llvm-project/llvm/lib/Bytecode/Reader/ReaderInternals.h

170 lines
5.5 KiB
C++

//===-- ReaderInternals.h - Definitions internal to the reader ---*- C++ -*--=//
//
// This header file defines various stuff that is used by the bytecode reader.
//
//===----------------------------------------------------------------------===//
#ifndef READER_INTERNALS_H
#define READER_INTERNALS_H
#include "llvm/Bytecode/Primitives.h"
#include "llvm/SymTabValue.h"
#include "llvm/Method.h"
#include "llvm/Instruction.h"
#include <map>
#include <utility>
#include <list>
// Enable to trace to figure out what the heck is going on when parsing fails
#define TRACE_LEVEL 0
#if TRACE_LEVEL // ByteCodeReading_TRACEer
#include "llvm/Assembly/Writer.h"
#define BCR_TRACE(n, X) if (n < TRACE_LEVEL) cerr << string(n*2, ' ') << X
#else
#define BCR_TRACE(n, X)
#endif
class BasicBlock;
class Method;
class Module;
class Type;
typedef unsigned char uchar;
struct RawInst { // The raw fields out of the bytecode stream...
unsigned NumOperands;
unsigned Opcode;
const Type *Ty;
unsigned Arg1, Arg2;
union {
unsigned Arg3;
vector<unsigned> *VarArgs; // Contains arg #3,4,5... if NumOperands > 3
};
};
class BytecodeParser : public AbstractTypeUser {
public:
BytecodeParser() {
// Define this in case we don't see a ModuleGlobalInfo block.
FirstDerivedTyID = Type::FirstDerivedTyID;
}
Module *ParseBytecode(const uchar *Buf, const uchar *EndBuf);
private: // All of this data is transient across calls to ParseBytecode
typedef vector<Value *> ValueList;
typedef vector<ValueList> ValueTable;
ValueTable Values, LateResolveValues;
ValueTable ModuleValues, LateResolveModuleValues;
// TypesLoaded - This vector mirrors the Values[TypeTyID] plane. It is used
// to deal with forward references to types.
//
typedef vector<PATypeHandle<Type> > TypeValuesListTy;
TypeValuesListTy ModuleTypeValues;
TypeValuesListTy MethodTypeValues;
// Information read from the ModuleGlobalInfo section of the file...
unsigned FirstDerivedTyID;
// When the ModuleGlobalInfo section is read, we load the type of each method
// and the 'ModuleValues' slot that it lands in. We then load a placeholder
// into its slot to reserve it. When the method is loaded, this placeholder
// is replaced.
//
list<pair<const MethodType *, unsigned> > MethodSignatureList;
private:
bool ParseModule (const uchar * Buf, const uchar *End, Module *&);
bool ParseModuleGlobalInfo (const uchar *&Buf, const uchar *End, Module *);
bool ParseSymbolTable (const uchar *&Buf, const uchar *End, SymbolTable *);
bool ParseMethod (const uchar *&Buf, const uchar *End, Module *);
bool ParseBasicBlock (const uchar *&Buf, const uchar *End, BasicBlock *&);
bool ParseInstruction (const uchar *&Buf, const uchar *End, Instruction *&);
bool ParseRawInst (const uchar *&Buf, const uchar *End, RawInst &);
bool ParseConstantPool(const uchar *&Buf, const uchar *EndBuf,
ValueTable &Tab, TypeValuesListTy &TypeTab);
bool parseConstPoolValue(const uchar *&Buf, const uchar *End,
const Type *Ty, ConstPoolVal *&V);
bool parseTypeConstants(const uchar *&Buf, const uchar *EndBuf,
TypeValuesListTy &Tab, unsigned NumEntries);
const Type *parseTypeConstant(const uchar *&Buf, const uchar *EndBuf);
Value *getValue(const Type *Ty, unsigned num, bool Create = true);
const Type *getType(unsigned ID);
bool insertValue(Value *D, vector<ValueList> &D);
bool postResolveValues(ValueTable &ValTab);
bool getTypeSlot(const Type *Ty, unsigned &Slot);
// refineAbstractType - The callback method is invoked when one of the
// elements of TypeValues becomes more concrete...
//
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
};
template<class SuperType>
class PlaceholderDef : public SuperType {
unsigned ID;
public:
PlaceholderDef(const Type *Ty, unsigned id) : SuperType(Ty), ID(id) {}
unsigned getID() { return ID; }
};
struct InstPlaceHolderHelper : public Instruction {
InstPlaceHolderHelper(const Type *Ty) : Instruction(Ty, UserOp1, "") {}
virtual const char *getOpcodeName() const { return "placeholder"; }
virtual Instruction *clone() const { abort(); return 0; }
};
struct BBPlaceHolderHelper : public BasicBlock {
BBPlaceHolderHelper(const Type *Ty) : BasicBlock() {
assert(Ty->isLabelType());
}
};
struct MethPlaceHolderHelper : public Method {
MethPlaceHolderHelper(const Type *Ty)
: Method(cast<const MethodType>(Ty)) {
}
};
typedef PlaceholderDef<InstPlaceHolderHelper> DefPHolder;
typedef PlaceholderDef<BBPlaceHolderHelper> BBPHolder;
typedef PlaceholderDef<MethPlaceHolderHelper> MethPHolder;
static inline unsigned getValueIDNumberFromPlaceHolder(Value *Def) {
switch (Def->getType()->getPrimitiveID()) {
case Type::LabelTyID: return ((BBPHolder*)Def)->getID();
case Type::MethodTyID: return ((MethPHolder*)Def)->getID();
default: return ((DefPHolder*)Def)->getID();
}
}
static inline bool readBlock(const uchar *&Buf, const uchar *EndBuf,
unsigned &Type, unsigned &Size) {
#if DEBUG_OUTPUT
bool Result = read(Buf, EndBuf, Type) || read(Buf, EndBuf, Size);
cerr << "StartLoc = " << ((unsigned)Buf & 4095)
<< " Type = " << Type << " Size = " << Size << endl;
return Result;
#else
return read(Buf, EndBuf, Type) || read(Buf, EndBuf, Size);
#endif
}
// failure Template - This template function is used as a place to put
// breakpoints in to debug failures of the bytecode parser.
//
template <typename X>
static X failure(X Value) {
return Value;
}
#endif