generate all VF values.
unsigned Lanes = Legal->isUniformAfterVectorization(P) ? 1 : VF;
// These are the scalar results. Notice that we don't generate vector GEPs
// because scalar GEPs result in better code.
ScalarParts Entry(UF);
for (unsigned Part = 0; Part < UF; ++Part) {
Entry[Part].resize(VF);
for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF);
Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL);
SclrGep->setName("next.gep");
Entry[Part][Lane] = SclrGep;
}
}
VectorLoopValueMap.initScalar(P, Entry);
return;
}
case InductionDescriptor::IK_FpInduction: {
assert(P->getType() == II.getStartValue()->getType() &&
"Types must match");
// Handle other induction variables that are now based on the
// canonical one.
assert(P != OldInduction && "Primary induction can be integer only");
Value *V = Builder.CreateCast(Instruction::SIToFP, Induction, P->getType());
V = II.transform(Builder, V, PSE.getSE(), DL);
V->setName("fp.offset.idx");
// Now we have scalar op: %fp.offset.idx = StartVal +/- Induction*StepVal
Value *Broadcasted = getBroadcastInstrs(V);
// After broadcasting the induction variable we need to make the vector
// consecutive by adding StepVal*0, StepVal*1, StepVal*2, etc.
Value *StepVal = cast<SCEVUnknown>(II.getStep())->getValue();
VectorParts Entry(UF);
for (unsigned part = 0; part < UF; ++part)
Entry[part] = getStepVector(Broadcasted, VF * part, StepVal,
II.getInductionOpcode());
VectorLoopValueMap.initVector(P, Entry);
return;
}
}
}
/// A helper function for checking whether an integer division-related
/// instruction may divide by zero (in which case it must be predicated if
/// executed conditionally in the scalar code).
/// TODO: It may be worthwhile to generalize and check isKnownNonZero().
/// Non-zero divisors that are non compile-time constants will not be
/// converted into multiplication, so we will still end up scalarizing
/// the division, but can do so w/o predication.
static bool mayDivideByZero(Instruction &I) {
assert((I.getOpcode() == Instruction::UDiv ||
I.getOpcode() == Instruction::SDiv ||
I.getOpcode() == Instruction::URem ||
I.getOpcode() == Instruction::SRem) &&
"Unexpected instruction");
Value *Divisor = I.getOperand(1);
auto *CInt = dyn_cast<ConstantInt>(Divisor);
return !CInt || CInt->isZero();
}
void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) {
// For each instruction in the old loop.
for (Instruction &I : *BB) {
// If the instruction will become trivially dead when vectorized, we don't
// need to generate it.
if (DeadInstructions.count(&I))
continue;
// Scalarize instructions that should remain scalar after vectorization.
if (!(isa<BranchInst>(&I) || isa<PHINode>(&I) ||
isa<DbgInfoIntrinsic>(&I)) &&
Legal->isScalarAfterVectorization(&I)) {
scalarizeInstruction(&I);
continue;
}
switch (I.getOpcode()) {
case Instruction::Br:
// Nothing to do for PHIs and BR, since we already took care of the
// loop control flow instructions.
continue;
case Instruction::PHI: {
// Vectorize PHINodes.
widenPHIInstruction(&I, UF, VF, PV);
continue;
} // End of PHI.
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::SRem:
case Instruction::URem:
// Scalarize with predication if this instruction may divide by zero and
// block execution is conditional, otherwise fallthrough.
if (Legal->isScalarWithPredication(&I)) {
scalarizeInstruction(&I, true);
continue;
}
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
// Just widen binops.
auto *BinOp = cast<BinaryOperator>(&I);
setDebugLocFromInst(Builder, BinOp);
const VectorParts &A = getVectorValue(BinOp->getOperand(0));
const VectorParts &B = getVectorValue(BinOp->getOperand(1));
// Use this vector value for all users of the original instruction.
VectorParts Entry(UF);
for (unsigned Part = 0; Part < UF; ++Part) {
Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V))
VecOp->copyIRFlags(BinOp);
Entry[Part] = V;
}
VectorLoopValueMap.initVector(&I, Entry);
addMetadata(Entry, BinOp);
break;
}
case Instruction::Select: {
// Widen selects.
// If the selector is loop invariant we can create a select
// instruction with a scalar condition. Otherwise, use vector-select.
auto *SE = PSE.getSE();
bool InvariantCond =
SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop);
setDebugLocFromInst(Builder, &I);
// The condition can be loop invariant but still defined inside the
// loop. This means that we can't just use the original 'cond' value.
// We have to take the 'vectorized' value and pick the first lane.
// Instcombine will make this a no-op.
const VectorParts &Cond = getVectorValue(I.getOperand(0));
const VectorParts &Op0 = getVectorValue(I.getOperand(1));
const VectorParts &Op1 = getVectorValue(I.getOperand(2));
auto *ScalarCond = getScalarValue(I.getOperand(0), 0, 0);
VectorParts Entry(UF);
for (unsigned Part = 0; Part < UF; ++Part) {
Entry[Part] = Builder.CreateSelect(
InvariantCond ? ScalarCond : Cond[Part], Op0[Part], Op1[Part]);
}
VectorLoopValueMap.initVector(&I, Entry);
addMetadata(Entry, &I);
break;
}
case Instruction::ICmp:
case Instruction::FCmp: {
// Widen compares. Generate vector compares.
bool FCmp = (I.getOpcode() == Instruction::FCmp);
auto *Cmp = dyn_cast<CmpInst>(&I);
setDebugLocFromInst(Builder, Cmp);
const VectorParts &A = getVectorValue(Cmp->getOperand(0));
const VectorParts &B = getVectorValue(Cmp->getOperand(1));
VectorParts Entry(UF);
for (unsigned Part = 0; Part < UF; ++Part) {
Value *C = nullptr;
if (FCmp) {
C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
cast<FCmpInst>(C)->copyFastMathFlags(Cmp);
} else {
C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
}
Entry[Part] = C;
}
VectorLoopValueMap.initVector(&I, Entry);
addMetadata(Entry, &I);
break;
}
case Instruction::Store:
case Instruction::Load:
vectorizeMemoryInstruction(&I);
break;
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::FPExt:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::SIToFP:
case Instruction::UIToFP:
case Instruction::Trunc:
case Instruction::FPTrunc:
case Instruction::BitCast: {
auto *CI = dyn_cast<CastInst>(&I);
setDebugLocFromInst(Builder, CI);
// Optimize the special case where the source is a constant integer
// induction variable. Notice that we can only optimize the 'trunc' case
// because (a) FP conversions lose precision, (b) sext/zext may wrap, and
// (c) other casts depend on pointer size.
auto ID = Legal->getInductionVars()->lookup(OldInduction);
if (isa<TruncInst>(CI) && CI->getOperand(0) == OldInduction &&
ID.getConstIntStepValue()) {
widenIntInduction(OldInduction, cast<TruncInst>(CI));
break;
}
/// Vectorize casts.
Type *DestTy =
(VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF);
const VectorParts &A = getVectorValue(CI->getOperand(0));
VectorParts Entry(UF);
for (unsigned Part = 0; Part < UF; ++Part)
Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
VectorLoopValueMap.initVector(&I, Entry);
addMetadata(Entry, &I);
break;
}
case Instruction::Call: {
// Ignore dbg intrinsics.
if (isa<DbgInfoIntrinsic>(I))
break;
setDebugLocFromInst(Builder, &I);
Module *M = BB->getParent()->getParent();
auto *CI = cast<CallInst>(&I);
StringRef FnName = CI->getCalledFunction()->getName();
Function *F = CI->getCalledFunction();
Type *RetTy = ToVectorTy(CI->getType(), VF);
SmallVector<Type *, 4> Tys;
for (Value *ArgOperand : CI->arg_operands())
Tys.push_back(ToVectorTy(ArgOperand->getType(), VF));
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
ID == Intrinsic::lifetime_start)) {
scalarizeInstruction(&I);
break;
}
// The flag shows whether we use Intrinsic or a usual Call for vectorized
// version of the instruction.
// Is it beneficial to perform intrinsic call compared to lib call?
bool NeedToScalarize;
unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize);
bool UseVectorIntrinsic =
ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost;
if (!UseVectorIntrinsic && NeedToScalarize) {
scalarizeInstruction(&I);
break;
}
VectorParts Entry(UF);
for (unsigned Part = 0; Part < UF; ++Part) {
SmallVector<Value *, 4> Args;
for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
Value *Arg = CI->getArgOperand(i);
// Some intrinsics have a scalar argument - don't replace it with a
// vector.
if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) {
const VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i));
Arg = VectorArg[Part];
}
Args.push_back(Arg);
}
Function *VectorF;
if (UseVectorIntrinsic) {
// Use vector version of the intrinsic.
Type *TysForDecl[] = {CI->getType()};
if (VF > 1)
TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
} else {
// Use vector version of the library call.
StringRef VFnName = TLI->getVectorizedFunction(FnName, VF);
assert(!VFnName.empty() && "Vector function name is empty.");
VectorF = M->getFunction(VFnName);
if (!VectorF) {
// Generate a declaration
FunctionType *FTy = FunctionType::get(RetTy, Tys, false);
VectorF =
Function::Create(FTy, Function::ExternalLinkage, VFnName, M);
VectorF->copyAttributesFrom(F);
}
}
assert(VectorF && "Can't create vector function.");
SmallVector<OperandBundleDef, 1> OpBundles;
CI->getOperandBundlesAsDefs(OpBundles);
CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
if (isa<FPMathOperator>(V))
V->copyFastMathFlags(CI);
Entry[Part] = V;
}
VectorLoopValueMap.initVector(&I, Entry);
addMetadata(Entry, &I);
break;
}
default:
// All other instructions are unsupported. Scalarize them.
scalarizeInstruction(&I);
break;
} // end of switch.
} // end of for_each instr.
}
void InnerLoopVectorizer::updateAnalysis() {
// Forget the original basic block.
PSE.getSE()->forgetLoop(OrigLoop);
// Update the dominator tree information.
assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
"Entry does not dominate exit.");
// We don't predicate stores by this point, so the vector body should be a
// single loop.
DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader);
DT->addNewBlock(LoopMiddleBlock, LoopVectorBody);
DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]);
DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]);
DEBUG(DT->verifyDomTree());
}
/// \brief Check whether it is safe to if-convert this phi node.
///
/// Phi nodes with constant expressions that can trap are not safe to if
/// convert.
static bool canIfConvertPHINodes(BasicBlock *BB) {
for (Instruction &I : *BB) {
auto *Phi = dyn_cast<PHINode>(&I);
if (!Phi)
return true;
for (Value *V : Phi->incoming_values())
if (auto *C = dyn_cast<Constant>(V))
if (C->canTrap())
return false;
}
return true;
}
bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
if (!EnableIfConversion) {
ORE->emit(createMissedAnalysis("IfConversionDisabled")
<< "if-conversion is disabled");
return false;
}
assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
// A list of pointers that we can safely read and write to.
SmallPtrSet<Value *, 8> SafePointes;
// Collect safe addresses.
for (BasicBlock *BB : TheLoop->blocks()) {
if (blockNeedsPredication(BB))
continue;
for (Instruction &I : *BB)
if (auto *Ptr = getPointerOperand(&I))
SafePointes.insert(Ptr);
}
// Collect the blocks that need predication.
BasicBlock *Header = TheLoop->getHeader();
for (BasicBlock *BB : TheLoop->blocks()) {
// We don't support switch statements inside loops.
if (!isa<BranchInst>(BB->getTerminator())) {
ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator())
<< "loop contains a switch statement");
return false;
}
// We must be able to predicate all blocks that need to be predicated.
if (blockNeedsPredication(BB)) {
if (!blockCanBePredicated(BB, SafePointes)) {
ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
<< "control flow cannot be substituted for a select");
return false;
}
} else if (BB != Header && !canIfConvertPHINodes(BB)) {
ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
<< "control flow cannot be substituted for a select");
return false;
}
}
// We can if-convert this loop.
return true;
}
bool LoopVectorizationLegality::canVectorize() {
// We must have a loop in canonical form. Loops with indirectbr in them cannot
// be canonicalized.
if (!TheLoop->getLoopPreheader()) {
ORE->emit(createMissedAnalysis("CFGNotUnderstood")
<< "loop control flow is not understood by vectorizer");
return false;
}
// FIXME: The code is currently dead, since the loop gets sent to
// LoopVectorizationLegality is already an innermost loop.
//
// We can only vectorize innermost loops.
if (!TheLoop->empty()) {
ORE->emit(createMissedAnalysis("NotInnermostLoop")
<< "loop is not the innermost loop");
return false;
}
// We must have a single backedge.
if (TheLoop->getNumBackEdges() != 1) {
ORE->emit(createMissedAnalysis("CFGNotUnderstood")
<< "loop control flow is not understood by vectorizer");
return false;
}
// We must have a single exiting block.
if (!TheLoop->getExitingBlock()) {
ORE->emit(createMissedAnalysis("CFGNotUnderstood")
<< "loop control flow is not understood by vectorizer");
return false;
}
// We only handle bottom-tested loops, i.e. loop in which the condition is
// checked at the end of each iteration. With that we can assume that all
// instructions in the loop are executed the same number of times.
if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
ORE->emit(createMissedAnalysis("CFGNotUnderstood")
<< "loop control flow is not understood by vectorizer");
return false;
}
// We need to have a loop header.
DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
<< '\n');
// Check if we can if-convert non-single-bb loops.
unsigned NumBlocks = TheLoop->getNumBlocks();
if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
return false;
}
// ScalarEvolution needs to be able to find the exit count.
const SCEV *ExitCount = PSE.getBackedgeTakenCount();
if (ExitCount == PSE.getSE()->getCouldNotCompute()) {
ORE->emit(createMissedAnalysis("CantComputeNumberOfIterations")
<< "could not determine number of loop iterations");
DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
return false;
}
// Check if we can vectorize the instructions and CFG in this loop.
if (!canVectorizeInstrs()) {
DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
return false;
}
// Go over each instruction and look at memory deps.
if (!canVectorizeMemory()) {
DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
return false;
}
DEBUG(dbgs() << "LV: We can vectorize this loop"
<< (LAI->getRuntimePointerChecking()->Need
? " (with a runtime bound check)"
: "")
<< "!\n");
bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
// If an override option has been passed in for interleaved accesses, use it.
if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
UseInterleaved = EnableInterleavedMemAccesses;
// Analyze interleaved memory accesses.
if (UseInterleaved)
InterleaveInfo.analyzeInterleaving(*getSymbolicStrides());
// Collect all instructions that are known to be uniform after vectorization.
collectLoopUniforms();
// Collect all instructions that are known to be scalar after vectorization.
collectLoopScalars();
unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks")
<< "Too many SCEV assumptions need to be made and checked "
<< "at runtime");
DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n");
return false;
}
// Okay! We can vectorize. At this point we don't have any other mem analysis
// which may limit our maximum vectorization factor, so just return true with
// no restrictions.
return true;
}
static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
if (Ty->isPointerTy())
return DL.getIntPtrType(Ty);
// It is possible that char's or short's overflow when we ask for the loop's
// trip count, work around this by changing the type size.
if (Ty->getScalarSizeInBits() < 32)
return Type::getInt32Ty(Ty->getContext());
return Ty;
}
static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
Ty0 = convertPointerToIntegerType(DL, Ty0);
Ty1 = convertPointerToIntegerType(DL, Ty1);
if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
return Ty0;
return Ty1;
}
/// \brief Check that the instruction has outside loop users and is not an
/// identified reduction variable.
static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
SmallPtrSetImpl<Value *> &AllowedExit) {
// Reduction and Induction instructions are allowed to have exit users. All
// other instructions must not have external users.
if (!AllowedExit.count(Inst))
// Check that all of the users of the loop are inside the BB.
for (User *U : Inst->users()) {
Instruction *UI = cast<Instruction>(U);
// This user may be a reduction exit value.
if (!TheLoop->contains(UI)) {
DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
return true;
}
}
return false;
}
void LoopVectorizationLegality::addInductionPhi(
PHINode *Phi, const InductionDescriptor &ID,
SmallPtrSetImpl<Value *> &AllowedExit) {
Inductions[Phi] = ID;
Type *PhiTy = Phi->getType();
const DataLayout &DL = Phi->getModule()->getDataLayout();
// Get the widest type.
if (!PhiTy->isFloatingPointTy()) {
if (!WidestIndTy)
WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
else
WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
}
// Int inductions are special because we only allow one IV.
if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
ID.getConstIntStepValue() &&
ID.getConstIntStepValue()->isOne() &&
isa<Constant>(ID.getStartValue()) &&
cast<Constant>(ID.getStartValue())->isNullValue()) {
// Use the phi node with the widest type as induction. Use the last
// one if there are multiple (no good reason for doing this other
// than it is expedient). We've checked that it begins at zero and
// steps by one, so this is a canonical induction variable.
if (!Induction || PhiTy == WidestIndTy)
Induction = Phi;
}
// Both the PHI node itself, and the "post-increment" value feeding
// back into the PHI node may have external users.
AllowedExit.insert(Phi);
AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
DEBUG(dbgs() << "LV: Found an induction variable.\n");
return;
}
bool LoopVectorizationLegality::canVectorizeInstrs() {
BasicBlock *Header = TheLoop->getHeader();
// Look for the attribute signaling the absence of NaNs.
Function &F = *Header->getParent();
HasFunNoNaNAttr =
F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
// For each block in the loop.
for (BasicBlock *BB : TheLoop->blocks()) {
// Scan the instructions in the block and look for hazards.
for (Instruction &I : *BB) {
if (auto *Phi = dyn_cast<PHINode>(&I)) {
Type *PhiTy = Phi->getType();
// Check that this PHI type is allowed.
if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
!PhiTy->isPointerTy()) {
ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
<< "loop control flow is not understood by vectorizer");
DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
return false;
}
// If this PHINode is not in the header block, then we know that we
// can convert it to select during if-conversion. No need to check if
// the PHIs in this block are induction or reduction variables.
if (BB != Header) {
// Check that this instruction has no outside users or is an
// identified reduction value with an outside user.
if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit))
continue;
ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi)
<< "value could not be identified as "
"an induction or reduction variable");
return false;
}
// We only allow if-converted PHIs with exactly two incoming values.
if (Phi->getNumIncomingValues() != 2) {
ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
<< "control flow not understood by vectorizer");
DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
return false;
}
RecurrenceDescriptor RedDes;
if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) {
if (RedDes.hasUnsafeAlgebra())
Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst());
AllowedExit.insert(RedDes.getLoopExitInstr());
Reductions[Phi] = RedDes;
continue;
}
InductionDescriptor ID;
if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
addInductionPhi(Phi, ID, AllowedExit);
if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr)
Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst());
continue;
}
if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) {
FirstOrderRecurrences.insert(Phi);
continue;
}
// As a last resort, coerce the PHI to a AddRec expression
// and re-try classifying it a an induction PHI.
if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
addInductionPhi(Phi, ID, AllowedExit);
continue;
}
ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi)
<< "value that could not be identified as "
"reduction is used outside the loop");
DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n");
return false;
} // end of PHI handling
// We handle calls that:
// * Are debug info intrinsics.
// * Have a mapping to an IR intrinsic.
// * Have a vector version available.
auto *CI = dyn_cast<CallInst>(&I);
if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
!isa<DbgInfoIntrinsic>(CI) &&
!(CI->getCalledFunction() && TLI &&
TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) {
ORE->emit(createMissedAnalysis("CantVectorizeCall", CI)
<< "call instruction cannot be vectorized");
DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n");
return false;
}
// Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
// second argument is the same (i.e. loop invariant)
if (CI && hasVectorInstrinsicScalarOpd(
getVectorIntrinsicIDForCall(CI, TLI), 1)) {
auto *SE = PSE.getSE();
if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) {
ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI)
<< "intrinsic instruction cannot be vectorized");
DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n");
return false;
}
}
// Check that the instruction return type is vectorizable.
// Also, we can't vectorize extractelement instructions.
if ((!VectorType::isValidElementType(I.getType()) &&
!I.getType()->isVoidTy()) ||
isa<ExtractElementInst>(I)) {
ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I)
<< "instruction return type cannot be vectorized");
DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
return false;
}
// Check that the stored type is vectorizable.
if (auto *ST = dyn_cast<StoreInst>(&I)) {
Type *T = ST->getValueOperand()->getType();
if (!VectorType::isValidElementType(T)) {
ORE->emit(createMissedAnalysis("CantVectorizeStore", ST)
<< "store instruction cannot be vectorized");
return false;
}
// FP instructions can allow unsafe algebra, thus vectorizable by
// non-IEEE-754 compliant SIMD units.
// This applies to floating-point math operations and calls, not memory
// operations, shuffles, or casts, as they don't change precision or
// semantics.
} else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
!I.hasUnsafeAlgebra()) {
DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
Hints->setPotentiallyUnsafe();
}
// Reduction instructions are allowed to have exit users.
// All other instructions must not have external users.
if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I)
<< "value cannot be used outside the loop");
return false;
}
} // next instr.
}
if (!Induction) {
DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
if (Inductions.empty()) {
ORE->emit(createMissedAnalysis("NoInductionVariable")
<< "loop induction variable could not be identified");
return false;
}
}
// Now we know the widest induction type, check if our found induction
// is the same size. If it's not, unset it here and InnerLoopVectorizer
// will create another.
if (Induction && WidestIndTy != Induction->getType())
Induction = nullptr;
return true;
}
void LoopVectorizationLegality::collectLoopScalars() {
// If an instruction is uniform after vectorization, it will remain scalar.
Scalars.insert(Uniforms.begin(), Uniforms.end());
// Collect the getelementptr instructions that will not be vectorized. A
// getelementptr instruction is only vectorized if it is used for a legal
// gather or scatter operation.
for (auto *BB : TheLoop->blocks())
for (auto &I : *BB) {
if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
Scalars.insert(GEP);
continue;
}
auto *Ptr = getPointerOperand(&I);
if (!Ptr)
continue;
auto *GEP = getGEPInstruction(Ptr);
if (GEP && isLegalGatherOrScatter(&I))
Scalars.erase(GEP);
}
// An induction variable will remain scalar if all users of the induction
// variable and induction variable update remain scalar.
auto *Latch = TheLoop->getLoopLatch();
for (auto &Induction : *getInductionVars()) {
auto *Ind = Induction.first;
auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
// Determine if all users of the induction variable are scalar after
// vectorization.
auto ScalarInd = all_of(Ind->users(), [&](User *U) -> bool {
auto *I = cast<Instruction>(U);
return I == IndUpdate || !TheLoop->contains(I) || Scalars.count(I);
});
if (!ScalarInd)
continue;
// Determine if all users of the induction variable update instruction are
// scalar after vectorization.
auto ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool {
auto *I = cast<Instruction>(U);
return I == Ind || !TheLoop->contains(I) || Scalars.count(I);
});
if (!ScalarIndUpdate)
continue;
// The induction variable and its update instruction will remain scalar.
Scalars.insert(Ind);
Scalars.insert(IndUpdate);
}
}
bool LoopVectorizationLegality::hasConsecutiveLikePtrOperand(Instruction *I) {
if (isAccessInterleaved(I))
return true;
if (auto *Ptr = getPointerOperand(I))
return isConsecutivePtr(Ptr);
return false;
}
bool LoopVectorizationLegality::isScalarWithPredication(Instruction *I) {
if (!blockNeedsPredication(I->getParent()))
return false;
switch(I->getOpcode()) {
default:
break;
case Instruction::Store:
return !isMaskRequired(I);
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::SRem:
case Instruction::URem:
return mayDivideByZero(*I);
}
return false;
}
bool LoopVectorizationLegality::memoryInstructionMustBeScalarized(
Instruction *I, unsigned VF) {
// If the memory instruction is in an interleaved group, it will be
// vectorized and its pointer will remain uniform.
if (isAccessInterleaved(I))
return false;
// Get and ensure we have a valid memory instruction.
LoadInst *LI = dyn_cast<LoadInst>(I);
StoreInst *SI = dyn_cast<StoreInst>(I);
assert((LI || SI) && "Invalid memory instruction");
// If the pointer operand is uniform (loop invariant), the memory instruction
// will be scalarized.
auto *Ptr = getPointerOperand(I);
if (LI && isUniform(Ptr))
return true;
// If the pointer operand is non-consecutive and neither a gather nor a
// scatter operation is legal, the memory instruction will be scalarized.
if (!isConsecutivePtr(Ptr) && !isLegalGatherOrScatter(I))
return true;
// If the instruction is a store located in a predicated block, it will be
// scalarized.
if (isScalarWithPredication(I))
return true;
// If the instruction's allocated size doesn't equal it's type size, it
// requires padding and will be scalarized.
auto &DL = I->getModule()->getDataLayout();
auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
if (hasIrregularType(ScalarTy, DL, VF))
return true;
// Otherwise, the memory instruction should be vectorized if the rest of the
// loop is.
return false;
}
void LoopVectorizationLegality::collectLoopUniforms() {
// We now know that the loop is vectorizable!
// Collect instructions inside the loop that will remain uniform after
// vectorization.
// Global values, params and instructions outside of current loop are out of
// scope.
auto isOutOfScope = [&](Value *V) -> bool {
Instruction *I = dyn_cast<Instruction>(V);
return (!I || !TheLoop->contains(I));
};
SetVector<Instruction *> Worklist;
BasicBlock *Latch = TheLoop->getLoopLatch();
// Start with the conditional branch. If the branch condition is an
// instruction contained in the loop that is only used by the branch, it is
// uniform.
auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) {
Worklist.insert(Cmp);
DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n");
}
// Holds consecutive and consecutive-like pointers. Consecutive-like pointers
// are pointers that are treated like consecutive pointers during
// vectorization. The pointer operands of interleaved accesses are an
// example.
SmallPtrSet<Instruction *, 8> ConsecutiveLikePtrs;
// Holds pointer operands of instructions that are possibly non-uniform.
SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs;
// Iterate over the instructions in the loop, and collect all
// consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible
// that a consecutive-like pointer operand will be scalarized, we collect it
// in PossibleNonUniformPtrs instead. We use two sets here because a single
// getelementptr instruction can be used by both vectorized and scalarized
// memory instructions. For example, if a loop loads and stores from the same
// location, but the store is conditional, the store will be scalarized, and
// the getelementptr won't remain uniform.
for (auto *BB : TheLoop->blocks())
for (auto &I : *BB) {
// If there's no pointer operand, there's nothing to do.
auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I));
if (!Ptr)
continue;
// True if all users of Ptr are memory accesses that have Ptr as their
// pointer operand.
auto UsersAreMemAccesses = all_of(Ptr->users(), [&](User *U) -> bool {
return getPointerOperand(U) == Ptr;
});
// Ensure the memory instruction will not be scalarized, making its
// pointer operand non-uniform. If the pointer operand is used by some
// instruction other than a memory access, we're not going to check if
// that other instruction may be scalarized here. Thus, conservatively
// assume the pointer operand may be non-uniform.
if (!UsersAreMemAccesses || memoryInstructionMustBeScalarized(&I))
PossibleNonUniformPtrs.insert(Ptr);
// If the memory instruction will be vectorized and its pointer operand
// is consecutive-like, the pointer operand should remain uniform.
else if (hasConsecutiveLikePtrOperand(&I))
ConsecutiveLikePtrs.insert(Ptr);
}
// Add to the Worklist all consecutive and consecutive-like pointers that
// aren't also identified as possibly non-uniform.
for (auto *V : ConsecutiveLikePtrs)
if (!PossibleNonUniformPtrs.count(V)) {
DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n");
Worklist.insert(V);
}
// Expand Worklist in topological order: whenever a new instruction
// is added , its users should be either already inside Worklist, or
// out of scope. It ensures a uniform instruction will only be used
// by uniform instructions or out of scope instructions.
unsigned idx = 0;
while (idx != Worklist.size()) {
Instruction *I = Worklist[idx++];
for (auto OV : I->operand_values()) {
if (isOutOfScope(OV))
continue;
auto *OI = cast<Instruction>(OV);
if (all_of(OI->users(), [&](User *U) -> bool {
return isOutOfScope(U) || Worklist.count(cast<Instruction>(U));
})) {
Worklist.insert(OI);
DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n");
}
}
}
// Returns true if Ptr is the pointer operand of a memory access instruction
// I, and I is known to not require scalarization.
auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
return getPointerOperand(I) == Ptr && !memoryInstructionMustBeScalarized(I);
};
// For an instruction to be added into Worklist above, all its users inside
// the loop should also be in Worklist. However, this condition cannot be
// true for phi nodes that form a cyclic dependence. We must process phi
// nodes separately. An induction variable will remain uniform if all users
// of the induction variable and induction variable update remain uniform.
// The code below handles both pointer and non-pointer induction variables.
for (auto &Induction : Inductions) {
auto *Ind = Induction.first;
auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
// Determine if all users of the induction variable are uniform after
// vectorization.
auto UniformInd = all_of(Ind->users(), [&](User *U) -> bool {
auto *I = cast<Instruction>(U);
return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
isVectorizedMemAccessUse(I, Ind);
});
if (!UniformInd)
continue;
// Determine if all users of the induction variable update instruction are
// uniform after vectorization.
auto UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool {
auto *I = cast<Instruction>(U);
return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
isVectorizedMemAccessUse(I, IndUpdate);
});
if (!UniformIndUpdate)
continue;
// The induction variable and its update instruction will remain uniform.
Worklist.insert(Ind);
Worklist.insert(IndUpdate);
DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n");
DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n");
}
Uniforms.insert(Worklist.begin(), Worklist.end());
}
bool LoopVectorizationLegality::canVectorizeMemory() {
LAI = &(*GetLAA)(*TheLoop);
InterleaveInfo.setLAI(LAI);
const OptimizationRemarkAnalysis *LAR = LAI->getReport();
if (LAR) {
OptimizationRemarkAnalysis VR(Hints->vectorizeAnalysisPassName(),
"loop not vectorized: ", *LAR);
ORE->emit(VR);
}
if (!LAI->canVectorizeMemory())
return false;
if (LAI->hasStoreToLoopInvariantAddress()) {
ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress")
<< "write to a loop invariant address could not be vectorized");
DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
return false;
}
Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
PSE.addPredicate(LAI->getPSE().getUnionPredicate());
return true;
}
bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
Value *In0 = const_cast<Value *>(V);
PHINode *PN = dyn_cast_or_null<PHINode>(In0);
if (!PN)
return false;
return Inductions.count(PN);
}
bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
return FirstOrderRecurrences.count(Phi);
}
bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
}
bool LoopVectorizationLegality::blockCanBePredicated(
BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) {
const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
for (Instruction &I : *BB) {
// Check that we don't have a constant expression that can trap as operand.
for (Value *Operand : I.operands()) {
if (auto *C = dyn_cast<Constant>(Operand))
if (C->canTrap())
return false;
}
// We might be able to hoist the load.
if (I.mayReadFromMemory()) {
auto *LI = dyn_cast<LoadInst>(&I);
if (!LI)
return false;
if (!SafePtrs.count(LI->getPointerOperand())) {
if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) ||
isLegalMaskedGather(LI->getType())) {
MaskedOp.insert(LI);
continue;
}
// !llvm.mem.parallel_loop_access implies if-conversion safety.
if (IsAnnotatedParallel)
continue;
return false;
}
}
if (I.mayWriteToMemory()) {
auto *SI = dyn_cast<StoreInst>(&I);
// We only support predication of stores in basic blocks with one
// predecessor.
if (!SI)
return false;
// Build a masked store if it is legal for the target.
if (isLegalMaskedStore(SI->getValueOperand()->getType(),
SI->getPointerOperand()) ||
isLegalMaskedScatter(SI->getValueOperand()->getType())) {
MaskedOp.insert(SI);
continue;
}
bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0);
bool isSinglePredecessor = SI->getParent()->getSinglePredecessor();
if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr ||
!isSinglePredecessor)
return false;
}
if (I.mayThrow())
return false;
}
return true;
}
void InterleavedAccessInfo::collectConstStrideAccesses(
MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
const ValueToValueMap &Strides) {
auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
// Since it's desired that the load/store instructions be maintained in
// "program order" for the interleaved access analysis, we have to visit the
// blocks in the loop in reverse postorder (i.e., in a topological order).
// Such an ordering will ensure that any load/store that may be executed
// before a second load/store will precede the second load/store in
// AccessStrideInfo.
LoopBlocksDFS DFS(TheLoop);
DFS.perform(LI);
for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
for (auto &I : *BB) {
auto *LI = dyn_cast<LoadInst>(&I);
auto *SI = dyn_cast<StoreInst>(&I);
if (!LI && !SI)
continue;
Value *Ptr = getPointerOperand(&I);
// We don't check wrapping here because we don't know yet if Ptr will be
// part of a full group or a group with gaps. Checking wrapping for all
// pointers (even those that end up in groups with no gaps) will be overly
// conservative. For full groups, wrapping should be ok since if we would
// wrap around the address space we would do a memory access at nullptr
// even without the transformation. The wrapping checks are therefore
// deferred until after we've formed the interleaved groups.
int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides,
/*Assume=*/true, /*ShouldCheckWrap=*/false);
const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
// An alignment of 0 means target ABI alignment.
unsigned Align = LI ? LI->getAlignment() : SI->getAlignment();
if (!Align)
Align = DL.getABITypeAlignment(PtrTy->getElementType());
AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align);
}
}
// Analyze interleaved accesses and collect them into interleaved load and
// store groups.
//
// When generating code for an interleaved load group, we effectively hoist all
// loads in the group to the location of the first load in program order. When
// generating code for an interleaved store group, we sink all stores to the
// location of the last store. This code motion can change the order of load
// and store instructions and may break dependences.
//
// The code generation strategy mentioned above ensures that we won't violate
// any write-after-read (WAR) dependences.
//
// E.g., for the WAR dependence: a = A[i]; // (1)
// A[i] = b; // (2)
//
// The store group of (2) is always inserted at or below (2), and the load
// group of (1) is always inserted at or above (1). Thus, the instructions will
// never be reordered. All other dependences are checked to ensure the
// correctness of the instruction reordering.
//
// The algorithm visits all memory accesses in the loop in bottom-up program
// order. Program order is established by traversing the blocks in the loop in
// reverse postorder when collecting the accesses.
//
// We visit the memory accesses in bottom-up order because it can simplify the
// construction of store groups in the presence of write-after-write (WAW)
// dependences.
//
// E.g., for the WAW dependence: A[i] = a; // (1)
// A[i] = b; // (2)
// A[i + 1] = c; // (3)
//
// We will first create a store group with (3) and (2). (1) can't be added to
// this group because it and (2) are dependent. However, (1) can be grouped
// with other accesses that may precede it in program order. Note that a
// bottom-up order does not imply that WAW dependences should not be checked.
void InterleavedAccessInfo::analyzeInterleaving(
const ValueToValueMap &Strides) {
DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
// Holds all accesses with a constant stride.
MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
collectConstStrideAccesses(AccessStrideInfo, Strides);
if (AccessStrideInfo.empty())
return;
// Collect the dependences in the loop.
collectDependences();
// Holds all interleaved store groups temporarily.
SmallSetVector<InterleaveGroup *, 4> StoreGroups;
// Holds all interleaved load groups temporarily.
SmallSetVector<InterleaveGroup *, 4> LoadGroups;
// Search in bottom-up program order for pairs of accesses (A and B) that can
// form interleaved load or store groups. In the algorithm below, access A
// precedes access B in program order. We initialize a group for B in the
// outer loop of the algorithm, and then in the inner loop, we attempt to
// insert each A into B's group if:
//
// 1. A and B have the same stride,
// 2. A and B have the same memory object size, and
// 3. A belongs in B's group according to its distance from B.
//
// Special care is taken to ensure group formation will not break any
// dependences.
for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
BI != E; ++BI) {
Instruction *B = BI->first;
StrideDescriptor DesB = BI->second;
// Initialize a group for B if it has an allowable stride. Even if we don't
// create a group for B, we continue with the bottom-up algorithm to ensure
// we don't break any of B's dependences.
InterleaveGroup *Group = nullptr;
if (isStrided(DesB.Stride)) {
Group = getInterleaveGroup(B);
if (!Group) {
DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n');
Group = createInterleaveGroup(B, DesB.Stride, DesB.Align);
}
if (B->mayWriteToMemory())
StoreGroups.insert(Group);
else
LoadGroups.insert(Group);
}
for (auto AI = std::next(BI); AI != E; ++AI) {
Instruction *A = AI->first;
StrideDescriptor DesA = AI->second;
// Our code motion strategy implies that we can't have dependences
// between accesses in an interleaved group and other accesses located
// between the first and last member of the group. Note that this also
// means that a group can't have more than one member at a given offset.
// The accesses in a group can have dependences with other accesses, but
// we must ensure we don't extend the boundaries of the group such that
// we encompass those dependent accesses.
//
// For example, assume we have the sequence of accesses shown below in a
// stride-2 loop:
//
// (1, 2) is a group | A[i] = a; // (1)
// | A[i-1] = b; // (2) |
// A[i-3] = c; // (3)
// A[i] = d; // (4) | (2, 4) is not a group
//
// Because accesses (2) and (3) are dependent, we can group (2) with (1)
// but not with (4). If we did, the dependent access (3) would be within
// the boundaries of the (2, 4) group.
if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
// If a dependence exists and A is already in a group, we know that A
// must be a store since A precedes B and WAR dependences are allowed.
// Thus, A would be sunk below B. We release A's group to prevent this
// illegal code motion. A will then be free to form another group with
// instructions that precede it.
if (isInterleaved(A)) {
InterleaveGroup *StoreGroup = getInterleaveGroup(A);
StoreGroups.remove(StoreGroup);
releaseGroup(StoreGroup);
}
// If a dependence exists and A is not already in a group (or it was
// and we just released it), B might be hoisted above A (if B is a
// load) or another store might be sunk below A (if B is a store). In
// either case, we can't add additional instructions to B's group. B
// will only form a group with instructions that it precedes.
break;
}
// At this point, we've checked for illegal code motion. If either A or B
// isn't strided, there's nothing left to do.
if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
continue;
// Ignore A if it's already in a group or isn't the same kind of memory
// operation as B.
if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory())
continue;
// Check rules 1 and 2. Ignore A if its stride or size is different from
// that of B.
if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
continue;
// Calculate the distance from A to B.
const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
if (!DistToB)
continue;
int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
// Check rule 3. Ignore A if its distance to B is not a multiple of the
// size.
if (DistanceToB % static_cast<int64_t>(DesB.Size))
continue;
// Ignore A if either A or B is in a predicated block. Although we
// currently prevent group formation for predicated accesses, we may be
// able to relax this limitation in the future once we handle more
// complicated blocks.
if (isPredicated(A->getParent()) || isPredicated(B->getParent()))
continue;
// The index of A is the index of B plus A's distance to B in multiples
// of the size.
int IndexA =
Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
// Try to insert A into B's group.
if (Group->insertMember(A, IndexA, DesA.Align)) {
DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
<< " into the interleave group with" << *B << '\n');
InterleaveGroupMap[A] = Group;
// Set the first load in program order as the insert position.
if (A->mayReadFromMemory())
Group->setInsertPos(A);
}
} // Iteration over A accesses.
} // Iteration over B accesses.
// Remove interleaved store groups with gaps.
for (InterleaveGroup *Group : StoreGroups)
if (Group->getNumMembers() != Group->getFactor())
releaseGroup(Group);
// Remove interleaved groups with gaps (currently only loads) whose memory
// accesses may wrap around. We have to revisit the getPtrStride analysis,
// this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
// not check wrapping (see documentation there).
// FORNOW we use Assume=false;
// TODO: Change to Assume=true but making sure we don't exceed the threshold
// of runtime SCEV assumptions checks (thereby potentially failing to
// vectorize altogether).
// Additional optional optimizations:
// TODO: If we are peeling the loop and we know that the first pointer doesn't
// wrap then we can deduce that all pointers in the group don't wrap.
// This means that we can forcefully peel the loop in order to only have to
// check the first pointer for no-wrap. When we'll change to use Assume=true
// we'll only need at most one runtime check per interleaved group.
//
for (InterleaveGroup *Group : LoadGroups) {
// Case 1: A full group. Can Skip the checks; For full groups, if the wide
// load would wrap around the address space we would do a memory access at
// nullptr even without the transformation.
if (Group->getNumMembers() == Group->getFactor())
continue;
// Case 2: If first and last members of the group don't wrap this implies
// that all the pointers in the group don't wrap.
// So we check only group member 0 (which is always guaranteed to exist),
// and group member Factor - 1; If the latter doesn't exist we rely on
// peeling (if it is a non-reveresed accsess -- see Case 3).
Value *FirstMemberPtr = getPointerOperand(Group->getMember(0));
if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false,
/*ShouldCheckWrap=*/true)) {
DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to "
"first group member potentially pointer-wrapping.\n");
releaseGroup(Group);
continue;
}
Instruction *LastMember = Group->getMember(Group->getFactor() - 1);
if (LastMember) {
Value *LastMemberPtr = getPointerOperand(LastMember);
if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false,
/*ShouldCheckWrap=*/true)) {
DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to "
"last group member potentially pointer-wrapping.\n");
releaseGroup(Group);
}
}
else {
// Case 3: A non-reversed interleaved load group with gaps: We need
// to execute at least one scalar epilogue iteration. This will ensure
// we don't speculatively access memory out-of-bounds. We only need
// to look for a member at index factor - 1, since every group must have
// a member at index zero.
if (Group->isReverse()) {
releaseGroup(Group);
continue;
}
DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
RequiresScalarEpilogue = true;
}
}
}
LoopVectorizationCostModel::VectorizationFactor
LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) {
// Width 1 means no vectorize
VectorizationFactor Factor = {1U, 0U};
if (OptForSize && Legal->getRuntimePointerChecking()->Need) {
ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize")
<< "runtime pointer checks needed. Enable vectorization of this "
"loop with '#pragma clang loop vectorize(enable)' when "
"compiling with -Os/-Oz");
DEBUG(dbgs()
<< "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n");
return Factor;
}
if (!EnableCondStoresVectorization && Legal->getNumPredStores()) {
ORE->emit(createMissedAnalysis("ConditionalStore")
<< "store that is conditionally executed prevents vectorization");
DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n");
return Factor;
}
// Find the trip count.
unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
unsigned SmallestType, WidestType;
std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
unsigned WidestRegister = TTI.getRegisterBitWidth(true);
unsigned MaxSafeDepDist = -1U;
// Get the maximum safe dependence distance in bits computed by LAA. If the
// loop contains any interleaved accesses, we divide the dependence distance
// by the maximum interleave factor of all interleaved groups. Note that
// although the division ensures correctness, this is a fairly conservative
// computation because the maximum distance computed by LAA may not involve
// any of the interleaved accesses.
if (Legal->getMaxSafeDepDistBytes() != -1U)
MaxSafeDepDist =
Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor();
WidestRegister =
((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist);
unsigned MaxVectorSize = WidestRegister / WidestType;
DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / "
<< WidestType << " bits.\n");
DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister
<< " bits.\n");
if (MaxVectorSize == 0) {
DEBUG(dbgs() << "LV: The target has no vector registers.\n");
MaxVectorSize = 1;
}
assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements"
" into one vector!");
unsigned VF = MaxVectorSize;
if (MaximizeBandwidth && !OptForSize) {
// Collect all viable vectorization factors.
SmallVector<unsigned, 8> VFs;
unsigned NewMaxVectorSize = WidestRegister / SmallestType;
for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2)
VFs.push_back(VS);
// For each VF calculate its register usage.
auto RUs = calculateRegisterUsage(VFs);
// Select the largest VF which doesn't require more registers than existing
// ones.
unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true);
for (int i = RUs.size() - 1; i >= 0; --i) {
if (RUs[i].MaxLocalUsers <= TargetNumRegisters) {
VF = VFs[i];
break;
}
}
}
// If we optimize the program for size, avoid creating the tail loop.
if (OptForSize) {
// If we are unable to calculate the trip count then don't try to vectorize.
if (TC < 2) {
ORE->emit(
createMissedAnalysis("UnknownLoopCountComplexCFG")
<< "unable to calculate the loop count due to complex control flow");
DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n");
return Factor;
}
// Find the maximum SIMD width that can fit within the trip count.
VF = TC % MaxVectorSize;
if (VF == 0)
VF = MaxVectorSize;
else {
// If the trip count that we found modulo the vectorization factor is not
// zero then we require a tail.
ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize")
<< "cannot optimize for size and vectorize at the "
"same time. Enable vectorization of this loop "
"with '#pragma clang loop vectorize(enable)' "
"when compiling with -Os/-Oz");
DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n");
return Factor;
}
}
int UserVF = Hints->getWidth();
if (UserVF != 0) {
assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
Factor.Width = UserVF;
return Factor;
}
float Cost = expectedCost(1).first;
#ifndef NDEBUG
const float ScalarCost = Cost;
#endif /* NDEBUG */
unsigned Width = 1;
DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
// Ignore scalar width, because the user explicitly wants vectorization.
if (ForceVectorization && VF > 1) {
Width = 2;
Cost = expectedCost(Width).first / (float)Width;
}
for (unsigned i = 2; i <= VF; i *= 2) {
// Notice that the vector loop needs to be executed less times, so
// we need to divide the cost of the vector loops by the width of
// the vector elements.
VectorizationCostTy C = expectedCost(i);
float VectorCost = C.first / (float)i;
DEBUG(dbgs() << "LV: Vector loop of width " << i
<< " costs: " << (int)VectorCost << ".\n");
if (!C.second && !ForceVectorization) {
DEBUG(
dbgs() << "LV: Not considering vector loop of width " << i
<< " because it will not generate any vector instructions.\n");
continue;
}
if (VectorCost < Cost) {
Cost = VectorCost;
Width = i;
}
}
DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
<< "LV: Vectorization seems to be not beneficial, "
<< "but was forced by a user.\n");
DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n");
Factor.Width = Width;
Factor.Cost = Width * Cost;
return Factor;
}
std::pair<unsigned, unsigned>
LoopVectorizationCostModel::getSmallestAndWidestTypes() {
unsigned MinWidth = -1U;
unsigned MaxWidth = 8;
const DataLayout &DL = TheFunction->getParent()->getDataLayout();
// For each block.
for (BasicBlock *BB : TheLoop->blocks()) {
// For each instruction in the loop.
for (Instruction &I : *BB) {
Type *T = I.getType();
// Skip ignored values.
if (ValuesToIgnore.count(&I))
continue;
// Only examine Loads, Stores and PHINodes.
if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
continue;
// Examine PHI nodes that are reduction variables. Update the type to
// account for the recurrence type.
if (auto *PN = dyn_cast<PHINode>(&I)) {
if (!Legal->isReductionVariable(PN))
continue;
RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN];
T = RdxDesc.getRecurrenceType();
}
// Examine the stored values.
if (auto *ST = dyn_cast<StoreInst>(&I))
T = ST->getValueOperand()->getType();
// Ignore loaded pointer types and stored pointer types that are not
// consecutive. However, we do want to take consecutive stores/loads of
// pointer vectors into account.
if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I))
continue;
MinWidth = std::min(MinWidth,
(unsigned)DL.getTypeSizeInBits(T->getScalarType()));
MaxWidth = std::max(MaxWidth,
(unsigned)DL.getTypeSizeInBits(T->getScalarType()));
}
}
return {MinWidth, MaxWidth};
}
unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize,
unsigned VF,
unsigned LoopCost) {
// -- The interleave heuristics --
// We interleave the loop in order to expose ILP and reduce the loop overhead.
// There are many micro-architectural considerations that we can't predict
// at this level. For example, frontend pressure (on decode or fetch) due to
// code size, or the number and capabilities of the execution ports.
//
// We use the following heuristics to select the interleave count:
// 1. If the code has reductions, then we interleave to break the cross
// iteration dependency.
// 2. If the loop is really small, then we interleave to reduce the loop
// overhead.
// 3. We don't interleave if we think that we will spill registers to memory
// due to the increased register pressure.
// When we optimize for size, we don't interleave.
if (OptForSize)
return 1;
// We used the distance for the interleave count.
if (Legal->getMaxSafeDepDistBytes() != -1U)
return 1;
// Do not interleave loops with a relatively small trip count.
unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
if (TC > 1 && TC < TinyTripCountInterleaveThreshold)
return 1;
unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1);
DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
<< " registers\n");
if (VF == 1) {
if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
TargetNumRegisters = ForceTargetNumScalarRegs;
} else {
if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
TargetNumRegisters = ForceTargetNumVectorRegs;
}
RegisterUsage R = calculateRegisterUsage({VF})[0];
// We divide by these constants so assume that we have at least one
// instruction that uses at least one register.
R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
R.NumInstructions = std::max(R.NumInstructions, 1U);
// We calculate the interleave count using the following formula.
// Subtract the number of loop invariants from the number of available
// registers. These registers are used by all of the interleaved instances.
// Next, divide the remaining registers by the number of registers that is
// required by the loop, in order to estimate how many parallel instances
// fit without causing spills. All of this is rounded down if necessary to be
// a power of two. We want power of two interleave count to simplify any
// addressing operations or alignment considerations.
unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) /
R.MaxLocalUsers);
// Don't count the induction variable as interleaved.
if (EnableIndVarRegisterHeur)
IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) /
std::max(1U, (R.MaxLocalUsers - 1)));
// Clamp the interleave ranges to reasonable counts.
unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
// Check if the user has overridden the max.
if (VF == 1) {
if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
} else {
if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
}
// If we did not calculate the cost for VF (because the user selected the VF)
// then we calculate the cost of VF here.
if (LoopCost == 0)
LoopCost = expectedCost(VF).first;
// Clamp the calculated IC to be between the 1 and the max interleave count
// that the target allows.
if (IC > MaxInterleaveCount)
IC = MaxInterleaveCount;
else if (IC < 1)
IC = 1;
// Interleave if we vectorized this loop and there is a reduction that could
// benefit from interleaving.
if (VF > 1 && Legal->getReductionVars()->size()) {
DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
return IC;
}
// Note that if we've already vectorized the loop we will have done the
// runtime check and so interleaving won't require further checks.
bool InterleavingRequiresRuntimePointerCheck =
(VF == 1 && Legal->getRuntimePointerChecking()->Need);
// We want to interleave small loops in order to reduce the loop overhead and
// potentially expose ILP opportunities.
DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
// We assume that the cost overhead is 1 and we use the cost model
// to estimate the cost of the loop and interleave until the cost of the
// loop overhead is about 5% of the cost of the loop.
unsigned SmallIC =
std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
// Interleave until store/load ports (estimated by max interleave count) are
// saturated.
unsigned NumStores = Legal->getNumStores();
unsigned NumLoads = Legal->getNumLoads();
unsigned StoresIC = IC / (NumStores ? NumStores : 1);
unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
// If we have a scalar reduction (vector reductions are already dealt with
// by this point), we can increase the critical path length if the loop
// we're interleaving is inside another loop. Limit, by default to 2, so the
// critical path only gets increased by one reduction operation.
if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) {
unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
SmallIC = std::min(SmallIC, F);
StoresIC = std::min(StoresIC, F);
LoadsIC = std::min(LoadsIC, F);
}
if (EnableLoadStoreRuntimeInterleave &&
std::max(StoresIC, LoadsIC) > SmallIC) {
DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n");
return std::max(StoresIC, LoadsIC);
}
DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
return SmallIC;
}
// Interleave if this is a large loop (small loops are already dealt with by
// this point) that could benefit from interleaving.
bool HasReductions = (Legal->getReductionVars()->size() > 0);
if (TTI.enableAggressiveInterleaving(HasReductions)) {
DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
return IC;
}
DEBUG(dbgs() << "LV: Not Interleaving.\n");
return 1;
}
SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) {
// This function calculates the register usage by measuring the highest number
// of values that are alive at a single location. Obviously, this is a very
// rough estimation. We scan the loop in a topological order in order and
// assign a number to each instruction. We use RPO to ensure that defs are
// met before their users. We assume that each instruction that has in-loop
// users starts an interval. We record every time that an in-loop value is
// used, so we have a list of the first and last occurrences of each
// instruction. Next, we transpose this data structure into a multi map that
// holds the list of intervals that *end* at a specific location. This multi
// map allows us to perform a linear search. We scan the instructions linearly
// and record each time that a new interval starts, by placing it in a set.
// If we find this value in the multi-map then we remove it from the set.
// The max register usage is the maximum size of the set.
// We also search for instructions that are defined outside the loop, but are
// used inside the loop. We need this number separately from the max-interval
// usage number because when we unroll, loop-invariant values do not take
// more register.
LoopBlocksDFS DFS(TheLoop);
DFS.perform(LI);
RegisterUsage RU;
RU.NumInstructions = 0;
// Each 'key' in the map opens a new interval. The values
// of the map are the index of the 'last seen' usage of the
// instruction that is the key.
typedef DenseMap<Instruction *, unsigned> IntervalMap;
// Maps instruction to its index.
DenseMap<unsigned, Instruction *> IdxToInstr;
// Marks the end of each interval.
IntervalMap EndPoint;
// Saves the list of instruction indices that are used in the loop.
SmallSet<Instruction *, 8> Ends;
// Saves the list of values that are used in the loop but are
// defined outside the loop, such as arguments and constants.
SmallPtrSet<Value *, 8> LoopInvariants;
unsigned Index = 0;
for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
RU.NumInstructions += BB->size();
for (Instruction &I : *BB) {
IdxToInstr[Index++] = &I;
// Save the end location of each USE.
for (Value *U : I.operands()) {
auto *Instr = dyn_cast<Instruction>(U);
// Ignore non-instruction values such as arguments, constants, etc.
if (!Instr)
continue;
// If this instruction is outside the loop then record it and continue.
if (!TheLoop->contains(Instr)) {
LoopInvariants.insert(Instr);
continue;
}
// Overwrite previous end points.
EndPoint[Instr] = Index;
Ends.insert(Instr);
}
}
}
// Saves the list of intervals that end with the index in 'key'.
typedef SmallVector<Instruction *, 2> InstrList;
DenseMap<unsigned, InstrList> TransposeEnds;
// Transpose the EndPoints to a list of values that end at each index.
for (auto &Interval : EndPoint)
TransposeEnds[Interval.second].push_back(Interval.first);
SmallSet<Instruction *, 8> OpenIntervals;
// Get the size of the widest register.
unsigned MaxSafeDepDist = -1U;
if (Legal->getMaxSafeDepDistBytes() != -1U)
MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
unsigned WidestRegister =
std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist);
const DataLayout &DL = TheFunction->getParent()->getDataLayout();
SmallVector<RegisterUsage, 8> RUs(VFs.size());
SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0);
DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
// A lambda that gets the register usage for the given type and VF.
auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) {
if (Ty->isTokenTy())
return 0U;
unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType());
return std::max<unsigned>(1, VF * TypeSize / WidestRegister);
};
for (unsigned int i = 0; i < Index; ++i) {
Instruction *I = IdxToInstr[i];
// Ignore instructions that are never used within the loop.
if (!Ends.count(I))
continue;
// Remove all of the instructions that end at this location.
InstrList &List = TransposeEnds[i];
for (Instruction *ToRemove : List)
OpenIntervals.erase(ToRemove);
// Skip ignored values.
if (ValuesToIgnore.count(I))
continue;
// For each VF find the maximum usage of registers.
for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
if (VFs[j] == 1) {
MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size());
continue;
}
// Count the number of live intervals.
unsigned RegUsage = 0;
for (auto Inst : OpenIntervals) {
// Skip ignored values for VF > 1.
if (VecValuesToIgnore.count(Inst))
continue;
RegUsage += GetRegUsage(Inst->getType(), VFs[j]);
}
MaxUsages[j] = std::max(MaxUsages[j], RegUsage);
}
DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
<< OpenIntervals.size() << '\n');
// Add the current instruction to the list of open intervals.
OpenIntervals.insert(I);
}
for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
unsigned Invariant = 0;
if (VFs[i] == 1)
Invariant = LoopInvariants.size();
else {
for (auto Inst : LoopInvariants)
Invariant += GetRegUsage(Inst->getType(), VFs[i]);
}
DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n');
DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n');
DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n');
DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n');
RU.LoopInvariantRegs = Invariant;
RU.MaxLocalUsers = MaxUsages[i];
RUs[i] = RU;
}
return RUs;
}
LoopVectorizationCostModel::VectorizationCostTy
LoopVectorizationCostModel::expectedCost(unsigned VF) {
VectorizationCostTy Cost;
// For each block.
for (BasicBlock *BB : TheLoop->blocks()) {
VectorizationCostTy BlockCost;
// For each instruction in the old loop.
for (Instruction &I : *BB) {
// Skip dbg intrinsics.
if (isa<DbgInfoIntrinsic>(I))
continue;
// Skip ignored values.
if (ValuesToIgnore.count(&I))
continue;
VectorizationCostTy C = getInstructionCost(&I, VF);
// Check if we should override the cost.
if (ForceTargetInstructionCost.getNumOccurrences() > 0)
C.first = ForceTargetInstructionCost;
BlockCost.first += C.first;
BlockCost.second |= C.second;
DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF "
<< VF << " For instruction: " << I << '\n');
}
// If we are vectorizing a predicated block, it will have been
// if-converted. This means that the block's instructions (aside from
// stores and instructions that may divide by zero) will now be
// unconditionally executed. For the scalar case, we may not always execute
// the predicated block. Thus, scale the block's cost by the probability of
// executing it.
if (VF == 1 && Legal->blockNeedsPredication(BB))
BlockCost.first /= getReciprocalPredBlockProb();
Cost.first += BlockCost.first;
Cost.second |= BlockCost.second;
}
return Cost;
}
/// \brief Check whether the address computation for a non-consecutive memory
/// access looks like an unlikely candidate for being merged into the indexing
/// mode.
///
/// We look for a GEP which has one index that is an induction variable and all
/// other indices are loop invariant. If the stride of this access is also
/// within a small bound we decide that this address computation can likely be
/// merged into the addressing mode.
/// In all other cases, we identify the address computation as complex.
static bool isLikelyComplexAddressComputation(Value *Ptr,
LoopVectorizationLegality *Legal,
ScalarEvolution *SE,
const Loop *TheLoop) {
auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
if (!Gep)
return true;
// We are looking for a gep with all loop invariant indices except for one
// which should be an induction variable.
unsigned NumOperands = Gep->getNumOperands();
for (unsigned i = 1; i < NumOperands; ++i) {
Value *Opd = Gep->getOperand(i);
if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
!Legal->isInductionVariable(Opd))
return true;
}
// Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step
// can likely be merged into the address computation.
unsigned MaxMergeDistance = 64;
const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr));
if (!AddRec)
return true;
// Check the step is constant.
const SCEV *Step = AddRec->getStepRecurrence(*SE);
// Calculate the pointer stride and check if it is consecutive.
const auto *C = dyn_cast<SCEVConstant>(Step);
if (!C)
return true;
const APInt &APStepVal = C->getAPInt();
// Huge step value - give up.
if (APStepVal.getBitWidth() > 64)
return true;
int64_t StepVal = APStepVal.getSExtValue();
return StepVal > MaxMergeDistance;
}
static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
return Legal->hasStride(I->getOperand(0)) ||
Legal->hasStride(I->getOperand(1));
}
LoopVectorizationCostModel::VectorizationCostTy
LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
// If we know that this instruction will remain uniform, check the cost of
// the scalar version.
if (Legal->isUniformAfterVectorization(I))
VF = 1;
Type *VectorTy;
unsigned C = getInstructionCost(I, VF, VectorTy);
bool TypeNotScalarized =
VF > 1 && !VectorTy->isVoidTy() && TTI.getNumberOfParts(VectorTy) < VF;
return VectorizationCostTy(C, TypeNotScalarized);
}
unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I,
unsigned VF,
Type *&VectorTy) {
Type *RetTy = I->getType();
if (VF > 1 && MinBWs.count(I))
RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
VectorTy = ToVectorTy(RetTy, VF);
auto SE = PSE.getSE();
// TODO: We need to estimate the cost of intrinsic calls.
switch (I->getOpcode()) {
case Instruction::GetElementPtr:
// We mark this instruction as zero-cost because the cost of GEPs in
// vectorized code depends on whether the corresponding memory instruction
// is scalarized or not. Therefore, we handle GEPs with the memory
// instruction cost.
return 0;
case Instruction::Br: {
return TTI.getCFInstrCost(I->getOpcode());
}
case Instruction::PHI: {
auto *Phi = cast<PHINode>(I);
// First-order recurrences are replaced by vector shuffles inside the loop.
if (VF > 1 && Legal->isFirstOrderRecurrence(Phi))
return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
VectorTy, VF - 1, VectorTy);
// TODO: IF-converted IFs become selects.
return 0;
}
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::URem:
case Instruction::SRem:
// If we have a predicated instruction, it may not be executed for each
// vector lane. Get the scalarization cost and scale this amount by the
// probability of executing the predicated block. If the instruction is not
// predicated, we fall through to the next case.
if (VF > 1 && Legal->isScalarWithPredication(I)) {
unsigned Cost = 0;
// These instructions have a non-void type, so account for the phi nodes
// that we will create. This cost is likely to be zero. The phi node
// cost, if any, should be scaled by the block probability because it
// models a copy at the end of each predicated block.
Cost += VF * TTI.getCFInstrCost(Instruction::PHI);
// The cost of the non-predicated instruction.
Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy);
// The cost of insertelement and extractelement instructions needed for
// scalarization.
Cost += getScalarizationOverhead(I, VF, TTI);
// Scale the cost by the probability of executing the predicated blocks.
// This assumes the predicated block for each vector lane is equally
// likely.
return Cost / getReciprocalPredBlockProb();
}
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
// Since we will replace the stride by 1 the multiplication should go away.
if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
return 0;
// Certain instructions can be cheaper to vectorize if they have a constant
// second vector operand. One example of this are shifts on x86.
TargetTransformInfo::OperandValueKind Op1VK =
TargetTransformInfo::OK_AnyValue;
TargetTransformInfo::OperandValueKind Op2VK =
TargetTransformInfo::OK_AnyValue;
TargetTransformInfo::OperandValueProperties Op1VP =
TargetTransformInfo::OP_None;
TargetTransformInfo::OperandValueProperties Op2VP =
TargetTransformInfo::OP_None;
Value *Op2 = I->getOperand(1);
// Check for a splat or for a non uniform vector of constants.
if (isa<ConstantInt>(Op2)) {
ConstantInt *CInt = cast<ConstantInt>(Op2);
if (CInt && CInt->getValue().isPowerOf2())
Op2VP = TargetTransformInfo::OP_PowerOf2;
Op2VK = TargetTransformInfo::OK_UniformConstantValue;
} else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) {
Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
Constant *SplatValue = cast<Constant>(Op2)->getSplatValue();
if (SplatValue) {
ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue);
if (CInt && CInt->getValue().isPowerOf2())
Op2VP = TargetTransformInfo::OP_PowerOf2;
Op2VK = TargetTransformInfo::OK_UniformConstantValue;
}
} else if (Legal->isUniform(Op2)) {
Op2VK = TargetTransformInfo::OK_UniformValue;
}
return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK,
Op1VP, Op2VP);
}
case Instruction::Select: {
SelectInst *SI = cast<SelectInst>(I);
const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
Type *CondTy = SI->getCondition()->getType();
if (!ScalarCond)
CondTy = VectorType::get(CondTy, VF);
return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
}
case Instruction::ICmp:
case Instruction::FCmp: {
Type *ValTy = I->getOperand(0)->getType();
Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
auto It = MinBWs.find(Op0AsInstruction);
if (VF > 1 && It != MinBWs.end())
ValTy = IntegerType::get(ValTy->getContext(), It->second);
VectorTy = ToVectorTy(ValTy, VF);
return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
}
case Instruction::Store:
case Instruction::Load: {
StoreInst *SI = dyn_cast<StoreInst>(I);
LoadInst *LI = dyn_cast<LoadInst>(I);
Type *ValTy = (SI ? SI->getValueOperand()->getType() : LI->getType());
VectorTy = ToVectorTy(ValTy, VF);
unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
unsigned AS =
SI ? SI->getPointerAddressSpace() : LI->getPointerAddressSpace();
Value *Ptr = getPointerOperand(I);
// We add the cost of address computation here instead of with the gep
// instruction because only here we know whether the operation is
// scalarized.
if (VF == 1)
return TTI.getAddressComputationCost(VectorTy) +
TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
if (LI && Legal->isUniform(Ptr)) {
// Scalar load + broadcast
unsigned Cost = TTI.getAddressComputationCost(ValTy->getScalarType());
Cost += TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
Alignment, AS);
return Cost +
TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, ValTy);
}
// For an interleaved access, calculate the total cost of the whole
// interleave group.
if (Legal->isAccessInterleaved(I)) {
auto Group = Legal->getInterleavedAccessGroup(I);
assert(Group && "Fail to get an interleaved access group.");
// Only calculate the cost once at the insert position.
if (Group->getInsertPos() != I)
return 0;
unsigned InterleaveFactor = Group->getFactor();
Type *WideVecTy =
VectorType::get(VectorTy->getVectorElementType(),
VectorTy->getVectorNumElements() * InterleaveFactor);
// Holds the indices of existing members in an interleaved load group.
// An interleaved store group doesn't need this as it doesn't allow gaps.
SmallVector<unsigned, 4> Indices;
if (LI) {
for (unsigned i = 0; i < InterleaveFactor; i++)
if (Group->getMember(i))
Indices.push_back(i);
}
// Calculate the cost of the whole interleaved group.
unsigned Cost = TTI.getInterleavedMemoryOpCost(
I->getOpcode(), WideVecTy, Group->getFactor(), Indices,
Group->getAlignment(), AS);
if (Group->isReverse())
Cost +=
Group->getNumMembers() *
TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
// FIXME: The interleaved load group with a huge gap could be even more
// expensive than scalar operations. Then we could ignore such group and
// use scalar operations instead.
return Cost;
}
// Check if the memory instruction will be scalarized.
if (Legal->memoryInstructionMustBeScalarized(I, VF)) {
unsigned Cost = 0;
Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
// True if the memory instruction's address computation is complex.
bool IsComplexComputation =
isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop);
// Get the cost of the scalar memory instruction and address computation.
Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation);
Cost += VF *
TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
Alignment, AS);
// Get the overhead of the extractelement and insertelement instructions
// we might create due to scalarization.
Cost += getScalarizationOverhead(I, VF, TTI);
// If we have a predicated store, it may not be executed for each vector
// lane. Scale the cost by the probability of executing the predicated
// block.
if (Legal->isScalarWithPredication(I))
Cost /= getReciprocalPredBlockProb();
return Cost;
}
// Determine if the pointer operand of the access is either consecutive or
// reverse consecutive.
int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
bool Reverse = ConsecutiveStride < 0;
// Determine if either a gather or scatter operation is legal.
bool UseGatherOrScatter =
!ConsecutiveStride && Legal->isLegalGatherOrScatter(I);
unsigned Cost = TTI.getAddressComputationCost(VectorTy);
if (UseGatherOrScatter) {
assert(ConsecutiveStride == 0 &&
"Gather/Scatter are not used for consecutive stride");
return Cost +
TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr,
Legal->isMaskRequired(I), Alignment);
}
// Wide load/stores.
if (Legal->isMaskRequired(I))
Cost +=
TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
else
Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
if (Reverse)
Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
return Cost;
}
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::FPExt:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::SIToFP:
case Instruction::UIToFP:
case Instruction::Trunc:
case Instruction::FPTrunc:
case Instruction::BitCast: {
// We optimize the truncation of induction variable.
// The cost of these is the same as the scalar operation.
if (I->getOpcode() == Instruction::Trunc &&
Legal->isInductionVariable(I->getOperand(0)))
return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
I->getOperand(0)->getType());
Type *SrcScalarTy = I->getOperand(0)->getType();
Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF);
if (VF > 1 && MinBWs.count(I)) {
// This cast is going to be shrunk. This may remove the cast or it might
// turn it into slightly different cast. For example, if MinBW == 16,
// "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
//
// Calculate the modified src and dest types.
Type *MinVecTy = VectorTy;
if (I->getOpcode() == Instruction::Trunc) {
SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
VectorTy =
largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
} else if (I->getOpcode() == Instruction::ZExt ||
I->getOpcode() == Instruction::SExt) {
SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
VectorTy =
smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
}
}
return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
}
case Instruction::Call: {
bool NeedToScalarize;
CallInst *CI = cast<CallInst>(I);
unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize);
if (getVectorIntrinsicIDForCall(CI, TLI))
return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI));
return CallCost;
}
default:
// The cost of executing VF copies of the scalar instruction. This opcode
// is unknown. Assume that it is the same as 'mul'.
return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) +
getScalarizationOverhead(I, VF, TTI);
} // end of switch.
}
char LoopVectorize::ID = 0;
static const char lv_name[] = "Loop Vectorization";
INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
namespace llvm {
Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) {
return new LoopVectorize(NoUnrolling, AlwaysVectorize);
}
}
bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
// Check if the pointer operand of a load or store instruction is
// consecutive.
if (auto *Ptr = getPointerOperand(Inst))
return Legal->isConsecutivePtr(Ptr);
return false;
}
void LoopVectorizationCostModel::collectValuesToIgnore() {
// Ignore ephemeral values.
CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
// Ignore type-promoting instructions we identified during reduction
// detection.
for (auto &Reduction : *Legal->getReductionVars()) {
RecurrenceDescriptor &RedDes = Reduction.second;
SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
VecValuesToIgnore.insert(Casts.begin(), Casts.end());
}
// Insert values known to be scalar into VecValuesToIgnore.
for (auto *BB : TheLoop->getBlocks())
for (auto &I : *BB)
if (Legal->isScalarAfterVectorization(&I))
VecValuesToIgnore.insert(&I);
}
void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr,
bool IfPredicateInstr) {
assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
// Holds vector parameters or scalars, in case of uniform vals.
SmallVector<VectorParts, 4> Params;
setDebugLocFromInst(Builder, Instr);
// Does this instruction return a value ?
bool IsVoidRetTy = Instr->getType()->isVoidTy();
// Initialize a new scalar map entry.
ScalarParts Entry(UF);
VectorParts Cond;
if (IfPredicateInstr)
Cond = createBlockInMask(Instr->getParent());
// For each vector unroll 'part':
for (unsigned Part = 0; Part < UF; ++Part) {
Entry[Part].resize(1);
// For each scalar that we create:
// Start an "if (pred) a[i] = ..." block.
Value *Cmp = nullptr;
if (IfPredicateInstr) {
if (Cond[Part]->getType()->isVectorTy())
Cond[Part] =
Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0));
Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part],
ConstantInt::get(Cond[Part]->getType(), 1));
}
Instruction *Cloned = Instr->clone();
if (!IsVoidRetTy)
Cloned->setName(Instr->getName() + ".cloned");
// Replace the operands of the cloned instructions with their scalar
// equivalents in the new loop.
for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
auto *NewOp = getScalarValue(Instr->getOperand(op), Part, 0);
Cloned->setOperand(op, NewOp);
}
// Place the cloned scalar in the new loop.
Builder.Insert(Cloned);
// Add the cloned scalar to the scalar map entry.
Entry[Part][0] = Cloned;
// If we just cloned a new assumption, add it the assumption cache.
if (auto *II = dyn_cast<IntrinsicInst>(Cloned))
if (II->getIntrinsicID() == Intrinsic::assume)
AC->registerAssumption(II);
// End if-block.
if (IfPredicateInstr)
PredicatedInstructions.push_back(std::make_pair(Cloned, Cmp));
}
VectorLoopValueMap.initScalar(Instr, Entry);
}
void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) {
auto *SI = dyn_cast<StoreInst>(Instr);
bool IfPredicateInstr = (SI && Legal->blockNeedsPredication(SI->getParent()));
return scalarizeInstruction(Instr, IfPredicateInstr);
}
Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
Instruction::BinaryOps BinOp) {
// When unrolling and the VF is 1, we only need to add a simple scalar.
Type *Ty = Val->getType();
assert(!Ty->isVectorTy() && "Val must be a scalar");
if (Ty->isFloatingPointTy()) {
Constant *C = ConstantFP::get(Ty, (double)StartIdx);
// Floating point operations had to be 'fast' to enable the unrolling.
Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step));
return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp));
}
Constant *C = ConstantInt::get(Ty, StartIdx);
return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
}
static void AddRuntimeUnrollDisableMetaData(Loop *L) {
SmallVector<Metadata *, 4> MDs;
// Reserve first location for self reference to the LoopID metadata node.
MDs.push_back(nullptr);
bool IsUnrollMetadata = false;
MDNode *LoopID = L->getLoopID();
if (LoopID) {
// First find existing loop unrolling disable metadata.
for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
if (MD) {
const auto *S = dyn_cast<MDString>(MD->getOperand(0));
IsUnrollMetadata =
S && S->getString().startswith("llvm.loop.unroll.disable");
}
MDs.push_back(LoopID->getOperand(i));
}
}
if (!IsUnrollMetadata) {
// Add runtime unroll disable metadata.
LLVMContext &Context = L->getHeader()->getContext();
SmallVector<Metadata *, 1> DisableOperands;
DisableOperands.push_back(
MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
MDNode *DisableNode = MDNode::get(Context, DisableOperands);
MDs.push_back(DisableNode);
MDNode *NewLoopID = MDNode::get(Context, MDs);
// Set operand 0 to refer to the loop id itself.
NewLoopID->replaceOperandWith(0, NewLoopID);
L->setLoopID(NewLoopID);
}
}
bool LoopVectorizePass::processLoop(Loop *L) {
assert(L->empty() && "Only process inner loops.");
#ifndef NDEBUG
const std::string DebugLocStr = getDebugLocString(L);
#endif /* NDEBUG */
DEBUG(dbgs() << "\nLV: Checking a loop in \""
<< L->getHeader()->getParent()->getName() << "\" from "
<< DebugLocStr << "\n");
LoopVectorizeHints Hints(L, DisableUnrolling, *ORE);
DEBUG(dbgs() << "LV: Loop hints:"
<< " force="
<< (Hints.getForce() == LoopVectorizeHints::FK_Disabled
? "disabled"
: (Hints.getForce() == LoopVectorizeHints::FK_Enabled
? "enabled"
: "?"))
<< " width=" << Hints.getWidth()
<< " unroll=" << Hints.getInterleave() << "\n");
// Function containing loop
Function *F = L->getHeader()->getParent();
// Looking at the diagnostic output is the only way to determine if a loop
// was vectorized (other than looking at the IR or machine code), so it
// is important to generate an optimization remark for each loop. Most of
// these messages are generated as OptimizationRemarkAnalysis. Remarks
// generated as OptimizationRemark and OptimizationRemarkMissed are
// less verbose reporting vectorized loops and unvectorized loops that may
// benefit from vectorization, respectively.
if (!Hints.allowVectorization(F, L, AlwaysVectorize)) {
DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
return false;
}
// Check the loop for a trip count threshold:
// do not vectorize loops with a tiny trip count.
const unsigned TC = SE->getSmallConstantTripCount(L);
if (TC > 0u && TC < TinyTripCountVectorThreshold) {
DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
<< "This loop is not worth vectorizing.");
if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
else {
DEBUG(dbgs() << "\n");
ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(),
"NotBeneficial", L)
<< "vectorization is not beneficial "
"and is not explicitly forced");
return false;
}
}
PredicatedScalarEvolution PSE(*SE, *L);
// Check if it is legal to vectorize the loop.
LoopVectorizationRequirements Requirements(*ORE);
LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE,
&Requirements, &Hints);
if (!LVL.canVectorize()) {
DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
emitMissedWarning(F, L, Hints, ORE);
return false;
}
// Use the cost model.
LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F,
&Hints);
CM.collectValuesToIgnore();
// Check the function attributes to find out if this function should be
// optimized for size.
bool OptForSize =
Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize();
// Compute the weighted frequency of this loop being executed and see if it
// is less than 20% of the function entry baseline frequency. Note that we
// always have a canonical loop here because we think we *can* vectorize.
// FIXME: This is hidden behind a flag due to pervasive problems with
// exactly what block frequency models.
if (LoopVectorizeWithBlockFrequency) {
BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader());
if (Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
LoopEntryFreq < ColdEntryFreq)
OptForSize = true;
}
// Check the function attributes to see if implicit floats are allowed.
// FIXME: This check doesn't seem possibly correct -- what if the loop is
// an integer loop and the vector instructions selected are purely integer
// vector instructions?
if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
"attribute is used.\n");
ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(),
"NoImplicitFloat", L)
<< "loop not vectorized due to NoImplicitFloat attribute");
emitMissedWarning(F, L, Hints, ORE);
return false;
}
// Check if the target supports potentially unsafe FP vectorization.
// FIXME: Add a check for the type of safety issue (denormal, signaling)
// for the target we're vectorizing for, to make sure none of the
// additional fp-math flags can help.
if (Hints.isPotentiallyUnsafe() &&
TTI->isFPVectorizationPotentiallyUnsafe()) {
DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n");
ORE->emit(
createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L)
<< "loop not vectorized due to unsafe FP support.");
emitMissedWarning(F, L, Hints, ORE);
return false;
}
// Select the optimal vectorization factor.
const LoopVectorizationCostModel::VectorizationFactor VF =
CM.selectVectorizationFactor(OptForSize);
// Select the interleave count.
unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost);
// Get user interleave count.
unsigned UserIC = Hints.getInterleave();
// Identify the diagnostic messages that should be produced.
std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
bool VectorizeLoop = true, InterleaveLoop = true;
if (Requirements.doesNotMeet(F, L, Hints)) {
DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
"requirements.\n");
emitMissedWarning(F, L, Hints, ORE);
return false;
}
if (VF.Width == 1) {
DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
VecDiagMsg = std::make_pair(
"VectorizationNotBeneficial",
"the cost-model indicates that vectorization is not beneficial");
VectorizeLoop = false;
}
if (IC == 1 && UserIC <= 1) {
// Tell the user interleaving is not beneficial.
DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
IntDiagMsg = std::make_pair(
"InterleavingNotBeneficial",
"the cost-model indicates that interleaving is not beneficial");
InterleaveLoop = false;
if (UserIC == 1) {
IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
IntDiagMsg.second +=
" and is explicitly disabled or interleave count is set to 1";
}
} else if (IC > 1 && UserIC == 1) {
// Tell the user interleaving is beneficial, but it explicitly disabled.
DEBUG(dbgs()
<< "LV: Interleaving is beneficial but is explicitly disabled.");
IntDiagMsg = std::make_pair(
"InterleavingBeneficialButDisabled",
"the cost-model indicates that interleaving is beneficial "
"but is explicitly disabled or interleave count is set to 1");
InterleaveLoop = false;
}
// Override IC if user provided an interleave count.
IC = UserIC > 0 ? UserIC : IC;
// Emit diagnostic messages, if any.
const char *VAPassName = Hints.vectorizeAnalysisPassName();
if (!VectorizeLoop && !InterleaveLoop) {
// Do not vectorize or interleaving the loop.
ORE->emit(OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
L->getStartLoc(), L->getHeader())
<< VecDiagMsg.second);
ORE->emit(OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
L->getStartLoc(), L->getHeader())
<< IntDiagMsg.second);
return false;
} else if (!VectorizeLoop && InterleaveLoop) {
DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
ORE->emit(OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
L->getStartLoc(), L->getHeader())
<< VecDiagMsg.second);
} else if (VectorizeLoop && !InterleaveLoop) {
DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
<< DebugLocStr << '\n');
ORE->emit(OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
L->getStartLoc(), L->getHeader())
<< IntDiagMsg.second);
} else if (VectorizeLoop && InterleaveLoop) {
DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
<< DebugLocStr << '\n');
DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
}
using namespace ore;
if (!VectorizeLoop) {
assert(IC > 1 && "interleave count should not be 1 or 0");
// If we decided that it is not legal to vectorize the loop, then
// interleave it.
InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
&CM);
Unroller.vectorize();
ORE->emit(OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
L->getHeader())
<< "interleaved loop (interleaved count: "
<< NV("InterleaveCount", IC) << ")");
} else {
// If we decided that it is *legal* to vectorize the loop, then do it.
InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
&LVL, &CM);
LB.vectorize();
++LoopsVectorized;
// Add metadata to disable runtime unrolling a scalar loop when there are
// no runtime checks about strides and memory. A scalar loop that is
// rarely used is not worth unrolling.
if (!LB.areSafetyChecksAdded())
AddRuntimeUnrollDisableMetaData(L);
// Report the vectorization decision.
ORE->emit(OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
L->getHeader())
<< "vectorized loop (vectorization width: "
<< NV("VectorizationFactor", VF.Width)
<< ", interleaved count: " << NV("InterleaveCount", IC) << ")");
}
// Mark the loop as already vectorized to avoid vectorizing again.
Hints.setAlreadyVectorized();
DEBUG(verifyFunction(*L->getHeader()->getParent()));
return true;
}
bool LoopVectorizePass::runImpl(
Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_,
std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
OptimizationRemarkEmitter &ORE_) {
SE = &SE_;
LI = &LI_;
TTI = &TTI_;
DT = &DT_;
BFI = &BFI_;
TLI = TLI_;
AA = &AA_;
AC = &AC_;
GetLAA = &GetLAA_;
DB = &DB_;
ORE = &ORE_;
// Compute some weights outside of the loop over the loops. Compute this
// using a BranchProbability to re-use its scaling math.
const BranchProbability ColdProb(1, 5); // 20%
ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb;
// Don't attempt if
// 1. the target claims to have no vector registers, and
// 2. interleaving won't help ILP.
//
// The second condition is necessary because, even if the target has no
// vector registers, loop vectorization may still enable scalar
// interleaving.
if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2)
return false;
// Build up a worklist of inner-loops to vectorize. This is necessary as
// the act of vectorizing or partially unrolling a loop creates new loops
// and can invalidate iterators across the loops.
SmallVector<Loop *, 8> Worklist;
for (Loop *L : *LI)
addAcyclicInnerLoop(*L, Worklist);
LoopsAnalyzed += Worklist.size();
// Now walk the identified inner loops.
bool Changed = false;
while (!Worklist.empty())
Changed |= processLoop(Worklist.pop_back_val());
// Process each loop nest in the function.
return Changed;
}
PreservedAnalyses LoopVectorizePass::run(Function &F,
FunctionAnalysisManager &AM) {
auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
auto &LI = AM.getResult<LoopAnalysis>(F);
auto &TTI = AM.getResult<TargetIRAnalysis>(F);
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
auto &AA = AM.getResult<AAManager>(F);
auto &AC = AM.getResult<AssumptionAnalysis>(F);
auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
std::function<const LoopAccessInfo &(Loop &)> GetLAA =
[&](Loop &L) -> const LoopAccessInfo & {
return LAM.getResult<LoopAccessAnalysis>(L);
};
bool Changed =
runImpl(F, SE, LI, TTI, DT, BFI, TLI, DB, AA, AC, GetLAA, ORE);
if (!Changed)
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserve<LoopAnalysis>();
PA.preserve<DominatorTreeAnalysis>();
PA.preserve<BasicAA>();
PA.preserve<GlobalsAA>();
return PA;
}