llvm-project/lldb/source/Utility/DataExtractor.cpp

1121 lines
38 KiB
C++

//===-- DataExtractor.cpp ---------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Utility/DataExtractor.h"
#include "lldb/lldb-defines.h"
#include "lldb/lldb-enumerations.h"
#include "lldb/lldb-forward.h"
#include "lldb/lldb-types.h"
#include "lldb/Utility/DataBuffer.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/Endian.h"
#include "lldb/Utility/LLDBAssert.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/Stream.h"
#include "lldb/Utility/StreamString.h"
#include "lldb/Utility/UUID.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <array>
#include <cassert>
#include <cstdint>
#include <string>
#include <ctype.h>
#include <inttypes.h>
#include <string.h>
using namespace lldb;
using namespace lldb_private;
static inline uint16_t ReadInt16(const unsigned char *ptr, offset_t offset) {
uint16_t value;
memcpy(&value, ptr + offset, 2);
return value;
}
static inline uint32_t ReadInt32(const unsigned char *ptr,
offset_t offset = 0) {
uint32_t value;
memcpy(&value, ptr + offset, 4);
return value;
}
static inline uint64_t ReadInt64(const unsigned char *ptr,
offset_t offset = 0) {
uint64_t value;
memcpy(&value, ptr + offset, 8);
return value;
}
static inline uint16_t ReadInt16(const void *ptr) {
uint16_t value;
memcpy(&value, ptr, 2);
return value;
}
static inline uint16_t ReadSwapInt16(const unsigned char *ptr,
offset_t offset) {
uint16_t value;
memcpy(&value, ptr + offset, 2);
return llvm::ByteSwap_16(value);
}
static inline uint32_t ReadSwapInt32(const unsigned char *ptr,
offset_t offset) {
uint32_t value;
memcpy(&value, ptr + offset, 4);
return llvm::ByteSwap_32(value);
}
static inline uint64_t ReadSwapInt64(const unsigned char *ptr,
offset_t offset) {
uint64_t value;
memcpy(&value, ptr + offset, 8);
return llvm::ByteSwap_64(value);
}
static inline uint16_t ReadSwapInt16(const void *ptr) {
uint16_t value;
memcpy(&value, ptr, 2);
return llvm::ByteSwap_16(value);
}
static inline uint32_t ReadSwapInt32(const void *ptr) {
uint32_t value;
memcpy(&value, ptr, 4);
return llvm::ByteSwap_32(value);
}
static inline uint64_t ReadSwapInt64(const void *ptr) {
uint64_t value;
memcpy(&value, ptr, 8);
return llvm::ByteSwap_64(value);
}
static inline uint64_t ReadMaxInt64(const uint8_t *data, size_t byte_size,
ByteOrder byte_order) {
uint64_t res = 0;
if (byte_order == eByteOrderBig)
for (size_t i = 0; i < byte_size; ++i)
res = (res << 8) | data[i];
else {
assert(byte_order == eByteOrderLittle);
for (size_t i = 0; i < byte_size; ++i)
res = (res << 8) | data[byte_size - 1 - i];
}
return res;
}
DataExtractor::DataExtractor()
: m_start(nullptr), m_end(nullptr),
m_byte_order(endian::InlHostByteOrder()), m_addr_size(sizeof(void *)),
m_data_sp(), m_target_byte_size(1) {}
// This constructor allows us to use data that is owned by someone else. The
// data must stay around as long as this object is valid.
DataExtractor::DataExtractor(const void *data, offset_t length,
ByteOrder endian, uint32_t addr_size,
uint32_t target_byte_size /*=1*/)
: m_start(const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(data))),
m_end(const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(data)) +
length),
m_byte_order(endian), m_addr_size(addr_size), m_data_sp(),
m_target_byte_size(target_byte_size) {
assert(addr_size == 4 || addr_size == 8);
}
// Make a shared pointer reference to the shared data in "data_sp" and set the
// endian swapping setting to "swap", and the address size to "addr_size". The
// shared data reference will ensure the data lives as long as any
// DataExtractor objects exist that have a reference to this data.
DataExtractor::DataExtractor(const DataBufferSP &data_sp, ByteOrder endian,
uint32_t addr_size,
uint32_t target_byte_size /*=1*/)
: m_start(nullptr), m_end(nullptr), m_byte_order(endian),
m_addr_size(addr_size), m_data_sp(),
m_target_byte_size(target_byte_size) {
assert(addr_size == 4 || addr_size == 8);
SetData(data_sp);
}
// Initialize this object with a subset of the data bytes in "data". If "data"
// contains shared data, then a reference to this shared data will added and
// the shared data will stay around as long as any object contains a reference
// to that data. The endian swap and address size settings are copied from
// "data".
DataExtractor::DataExtractor(const DataExtractor &data, offset_t offset,
offset_t length, uint32_t target_byte_size /*=1*/)
: m_start(nullptr), m_end(nullptr), m_byte_order(data.m_byte_order),
m_addr_size(data.m_addr_size), m_data_sp(),
m_target_byte_size(target_byte_size) {
assert(m_addr_size == 4 || m_addr_size == 8);
if (data.ValidOffset(offset)) {
offset_t bytes_available = data.GetByteSize() - offset;
if (length > bytes_available)
length = bytes_available;
SetData(data, offset, length);
}
}
DataExtractor::DataExtractor(const DataExtractor &rhs)
: m_start(rhs.m_start), m_end(rhs.m_end), m_byte_order(rhs.m_byte_order),
m_addr_size(rhs.m_addr_size), m_data_sp(rhs.m_data_sp),
m_target_byte_size(rhs.m_target_byte_size) {
assert(m_addr_size == 4 || m_addr_size == 8);
}
// Assignment operator
const DataExtractor &DataExtractor::operator=(const DataExtractor &rhs) {
if (this != &rhs) {
m_start = rhs.m_start;
m_end = rhs.m_end;
m_byte_order = rhs.m_byte_order;
m_addr_size = rhs.m_addr_size;
m_data_sp = rhs.m_data_sp;
}
return *this;
}
DataExtractor::~DataExtractor() = default;
// Clears the object contents back to a default invalid state, and release any
// references to shared data that this object may contain.
void DataExtractor::Clear() {
m_start = nullptr;
m_end = nullptr;
m_byte_order = endian::InlHostByteOrder();
m_addr_size = sizeof(void *);
m_data_sp.reset();
}
// If this object contains shared data, this function returns the offset into
// that shared data. Else zero is returned.
size_t DataExtractor::GetSharedDataOffset() const {
if (m_start != nullptr) {
const DataBuffer *data = m_data_sp.get();
if (data != nullptr) {
const uint8_t *data_bytes = data->GetBytes();
if (data_bytes != nullptr) {
assert(m_start >= data_bytes);
return m_start - data_bytes;
}
}
}
return 0;
}
// Set the data with which this object will extract from to data starting at
// BYTES and set the length of the data to LENGTH bytes long. The data is
// externally owned must be around at least as long as this object points to
// the data. No copy of the data is made, this object just refers to this data
// and can extract from it. If this object refers to any shared data upon
// entry, the reference to that data will be released. Is SWAP is set to true,
// any data extracted will be endian swapped.
lldb::offset_t DataExtractor::SetData(const void *bytes, offset_t length,
ByteOrder endian) {
m_byte_order = endian;
m_data_sp.reset();
if (bytes == nullptr || length == 0) {
m_start = nullptr;
m_end = nullptr;
} else {
m_start = const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(bytes));
m_end = m_start + length;
}
return GetByteSize();
}
// Assign the data for this object to be a subrange in "data" starting
// "data_offset" bytes into "data" and ending "data_length" bytes later. If
// "data_offset" is not a valid offset into "data", then this object will
// contain no bytes. If "data_offset" is within "data" yet "data_length" is too
// large, the length will be capped at the number of bytes remaining in "data".
// If "data" contains a shared pointer to other data, then a ref counted
// pointer to that data will be made in this object. If "data" doesn't contain
// a shared pointer to data, then the bytes referred to in "data" will need to
// exist at least as long as this object refers to those bytes. The address
// size and endian swap settings are copied from the current values in "data".
lldb::offset_t DataExtractor::SetData(const DataExtractor &data,
offset_t data_offset,
offset_t data_length) {
m_addr_size = data.m_addr_size;
assert(m_addr_size == 4 || m_addr_size == 8);
// If "data" contains shared pointer to data, then we can use that
if (data.m_data_sp) {
m_byte_order = data.m_byte_order;
return SetData(data.m_data_sp, data.GetSharedDataOffset() + data_offset,
data_length);
}
// We have a DataExtractor object that just has a pointer to bytes
if (data.ValidOffset(data_offset)) {
if (data_length > data.GetByteSize() - data_offset)
data_length = data.GetByteSize() - data_offset;
return SetData(data.GetDataStart() + data_offset, data_length,
data.GetByteOrder());
}
return 0;
}
// Assign the data for this object to be a subrange of the shared data in
// "data_sp" starting "data_offset" bytes into "data_sp" and ending
// "data_length" bytes later. If "data_offset" is not a valid offset into
// "data_sp", then this object will contain no bytes. If "data_offset" is
// within "data_sp" yet "data_length" is too large, the length will be capped
// at the number of bytes remaining in "data_sp". A ref counted pointer to the
// data in "data_sp" will be made in this object IF the number of bytes this
// object refers to in greater than zero (if at least one byte was available
// starting at "data_offset") to ensure the data stays around as long as it is
// needed. The address size and endian swap settings will remain unchanged from
// their current settings.
lldb::offset_t DataExtractor::SetData(const DataBufferSP &data_sp,
offset_t data_offset,
offset_t data_length) {
m_start = m_end = nullptr;
if (data_length > 0) {
m_data_sp = data_sp;
if (data_sp) {
const size_t data_size = data_sp->GetByteSize();
if (data_offset < data_size) {
m_start = data_sp->GetBytes() + data_offset;
const size_t bytes_left = data_size - data_offset;
// Cap the length of we asked for too many
if (data_length <= bytes_left)
m_end = m_start + data_length; // We got all the bytes we wanted
else
m_end = m_start + bytes_left; // Not all the bytes requested were
// available in the shared data
}
}
}
size_t new_size = GetByteSize();
// Don't hold a shared pointer to the data buffer if we don't share any valid
// bytes in the shared buffer.
if (new_size == 0)
m_data_sp.reset();
return new_size;
}
// Extract a single unsigned char from the binary data and update the offset
// pointed to by "offset_ptr".
//
// RETURNS the byte that was extracted, or zero on failure.
uint8_t DataExtractor::GetU8(offset_t *offset_ptr) const {
const uint8_t *data = static_cast<const uint8_t *>(GetData(offset_ptr, 1));
if (data)
return *data;
return 0;
}
// Extract "count" unsigned chars from the binary data and update the offset
// pointed to by "offset_ptr". The extracted data is copied into "dst".
//
// RETURNS the non-nullptr buffer pointer upon successful extraction of
// all the requested bytes, or nullptr when the data is not available in the
// buffer due to being out of bounds, or insufficient data.
void *DataExtractor::GetU8(offset_t *offset_ptr, void *dst,
uint32_t count) const {
const uint8_t *data =
static_cast<const uint8_t *>(GetData(offset_ptr, count));
if (data) {
// Copy the data into the buffer
memcpy(dst, data, count);
// Return a non-nullptr pointer to the converted data as an indicator of
// success
return dst;
}
return nullptr;
}
// Extract a single uint16_t from the data and update the offset pointed to by
// "offset_ptr".
//
// RETURNS the uint16_t that was extracted, or zero on failure.
uint16_t DataExtractor::GetU16(offset_t *offset_ptr) const {
uint16_t val = 0;
const uint8_t *data =
static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
if (data) {
if (m_byte_order != endian::InlHostByteOrder())
val = ReadSwapInt16(data);
else
val = ReadInt16(data);
}
return val;
}
uint16_t DataExtractor::GetU16_unchecked(offset_t *offset_ptr) const {
uint16_t val;
if (m_byte_order == endian::InlHostByteOrder())
val = ReadInt16(m_start, *offset_ptr);
else
val = ReadSwapInt16(m_start, *offset_ptr);
*offset_ptr += sizeof(val);
return val;
}
uint32_t DataExtractor::GetU32_unchecked(offset_t *offset_ptr) const {
uint32_t val;
if (m_byte_order == endian::InlHostByteOrder())
val = ReadInt32(m_start, *offset_ptr);
else
val = ReadSwapInt32(m_start, *offset_ptr);
*offset_ptr += sizeof(val);
return val;
}
uint64_t DataExtractor::GetU64_unchecked(offset_t *offset_ptr) const {
uint64_t val;
if (m_byte_order == endian::InlHostByteOrder())
val = ReadInt64(m_start, *offset_ptr);
else
val = ReadSwapInt64(m_start, *offset_ptr);
*offset_ptr += sizeof(val);
return val;
}
// Extract "count" uint16_t values from the binary data and update the offset
// pointed to by "offset_ptr". The extracted data is copied into "dst".
//
// RETURNS the non-nullptr buffer pointer upon successful extraction of
// all the requested bytes, or nullptr when the data is not available in the
// buffer due to being out of bounds, or insufficient data.
void *DataExtractor::GetU16(offset_t *offset_ptr, void *void_dst,
uint32_t count) const {
const size_t src_size = sizeof(uint16_t) * count;
const uint16_t *src =
static_cast<const uint16_t *>(GetData(offset_ptr, src_size));
if (src) {
if (m_byte_order != endian::InlHostByteOrder()) {
uint16_t *dst_pos = static_cast<uint16_t *>(void_dst);
uint16_t *dst_end = dst_pos + count;
const uint16_t *src_pos = src;
while (dst_pos < dst_end) {
*dst_pos = ReadSwapInt16(src_pos);
++dst_pos;
++src_pos;
}
} else {
memcpy(void_dst, src, src_size);
}
// Return a non-nullptr pointer to the converted data as an indicator of
// success
return void_dst;
}
return nullptr;
}
// Extract a single uint32_t from the data and update the offset pointed to by
// "offset_ptr".
//
// RETURNS the uint32_t that was extracted, or zero on failure.
uint32_t DataExtractor::GetU32(offset_t *offset_ptr) const {
uint32_t val = 0;
const uint8_t *data =
static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
if (data) {
if (m_byte_order != endian::InlHostByteOrder()) {
val = ReadSwapInt32(data);
} else {
memcpy(&val, data, 4);
}
}
return val;
}
// Extract "count" uint32_t values from the binary data and update the offset
// pointed to by "offset_ptr". The extracted data is copied into "dst".
//
// RETURNS the non-nullptr buffer pointer upon successful extraction of
// all the requested bytes, or nullptr when the data is not available in the
// buffer due to being out of bounds, or insufficient data.
void *DataExtractor::GetU32(offset_t *offset_ptr, void *void_dst,
uint32_t count) const {
const size_t src_size = sizeof(uint32_t) * count;
const uint32_t *src =
static_cast<const uint32_t *>(GetData(offset_ptr, src_size));
if (src) {
if (m_byte_order != endian::InlHostByteOrder()) {
uint32_t *dst_pos = static_cast<uint32_t *>(void_dst);
uint32_t *dst_end = dst_pos + count;
const uint32_t *src_pos = src;
while (dst_pos < dst_end) {
*dst_pos = ReadSwapInt32(src_pos);
++dst_pos;
++src_pos;
}
} else {
memcpy(void_dst, src, src_size);
}
// Return a non-nullptr pointer to the converted data as an indicator of
// success
return void_dst;
}
return nullptr;
}
// Extract a single uint64_t from the data and update the offset pointed to by
// "offset_ptr".
//
// RETURNS the uint64_t that was extracted, or zero on failure.
uint64_t DataExtractor::GetU64(offset_t *offset_ptr) const {
uint64_t val = 0;
const uint8_t *data =
static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
if (data) {
if (m_byte_order != endian::InlHostByteOrder()) {
val = ReadSwapInt64(data);
} else {
memcpy(&val, data, 8);
}
}
return val;
}
// GetU64
//
// Get multiple consecutive 64 bit values. Return true if the entire read
// succeeds and increment the offset pointed to by offset_ptr, else return
// false and leave the offset pointed to by offset_ptr unchanged.
void *DataExtractor::GetU64(offset_t *offset_ptr, void *void_dst,
uint32_t count) const {
const size_t src_size = sizeof(uint64_t) * count;
const uint64_t *src =
static_cast<const uint64_t *>(GetData(offset_ptr, src_size));
if (src) {
if (m_byte_order != endian::InlHostByteOrder()) {
uint64_t *dst_pos = static_cast<uint64_t *>(void_dst);
uint64_t *dst_end = dst_pos + count;
const uint64_t *src_pos = src;
while (dst_pos < dst_end) {
*dst_pos = ReadSwapInt64(src_pos);
++dst_pos;
++src_pos;
}
} else {
memcpy(void_dst, src, src_size);
}
// Return a non-nullptr pointer to the converted data as an indicator of
// success
return void_dst;
}
return nullptr;
}
uint32_t DataExtractor::GetMaxU32(offset_t *offset_ptr,
size_t byte_size) const {
lldbassert(byte_size > 0 && byte_size <= 4 && "GetMaxU32 invalid byte_size!");
return GetMaxU64(offset_ptr, byte_size);
}
uint64_t DataExtractor::GetMaxU64(offset_t *offset_ptr,
size_t byte_size) const {
lldbassert(byte_size > 0 && byte_size <= 8 && "GetMaxU64 invalid byte_size!");
switch (byte_size) {
case 1:
return GetU8(offset_ptr);
case 2:
return GetU16(offset_ptr);
case 4:
return GetU32(offset_ptr);
case 8:
return GetU64(offset_ptr);
default: {
// General case.
const uint8_t *data =
static_cast<const uint8_t *>(GetData(offset_ptr, byte_size));
if (data == nullptr)
return 0;
return ReadMaxInt64(data, byte_size, m_byte_order);
}
}
return 0;
}
uint64_t DataExtractor::GetMaxU64_unchecked(offset_t *offset_ptr,
size_t byte_size) const {
switch (byte_size) {
case 1:
return GetU8_unchecked(offset_ptr);
case 2:
return GetU16_unchecked(offset_ptr);
case 4:
return GetU32_unchecked(offset_ptr);
case 8:
return GetU64_unchecked(offset_ptr);
default: {
uint64_t res = ReadMaxInt64(&m_start[*offset_ptr], byte_size, m_byte_order);
*offset_ptr += byte_size;
return res;
}
}
return 0;
}
int64_t DataExtractor::GetMaxS64(offset_t *offset_ptr, size_t byte_size) const {
uint64_t u64 = GetMaxU64(offset_ptr, byte_size);
return llvm::SignExtend64(u64, 8 * byte_size);
}
uint64_t DataExtractor::GetMaxU64Bitfield(offset_t *offset_ptr, size_t size,
uint32_t bitfield_bit_size,
uint32_t bitfield_bit_offset) const {
uint64_t uval64 = GetMaxU64(offset_ptr, size);
if (bitfield_bit_size > 0) {
int32_t lsbcount = bitfield_bit_offset;
if (m_byte_order == eByteOrderBig)
lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size;
if (lsbcount > 0)
uval64 >>= lsbcount;
uint64_t bitfield_mask = ((1ul << bitfield_bit_size) - 1);
if (!bitfield_mask && bitfield_bit_offset == 0 && bitfield_bit_size == 64)
return uval64;
uval64 &= bitfield_mask;
}
return uval64;
}
int64_t DataExtractor::GetMaxS64Bitfield(offset_t *offset_ptr, size_t size,
uint32_t bitfield_bit_size,
uint32_t bitfield_bit_offset) const {
int64_t sval64 = GetMaxS64(offset_ptr, size);
if (bitfield_bit_size > 0) {
int32_t lsbcount = bitfield_bit_offset;
if (m_byte_order == eByteOrderBig)
lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size;
if (lsbcount > 0)
sval64 >>= lsbcount;
uint64_t bitfield_mask =
((static_cast<uint64_t>(1)) << bitfield_bit_size) - 1;
sval64 &= bitfield_mask;
// sign extend if needed
if (sval64 & ((static_cast<uint64_t>(1)) << (bitfield_bit_size - 1)))
sval64 |= ~bitfield_mask;
}
return sval64;
}
float DataExtractor::GetFloat(offset_t *offset_ptr) const {
typedef float float_type;
float_type val = 0.0;
const size_t src_size = sizeof(float_type);
const float_type *src =
static_cast<const float_type *>(GetData(offset_ptr, src_size));
if (src) {
if (m_byte_order != endian::InlHostByteOrder()) {
const uint8_t *src_data = reinterpret_cast<const uint8_t *>(src);
uint8_t *dst_data = reinterpret_cast<uint8_t *>(&val);
for (size_t i = 0; i < sizeof(float_type); ++i)
dst_data[sizeof(float_type) - 1 - i] = src_data[i];
} else {
val = *src;
}
}
return val;
}
double DataExtractor::GetDouble(offset_t *offset_ptr) const {
typedef double float_type;
float_type val = 0.0;
const size_t src_size = sizeof(float_type);
const float_type *src =
static_cast<const float_type *>(GetData(offset_ptr, src_size));
if (src) {
if (m_byte_order != endian::InlHostByteOrder()) {
const uint8_t *src_data = reinterpret_cast<const uint8_t *>(src);
uint8_t *dst_data = reinterpret_cast<uint8_t *>(&val);
for (size_t i = 0; i < sizeof(float_type); ++i)
dst_data[sizeof(float_type) - 1 - i] = src_data[i];
} else {
val = *src;
}
}
return val;
}
long double DataExtractor::GetLongDouble(offset_t *offset_ptr) const {
long double val = 0.0;
#if defined(__i386__) || defined(__amd64__) || defined(__x86_64__) || \
defined(_M_IX86) || defined(_M_IA64) || defined(_M_X64)
*offset_ptr += CopyByteOrderedData(*offset_ptr, 10, &val, sizeof(val),
endian::InlHostByteOrder());
#else
*offset_ptr += CopyByteOrderedData(*offset_ptr, sizeof(val), &val,
sizeof(val), endian::InlHostByteOrder());
#endif
return val;
}
// Extract a single address from the data and update the offset pointed to by
// "offset_ptr". The size of the extracted address comes from the
// "this->m_addr_size" member variable and should be set correctly prior to
// extracting any address values.
//
// RETURNS the address that was extracted, or zero on failure.
uint64_t DataExtractor::GetAddress(offset_t *offset_ptr) const {
assert(m_addr_size == 4 || m_addr_size == 8);
return GetMaxU64(offset_ptr, m_addr_size);
}
uint64_t DataExtractor::GetAddress_unchecked(offset_t *offset_ptr) const {
assert(m_addr_size == 4 || m_addr_size == 8);
return GetMaxU64_unchecked(offset_ptr, m_addr_size);
}
// Extract a single pointer from the data and update the offset pointed to by
// "offset_ptr". The size of the extracted pointer comes from the
// "this->m_addr_size" member variable and should be set correctly prior to
// extracting any pointer values.
//
// RETURNS the pointer that was extracted, or zero on failure.
uint64_t DataExtractor::GetPointer(offset_t *offset_ptr) const {
assert(m_addr_size == 4 || m_addr_size == 8);
return GetMaxU64(offset_ptr, m_addr_size);
}
size_t DataExtractor::ExtractBytes(offset_t offset, offset_t length,
ByteOrder dst_byte_order, void *dst) const {
const uint8_t *src = PeekData(offset, length);
if (src) {
if (dst_byte_order != GetByteOrder()) {
// Validate that only a word- or register-sized dst is byte swapped
assert(length == 1 || length == 2 || length == 4 || length == 8 ||
length == 10 || length == 16 || length == 32);
for (uint32_t i = 0; i < length; ++i)
(static_cast<uint8_t *>(dst))[i] = src[length - i - 1];
} else
::memcpy(dst, src, length);
return length;
}
return 0;
}
// Extract data as it exists in target memory
lldb::offset_t DataExtractor::CopyData(offset_t offset, offset_t length,
void *dst) const {
const uint8_t *src = PeekData(offset, length);
if (src) {
::memcpy(dst, src, length);
return length;
}
return 0;
}
// Extract data and swap if needed when doing the copy
lldb::offset_t
DataExtractor::CopyByteOrderedData(offset_t src_offset, offset_t src_len,
void *dst_void_ptr, offset_t dst_len,
ByteOrder dst_byte_order) const {
// Validate the source info
if (!ValidOffsetForDataOfSize(src_offset, src_len))
assert(ValidOffsetForDataOfSize(src_offset, src_len));
assert(src_len > 0);
assert(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle);
// Validate the destination info
assert(dst_void_ptr != nullptr);
assert(dst_len > 0);
assert(dst_byte_order == eByteOrderBig || dst_byte_order == eByteOrderLittle);
// Validate that only a word- or register-sized dst is byte swapped
assert(dst_byte_order == m_byte_order || dst_len == 1 || dst_len == 2 ||
dst_len == 4 || dst_len == 8 || dst_len == 10 || dst_len == 16 ||
dst_len == 32);
// Must have valid byte orders set in this object and for destination
if (!(dst_byte_order == eByteOrderBig ||
dst_byte_order == eByteOrderLittle) ||
!(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle))
return 0;
uint8_t *dst = static_cast<uint8_t *>(dst_void_ptr);
const uint8_t *src = PeekData(src_offset, src_len);
if (src) {
if (dst_len >= src_len) {
// We are copying the entire value from src into dst. Calculate how many,
// if any, zeroes we need for the most significant bytes if "dst_len" is
// greater than "src_len"...
const size_t num_zeroes = dst_len - src_len;
if (dst_byte_order == eByteOrderBig) {
// Big endian, so we lead with zeroes...
if (num_zeroes > 0)
::memset(dst, 0, num_zeroes);
// Then either copy or swap the rest
if (m_byte_order == eByteOrderBig) {
::memcpy(dst + num_zeroes, src, src_len);
} else {
for (uint32_t i = 0; i < src_len; ++i)
dst[i + num_zeroes] = src[src_len - 1 - i];
}
} else {
// Little endian destination, so we lead the value bytes
if (m_byte_order == eByteOrderBig) {
for (uint32_t i = 0; i < src_len; ++i)
dst[i] = src[src_len - 1 - i];
} else {
::memcpy(dst, src, src_len);
}
// And zero the rest...
if (num_zeroes > 0)
::memset(dst + src_len, 0, num_zeroes);
}
return src_len;
} else {
// We are only copying some of the value from src into dst..
if (dst_byte_order == eByteOrderBig) {
// Big endian dst
if (m_byte_order == eByteOrderBig) {
// Big endian dst, with big endian src
::memcpy(dst, src + (src_len - dst_len), dst_len);
} else {
// Big endian dst, with little endian src
for (uint32_t i = 0; i < dst_len; ++i)
dst[i] = src[dst_len - 1 - i];
}
} else {
// Little endian dst
if (m_byte_order == eByteOrderBig) {
// Little endian dst, with big endian src
for (uint32_t i = 0; i < dst_len; ++i)
dst[i] = src[src_len - 1 - i];
} else {
// Little endian dst, with big endian src
::memcpy(dst, src, dst_len);
}
}
return dst_len;
}
}
return 0;
}
// Extracts a variable length NULL terminated C string from the data at the
// offset pointed to by "offset_ptr". The "offset_ptr" will be updated with
// the offset of the byte that follows the NULL terminator byte.
//
// If the offset pointed to by "offset_ptr" is out of bounds, or if "length" is
// non-zero and there aren't enough available bytes, nullptr will be returned
// and "offset_ptr" will not be updated.
const char *DataExtractor::GetCStr(offset_t *offset_ptr) const {
const char *start = reinterpret_cast<const char *>(PeekData(*offset_ptr, 1));
// Already at the end of the data.
if (!start)
return nullptr;
const char *end = reinterpret_cast<const char *>(m_end);
// Check all bytes for a null terminator that terminates a C string.
const char *terminator_or_end = std::find(start, end, '\0');
// We didn't find a null terminator, so return nullptr to indicate that there
// is no valid C string at that offset.
if (terminator_or_end == end)
return nullptr;
// Update offset_ptr for the caller to point to the data behind the
// terminator (which is 1 byte long).
*offset_ptr += (terminator_or_end - start + 1UL);
return start;
}
// Extracts a NULL terminated C string from the fixed length field of length
// "len" at the offset pointed to by "offset_ptr". The "offset_ptr" will be
// updated with the offset of the byte that follows the fixed length field.
//
// If the offset pointed to by "offset_ptr" is out of bounds, or if the offset
// plus the length of the field is out of bounds, or if the field does not
// contain a NULL terminator byte, nullptr will be returned and "offset_ptr"
// will not be updated.
const char *DataExtractor::GetCStr(offset_t *offset_ptr, offset_t len) const {
const char *cstr = reinterpret_cast<const char *>(PeekData(*offset_ptr, len));
if (cstr != nullptr) {
if (memchr(cstr, '\0', len) == nullptr) {
return nullptr;
}
*offset_ptr += len;
return cstr;
}
return nullptr;
}
// Peeks at a string in the contained data. No verification is done to make
// sure the entire string lies within the bounds of this object's data, only
// "offset" is verified to be a valid offset.
//
// Returns a valid C string pointer if "offset" is a valid offset in this
// object's data, else nullptr is returned.
const char *DataExtractor::PeekCStr(offset_t offset) const {
return reinterpret_cast<const char *>(PeekData(offset, 1));
}
// Extracts an unsigned LEB128 number from this object's data starting at the
// offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr"
// will be updated with the offset of the byte following the last extracted
// byte.
//
// Returned the extracted integer value.
uint64_t DataExtractor::GetULEB128(offset_t *offset_ptr) const {
const uint8_t *src = PeekData(*offset_ptr, 1);
if (src == nullptr)
return 0;
const uint8_t *end = m_end;
if (src < end) {
uint64_t result = *src++;
if (result >= 0x80) {
result &= 0x7f;
int shift = 7;
while (src < end) {
uint8_t byte = *src++;
result |= static_cast<uint64_t>(byte & 0x7f) << shift;
if ((byte & 0x80) == 0)
break;
shift += 7;
}
}
*offset_ptr = src - m_start;
return result;
}
return 0;
}
// Extracts an signed LEB128 number from this object's data starting at the
// offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr"
// will be updated with the offset of the byte following the last extracted
// byte.
//
// Returned the extracted integer value.
int64_t DataExtractor::GetSLEB128(offset_t *offset_ptr) const {
const uint8_t *src = PeekData(*offset_ptr, 1);
if (src == nullptr)
return 0;
const uint8_t *end = m_end;
if (src < end) {
int64_t result = 0;
int shift = 0;
int size = sizeof(int64_t) * 8;
uint8_t byte = 0;
int bytecount = 0;
while (src < end) {
bytecount++;
byte = *src++;
result |= static_cast<int64_t>(byte & 0x7f) << shift;
shift += 7;
if ((byte & 0x80) == 0)
break;
}
// Sign bit of byte is 2nd high order bit (0x40)
if (shift < size && (byte & 0x40))
result |= -(1 << shift);
*offset_ptr += bytecount;
return result;
}
return 0;
}
// Skips a ULEB128 number (signed or unsigned) from this object's data starting
// at the offset pointed to by "offset_ptr". The offset pointed to by
// "offset_ptr" will be updated with the offset of the byte following the last
// extracted byte.
//
// Returns the number of bytes consumed during the extraction.
uint32_t DataExtractor::Skip_LEB128(offset_t *offset_ptr) const {
uint32_t bytes_consumed = 0;
const uint8_t *src = PeekData(*offset_ptr, 1);
if (src == nullptr)
return 0;
const uint8_t *end = m_end;
if (src < end) {
const uint8_t *src_pos = src;
while ((src_pos < end) && (*src_pos++ & 0x80))
++bytes_consumed;
*offset_ptr += src_pos - src;
}
return bytes_consumed;
}
// Dumps bytes from this object's data to the stream "s" starting
// "start_offset" bytes into this data, and ending with the byte before
// "end_offset". "base_addr" will be added to the offset into the dumped data
// when showing the offset into the data in the output information.
// "num_per_line" objects of type "type" will be dumped with the option to
// override the format for each object with "type_format". "type_format" is a
// printf style formatting string. If "type_format" is nullptr, then an
// appropriate format string will be used for the supplied "type". If the
// stream "s" is nullptr, then the output will be send to Log().
lldb::offset_t DataExtractor::PutToLog(Log *log, offset_t start_offset,
offset_t length, uint64_t base_addr,
uint32_t num_per_line,
DataExtractor::Type type,
const char *format) const {
if (log == nullptr)
return start_offset;
offset_t offset;
offset_t end_offset;
uint32_t count;
StreamString sstr;
for (offset = start_offset, end_offset = offset + length, count = 0;
ValidOffset(offset) && offset < end_offset; ++count) {
if ((count % num_per_line) == 0) {
// Print out any previous string
if (sstr.GetSize() > 0) {
log->PutString(sstr.GetString());
sstr.Clear();
}
// Reset string offset and fill the current line string with address:
if (base_addr != LLDB_INVALID_ADDRESS)
sstr.Printf("0x%8.8" PRIx64 ":",
static_cast<uint64_t>(base_addr + (offset - start_offset)));
}
switch (type) {
case TypeUInt8:
sstr.Printf(format ? format : " %2.2x", GetU8(&offset));
break;
case TypeChar: {
char ch = GetU8(&offset);
sstr.Printf(format ? format : " %c", isprint(ch) ? ch : ' ');
} break;
case TypeUInt16:
sstr.Printf(format ? format : " %4.4x", GetU16(&offset));
break;
case TypeUInt32:
sstr.Printf(format ? format : " %8.8x", GetU32(&offset));
break;
case TypeUInt64:
sstr.Printf(format ? format : " %16.16" PRIx64, GetU64(&offset));
break;
case TypePointer:
sstr.Printf(format ? format : " 0x%" PRIx64, GetAddress(&offset));
break;
case TypeULEB128:
sstr.Printf(format ? format : " 0x%" PRIx64, GetULEB128(&offset));
break;
case TypeSLEB128:
sstr.Printf(format ? format : " %" PRId64, GetSLEB128(&offset));
break;
}
}
if (!sstr.Empty())
log->PutString(sstr.GetString());
return offset; // Return the offset at which we ended up
}
size_t DataExtractor::Copy(DataExtractor &dest_data) const {
if (m_data_sp) {
// we can pass along the SP to the data
dest_data.SetData(m_data_sp);
} else {
const uint8_t *base_ptr = m_start;
size_t data_size = GetByteSize();
dest_data.SetData(DataBufferSP(new DataBufferHeap(base_ptr, data_size)));
}
return GetByteSize();
}
bool DataExtractor::Append(DataExtractor &rhs) {
if (rhs.GetByteOrder() != GetByteOrder())
return false;
if (rhs.GetByteSize() == 0)
return true;
if (GetByteSize() == 0)
return (rhs.Copy(*this) > 0);
size_t bytes = GetByteSize() + rhs.GetByteSize();
DataBufferHeap *buffer_heap_ptr = nullptr;
DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
if (!buffer_sp || buffer_heap_ptr == nullptr)
return false;
uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes();
memcpy(bytes_ptr, GetDataStart(), GetByteSize());
memcpy(bytes_ptr + GetByteSize(), rhs.GetDataStart(), rhs.GetByteSize());
SetData(buffer_sp);
return true;
}
bool DataExtractor::Append(void *buf, offset_t length) {
if (buf == nullptr)
return false;
if (length == 0)
return true;
size_t bytes = GetByteSize() + length;
DataBufferHeap *buffer_heap_ptr = nullptr;
DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
if (!buffer_sp || buffer_heap_ptr == nullptr)
return false;
uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes();
if (GetByteSize() > 0)
memcpy(bytes_ptr, GetDataStart(), GetByteSize());
memcpy(bytes_ptr + GetByteSize(), buf, length);
SetData(buffer_sp);
return true;
}
void DataExtractor::Checksum(llvm::SmallVectorImpl<uint8_t> &dest,
uint64_t max_data) {
if (max_data == 0)
max_data = GetByteSize();
else
max_data = std::min(max_data, GetByteSize());
llvm::MD5 md5;
const llvm::ArrayRef<uint8_t> data(GetDataStart(), max_data);
md5.update(data);
llvm::MD5::MD5Result result;
md5.final(result);
dest.clear();
dest.append(result.Bytes.begin(), result.Bytes.end());
}