forked from OSchip/llvm-project
3334 lines
131 KiB
C++
3334 lines
131 KiB
C++
//===- InstCombineSelect.cpp ----------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the visitSelect function.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InstCombineInternal.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/CmpInstAnalysis.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/OverflowInstAnalysis.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Transforms/InstCombine/InstCombiner.h"
|
|
#include <cassert>
|
|
#include <utility>
|
|
|
|
#define DEBUG_TYPE "instcombine"
|
|
#include "llvm/Transforms/Utils/InstructionWorklist.h"
|
|
|
|
using namespace llvm;
|
|
using namespace PatternMatch;
|
|
|
|
|
|
static Value *createMinMax(InstCombiner::BuilderTy &Builder,
|
|
SelectPatternFlavor SPF, Value *A, Value *B) {
|
|
CmpInst::Predicate Pred = getMinMaxPred(SPF);
|
|
assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate");
|
|
return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
|
|
}
|
|
|
|
/// Replace a select operand based on an equality comparison with the identity
|
|
/// constant of a binop.
|
|
static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
|
|
const TargetLibraryInfo &TLI,
|
|
InstCombinerImpl &IC) {
|
|
// The select condition must be an equality compare with a constant operand.
|
|
Value *X;
|
|
Constant *C;
|
|
CmpInst::Predicate Pred;
|
|
if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
|
|
return nullptr;
|
|
|
|
bool IsEq;
|
|
if (ICmpInst::isEquality(Pred))
|
|
IsEq = Pred == ICmpInst::ICMP_EQ;
|
|
else if (Pred == FCmpInst::FCMP_OEQ)
|
|
IsEq = true;
|
|
else if (Pred == FCmpInst::FCMP_UNE)
|
|
IsEq = false;
|
|
else
|
|
return nullptr;
|
|
|
|
// A select operand must be a binop.
|
|
BinaryOperator *BO;
|
|
if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
|
|
return nullptr;
|
|
|
|
// The compare constant must be the identity constant for that binop.
|
|
// If this a floating-point compare with 0.0, any zero constant will do.
|
|
Type *Ty = BO->getType();
|
|
Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
|
|
if (IdC != C) {
|
|
if (!IdC || !CmpInst::isFPPredicate(Pred))
|
|
return nullptr;
|
|
if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
|
|
return nullptr;
|
|
}
|
|
|
|
// Last, match the compare variable operand with a binop operand.
|
|
Value *Y;
|
|
if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
|
|
return nullptr;
|
|
if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
|
|
return nullptr;
|
|
|
|
// +0.0 compares equal to -0.0, and so it does not behave as required for this
|
|
// transform. Bail out if we can not exclude that possibility.
|
|
if (isa<FPMathOperator>(BO))
|
|
if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI))
|
|
return nullptr;
|
|
|
|
// BO = binop Y, X
|
|
// S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
|
|
// =>
|
|
// S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y }
|
|
return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y);
|
|
}
|
|
|
|
/// This folds:
|
|
/// select (icmp eq (and X, C1)), TC, FC
|
|
/// iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
|
|
/// To something like:
|
|
/// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
|
|
/// Or:
|
|
/// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
|
|
/// With some variations depending if FC is larger than TC, or the shift
|
|
/// isn't needed, or the bit widths don't match.
|
|
static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
const APInt *SelTC, *SelFC;
|
|
if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
|
|
!match(Sel.getFalseValue(), m_APInt(SelFC)))
|
|
return nullptr;
|
|
|
|
// If this is a vector select, we need a vector compare.
|
|
Type *SelType = Sel.getType();
|
|
if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
|
|
return nullptr;
|
|
|
|
Value *V;
|
|
APInt AndMask;
|
|
bool CreateAnd = false;
|
|
ICmpInst::Predicate Pred = Cmp->getPredicate();
|
|
if (ICmpInst::isEquality(Pred)) {
|
|
if (!match(Cmp->getOperand(1), m_Zero()))
|
|
return nullptr;
|
|
|
|
V = Cmp->getOperand(0);
|
|
const APInt *AndRHS;
|
|
if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
|
|
return nullptr;
|
|
|
|
AndMask = *AndRHS;
|
|
} else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
|
|
Pred, V, AndMask)) {
|
|
assert(ICmpInst::isEquality(Pred) && "Not equality test?");
|
|
if (!AndMask.isPowerOf2())
|
|
return nullptr;
|
|
|
|
CreateAnd = true;
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
|
|
// In general, when both constants are non-zero, we would need an offset to
|
|
// replace the select. This would require more instructions than we started
|
|
// with. But there's one special-case that we handle here because it can
|
|
// simplify/reduce the instructions.
|
|
APInt TC = *SelTC;
|
|
APInt FC = *SelFC;
|
|
if (!TC.isZero() && !FC.isZero()) {
|
|
// If the select constants differ by exactly one bit and that's the same
|
|
// bit that is masked and checked by the select condition, the select can
|
|
// be replaced by bitwise logic to set/clear one bit of the constant result.
|
|
if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
|
|
return nullptr;
|
|
if (CreateAnd) {
|
|
// If we have to create an 'and', then we must kill the cmp to not
|
|
// increase the instruction count.
|
|
if (!Cmp->hasOneUse())
|
|
return nullptr;
|
|
V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
|
|
}
|
|
bool ExtraBitInTC = TC.ugt(FC);
|
|
if (Pred == ICmpInst::ICMP_EQ) {
|
|
// If the masked bit in V is clear, clear or set the bit in the result:
|
|
// (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
|
|
// (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
|
|
Constant *C = ConstantInt::get(SelType, TC);
|
|
return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
|
|
}
|
|
if (Pred == ICmpInst::ICMP_NE) {
|
|
// If the masked bit in V is set, set or clear the bit in the result:
|
|
// (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
|
|
// (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
|
|
Constant *C = ConstantInt::get(SelType, FC);
|
|
return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
|
|
}
|
|
llvm_unreachable("Only expecting equality predicates");
|
|
}
|
|
|
|
// Make sure one of the select arms is a power-of-2.
|
|
if (!TC.isPowerOf2() && !FC.isPowerOf2())
|
|
return nullptr;
|
|
|
|
// Determine which shift is needed to transform result of the 'and' into the
|
|
// desired result.
|
|
const APInt &ValC = !TC.isZero() ? TC : FC;
|
|
unsigned ValZeros = ValC.logBase2();
|
|
unsigned AndZeros = AndMask.logBase2();
|
|
|
|
// Insert the 'and' instruction on the input to the truncate.
|
|
if (CreateAnd)
|
|
V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
|
|
|
|
// If types don't match, we can still convert the select by introducing a zext
|
|
// or a trunc of the 'and'.
|
|
if (ValZeros > AndZeros) {
|
|
V = Builder.CreateZExtOrTrunc(V, SelType);
|
|
V = Builder.CreateShl(V, ValZeros - AndZeros);
|
|
} else if (ValZeros < AndZeros) {
|
|
V = Builder.CreateLShr(V, AndZeros - ValZeros);
|
|
V = Builder.CreateZExtOrTrunc(V, SelType);
|
|
} else {
|
|
V = Builder.CreateZExtOrTrunc(V, SelType);
|
|
}
|
|
|
|
// Okay, now we know that everything is set up, we just don't know whether we
|
|
// have a icmp_ne or icmp_eq and whether the true or false val is the zero.
|
|
bool ShouldNotVal = !TC.isZero();
|
|
ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
|
|
if (ShouldNotVal)
|
|
V = Builder.CreateXor(V, ValC);
|
|
|
|
return V;
|
|
}
|
|
|
|
/// We want to turn code that looks like this:
|
|
/// %C = or %A, %B
|
|
/// %D = select %cond, %C, %A
|
|
/// into:
|
|
/// %C = select %cond, %B, 0
|
|
/// %D = or %A, %C
|
|
///
|
|
/// Assuming that the specified instruction is an operand to the select, return
|
|
/// a bitmask indicating which operands of this instruction are foldable if they
|
|
/// equal the other incoming value of the select.
|
|
static unsigned getSelectFoldableOperands(BinaryOperator *I) {
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Add:
|
|
case Instruction::Mul:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
return 3; // Can fold through either operand.
|
|
case Instruction::Sub: // Can only fold on the amount subtracted.
|
|
case Instruction::Shl: // Can only fold on the shift amount.
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
return 1;
|
|
default:
|
|
return 0; // Cannot fold
|
|
}
|
|
}
|
|
|
|
/// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
|
|
Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI,
|
|
Instruction *FI) {
|
|
// Don't break up min/max patterns. The hasOneUse checks below prevent that
|
|
// for most cases, but vector min/max with bitcasts can be transformed. If the
|
|
// one-use restrictions are eased for other patterns, we still don't want to
|
|
// obfuscate min/max.
|
|
if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
|
|
match(&SI, m_SMax(m_Value(), m_Value())) ||
|
|
match(&SI, m_UMin(m_Value(), m_Value())) ||
|
|
match(&SI, m_UMax(m_Value(), m_Value()))))
|
|
return nullptr;
|
|
|
|
// If this is a cast from the same type, merge.
|
|
Value *Cond = SI.getCondition();
|
|
Type *CondTy = Cond->getType();
|
|
if (TI->getNumOperands() == 1 && TI->isCast()) {
|
|
Type *FIOpndTy = FI->getOperand(0)->getType();
|
|
if (TI->getOperand(0)->getType() != FIOpndTy)
|
|
return nullptr;
|
|
|
|
// The select condition may be a vector. We may only change the operand
|
|
// type if the vector width remains the same (and matches the condition).
|
|
if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) {
|
|
if (!FIOpndTy->isVectorTy() ||
|
|
CondVTy->getElementCount() !=
|
|
cast<VectorType>(FIOpndTy)->getElementCount())
|
|
return nullptr;
|
|
|
|
// TODO: If the backend knew how to deal with casts better, we could
|
|
// remove this limitation. For now, there's too much potential to create
|
|
// worse codegen by promoting the select ahead of size-altering casts
|
|
// (PR28160).
|
|
//
|
|
// Note that ValueTracking's matchSelectPattern() looks through casts
|
|
// without checking 'hasOneUse' when it matches min/max patterns, so this
|
|
// transform may end up happening anyway.
|
|
if (TI->getOpcode() != Instruction::BitCast &&
|
|
(!TI->hasOneUse() || !FI->hasOneUse()))
|
|
return nullptr;
|
|
} else if (!TI->hasOneUse() || !FI->hasOneUse()) {
|
|
// TODO: The one-use restrictions for a scalar select could be eased if
|
|
// the fold of a select in visitLoadInst() was enhanced to match a pattern
|
|
// that includes a cast.
|
|
return nullptr;
|
|
}
|
|
|
|
// Fold this by inserting a select from the input values.
|
|
Value *NewSI =
|
|
Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
|
|
SI.getName() + ".v", &SI);
|
|
return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
|
|
TI->getType());
|
|
}
|
|
|
|
// Cond ? -X : -Y --> -(Cond ? X : Y)
|
|
Value *X, *Y;
|
|
if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) &&
|
|
(TI->hasOneUse() || FI->hasOneUse())) {
|
|
// Intersect FMF from the fneg instructions and union those with the select.
|
|
FastMathFlags FMF = TI->getFastMathFlags();
|
|
FMF &= FI->getFastMathFlags();
|
|
FMF |= SI.getFastMathFlags();
|
|
Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
|
|
if (auto *NewSelI = dyn_cast<Instruction>(NewSel))
|
|
NewSelI->setFastMathFlags(FMF);
|
|
Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel);
|
|
NewFNeg->setFastMathFlags(FMF);
|
|
return NewFNeg;
|
|
}
|
|
|
|
// Min/max intrinsic with a common operand can have the common operand pulled
|
|
// after the select. This is the same transform as below for binops, but
|
|
// specialized for intrinsic matching and without the restrictive uses clause.
|
|
auto *TII = dyn_cast<IntrinsicInst>(TI);
|
|
auto *FII = dyn_cast<IntrinsicInst>(FI);
|
|
if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID() &&
|
|
(TII->hasOneUse() || FII->hasOneUse())) {
|
|
Value *T0, *T1, *F0, *F1;
|
|
if (match(TII, m_MaxOrMin(m_Value(T0), m_Value(T1))) &&
|
|
match(FII, m_MaxOrMin(m_Value(F0), m_Value(F1)))) {
|
|
if (T0 == F0) {
|
|
Value *NewSel = Builder.CreateSelect(Cond, T1, F1, "minmaxop", &SI);
|
|
return CallInst::Create(TII->getCalledFunction(), {NewSel, T0});
|
|
}
|
|
if (T0 == F1) {
|
|
Value *NewSel = Builder.CreateSelect(Cond, T1, F0, "minmaxop", &SI);
|
|
return CallInst::Create(TII->getCalledFunction(), {NewSel, T0});
|
|
}
|
|
if (T1 == F0) {
|
|
Value *NewSel = Builder.CreateSelect(Cond, T0, F1, "minmaxop", &SI);
|
|
return CallInst::Create(TII->getCalledFunction(), {NewSel, T1});
|
|
}
|
|
if (T1 == F1) {
|
|
Value *NewSel = Builder.CreateSelect(Cond, T0, F0, "minmaxop", &SI);
|
|
return CallInst::Create(TII->getCalledFunction(), {NewSel, T1});
|
|
}
|
|
}
|
|
}
|
|
|
|
// Only handle binary operators (including two-operand getelementptr) with
|
|
// one-use here. As with the cast case above, it may be possible to relax the
|
|
// one-use constraint, but that needs be examined carefully since it may not
|
|
// reduce the total number of instructions.
|
|
if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
|
|
(!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
|
|
!TI->hasOneUse() || !FI->hasOneUse())
|
|
return nullptr;
|
|
|
|
// Figure out if the operations have any operands in common.
|
|
Value *MatchOp, *OtherOpT, *OtherOpF;
|
|
bool MatchIsOpZero;
|
|
if (TI->getOperand(0) == FI->getOperand(0)) {
|
|
MatchOp = TI->getOperand(0);
|
|
OtherOpT = TI->getOperand(1);
|
|
OtherOpF = FI->getOperand(1);
|
|
MatchIsOpZero = true;
|
|
} else if (TI->getOperand(1) == FI->getOperand(1)) {
|
|
MatchOp = TI->getOperand(1);
|
|
OtherOpT = TI->getOperand(0);
|
|
OtherOpF = FI->getOperand(0);
|
|
MatchIsOpZero = false;
|
|
} else if (!TI->isCommutative()) {
|
|
return nullptr;
|
|
} else if (TI->getOperand(0) == FI->getOperand(1)) {
|
|
MatchOp = TI->getOperand(0);
|
|
OtherOpT = TI->getOperand(1);
|
|
OtherOpF = FI->getOperand(0);
|
|
MatchIsOpZero = true;
|
|
} else if (TI->getOperand(1) == FI->getOperand(0)) {
|
|
MatchOp = TI->getOperand(1);
|
|
OtherOpT = TI->getOperand(0);
|
|
OtherOpF = FI->getOperand(1);
|
|
MatchIsOpZero = true;
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
|
|
// If the select condition is a vector, the operands of the original select's
|
|
// operands also must be vectors. This may not be the case for getelementptr
|
|
// for example.
|
|
if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
|
|
!OtherOpF->getType()->isVectorTy()))
|
|
return nullptr;
|
|
|
|
// If we reach here, they do have operations in common.
|
|
Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
|
|
SI.getName() + ".v", &SI);
|
|
Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
|
|
Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
|
|
if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
|
|
BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
|
|
NewBO->copyIRFlags(TI);
|
|
NewBO->andIRFlags(FI);
|
|
return NewBO;
|
|
}
|
|
if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
|
|
auto *FGEP = cast<GetElementPtrInst>(FI);
|
|
Type *ElementType = TGEP->getResultElementType();
|
|
return TGEP->isInBounds() && FGEP->isInBounds()
|
|
? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
|
|
: GetElementPtrInst::Create(ElementType, Op0, {Op1});
|
|
}
|
|
llvm_unreachable("Expected BinaryOperator or GEP");
|
|
return nullptr;
|
|
}
|
|
|
|
static bool isSelect01(const APInt &C1I, const APInt &C2I) {
|
|
if (!C1I.isZero() && !C2I.isZero()) // One side must be zero.
|
|
return false;
|
|
return C1I.isOne() || C1I.isAllOnes() || C2I.isOne() || C2I.isAllOnes();
|
|
}
|
|
|
|
/// Try to fold the select into one of the operands to allow further
|
|
/// optimization.
|
|
Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
|
|
Value *FalseVal) {
|
|
// See the comment above GetSelectFoldableOperands for a description of the
|
|
// transformation we are doing here.
|
|
if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
|
|
if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
|
|
if (unsigned SFO = getSelectFoldableOperands(TVI)) {
|
|
unsigned OpToFold = 0;
|
|
if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
|
|
OpToFold = 1;
|
|
} else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
|
|
OpToFold = 2;
|
|
}
|
|
|
|
if (OpToFold) {
|
|
Constant *C = ConstantExpr::getBinOpIdentity(TVI->getOpcode(),
|
|
TVI->getType(), true);
|
|
Value *OOp = TVI->getOperand(2-OpToFold);
|
|
// Avoid creating select between 2 constants unless it's selecting
|
|
// between 0, 1 and -1.
|
|
const APInt *OOpC;
|
|
bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
|
|
if (!isa<Constant>(OOp) ||
|
|
(OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) {
|
|
Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C);
|
|
NewSel->takeName(TVI);
|
|
BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(),
|
|
FalseVal, NewSel);
|
|
BO->copyIRFlags(TVI);
|
|
return BO;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) {
|
|
if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) {
|
|
if (unsigned SFO = getSelectFoldableOperands(FVI)) {
|
|
unsigned OpToFold = 0;
|
|
if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
|
|
OpToFold = 1;
|
|
} else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
|
|
OpToFold = 2;
|
|
}
|
|
|
|
if (OpToFold) {
|
|
Constant *C = ConstantExpr::getBinOpIdentity(FVI->getOpcode(),
|
|
FVI->getType(), true);
|
|
Value *OOp = FVI->getOperand(2-OpToFold);
|
|
// Avoid creating select between 2 constants unless it's selecting
|
|
// between 0, 1 and -1.
|
|
const APInt *OOpC;
|
|
bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
|
|
if (!isa<Constant>(OOp) ||
|
|
(OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) {
|
|
Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp);
|
|
NewSel->takeName(FVI);
|
|
BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(),
|
|
TrueVal, NewSel);
|
|
BO->copyIRFlags(FVI);
|
|
return BO;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// We want to turn:
|
|
/// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
|
|
/// into:
|
|
/// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
|
|
/// Note:
|
|
/// Z may be 0 if lshr is missing.
|
|
/// Worst-case scenario is that we will replace 5 instructions with 5 different
|
|
/// instructions, but we got rid of select.
|
|
static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
|
|
Value *TVal, Value *FVal,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
|
|
Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
|
|
match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
|
|
return nullptr;
|
|
|
|
// The TrueVal has general form of: and %B, 1
|
|
Value *B;
|
|
if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
|
|
return nullptr;
|
|
|
|
// Where %B may be optionally shifted: lshr %X, %Z.
|
|
Value *X, *Z;
|
|
const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
|
|
if (!HasShift)
|
|
X = B;
|
|
|
|
Value *Y;
|
|
if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
|
|
return nullptr;
|
|
|
|
// ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
|
|
// ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
|
|
Constant *One = ConstantInt::get(SelType, 1);
|
|
Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
|
|
Value *FullMask = Builder.CreateOr(Y, MaskB);
|
|
Value *MaskedX = Builder.CreateAnd(X, FullMask);
|
|
Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
|
|
return new ZExtInst(ICmpNeZero, SelType);
|
|
}
|
|
|
|
/// We want to turn:
|
|
/// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
|
|
/// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
|
|
/// into:
|
|
/// ashr (X, Y)
|
|
static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
|
|
Value *FalseVal,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
ICmpInst::Predicate Pred = IC->getPredicate();
|
|
Value *CmpLHS = IC->getOperand(0);
|
|
Value *CmpRHS = IC->getOperand(1);
|
|
if (!CmpRHS->getType()->isIntOrIntVectorTy())
|
|
return nullptr;
|
|
|
|
Value *X, *Y;
|
|
unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
|
|
if ((Pred != ICmpInst::ICMP_SGT ||
|
|
!match(CmpRHS,
|
|
m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) &&
|
|
(Pred != ICmpInst::ICMP_SLT ||
|
|
!match(CmpRHS,
|
|
m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0)))))
|
|
return nullptr;
|
|
|
|
// Canonicalize so that ashr is in FalseVal.
|
|
if (Pred == ICmpInst::ICMP_SLT)
|
|
std::swap(TrueVal, FalseVal);
|
|
|
|
if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
|
|
match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
|
|
match(CmpLHS, m_Specific(X))) {
|
|
const auto *Ashr = cast<Instruction>(FalseVal);
|
|
// if lshr is not exact and ashr is, this new ashr must not be exact.
|
|
bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
|
|
return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// We want to turn:
|
|
/// (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
|
|
/// into:
|
|
/// (or (shl (and X, C1), C3), Y)
|
|
/// iff:
|
|
/// C1 and C2 are both powers of 2
|
|
/// where:
|
|
/// C3 = Log(C2) - Log(C1)
|
|
///
|
|
/// This transform handles cases where:
|
|
/// 1. The icmp predicate is inverted
|
|
/// 2. The select operands are reversed
|
|
/// 3. The magnitude of C2 and C1 are flipped
|
|
static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
|
|
Value *FalseVal,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
// Only handle integer compares. Also, if this is a vector select, we need a
|
|
// vector compare.
|
|
if (!TrueVal->getType()->isIntOrIntVectorTy() ||
|
|
TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
|
|
return nullptr;
|
|
|
|
Value *CmpLHS = IC->getOperand(0);
|
|
Value *CmpRHS = IC->getOperand(1);
|
|
|
|
Value *V;
|
|
unsigned C1Log;
|
|
bool IsEqualZero;
|
|
bool NeedAnd = false;
|
|
if (IC->isEquality()) {
|
|
if (!match(CmpRHS, m_Zero()))
|
|
return nullptr;
|
|
|
|
const APInt *C1;
|
|
if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
|
|
return nullptr;
|
|
|
|
V = CmpLHS;
|
|
C1Log = C1->logBase2();
|
|
IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
|
|
} else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
|
|
IC->getPredicate() == ICmpInst::ICMP_SGT) {
|
|
// We also need to recognize (icmp slt (trunc (X)), 0) and
|
|
// (icmp sgt (trunc (X)), -1).
|
|
IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
|
|
if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
|
|
(!IsEqualZero && !match(CmpRHS, m_Zero())))
|
|
return nullptr;
|
|
|
|
if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
|
|
return nullptr;
|
|
|
|
C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
|
|
NeedAnd = true;
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
|
|
const APInt *C2;
|
|
bool OrOnTrueVal = false;
|
|
bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
|
|
if (!OrOnFalseVal)
|
|
OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
|
|
|
|
if (!OrOnFalseVal && !OrOnTrueVal)
|
|
return nullptr;
|
|
|
|
Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
|
|
|
|
unsigned C2Log = C2->logBase2();
|
|
|
|
bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
|
|
bool NeedShift = C1Log != C2Log;
|
|
bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
|
|
V->getType()->getScalarSizeInBits();
|
|
|
|
// Make sure we don't create more instructions than we save.
|
|
Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
|
|
if ((NeedShift + NeedXor + NeedZExtTrunc) >
|
|
(IC->hasOneUse() + Or->hasOneUse()))
|
|
return nullptr;
|
|
|
|
if (NeedAnd) {
|
|
// Insert the AND instruction on the input to the truncate.
|
|
APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
|
|
V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
|
|
}
|
|
|
|
if (C2Log > C1Log) {
|
|
V = Builder.CreateZExtOrTrunc(V, Y->getType());
|
|
V = Builder.CreateShl(V, C2Log - C1Log);
|
|
} else if (C1Log > C2Log) {
|
|
V = Builder.CreateLShr(V, C1Log - C2Log);
|
|
V = Builder.CreateZExtOrTrunc(V, Y->getType());
|
|
} else
|
|
V = Builder.CreateZExtOrTrunc(V, Y->getType());
|
|
|
|
if (NeedXor)
|
|
V = Builder.CreateXor(V, *C2);
|
|
|
|
return Builder.CreateOr(V, Y);
|
|
}
|
|
|
|
/// Canonicalize a set or clear of a masked set of constant bits to
|
|
/// select-of-constants form.
|
|
static Instruction *foldSetClearBits(SelectInst &Sel,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
Value *Cond = Sel.getCondition();
|
|
Value *T = Sel.getTrueValue();
|
|
Value *F = Sel.getFalseValue();
|
|
Type *Ty = Sel.getType();
|
|
Value *X;
|
|
const APInt *NotC, *C;
|
|
|
|
// Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C)
|
|
if (match(T, m_And(m_Value(X), m_APInt(NotC))) &&
|
|
match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
|
|
Constant *Zero = ConstantInt::getNullValue(Ty);
|
|
Constant *OrC = ConstantInt::get(Ty, *C);
|
|
Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel);
|
|
return BinaryOperator::CreateOr(T, NewSel);
|
|
}
|
|
|
|
// Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0)
|
|
if (match(F, m_And(m_Value(X), m_APInt(NotC))) &&
|
|
match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
|
|
Constant *Zero = ConstantInt::getNullValue(Ty);
|
|
Constant *OrC = ConstantInt::get(Ty, *C);
|
|
Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel);
|
|
return BinaryOperator::CreateOr(F, NewSel);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// select (x == 0), 0, x * y --> freeze(y) * x
|
|
// select (y == 0), 0, x * y --> freeze(x) * y
|
|
// select (x == 0), undef, x * y --> freeze(y) * x
|
|
// select (x == undef), 0, x * y --> freeze(y) * x
|
|
// Usage of mul instead of 0 will make the result more poisonous,
|
|
// so the operand that was not checked in the condition should be frozen.
|
|
// The latter folding is applied only when a constant compared with x is
|
|
// is a vector consisting of 0 and undefs. If a constant compared with x
|
|
// is a scalar undefined value or undefined vector then an expression
|
|
// should be already folded into a constant.
|
|
static Instruction *foldSelectZeroOrMul(SelectInst &SI, InstCombinerImpl &IC) {
|
|
auto *CondVal = SI.getCondition();
|
|
auto *TrueVal = SI.getTrueValue();
|
|
auto *FalseVal = SI.getFalseValue();
|
|
Value *X, *Y;
|
|
ICmpInst::Predicate Predicate;
|
|
|
|
// Assuming that constant compared with zero is not undef (but it may be
|
|
// a vector with some undef elements). Otherwise (when a constant is undef)
|
|
// the select expression should be already simplified.
|
|
if (!match(CondVal, m_ICmp(Predicate, m_Value(X), m_Zero())) ||
|
|
!ICmpInst::isEquality(Predicate))
|
|
return nullptr;
|
|
|
|
if (Predicate == ICmpInst::ICMP_NE)
|
|
std::swap(TrueVal, FalseVal);
|
|
|
|
// Check that TrueVal is a constant instead of matching it with m_Zero()
|
|
// to handle the case when it is a scalar undef value or a vector containing
|
|
// non-zero elements that are masked by undef elements in the compare
|
|
// constant.
|
|
auto *TrueValC = dyn_cast<Constant>(TrueVal);
|
|
if (TrueValC == nullptr ||
|
|
!match(FalseVal, m_c_Mul(m_Specific(X), m_Value(Y))) ||
|
|
!isa<Instruction>(FalseVal))
|
|
return nullptr;
|
|
|
|
auto *ZeroC = cast<Constant>(cast<Instruction>(CondVal)->getOperand(1));
|
|
auto *MergedC = Constant::mergeUndefsWith(TrueValC, ZeroC);
|
|
// If X is compared with 0 then TrueVal could be either zero or undef.
|
|
// m_Zero match vectors containing some undef elements, but for scalars
|
|
// m_Undef should be used explicitly.
|
|
if (!match(MergedC, m_Zero()) && !match(MergedC, m_Undef()))
|
|
return nullptr;
|
|
|
|
auto *FalseValI = cast<Instruction>(FalseVal);
|
|
auto *FrY = IC.InsertNewInstBefore(new FreezeInst(Y, Y->getName() + ".fr"),
|
|
*FalseValI);
|
|
IC.replaceOperand(*FalseValI, FalseValI->getOperand(0) == Y ? 0 : 1, FrY);
|
|
return IC.replaceInstUsesWith(SI, FalseValI);
|
|
}
|
|
|
|
/// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
|
|
/// There are 8 commuted/swapped variants of this pattern.
|
|
/// TODO: Also support a - UMIN(a,b) patterns.
|
|
static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
|
|
const Value *TrueVal,
|
|
const Value *FalseVal,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
ICmpInst::Predicate Pred = ICI->getPredicate();
|
|
if (!ICmpInst::isUnsigned(Pred))
|
|
return nullptr;
|
|
|
|
// (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
|
|
if (match(TrueVal, m_Zero())) {
|
|
Pred = ICmpInst::getInversePredicate(Pred);
|
|
std::swap(TrueVal, FalseVal);
|
|
}
|
|
if (!match(FalseVal, m_Zero()))
|
|
return nullptr;
|
|
|
|
Value *A = ICI->getOperand(0);
|
|
Value *B = ICI->getOperand(1);
|
|
if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
|
|
// (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
|
|
std::swap(A, B);
|
|
Pred = ICmpInst::getSwappedPredicate(Pred);
|
|
}
|
|
|
|
assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
|
|
"Unexpected isUnsigned predicate!");
|
|
|
|
// Ensure the sub is of the form:
|
|
// (a > b) ? a - b : 0 -> usub.sat(a, b)
|
|
// (a > b) ? b - a : 0 -> -usub.sat(a, b)
|
|
// Checking for both a-b and a+(-b) as a constant.
|
|
bool IsNegative = false;
|
|
const APInt *C;
|
|
if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) ||
|
|
(match(A, m_APInt(C)) &&
|
|
match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C)))))
|
|
IsNegative = true;
|
|
else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) &&
|
|
!(match(B, m_APInt(C)) &&
|
|
match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C)))))
|
|
return nullptr;
|
|
|
|
// If we are adding a negate and the sub and icmp are used anywhere else, we
|
|
// would end up with more instructions.
|
|
if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse())
|
|
return nullptr;
|
|
|
|
// (a > b) ? a - b : 0 -> usub.sat(a, b)
|
|
// (a > b) ? b - a : 0 -> -usub.sat(a, b)
|
|
Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
|
|
if (IsNegative)
|
|
Result = Builder.CreateNeg(Result);
|
|
return Result;
|
|
}
|
|
|
|
static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
if (!Cmp->hasOneUse())
|
|
return nullptr;
|
|
|
|
// Match unsigned saturated add with constant.
|
|
Value *Cmp0 = Cmp->getOperand(0);
|
|
Value *Cmp1 = Cmp->getOperand(1);
|
|
ICmpInst::Predicate Pred = Cmp->getPredicate();
|
|
Value *X;
|
|
const APInt *C, *CmpC;
|
|
if (Pred == ICmpInst::ICMP_ULT &&
|
|
match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 &&
|
|
match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) {
|
|
// (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
|
|
return Builder.CreateBinaryIntrinsic(
|
|
Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C));
|
|
}
|
|
|
|
// Match unsigned saturated add of 2 variables with an unnecessary 'not'.
|
|
// There are 8 commuted variants.
|
|
// Canonicalize -1 (saturated result) to true value of the select.
|
|
if (match(FVal, m_AllOnes())) {
|
|
std::swap(TVal, FVal);
|
|
Pred = CmpInst::getInversePredicate(Pred);
|
|
}
|
|
if (!match(TVal, m_AllOnes()))
|
|
return nullptr;
|
|
|
|
// Canonicalize predicate to less-than or less-or-equal-than.
|
|
if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
|
|
std::swap(Cmp0, Cmp1);
|
|
Pred = CmpInst::getSwappedPredicate(Pred);
|
|
}
|
|
if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE)
|
|
return nullptr;
|
|
|
|
// Match unsigned saturated add of 2 variables with an unnecessary 'not'.
|
|
// Strictness of the comparison is irrelevant.
|
|
Value *Y;
|
|
if (match(Cmp0, m_Not(m_Value(X))) &&
|
|
match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
|
|
// (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
|
|
// (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
|
|
return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
|
|
}
|
|
// The 'not' op may be included in the sum but not the compare.
|
|
// Strictness of the comparison is irrelevant.
|
|
X = Cmp0;
|
|
Y = Cmp1;
|
|
if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) {
|
|
// (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
|
|
// (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
|
|
BinaryOperator *BO = cast<BinaryOperator>(FVal);
|
|
return Builder.CreateBinaryIntrinsic(
|
|
Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
|
|
}
|
|
// The overflow may be detected via the add wrapping round.
|
|
// This is only valid for strict comparison!
|
|
if (Pred == ICmpInst::ICMP_ULT &&
|
|
match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) &&
|
|
match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) {
|
|
// ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y)
|
|
// ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
|
|
return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Fold the following code sequence:
|
|
/// \code
|
|
/// int a = ctlz(x & -x);
|
|
// x ? 31 - a : a;
|
|
/// \code
|
|
///
|
|
/// into:
|
|
/// cttz(x)
|
|
static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal,
|
|
Value *FalseVal,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
|
|
if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero()))
|
|
return nullptr;
|
|
|
|
if (ICI->getPredicate() == ICmpInst::ICMP_NE)
|
|
std::swap(TrueVal, FalseVal);
|
|
|
|
if (!match(FalseVal,
|
|
m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1))))
|
|
return nullptr;
|
|
|
|
if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>()))
|
|
return nullptr;
|
|
|
|
Value *X = ICI->getOperand(0);
|
|
auto *II = cast<IntrinsicInst>(TrueVal);
|
|
if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X)))))
|
|
return nullptr;
|
|
|
|
Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz,
|
|
II->getType());
|
|
return CallInst::Create(F, {X, II->getArgOperand(1)});
|
|
}
|
|
|
|
/// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
|
|
/// call to cttz/ctlz with flag 'is_zero_undef' cleared.
|
|
///
|
|
/// For example, we can fold the following code sequence:
|
|
/// \code
|
|
/// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
|
|
/// %1 = icmp ne i32 %x, 0
|
|
/// %2 = select i1 %1, i32 %0, i32 32
|
|
/// \code
|
|
///
|
|
/// into:
|
|
/// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
|
|
static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
ICmpInst::Predicate Pred = ICI->getPredicate();
|
|
Value *CmpLHS = ICI->getOperand(0);
|
|
Value *CmpRHS = ICI->getOperand(1);
|
|
|
|
// Check if the condition value compares a value for equality against zero.
|
|
if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
|
|
return nullptr;
|
|
|
|
Value *SelectArg = FalseVal;
|
|
Value *ValueOnZero = TrueVal;
|
|
if (Pred == ICmpInst::ICMP_NE)
|
|
std::swap(SelectArg, ValueOnZero);
|
|
|
|
// Skip zero extend/truncate.
|
|
Value *Count = nullptr;
|
|
if (!match(SelectArg, m_ZExt(m_Value(Count))) &&
|
|
!match(SelectArg, m_Trunc(m_Value(Count))))
|
|
Count = SelectArg;
|
|
|
|
// Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
|
|
// input to the cttz/ctlz is used as LHS for the compare instruction.
|
|
if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) &&
|
|
!match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS))))
|
|
return nullptr;
|
|
|
|
IntrinsicInst *II = cast<IntrinsicInst>(Count);
|
|
|
|
// Check if the value propagated on zero is a constant number equal to the
|
|
// sizeof in bits of 'Count'.
|
|
unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
|
|
if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
|
|
// Explicitly clear the 'undef_on_zero' flag. It's always valid to go from
|
|
// true to false on this flag, so we can replace it for all users.
|
|
II->setArgOperand(1, ConstantInt::getFalse(II->getContext()));
|
|
return SelectArg;
|
|
}
|
|
|
|
// The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional
|
|
// zext/trunc) have one use (ending at the select), the cttz/ctlz result will
|
|
// not be used if the input is zero. Relax to 'undef_on_zero' for that case.
|
|
if (II->hasOneUse() && SelectArg->hasOneUse() &&
|
|
!match(II->getArgOperand(1), m_One()))
|
|
II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Return true if we find and adjust an icmp+select pattern where the compare
|
|
/// is with a constant that can be incremented or decremented to match the
|
|
/// minimum or maximum idiom.
|
|
static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
|
|
ICmpInst::Predicate Pred = Cmp.getPredicate();
|
|
Value *CmpLHS = Cmp.getOperand(0);
|
|
Value *CmpRHS = Cmp.getOperand(1);
|
|
Value *TrueVal = Sel.getTrueValue();
|
|
Value *FalseVal = Sel.getFalseValue();
|
|
|
|
// We may move or edit the compare, so make sure the select is the only user.
|
|
const APInt *CmpC;
|
|
if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
|
|
return false;
|
|
|
|
// These transforms only work for selects of integers or vector selects of
|
|
// integer vectors.
|
|
Type *SelTy = Sel.getType();
|
|
auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
|
|
if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
|
|
return false;
|
|
|
|
Constant *AdjustedRHS;
|
|
if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
|
|
AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
|
|
else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
|
|
AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
|
|
else
|
|
return false;
|
|
|
|
// X > C ? X : C+1 --> X < C+1 ? C+1 : X
|
|
// X < C ? X : C-1 --> X > C-1 ? C-1 : X
|
|
if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
|
|
(CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
|
|
; // Nothing to do here. Values match without any sign/zero extension.
|
|
}
|
|
// Types do not match. Instead of calculating this with mixed types, promote
|
|
// all to the larger type. This enables scalar evolution to analyze this
|
|
// expression.
|
|
else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
|
|
Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
|
|
|
|
// X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
|
|
// X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
|
|
// X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
|
|
// X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
|
|
if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
|
|
CmpLHS = TrueVal;
|
|
AdjustedRHS = SextRHS;
|
|
} else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
|
|
SextRHS == TrueVal) {
|
|
CmpLHS = FalseVal;
|
|
AdjustedRHS = SextRHS;
|
|
} else if (Cmp.isUnsigned()) {
|
|
Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
|
|
// X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
|
|
// X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
|
|
// zext + signed compare cannot be changed:
|
|
// 0xff <s 0x00, but 0x00ff >s 0x0000
|
|
if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
|
|
CmpLHS = TrueVal;
|
|
AdjustedRHS = ZextRHS;
|
|
} else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
|
|
ZextRHS == TrueVal) {
|
|
CmpLHS = FalseVal;
|
|
AdjustedRHS = ZextRHS;
|
|
} else {
|
|
return false;
|
|
}
|
|
} else {
|
|
return false;
|
|
}
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
Pred = ICmpInst::getSwappedPredicate(Pred);
|
|
CmpRHS = AdjustedRHS;
|
|
std::swap(FalseVal, TrueVal);
|
|
Cmp.setPredicate(Pred);
|
|
Cmp.setOperand(0, CmpLHS);
|
|
Cmp.setOperand(1, CmpRHS);
|
|
Sel.setOperand(1, TrueVal);
|
|
Sel.setOperand(2, FalseVal);
|
|
Sel.swapProfMetadata();
|
|
|
|
// Move the compare instruction right before the select instruction. Otherwise
|
|
// the sext/zext value may be defined after the compare instruction uses it.
|
|
Cmp.moveBefore(&Sel);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// If this is an integer min/max (icmp + select) with a constant operand,
|
|
/// create the canonical icmp for the min/max operation and canonicalize the
|
|
/// constant to the 'false' operand of the select:
|
|
/// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2
|
|
/// Note: if C1 != C2, this will change the icmp constant to the existing
|
|
/// constant operand of the select.
|
|
static Instruction *canonicalizeMinMaxWithConstant(SelectInst &Sel,
|
|
ICmpInst &Cmp,
|
|
InstCombinerImpl &IC) {
|
|
if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
|
|
return nullptr;
|
|
|
|
// Canonicalize the compare predicate based on whether we have min or max.
|
|
Value *LHS, *RHS;
|
|
SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS);
|
|
if (!SelectPatternResult::isMinOrMax(SPR.Flavor))
|
|
return nullptr;
|
|
|
|
// Is this already canonical?
|
|
ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor);
|
|
if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS &&
|
|
Cmp.getPredicate() == CanonicalPred)
|
|
return nullptr;
|
|
|
|
// Bail out on unsimplified X-0 operand (due to some worklist management bug),
|
|
// as this may cause an infinite combine loop. Let the sub be folded first.
|
|
if (match(LHS, m_Sub(m_Value(), m_Zero())) ||
|
|
match(RHS, m_Sub(m_Value(), m_Zero())))
|
|
return nullptr;
|
|
|
|
// Create the canonical compare and plug it into the select.
|
|
IC.replaceOperand(Sel, 0, IC.Builder.CreateICmp(CanonicalPred, LHS, RHS));
|
|
|
|
// If the select operands did not change, we're done.
|
|
if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS)
|
|
return &Sel;
|
|
|
|
// If we are swapping the select operands, swap the metadata too.
|
|
assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS &&
|
|
"Unexpected results from matchSelectPattern");
|
|
Sel.swapValues();
|
|
Sel.swapProfMetadata();
|
|
return &Sel;
|
|
}
|
|
|
|
static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp,
|
|
InstCombinerImpl &IC) {
|
|
if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
|
|
return nullptr;
|
|
|
|
Value *LHS, *RHS;
|
|
SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
|
|
if (SPF != SelectPatternFlavor::SPF_ABS &&
|
|
SPF != SelectPatternFlavor::SPF_NABS)
|
|
return nullptr;
|
|
|
|
// Note that NSW flag can only be propagated for normal, non-negated abs!
|
|
bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS &&
|
|
match(RHS, m_NSWNeg(m_Specific(LHS)));
|
|
Constant *IntMinIsPoisonC =
|
|
ConstantInt::get(Type::getInt1Ty(Sel.getContext()), IntMinIsPoison);
|
|
Instruction *Abs =
|
|
IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC);
|
|
|
|
if (SPF == SelectPatternFlavor::SPF_NABS)
|
|
return BinaryOperator::CreateNeg(Abs); // Always without NSW flag!
|
|
|
|
return IC.replaceInstUsesWith(Sel, Abs);
|
|
}
|
|
|
|
/// If we have a select with an equality comparison, then we know the value in
|
|
/// one of the arms of the select. See if substituting this value into an arm
|
|
/// and simplifying the result yields the same value as the other arm.
|
|
///
|
|
/// To make this transform safe, we must drop poison-generating flags
|
|
/// (nsw, etc) if we simplified to a binop because the select may be guarding
|
|
/// that poison from propagating. If the existing binop already had no
|
|
/// poison-generating flags, then this transform can be done by instsimplify.
|
|
///
|
|
/// Consider:
|
|
/// %cmp = icmp eq i32 %x, 2147483647
|
|
/// %add = add nsw i32 %x, 1
|
|
/// %sel = select i1 %cmp, i32 -2147483648, i32 %add
|
|
///
|
|
/// We can't replace %sel with %add unless we strip away the flags.
|
|
/// TODO: Wrapping flags could be preserved in some cases with better analysis.
|
|
Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel,
|
|
ICmpInst &Cmp) {
|
|
// Value equivalence substitution requires an all-or-nothing replacement.
|
|
// It does not make sense for a vector compare where each lane is chosen
|
|
// independently.
|
|
if (!Cmp.isEquality() || Cmp.getType()->isVectorTy())
|
|
return nullptr;
|
|
|
|
// Canonicalize the pattern to ICMP_EQ by swapping the select operands.
|
|
Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
|
|
bool Swapped = false;
|
|
if (Cmp.getPredicate() == ICmpInst::ICMP_NE) {
|
|
std::swap(TrueVal, FalseVal);
|
|
Swapped = true;
|
|
}
|
|
|
|
// In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand.
|
|
// Make sure Y cannot be undef though, as we might pick different values for
|
|
// undef in the icmp and in f(Y). Additionally, take care to avoid replacing
|
|
// X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite
|
|
// replacement cycle.
|
|
Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1);
|
|
if (TrueVal != CmpLHS &&
|
|
isGuaranteedNotToBeUndefOrPoison(CmpRHS, SQ.AC, &Sel, &DT)) {
|
|
if (Value *V = simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ,
|
|
/* AllowRefinement */ true))
|
|
return replaceOperand(Sel, Swapped ? 2 : 1, V);
|
|
|
|
// Even if TrueVal does not simplify, we can directly replace a use of
|
|
// CmpLHS with CmpRHS, as long as the instruction is not used anywhere
|
|
// else and is safe to speculatively execute (we may end up executing it
|
|
// with different operands, which should not cause side-effects or trigger
|
|
// undefined behavior). Only do this if CmpRHS is a constant, as
|
|
// profitability is not clear for other cases.
|
|
// FIXME: The replacement could be performed recursively.
|
|
if (match(CmpRHS, m_ImmConstant()) && !match(CmpLHS, m_ImmConstant()))
|
|
if (auto *I = dyn_cast<Instruction>(TrueVal))
|
|
if (I->hasOneUse() && isSafeToSpeculativelyExecute(I))
|
|
for (Use &U : I->operands())
|
|
if (U == CmpLHS) {
|
|
replaceUse(U, CmpRHS);
|
|
return &Sel;
|
|
}
|
|
}
|
|
if (TrueVal != CmpRHS &&
|
|
isGuaranteedNotToBeUndefOrPoison(CmpLHS, SQ.AC, &Sel, &DT))
|
|
if (Value *V = simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ,
|
|
/* AllowRefinement */ true))
|
|
return replaceOperand(Sel, Swapped ? 2 : 1, V);
|
|
|
|
auto *FalseInst = dyn_cast<Instruction>(FalseVal);
|
|
if (!FalseInst)
|
|
return nullptr;
|
|
|
|
// InstSimplify already performed this fold if it was possible subject to
|
|
// current poison-generating flags. Try the transform again with
|
|
// poison-generating flags temporarily dropped.
|
|
bool WasNUW = false, WasNSW = false, WasExact = false, WasInBounds = false;
|
|
if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(FalseVal)) {
|
|
WasNUW = OBO->hasNoUnsignedWrap();
|
|
WasNSW = OBO->hasNoSignedWrap();
|
|
FalseInst->setHasNoUnsignedWrap(false);
|
|
FalseInst->setHasNoSignedWrap(false);
|
|
}
|
|
if (auto *PEO = dyn_cast<PossiblyExactOperator>(FalseVal)) {
|
|
WasExact = PEO->isExact();
|
|
FalseInst->setIsExact(false);
|
|
}
|
|
if (auto *GEP = dyn_cast<GetElementPtrInst>(FalseVal)) {
|
|
WasInBounds = GEP->isInBounds();
|
|
GEP->setIsInBounds(false);
|
|
}
|
|
|
|
// Try each equivalence substitution possibility.
|
|
// We have an 'EQ' comparison, so the select's false value will propagate.
|
|
// Example:
|
|
// (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
|
|
if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ,
|
|
/* AllowRefinement */ false) == TrueVal ||
|
|
simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ,
|
|
/* AllowRefinement */ false) == TrueVal) {
|
|
return replaceInstUsesWith(Sel, FalseVal);
|
|
}
|
|
|
|
// Restore poison-generating flags if the transform did not apply.
|
|
if (WasNUW)
|
|
FalseInst->setHasNoUnsignedWrap();
|
|
if (WasNSW)
|
|
FalseInst->setHasNoSignedWrap();
|
|
if (WasExact)
|
|
FalseInst->setIsExact();
|
|
if (WasInBounds)
|
|
cast<GetElementPtrInst>(FalseInst)->setIsInBounds();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// See if this is a pattern like:
|
|
// %old_cmp1 = icmp slt i32 %x, C2
|
|
// %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
|
|
// %old_x_offseted = add i32 %x, C1
|
|
// %old_cmp0 = icmp ult i32 %old_x_offseted, C0
|
|
// %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
|
|
// This can be rewritten as more canonical pattern:
|
|
// %new_cmp1 = icmp slt i32 %x, -C1
|
|
// %new_cmp2 = icmp sge i32 %x, C0-C1
|
|
// %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
|
|
// %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
|
|
// Iff -C1 s<= C2 s<= C0-C1
|
|
// Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
|
|
// SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
|
|
static Value *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
Value *X = Sel0.getTrueValue();
|
|
Value *Sel1 = Sel0.getFalseValue();
|
|
|
|
// First match the condition of the outermost select.
|
|
// Said condition must be one-use.
|
|
if (!Cmp0.hasOneUse())
|
|
return nullptr;
|
|
ICmpInst::Predicate Pred0 = Cmp0.getPredicate();
|
|
Value *Cmp00 = Cmp0.getOperand(0);
|
|
Constant *C0;
|
|
if (!match(Cmp0.getOperand(1),
|
|
m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))
|
|
return nullptr;
|
|
|
|
if (!isa<SelectInst>(Sel1)) {
|
|
Pred0 = ICmpInst::getInversePredicate(Pred0);
|
|
std::swap(X, Sel1);
|
|
}
|
|
|
|
// Canonicalize Cmp0 into ult or uge.
|
|
// FIXME: we shouldn't care about lanes that are 'undef' in the end?
|
|
switch (Pred0) {
|
|
case ICmpInst::Predicate::ICMP_ULT:
|
|
case ICmpInst::Predicate::ICMP_UGE:
|
|
// Although icmp ult %x, 0 is an unusual thing to try and should generally
|
|
// have been simplified, it does not verify with undef inputs so ensure we
|
|
// are not in a strange state.
|
|
if (!match(C0, m_SpecificInt_ICMP(
|
|
ICmpInst::Predicate::ICMP_NE,
|
|
APInt::getZero(C0->getType()->getScalarSizeInBits()))))
|
|
return nullptr;
|
|
break; // Great!
|
|
case ICmpInst::Predicate::ICMP_ULE:
|
|
case ICmpInst::Predicate::ICMP_UGT:
|
|
// We want to canonicalize it to 'ult' or 'uge', so we'll need to increment
|
|
// C0, which again means it must not have any all-ones elements.
|
|
if (!match(C0,
|
|
m_SpecificInt_ICMP(
|
|
ICmpInst::Predicate::ICMP_NE,
|
|
APInt::getAllOnes(C0->getType()->getScalarSizeInBits()))))
|
|
return nullptr; // Can't do, have all-ones element[s].
|
|
C0 = InstCombiner::AddOne(C0);
|
|
break;
|
|
default:
|
|
return nullptr; // Unknown predicate.
|
|
}
|
|
|
|
// Now that we've canonicalized the ICmp, we know the X we expect;
|
|
// the select in other hand should be one-use.
|
|
if (!Sel1->hasOneUse())
|
|
return nullptr;
|
|
|
|
// If the types do not match, look through any truncs to the underlying
|
|
// instruction.
|
|
if (Cmp00->getType() != X->getType() && X->hasOneUse())
|
|
match(X, m_TruncOrSelf(m_Value(X)));
|
|
|
|
// We now can finish matching the condition of the outermost select:
|
|
// it should either be the X itself, or an addition of some constant to X.
|
|
Constant *C1;
|
|
if (Cmp00 == X)
|
|
C1 = ConstantInt::getNullValue(X->getType());
|
|
else if (!match(Cmp00,
|
|
m_Add(m_Specific(X),
|
|
m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1)))))
|
|
return nullptr;
|
|
|
|
Value *Cmp1;
|
|
ICmpInst::Predicate Pred1;
|
|
Constant *C2;
|
|
Value *ReplacementLow, *ReplacementHigh;
|
|
if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow),
|
|
m_Value(ReplacementHigh))) ||
|
|
!match(Cmp1,
|
|
m_ICmp(Pred1, m_Specific(X),
|
|
m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2)))))
|
|
return nullptr;
|
|
|
|
if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse()))
|
|
return nullptr; // Not enough one-use instructions for the fold.
|
|
// FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
|
|
// two comparisons we'll need to build.
|
|
|
|
// Canonicalize Cmp1 into the form we expect.
|
|
// FIXME: we shouldn't care about lanes that are 'undef' in the end?
|
|
switch (Pred1) {
|
|
case ICmpInst::Predicate::ICMP_SLT:
|
|
break;
|
|
case ICmpInst::Predicate::ICMP_SLE:
|
|
// We'd have to increment C2 by one, and for that it must not have signed
|
|
// max element, but then it would have been canonicalized to 'slt' before
|
|
// we get here. So we can't do anything useful with 'sle'.
|
|
return nullptr;
|
|
case ICmpInst::Predicate::ICMP_SGT:
|
|
// We want to canonicalize it to 'slt', so we'll need to increment C2,
|
|
// which again means it must not have any signed max elements.
|
|
if (!match(C2,
|
|
m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
|
|
APInt::getSignedMaxValue(
|
|
C2->getType()->getScalarSizeInBits()))))
|
|
return nullptr; // Can't do, have signed max element[s].
|
|
C2 = InstCombiner::AddOne(C2);
|
|
LLVM_FALLTHROUGH;
|
|
case ICmpInst::Predicate::ICMP_SGE:
|
|
// Also non-canonical, but here we don't need to change C2,
|
|
// so we don't have any restrictions on C2, so we can just handle it.
|
|
std::swap(ReplacementLow, ReplacementHigh);
|
|
break;
|
|
default:
|
|
return nullptr; // Unknown predicate.
|
|
}
|
|
|
|
// The thresholds of this clamp-like pattern.
|
|
auto *ThresholdLowIncl = ConstantExpr::getNeg(C1);
|
|
auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1);
|
|
if (Pred0 == ICmpInst::Predicate::ICMP_UGE)
|
|
std::swap(ThresholdLowIncl, ThresholdHighExcl);
|
|
|
|
// The fold has a precondition 1: C2 s>= ThresholdLow
|
|
auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2,
|
|
ThresholdLowIncl);
|
|
if (!match(Precond1, m_One()))
|
|
return nullptr;
|
|
// The fold has a precondition 2: C2 s<= ThresholdHigh
|
|
auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2,
|
|
ThresholdHighExcl);
|
|
if (!match(Precond2, m_One()))
|
|
return nullptr;
|
|
|
|
// If we are matching from a truncated input, we need to sext the
|
|
// ReplacementLow and ReplacementHigh values. Only do the transform if they
|
|
// are free to extend due to being constants.
|
|
if (X->getType() != Sel0.getType()) {
|
|
Constant *LowC, *HighC;
|
|
if (!match(ReplacementLow, m_ImmConstant(LowC)) ||
|
|
!match(ReplacementHigh, m_ImmConstant(HighC)))
|
|
return nullptr;
|
|
ReplacementLow = ConstantExpr::getSExt(LowC, X->getType());
|
|
ReplacementHigh = ConstantExpr::getSExt(HighC, X->getType());
|
|
}
|
|
|
|
// All good, finally emit the new pattern.
|
|
Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl);
|
|
Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl);
|
|
Value *MaybeReplacedLow =
|
|
Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X);
|
|
|
|
// Create the final select. If we looked through a truncate above, we will
|
|
// need to retruncate the result.
|
|
Value *MaybeReplacedHigh = Builder.CreateSelect(
|
|
ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
|
|
return Builder.CreateTrunc(MaybeReplacedHigh, Sel0.getType());
|
|
}
|
|
|
|
// If we have
|
|
// %cmp = icmp [canonical predicate] i32 %x, C0
|
|
// %r = select i1 %cmp, i32 %y, i32 C1
|
|
// Where C0 != C1 and %x may be different from %y, see if the constant that we
|
|
// will have if we flip the strictness of the predicate (i.e. without changing
|
|
// the result) is identical to the C1 in select. If it matches we can change
|
|
// original comparison to one with swapped predicate, reuse the constant,
|
|
// and swap the hands of select.
|
|
static Instruction *
|
|
tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp,
|
|
InstCombinerImpl &IC) {
|
|
ICmpInst::Predicate Pred;
|
|
Value *X;
|
|
Constant *C0;
|
|
if (!match(&Cmp, m_OneUse(m_ICmp(
|
|
Pred, m_Value(X),
|
|
m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))))
|
|
return nullptr;
|
|
|
|
// If comparison predicate is non-relational, we won't be able to do anything.
|
|
if (ICmpInst::isEquality(Pred))
|
|
return nullptr;
|
|
|
|
// If comparison predicate is non-canonical, then we certainly won't be able
|
|
// to make it canonical; canonicalizeCmpWithConstant() already tried.
|
|
if (!InstCombiner::isCanonicalPredicate(Pred))
|
|
return nullptr;
|
|
|
|
// If the [input] type of comparison and select type are different, lets abort
|
|
// for now. We could try to compare constants with trunc/[zs]ext though.
|
|
if (C0->getType() != Sel.getType())
|
|
return nullptr;
|
|
|
|
// FIXME: are there any magic icmp predicate+constant pairs we must not touch?
|
|
|
|
Value *SelVal0, *SelVal1; // We do not care which one is from where.
|
|
match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1)));
|
|
// At least one of these values we are selecting between must be a constant
|
|
// else we'll never succeed.
|
|
if (!match(SelVal0, m_AnyIntegralConstant()) &&
|
|
!match(SelVal1, m_AnyIntegralConstant()))
|
|
return nullptr;
|
|
|
|
// Does this constant C match any of the `select` values?
|
|
auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) {
|
|
return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1);
|
|
};
|
|
|
|
// If C0 *already* matches true/false value of select, we are done.
|
|
if (MatchesSelectValue(C0))
|
|
return nullptr;
|
|
|
|
// Check the constant we'd have with flipped-strictness predicate.
|
|
auto FlippedStrictness =
|
|
InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0);
|
|
if (!FlippedStrictness)
|
|
return nullptr;
|
|
|
|
// If said constant doesn't match either, then there is no hope,
|
|
if (!MatchesSelectValue(FlippedStrictness->second))
|
|
return nullptr;
|
|
|
|
// It matched! Lets insert the new comparison just before select.
|
|
InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
|
|
IC.Builder.SetInsertPoint(&Sel);
|
|
|
|
Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped.
|
|
Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second,
|
|
Cmp.getName() + ".inv");
|
|
IC.replaceOperand(Sel, 0, NewCmp);
|
|
Sel.swapValues();
|
|
Sel.swapProfMetadata();
|
|
|
|
return &Sel;
|
|
}
|
|
|
|
/// Visit a SelectInst that has an ICmpInst as its first operand.
|
|
Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI,
|
|
ICmpInst *ICI) {
|
|
if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI))
|
|
return NewSel;
|
|
|
|
if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, *this))
|
|
return NewSel;
|
|
|
|
if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, *this))
|
|
return NewAbs;
|
|
|
|
if (Value *V = canonicalizeClampLike(SI, *ICI, Builder))
|
|
return replaceInstUsesWith(SI, V);
|
|
|
|
if (Instruction *NewSel =
|
|
tryToReuseConstantFromSelectInComparison(SI, *ICI, *this))
|
|
return NewSel;
|
|
|
|
bool Changed = adjustMinMax(SI, *ICI);
|
|
|
|
if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
|
|
return replaceInstUsesWith(SI, V);
|
|
|
|
// NOTE: if we wanted to, this is where to detect integer MIN/MAX
|
|
Value *TrueVal = SI.getTrueValue();
|
|
Value *FalseVal = SI.getFalseValue();
|
|
ICmpInst::Predicate Pred = ICI->getPredicate();
|
|
Value *CmpLHS = ICI->getOperand(0);
|
|
Value *CmpRHS = ICI->getOperand(1);
|
|
if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
|
|
if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
|
|
// Transform (X == C) ? X : Y -> (X == C) ? C : Y
|
|
SI.setOperand(1, CmpRHS);
|
|
Changed = true;
|
|
} else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
|
|
// Transform (X != C) ? Y : X -> (X != C) ? Y : C
|
|
SI.setOperand(2, CmpRHS);
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
// FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
|
|
// decomposeBitTestICmp() might help.
|
|
{
|
|
unsigned BitWidth =
|
|
DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
|
|
APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
|
|
Value *X;
|
|
const APInt *Y, *C;
|
|
bool TrueWhenUnset;
|
|
bool IsBitTest = false;
|
|
if (ICmpInst::isEquality(Pred) &&
|
|
match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
|
|
match(CmpRHS, m_Zero())) {
|
|
IsBitTest = true;
|
|
TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
|
|
} else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
|
|
X = CmpLHS;
|
|
Y = &MinSignedValue;
|
|
IsBitTest = true;
|
|
TrueWhenUnset = false;
|
|
} else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
|
|
X = CmpLHS;
|
|
Y = &MinSignedValue;
|
|
IsBitTest = true;
|
|
TrueWhenUnset = true;
|
|
}
|
|
if (IsBitTest) {
|
|
Value *V = nullptr;
|
|
// (X & Y) == 0 ? X : X ^ Y --> X & ~Y
|
|
if (TrueWhenUnset && TrueVal == X &&
|
|
match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
|
|
V = Builder.CreateAnd(X, ~(*Y));
|
|
// (X & Y) != 0 ? X ^ Y : X --> X & ~Y
|
|
else if (!TrueWhenUnset && FalseVal == X &&
|
|
match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
|
|
V = Builder.CreateAnd(X, ~(*Y));
|
|
// (X & Y) == 0 ? X ^ Y : X --> X | Y
|
|
else if (TrueWhenUnset && FalseVal == X &&
|
|
match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
|
|
V = Builder.CreateOr(X, *Y);
|
|
// (X & Y) != 0 ? X : X ^ Y --> X | Y
|
|
else if (!TrueWhenUnset && TrueVal == X &&
|
|
match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
|
|
V = Builder.CreateOr(X, *Y);
|
|
|
|
if (V)
|
|
return replaceInstUsesWith(SI, V);
|
|
}
|
|
}
|
|
|
|
if (Instruction *V =
|
|
foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
|
|
return V;
|
|
|
|
if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder))
|
|
return V;
|
|
|
|
if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
|
|
return replaceInstUsesWith(SI, V);
|
|
|
|
if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
|
|
return replaceInstUsesWith(SI, V);
|
|
|
|
if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
|
|
return replaceInstUsesWith(SI, V);
|
|
|
|
if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
|
|
return replaceInstUsesWith(SI, V);
|
|
|
|
if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
|
|
return replaceInstUsesWith(SI, V);
|
|
|
|
return Changed ? &SI : nullptr;
|
|
}
|
|
|
|
/// SI is a select whose condition is a PHI node (but the two may be in
|
|
/// different blocks). See if the true/false values (V) are live in all of the
|
|
/// predecessor blocks of the PHI. For example, cases like this can't be mapped:
|
|
///
|
|
/// X = phi [ C1, BB1], [C2, BB2]
|
|
/// Y = add
|
|
/// Z = select X, Y, 0
|
|
///
|
|
/// because Y is not live in BB1/BB2.
|
|
static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
|
|
const SelectInst &SI) {
|
|
// If the value is a non-instruction value like a constant or argument, it
|
|
// can always be mapped.
|
|
const Instruction *I = dyn_cast<Instruction>(V);
|
|
if (!I) return true;
|
|
|
|
// If V is a PHI node defined in the same block as the condition PHI, we can
|
|
// map the arguments.
|
|
const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
|
|
|
|
if (const PHINode *VP = dyn_cast<PHINode>(I))
|
|
if (VP->getParent() == CondPHI->getParent())
|
|
return true;
|
|
|
|
// Otherwise, if the PHI and select are defined in the same block and if V is
|
|
// defined in a different block, then we can transform it.
|
|
if (SI.getParent() == CondPHI->getParent() &&
|
|
I->getParent() != CondPHI->getParent())
|
|
return true;
|
|
|
|
// Otherwise we have a 'hard' case and we can't tell without doing more
|
|
// detailed dominator based analysis, punt.
|
|
return false;
|
|
}
|
|
|
|
/// We have an SPF (e.g. a min or max) of an SPF of the form:
|
|
/// SPF2(SPF1(A, B), C)
|
|
Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner,
|
|
SelectPatternFlavor SPF1, Value *A,
|
|
Value *B, Instruction &Outer,
|
|
SelectPatternFlavor SPF2,
|
|
Value *C) {
|
|
if (Outer.getType() != Inner->getType())
|
|
return nullptr;
|
|
|
|
if (C == A || C == B) {
|
|
// MAX(MAX(A, B), B) -> MAX(A, B)
|
|
// MIN(MIN(a, b), a) -> MIN(a, b)
|
|
// TODO: This could be done in instsimplify.
|
|
if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
|
|
return replaceInstUsesWith(Outer, Inner);
|
|
|
|
// MAX(MIN(a, b), a) -> a
|
|
// MIN(MAX(a, b), a) -> a
|
|
// TODO: This could be done in instsimplify.
|
|
if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
|
|
(SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
|
|
(SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
|
|
(SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
|
|
return replaceInstUsesWith(Outer, C);
|
|
}
|
|
|
|
if (SPF1 == SPF2) {
|
|
const APInt *CB, *CC;
|
|
if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
|
|
// MIN(MIN(A, 23), 97) -> MIN(A, 23)
|
|
// MAX(MAX(A, 97), 23) -> MAX(A, 97)
|
|
// TODO: This could be done in instsimplify.
|
|
if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
|
|
(SPF1 == SPF_SMIN && CB->sle(*CC)) ||
|
|
(SPF1 == SPF_UMAX && CB->uge(*CC)) ||
|
|
(SPF1 == SPF_SMAX && CB->sge(*CC)))
|
|
return replaceInstUsesWith(Outer, Inner);
|
|
|
|
// MIN(MIN(A, 97), 23) -> MIN(A, 23)
|
|
// MAX(MAX(A, 23), 97) -> MAX(A, 97)
|
|
if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
|
|
(SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
|
|
(SPF1 == SPF_UMAX && CB->ult(*CC)) ||
|
|
(SPF1 == SPF_SMAX && CB->slt(*CC))) {
|
|
Outer.replaceUsesOfWith(Inner, A);
|
|
return &Outer;
|
|
}
|
|
}
|
|
}
|
|
|
|
// max(max(A, B), min(A, B)) --> max(A, B)
|
|
// min(min(A, B), max(A, B)) --> min(A, B)
|
|
// TODO: This could be done in instsimplify.
|
|
if (SPF1 == SPF2 &&
|
|
((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) ||
|
|
(SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) ||
|
|
(SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) ||
|
|
(SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B))))))
|
|
return replaceInstUsesWith(Outer, Inner);
|
|
|
|
// ABS(ABS(X)) -> ABS(X)
|
|
// NABS(NABS(X)) -> NABS(X)
|
|
// TODO: This could be done in instsimplify.
|
|
if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
|
|
return replaceInstUsesWith(Outer, Inner);
|
|
}
|
|
|
|
// ABS(NABS(X)) -> ABS(X)
|
|
// NABS(ABS(X)) -> NABS(X)
|
|
if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
|
|
(SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
|
|
SelectInst *SI = cast<SelectInst>(Inner);
|
|
Value *NewSI =
|
|
Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(),
|
|
SI->getTrueValue(), SI->getName(), SI);
|
|
return replaceInstUsesWith(Outer, NewSI);
|
|
}
|
|
|
|
auto IsFreeOrProfitableToInvert =
|
|
[&](Value *V, Value *&NotV, bool &ElidesXor) {
|
|
if (match(V, m_Not(m_Value(NotV)))) {
|
|
// If V has at most 2 uses then we can get rid of the xor operation
|
|
// entirely.
|
|
ElidesXor |= !V->hasNUsesOrMore(3);
|
|
return true;
|
|
}
|
|
|
|
if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) {
|
|
NotV = nullptr;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
Value *NotA, *NotB, *NotC;
|
|
bool ElidesXor = false;
|
|
|
|
// MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
|
|
// MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
|
|
// MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
|
|
// MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
|
|
//
|
|
// This transform is performance neutral if we can elide at least one xor from
|
|
// the set of three operands, since we'll be tacking on an xor at the very
|
|
// end.
|
|
if (SelectPatternResult::isMinOrMax(SPF1) &&
|
|
SelectPatternResult::isMinOrMax(SPF2) &&
|
|
IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
|
|
IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
|
|
IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
|
|
if (!NotA)
|
|
NotA = Builder.CreateNot(A);
|
|
if (!NotB)
|
|
NotB = Builder.CreateNot(B);
|
|
if (!NotC)
|
|
NotC = Builder.CreateNot(C);
|
|
|
|
Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA,
|
|
NotB);
|
|
Value *NewOuter = Builder.CreateNot(
|
|
createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC));
|
|
return replaceInstUsesWith(Outer, NewOuter);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
|
|
/// This is even legal for FP.
|
|
static Instruction *foldAddSubSelect(SelectInst &SI,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
Value *CondVal = SI.getCondition();
|
|
Value *TrueVal = SI.getTrueValue();
|
|
Value *FalseVal = SI.getFalseValue();
|
|
auto *TI = dyn_cast<Instruction>(TrueVal);
|
|
auto *FI = dyn_cast<Instruction>(FalseVal);
|
|
if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
|
|
return nullptr;
|
|
|
|
Instruction *AddOp = nullptr, *SubOp = nullptr;
|
|
if ((TI->getOpcode() == Instruction::Sub &&
|
|
FI->getOpcode() == Instruction::Add) ||
|
|
(TI->getOpcode() == Instruction::FSub &&
|
|
FI->getOpcode() == Instruction::FAdd)) {
|
|
AddOp = FI;
|
|
SubOp = TI;
|
|
} else if ((FI->getOpcode() == Instruction::Sub &&
|
|
TI->getOpcode() == Instruction::Add) ||
|
|
(FI->getOpcode() == Instruction::FSub &&
|
|
TI->getOpcode() == Instruction::FAdd)) {
|
|
AddOp = TI;
|
|
SubOp = FI;
|
|
}
|
|
|
|
if (AddOp) {
|
|
Value *OtherAddOp = nullptr;
|
|
if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
|
|
OtherAddOp = AddOp->getOperand(1);
|
|
} else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
|
|
OtherAddOp = AddOp->getOperand(0);
|
|
}
|
|
|
|
if (OtherAddOp) {
|
|
// So at this point we know we have (Y -> OtherAddOp):
|
|
// select C, (add X, Y), (sub X, Z)
|
|
Value *NegVal; // Compute -Z
|
|
if (SI.getType()->isFPOrFPVectorTy()) {
|
|
NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
|
|
if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
|
|
FastMathFlags Flags = AddOp->getFastMathFlags();
|
|
Flags &= SubOp->getFastMathFlags();
|
|
NegInst->setFastMathFlags(Flags);
|
|
}
|
|
} else {
|
|
NegVal = Builder.CreateNeg(SubOp->getOperand(1));
|
|
}
|
|
|
|
Value *NewTrueOp = OtherAddOp;
|
|
Value *NewFalseOp = NegVal;
|
|
if (AddOp != TI)
|
|
std::swap(NewTrueOp, NewFalseOp);
|
|
Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
|
|
SI.getName() + ".p", &SI);
|
|
|
|
if (SI.getType()->isFPOrFPVectorTy()) {
|
|
Instruction *RI =
|
|
BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
|
|
|
|
FastMathFlags Flags = AddOp->getFastMathFlags();
|
|
Flags &= SubOp->getFastMathFlags();
|
|
RI->setFastMathFlags(Flags);
|
|
return RI;
|
|
} else
|
|
return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
|
|
/// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y
|
|
/// Along with a number of patterns similar to:
|
|
/// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
|
|
/// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
|
|
static Instruction *
|
|
foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) {
|
|
Value *CondVal = SI.getCondition();
|
|
Value *TrueVal = SI.getTrueValue();
|
|
Value *FalseVal = SI.getFalseValue();
|
|
|
|
WithOverflowInst *II;
|
|
if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) ||
|
|
!match(FalseVal, m_ExtractValue<0>(m_Specific(II))))
|
|
return nullptr;
|
|
|
|
Value *X = II->getLHS();
|
|
Value *Y = II->getRHS();
|
|
|
|
auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) {
|
|
Type *Ty = Limit->getType();
|
|
|
|
ICmpInst::Predicate Pred;
|
|
Value *TrueVal, *FalseVal, *Op;
|
|
const APInt *C;
|
|
if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)),
|
|
m_Value(TrueVal), m_Value(FalseVal))))
|
|
return false;
|
|
|
|
auto IsZeroOrOne = [](const APInt &C) { return C.isZero() || C.isOne(); };
|
|
auto IsMinMax = [&](Value *Min, Value *Max) {
|
|
APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
|
|
APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
|
|
return match(Min, m_SpecificInt(MinVal)) &&
|
|
match(Max, m_SpecificInt(MaxVal));
|
|
};
|
|
|
|
if (Op != X && Op != Y)
|
|
return false;
|
|
|
|
if (IsAdd) {
|
|
// X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
|
|
// X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
|
|
// X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
|
|
// X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
|
|
if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
|
|
IsMinMax(TrueVal, FalseVal))
|
|
return true;
|
|
// X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
|
|
// X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
|
|
// X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
|
|
// X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
|
|
if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
|
|
IsMinMax(FalseVal, TrueVal))
|
|
return true;
|
|
} else {
|
|
// X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
|
|
// X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
|
|
if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) &&
|
|
IsMinMax(TrueVal, FalseVal))
|
|
return true;
|
|
// X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
|
|
// X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
|
|
if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) &&
|
|
IsMinMax(FalseVal, TrueVal))
|
|
return true;
|
|
// X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
|
|
// X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
|
|
if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
|
|
IsMinMax(FalseVal, TrueVal))
|
|
return true;
|
|
// X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
|
|
// X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
|
|
if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
|
|
IsMinMax(TrueVal, FalseVal))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
Intrinsic::ID NewIntrinsicID;
|
|
if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
|
|
match(TrueVal, m_AllOnes()))
|
|
// X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
|
|
NewIntrinsicID = Intrinsic::uadd_sat;
|
|
else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
|
|
match(TrueVal, m_Zero()))
|
|
// X - Y overflows ? 0 : X - Y -> usub_sat X, Y
|
|
NewIntrinsicID = Intrinsic::usub_sat;
|
|
else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
|
|
IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true))
|
|
// X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
|
|
// X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
|
|
// X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
|
|
// X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
|
|
// X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
|
|
// X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
|
|
// X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
|
|
// X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
|
|
NewIntrinsicID = Intrinsic::sadd_sat;
|
|
else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
|
|
IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false))
|
|
// X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
|
|
// X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
|
|
// X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
|
|
// X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
|
|
// X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
|
|
// X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
|
|
// X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
|
|
// X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
|
|
NewIntrinsicID = Intrinsic::ssub_sat;
|
|
else
|
|
return nullptr;
|
|
|
|
Function *F =
|
|
Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType());
|
|
return CallInst::Create(F, {X, Y});
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) {
|
|
Constant *C;
|
|
if (!match(Sel.getTrueValue(), m_Constant(C)) &&
|
|
!match(Sel.getFalseValue(), m_Constant(C)))
|
|
return nullptr;
|
|
|
|
Instruction *ExtInst;
|
|
if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
|
|
!match(Sel.getFalseValue(), m_Instruction(ExtInst)))
|
|
return nullptr;
|
|
|
|
auto ExtOpcode = ExtInst->getOpcode();
|
|
if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
|
|
return nullptr;
|
|
|
|
// If we are extending from a boolean type or if we can create a select that
|
|
// has the same size operands as its condition, try to narrow the select.
|
|
Value *X = ExtInst->getOperand(0);
|
|
Type *SmallType = X->getType();
|
|
Value *Cond = Sel.getCondition();
|
|
auto *Cmp = dyn_cast<CmpInst>(Cond);
|
|
if (!SmallType->isIntOrIntVectorTy(1) &&
|
|
(!Cmp || Cmp->getOperand(0)->getType() != SmallType))
|
|
return nullptr;
|
|
|
|
// If the constant is the same after truncation to the smaller type and
|
|
// extension to the original type, we can narrow the select.
|
|
Type *SelType = Sel.getType();
|
|
Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
|
|
Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
|
|
if (ExtC == C && ExtInst->hasOneUse()) {
|
|
Value *TruncCVal = cast<Value>(TruncC);
|
|
if (ExtInst == Sel.getFalseValue())
|
|
std::swap(X, TruncCVal);
|
|
|
|
// select Cond, (ext X), C --> ext(select Cond, X, C')
|
|
// select Cond, C, (ext X) --> ext(select Cond, C', X)
|
|
Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
|
|
return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
|
|
}
|
|
|
|
// If one arm of the select is the extend of the condition, replace that arm
|
|
// with the extension of the appropriate known bool value.
|
|
if (Cond == X) {
|
|
if (ExtInst == Sel.getTrueValue()) {
|
|
// select X, (sext X), C --> select X, -1, C
|
|
// select X, (zext X), C --> select X, 1, C
|
|
Constant *One = ConstantInt::getTrue(SmallType);
|
|
Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
|
|
return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
|
|
} else {
|
|
// select X, C, (sext X) --> select X, C, 0
|
|
// select X, C, (zext X) --> select X, C, 0
|
|
Constant *Zero = ConstantInt::getNullValue(SelType);
|
|
return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Try to transform a vector select with a constant condition vector into a
|
|
/// shuffle for easier combining with other shuffles and insert/extract.
|
|
static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
|
|
Value *CondVal = SI.getCondition();
|
|
Constant *CondC;
|
|
auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType());
|
|
if (!CondValTy || !match(CondVal, m_Constant(CondC)))
|
|
return nullptr;
|
|
|
|
unsigned NumElts = CondValTy->getNumElements();
|
|
SmallVector<int, 16> Mask;
|
|
Mask.reserve(NumElts);
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
Constant *Elt = CondC->getAggregateElement(i);
|
|
if (!Elt)
|
|
return nullptr;
|
|
|
|
if (Elt->isOneValue()) {
|
|
// If the select condition element is true, choose from the 1st vector.
|
|
Mask.push_back(i);
|
|
} else if (Elt->isNullValue()) {
|
|
// If the select condition element is false, choose from the 2nd vector.
|
|
Mask.push_back(i + NumElts);
|
|
} else if (isa<UndefValue>(Elt)) {
|
|
// Undef in a select condition (choose one of the operands) does not mean
|
|
// the same thing as undef in a shuffle mask (any value is acceptable), so
|
|
// give up.
|
|
return nullptr;
|
|
} else {
|
|
// Bail out on a constant expression.
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask);
|
|
}
|
|
|
|
/// If we have a select of vectors with a scalar condition, try to convert that
|
|
/// to a vector select by splatting the condition. A splat may get folded with
|
|
/// other operations in IR and having all operands of a select be vector types
|
|
/// is likely better for vector codegen.
|
|
static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel,
|
|
InstCombinerImpl &IC) {
|
|
auto *Ty = dyn_cast<VectorType>(Sel.getType());
|
|
if (!Ty)
|
|
return nullptr;
|
|
|
|
// We can replace a single-use extract with constant index.
|
|
Value *Cond = Sel.getCondition();
|
|
if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt()))))
|
|
return nullptr;
|
|
|
|
// select (extelt V, Index), T, F --> select (splat V, Index), T, F
|
|
// Splatting the extracted condition reduces code (we could directly create a
|
|
// splat shuffle of the source vector to eliminate the intermediate step).
|
|
return IC.replaceOperand(
|
|
Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond));
|
|
}
|
|
|
|
/// Reuse bitcasted operands between a compare and select:
|
|
/// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
|
|
/// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
|
|
static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
Value *Cond = Sel.getCondition();
|
|
Value *TVal = Sel.getTrueValue();
|
|
Value *FVal = Sel.getFalseValue();
|
|
|
|
CmpInst::Predicate Pred;
|
|
Value *A, *B;
|
|
if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
|
|
return nullptr;
|
|
|
|
// The select condition is a compare instruction. If the select's true/false
|
|
// values are already the same as the compare operands, there's nothing to do.
|
|
if (TVal == A || TVal == B || FVal == A || FVal == B)
|
|
return nullptr;
|
|
|
|
Value *C, *D;
|
|
if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
|
|
return nullptr;
|
|
|
|
// select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
|
|
Value *TSrc, *FSrc;
|
|
if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
|
|
!match(FVal, m_BitCast(m_Value(FSrc))))
|
|
return nullptr;
|
|
|
|
// If the select true/false values are *different bitcasts* of the same source
|
|
// operands, make the select operands the same as the compare operands and
|
|
// cast the result. This is the canonical select form for min/max.
|
|
Value *NewSel;
|
|
if (TSrc == C && FSrc == D) {
|
|
// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
|
|
// bitcast (select (cmp A, B), A, B)
|
|
NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
|
|
} else if (TSrc == D && FSrc == C) {
|
|
// select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
|
|
// bitcast (select (cmp A, B), B, A)
|
|
NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
|
|
}
|
|
|
|
/// Try to eliminate select instructions that test the returned flag of cmpxchg
|
|
/// instructions.
|
|
///
|
|
/// If a select instruction tests the returned flag of a cmpxchg instruction and
|
|
/// selects between the returned value of the cmpxchg instruction its compare
|
|
/// operand, the result of the select will always be equal to its false value.
|
|
/// For example:
|
|
///
|
|
/// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
|
|
/// %1 = extractvalue { i64, i1 } %0, 1
|
|
/// %2 = extractvalue { i64, i1 } %0, 0
|
|
/// %3 = select i1 %1, i64 %compare, i64 %2
|
|
/// ret i64 %3
|
|
///
|
|
/// The returned value of the cmpxchg instruction (%2) is the original value
|
|
/// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
|
|
/// must have been equal to %compare. Thus, the result of the select is always
|
|
/// equal to %2, and the code can be simplified to:
|
|
///
|
|
/// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
|
|
/// %1 = extractvalue { i64, i1 } %0, 0
|
|
/// ret i64 %1
|
|
///
|
|
static Value *foldSelectCmpXchg(SelectInst &SI) {
|
|
// A helper that determines if V is an extractvalue instruction whose
|
|
// aggregate operand is a cmpxchg instruction and whose single index is equal
|
|
// to I. If such conditions are true, the helper returns the cmpxchg
|
|
// instruction; otherwise, a nullptr is returned.
|
|
auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
|
|
auto *Extract = dyn_cast<ExtractValueInst>(V);
|
|
if (!Extract)
|
|
return nullptr;
|
|
if (Extract->getIndices()[0] != I)
|
|
return nullptr;
|
|
return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
|
|
};
|
|
|
|
// If the select has a single user, and this user is a select instruction that
|
|
// we can simplify, skip the cmpxchg simplification for now.
|
|
if (SI.hasOneUse())
|
|
if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
|
|
if (Select->getCondition() == SI.getCondition())
|
|
if (Select->getFalseValue() == SI.getTrueValue() ||
|
|
Select->getTrueValue() == SI.getFalseValue())
|
|
return nullptr;
|
|
|
|
// Ensure the select condition is the returned flag of a cmpxchg instruction.
|
|
auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
|
|
if (!CmpXchg)
|
|
return nullptr;
|
|
|
|
// Check the true value case: The true value of the select is the returned
|
|
// value of the same cmpxchg used by the condition, and the false value is the
|
|
// cmpxchg instruction's compare operand.
|
|
if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
|
|
if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue())
|
|
return SI.getFalseValue();
|
|
|
|
// Check the false value case: The false value of the select is the returned
|
|
// value of the same cmpxchg used by the condition, and the true value is the
|
|
// cmpxchg instruction's compare operand.
|
|
if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
|
|
if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue())
|
|
return SI.getFalseValue();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X,
|
|
Value *Y,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern");
|
|
bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN ||
|
|
SPF == SelectPatternFlavor::SPF_UMAX;
|
|
// TODO: If InstSimplify could fold all cases where C2 <= C1, we could change
|
|
// the constant value check to an assert.
|
|
Value *A;
|
|
const APInt *C1, *C2;
|
|
if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) &&
|
|
match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) {
|
|
// umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1
|
|
// umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1
|
|
Value *NewMinMax = createMinMax(Builder, SPF, A,
|
|
ConstantInt::get(X->getType(), *C2 - *C1));
|
|
return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax,
|
|
ConstantInt::get(X->getType(), *C1));
|
|
}
|
|
|
|
if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) &&
|
|
match(Y, m_APInt(C2)) && X->hasNUses(2)) {
|
|
bool Overflow;
|
|
APInt Diff = C2->ssub_ov(*C1, Overflow);
|
|
if (!Overflow) {
|
|
// smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1
|
|
// smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1
|
|
Value *NewMinMax = createMinMax(Builder, SPF, A,
|
|
ConstantInt::get(X->getType(), Diff));
|
|
return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax,
|
|
ConstantInt::get(X->getType(), *C1));
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Match a sadd_sat or ssub_sat which is using min/max to clamp the value.
|
|
Instruction *InstCombinerImpl::matchSAddSubSat(Instruction &MinMax1) {
|
|
Type *Ty = MinMax1.getType();
|
|
|
|
// We are looking for a tree of:
|
|
// max(INT_MIN, min(INT_MAX, add(sext(A), sext(B))))
|
|
// Where the min and max could be reversed
|
|
Instruction *MinMax2;
|
|
BinaryOperator *AddSub;
|
|
const APInt *MinValue, *MaxValue;
|
|
if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) {
|
|
if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue))))
|
|
return nullptr;
|
|
} else if (match(&MinMax1,
|
|
m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) {
|
|
if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue))))
|
|
return nullptr;
|
|
} else
|
|
return nullptr;
|
|
|
|
// Check that the constants clamp a saturate, and that the new type would be
|
|
// sensible to convert to.
|
|
if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
|
|
return nullptr;
|
|
// In what bitwidth can this be treated as saturating arithmetics?
|
|
unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
|
|
// FIXME: This isn't quite right for vectors, but using the scalar type is a
|
|
// good first approximation for what should be done there.
|
|
if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth))
|
|
return nullptr;
|
|
|
|
// Also make sure that the number of uses is as expected. The 3 is for the
|
|
// the two items of the compare and the select, or 2 from a min/max.
|
|
unsigned ExpUses = isa<IntrinsicInst>(MinMax1) ? 2 : 3;
|
|
if (MinMax2->hasNUsesOrMore(ExpUses) || AddSub->hasNUsesOrMore(ExpUses))
|
|
return nullptr;
|
|
|
|
// Create the new type (which can be a vector type)
|
|
Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth);
|
|
|
|
Intrinsic::ID IntrinsicID;
|
|
if (AddSub->getOpcode() == Instruction::Add)
|
|
IntrinsicID = Intrinsic::sadd_sat;
|
|
else if (AddSub->getOpcode() == Instruction::Sub)
|
|
IntrinsicID = Intrinsic::ssub_sat;
|
|
else
|
|
return nullptr;
|
|
|
|
// The two operands of the add/sub must be nsw-truncatable to the NewTy. This
|
|
// is usually achieved via a sext from a smaller type.
|
|
if (ComputeMinSignedBits(AddSub->getOperand(0), 0, AddSub) > NewBitWidth ||
|
|
ComputeMinSignedBits(AddSub->getOperand(1), 0, AddSub) > NewBitWidth)
|
|
return nullptr;
|
|
|
|
// Finally create and return the sat intrinsic, truncated to the new type
|
|
Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy);
|
|
Value *AT = Builder.CreateTrunc(AddSub->getOperand(0), NewTy);
|
|
Value *BT = Builder.CreateTrunc(AddSub->getOperand(1), NewTy);
|
|
Value *Sat = Builder.CreateCall(F, {AT, BT});
|
|
return CastInst::Create(Instruction::SExt, Sat, Ty);
|
|
}
|
|
|
|
/// Reduce a sequence of min/max with a common operand.
|
|
static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS,
|
|
Value *RHS,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max");
|
|
// TODO: Allow FP min/max with nnan/nsz.
|
|
if (!LHS->getType()->isIntOrIntVectorTy())
|
|
return nullptr;
|
|
|
|
// Match 3 of the same min/max ops. Example: umin(umin(), umin()).
|
|
Value *A, *B, *C, *D;
|
|
SelectPatternResult L = matchSelectPattern(LHS, A, B);
|
|
SelectPatternResult R = matchSelectPattern(RHS, C, D);
|
|
if (SPF != L.Flavor || L.Flavor != R.Flavor)
|
|
return nullptr;
|
|
|
|
// Look for a common operand. The use checks are different than usual because
|
|
// a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by
|
|
// the select.
|
|
Value *MinMaxOp = nullptr;
|
|
Value *ThirdOp = nullptr;
|
|
if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) {
|
|
// If the LHS is only used in this chain and the RHS is used outside of it,
|
|
// reuse the RHS min/max because that will eliminate the LHS.
|
|
if (D == A || C == A) {
|
|
// min(min(a, b), min(c, a)) --> min(min(c, a), b)
|
|
// min(min(a, b), min(a, d)) --> min(min(a, d), b)
|
|
MinMaxOp = RHS;
|
|
ThirdOp = B;
|
|
} else if (D == B || C == B) {
|
|
// min(min(a, b), min(c, b)) --> min(min(c, b), a)
|
|
// min(min(a, b), min(b, d)) --> min(min(b, d), a)
|
|
MinMaxOp = RHS;
|
|
ThirdOp = A;
|
|
}
|
|
} else if (!RHS->hasNUsesOrMore(3)) {
|
|
// Reuse the LHS. This will eliminate the RHS.
|
|
if (D == A || D == B) {
|
|
// min(min(a, b), min(c, a)) --> min(min(a, b), c)
|
|
// min(min(a, b), min(c, b)) --> min(min(a, b), c)
|
|
MinMaxOp = LHS;
|
|
ThirdOp = C;
|
|
} else if (C == A || C == B) {
|
|
// min(min(a, b), min(b, d)) --> min(min(a, b), d)
|
|
// min(min(a, b), min(c, b)) --> min(min(a, b), d)
|
|
MinMaxOp = LHS;
|
|
ThirdOp = D;
|
|
}
|
|
}
|
|
if (!MinMaxOp || !ThirdOp)
|
|
return nullptr;
|
|
|
|
CmpInst::Predicate P = getMinMaxPred(SPF);
|
|
Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp);
|
|
return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp);
|
|
}
|
|
|
|
/// Try to reduce a funnel/rotate pattern that includes a compare and select
|
|
/// into a funnel shift intrinsic. Example:
|
|
/// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
|
|
/// --> call llvm.fshl.i32(a, a, b)
|
|
/// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c)))
|
|
/// --> call llvm.fshl.i32(a, b, c)
|
|
/// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c)))
|
|
/// --> call llvm.fshr.i32(a, b, c)
|
|
static Instruction *foldSelectFunnelShift(SelectInst &Sel,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
// This must be a power-of-2 type for a bitmasking transform to be valid.
|
|
unsigned Width = Sel.getType()->getScalarSizeInBits();
|
|
if (!isPowerOf2_32(Width))
|
|
return nullptr;
|
|
|
|
BinaryOperator *Or0, *Or1;
|
|
if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
|
|
return nullptr;
|
|
|
|
Value *SV0, *SV1, *SA0, *SA1;
|
|
if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0),
|
|
m_ZExtOrSelf(m_Value(SA0))))) ||
|
|
!match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1),
|
|
m_ZExtOrSelf(m_Value(SA1))))) ||
|
|
Or0->getOpcode() == Or1->getOpcode())
|
|
return nullptr;
|
|
|
|
// Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)).
|
|
if (Or0->getOpcode() == BinaryOperator::LShr) {
|
|
std::swap(Or0, Or1);
|
|
std::swap(SV0, SV1);
|
|
std::swap(SA0, SA1);
|
|
}
|
|
assert(Or0->getOpcode() == BinaryOperator::Shl &&
|
|
Or1->getOpcode() == BinaryOperator::LShr &&
|
|
"Illegal or(shift,shift) pair");
|
|
|
|
// Check the shift amounts to see if they are an opposite pair.
|
|
Value *ShAmt;
|
|
if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
|
|
ShAmt = SA0;
|
|
else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
|
|
ShAmt = SA1;
|
|
else
|
|
return nullptr;
|
|
|
|
// We should now have this pattern:
|
|
// select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1))
|
|
// The false value of the select must be a funnel-shift of the true value:
|
|
// IsFShl -> TVal must be SV0 else TVal must be SV1.
|
|
bool IsFshl = (ShAmt == SA0);
|
|
Value *TVal = Sel.getTrueValue();
|
|
if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1))
|
|
return nullptr;
|
|
|
|
// Finally, see if the select is filtering out a shift-by-zero.
|
|
Value *Cond = Sel.getCondition();
|
|
ICmpInst::Predicate Pred;
|
|
if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
|
|
Pred != ICmpInst::ICMP_EQ)
|
|
return nullptr;
|
|
|
|
// If this is not a rotate then the select was blocking poison from the
|
|
// 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it.
|
|
if (SV0 != SV1) {
|
|
if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1))
|
|
SV1 = Builder.CreateFreeze(SV1);
|
|
else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0))
|
|
SV0 = Builder.CreateFreeze(SV0);
|
|
}
|
|
|
|
// This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way.
|
|
// Convert to funnel shift intrinsic.
|
|
Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
|
|
Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
|
|
ShAmt = Builder.CreateZExt(ShAmt, Sel.getType());
|
|
return CallInst::Create(F, { SV0, SV1, ShAmt });
|
|
}
|
|
|
|
static Instruction *foldSelectToCopysign(SelectInst &Sel,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
Value *Cond = Sel.getCondition();
|
|
Value *TVal = Sel.getTrueValue();
|
|
Value *FVal = Sel.getFalseValue();
|
|
Type *SelType = Sel.getType();
|
|
|
|
// Match select ?, TC, FC where the constants are equal but negated.
|
|
// TODO: Generalize to handle a negated variable operand?
|
|
const APFloat *TC, *FC;
|
|
if (!match(TVal, m_APFloat(TC)) || !match(FVal, m_APFloat(FC)) ||
|
|
!abs(*TC).bitwiseIsEqual(abs(*FC)))
|
|
return nullptr;
|
|
|
|
assert(TC != FC && "Expected equal select arms to simplify");
|
|
|
|
Value *X;
|
|
const APInt *C;
|
|
bool IsTrueIfSignSet;
|
|
ICmpInst::Predicate Pred;
|
|
if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) ||
|
|
!InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) ||
|
|
X->getType() != SelType)
|
|
return nullptr;
|
|
|
|
// If needed, negate the value that will be the sign argument of the copysign:
|
|
// (bitcast X) < 0 ? -TC : TC --> copysign(TC, X)
|
|
// (bitcast X) < 0 ? TC : -TC --> copysign(TC, -X)
|
|
// (bitcast X) >= 0 ? -TC : TC --> copysign(TC, -X)
|
|
// (bitcast X) >= 0 ? TC : -TC --> copysign(TC, X)
|
|
if (IsTrueIfSignSet ^ TC->isNegative())
|
|
X = Builder.CreateFNegFMF(X, &Sel);
|
|
|
|
// Canonicalize the magnitude argument as the positive constant since we do
|
|
// not care about its sign.
|
|
Value *MagArg = TC->isNegative() ? FVal : TVal;
|
|
Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign,
|
|
Sel.getType());
|
|
Instruction *CopySign = CallInst::Create(F, { MagArg, X });
|
|
CopySign->setFastMathFlags(Sel.getFastMathFlags());
|
|
return CopySign;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) {
|
|
auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType());
|
|
if (!VecTy)
|
|
return nullptr;
|
|
|
|
unsigned NumElts = VecTy->getNumElements();
|
|
APInt UndefElts(NumElts, 0);
|
|
APInt AllOnesEltMask(APInt::getAllOnes(NumElts));
|
|
if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) {
|
|
if (V != &Sel)
|
|
return replaceInstUsesWith(Sel, V);
|
|
return &Sel;
|
|
}
|
|
|
|
// A select of a "select shuffle" with a common operand can be rearranged
|
|
// to select followed by "select shuffle". Because of poison, this only works
|
|
// in the case of a shuffle with no undefined mask elements.
|
|
Value *Cond = Sel.getCondition();
|
|
Value *TVal = Sel.getTrueValue();
|
|
Value *FVal = Sel.getFalseValue();
|
|
Value *X, *Y;
|
|
ArrayRef<int> Mask;
|
|
if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
|
|
!is_contained(Mask, UndefMaskElem) &&
|
|
cast<ShuffleVectorInst>(TVal)->isSelect()) {
|
|
if (X == FVal) {
|
|
// select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X)
|
|
Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
|
|
return new ShuffleVectorInst(X, NewSel, Mask);
|
|
}
|
|
if (Y == FVal) {
|
|
// select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y
|
|
Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
|
|
return new ShuffleVectorInst(NewSel, Y, Mask);
|
|
}
|
|
}
|
|
if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
|
|
!is_contained(Mask, UndefMaskElem) &&
|
|
cast<ShuffleVectorInst>(FVal)->isSelect()) {
|
|
if (X == TVal) {
|
|
// select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y)
|
|
Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
|
|
return new ShuffleVectorInst(X, NewSel, Mask);
|
|
}
|
|
if (Y == TVal) {
|
|
// select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y
|
|
Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
|
|
return new ShuffleVectorInst(NewSel, Y, Mask);
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB,
|
|
const DominatorTree &DT,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
// Find the block's immediate dominator that ends with a conditional branch
|
|
// that matches select's condition (maybe inverted).
|
|
auto *IDomNode = DT[BB]->getIDom();
|
|
if (!IDomNode)
|
|
return nullptr;
|
|
BasicBlock *IDom = IDomNode->getBlock();
|
|
|
|
Value *Cond = Sel.getCondition();
|
|
Value *IfTrue, *IfFalse;
|
|
BasicBlock *TrueSucc, *FalseSucc;
|
|
if (match(IDom->getTerminator(),
|
|
m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc),
|
|
m_BasicBlock(FalseSucc)))) {
|
|
IfTrue = Sel.getTrueValue();
|
|
IfFalse = Sel.getFalseValue();
|
|
} else if (match(IDom->getTerminator(),
|
|
m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc),
|
|
m_BasicBlock(FalseSucc)))) {
|
|
IfTrue = Sel.getFalseValue();
|
|
IfFalse = Sel.getTrueValue();
|
|
} else
|
|
return nullptr;
|
|
|
|
// Make sure the branches are actually different.
|
|
if (TrueSucc == FalseSucc)
|
|
return nullptr;
|
|
|
|
// We want to replace select %cond, %a, %b with a phi that takes value %a
|
|
// for all incoming edges that are dominated by condition `%cond == true`,
|
|
// and value %b for edges dominated by condition `%cond == false`. If %a
|
|
// or %b are also phis from the same basic block, we can go further and take
|
|
// their incoming values from the corresponding blocks.
|
|
BasicBlockEdge TrueEdge(IDom, TrueSucc);
|
|
BasicBlockEdge FalseEdge(IDom, FalseSucc);
|
|
DenseMap<BasicBlock *, Value *> Inputs;
|
|
for (auto *Pred : predecessors(BB)) {
|
|
// Check implication.
|
|
BasicBlockEdge Incoming(Pred, BB);
|
|
if (DT.dominates(TrueEdge, Incoming))
|
|
Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred);
|
|
else if (DT.dominates(FalseEdge, Incoming))
|
|
Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred);
|
|
else
|
|
return nullptr;
|
|
// Check availability.
|
|
if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred]))
|
|
if (!DT.dominates(Insn, Pred->getTerminator()))
|
|
return nullptr;
|
|
}
|
|
|
|
Builder.SetInsertPoint(&*BB->begin());
|
|
auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size());
|
|
for (auto *Pred : predecessors(BB))
|
|
PN->addIncoming(Inputs[Pred], Pred);
|
|
PN->takeName(&Sel);
|
|
return PN;
|
|
}
|
|
|
|
static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
// Try to replace this select with Phi in one of these blocks.
|
|
SmallSetVector<BasicBlock *, 4> CandidateBlocks;
|
|
CandidateBlocks.insert(Sel.getParent());
|
|
for (Value *V : Sel.operands())
|
|
if (auto *I = dyn_cast<Instruction>(V))
|
|
CandidateBlocks.insert(I->getParent());
|
|
|
|
for (BasicBlock *BB : CandidateBlocks)
|
|
if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder))
|
|
return PN;
|
|
return nullptr;
|
|
}
|
|
|
|
static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) {
|
|
FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition());
|
|
if (!FI)
|
|
return nullptr;
|
|
|
|
Value *Cond = FI->getOperand(0);
|
|
Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
|
|
|
|
// select (freeze(x == y)), x, y --> y
|
|
// select (freeze(x != y)), x, y --> x
|
|
// The freeze should be only used by this select. Otherwise, remaining uses of
|
|
// the freeze can observe a contradictory value.
|
|
// c = freeze(x == y) ; Let's assume that y = poison & x = 42; c is 0 or 1
|
|
// a = select c, x, y ;
|
|
// f(a, c) ; f(poison, 1) cannot happen, but if a is folded
|
|
// ; to y, this can happen.
|
|
CmpInst::Predicate Pred;
|
|
if (FI->hasOneUse() &&
|
|
match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) &&
|
|
(Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) {
|
|
return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::foldAndOrOfSelectUsingImpliedCond(Value *Op,
|
|
SelectInst &SI,
|
|
bool IsAnd) {
|
|
Value *CondVal = SI.getCondition();
|
|
Value *A = SI.getTrueValue();
|
|
Value *B = SI.getFalseValue();
|
|
|
|
assert(Op->getType()->isIntOrIntVectorTy(1) &&
|
|
"Op must be either i1 or vector of i1.");
|
|
|
|
Optional<bool> Res = isImpliedCondition(Op, CondVal, DL, IsAnd);
|
|
if (!Res)
|
|
return nullptr;
|
|
|
|
Value *Zero = Constant::getNullValue(A->getType());
|
|
Value *One = Constant::getAllOnesValue(A->getType());
|
|
|
|
if (*Res == true) {
|
|
if (IsAnd)
|
|
// select op, (select cond, A, B), false => select op, A, false
|
|
// and op, (select cond, A, B) => select op, A, false
|
|
// if op = true implies condval = true.
|
|
return SelectInst::Create(Op, A, Zero);
|
|
else
|
|
// select op, true, (select cond, A, B) => select op, true, A
|
|
// or op, (select cond, A, B) => select op, true, A
|
|
// if op = false implies condval = true.
|
|
return SelectInst::Create(Op, One, A);
|
|
} else {
|
|
if (IsAnd)
|
|
// select op, (select cond, A, B), false => select op, B, false
|
|
// and op, (select cond, A, B) => select op, B, false
|
|
// if op = true implies condval = false.
|
|
return SelectInst::Create(Op, B, Zero);
|
|
else
|
|
// select op, true, (select cond, A, B) => select op, true, B
|
|
// or op, (select cond, A, B) => select op, true, B
|
|
// if op = false implies condval = false.
|
|
return SelectInst::Create(Op, One, B);
|
|
}
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) {
|
|
Value *CondVal = SI.getCondition();
|
|
Value *TrueVal = SI.getTrueValue();
|
|
Value *FalseVal = SI.getFalseValue();
|
|
Type *SelType = SI.getType();
|
|
|
|
// FIXME: Remove this workaround when freeze related patches are done.
|
|
// For select with undef operand which feeds into an equality comparison,
|
|
// don't simplify it so loop unswitch can know the equality comparison
|
|
// may have an undef operand. This is a workaround for PR31652 caused by
|
|
// descrepancy about branch on undef between LoopUnswitch and GVN.
|
|
if (match(TrueVal, m_Undef()) || match(FalseVal, m_Undef())) {
|
|
if (llvm::any_of(SI.users(), [&](User *U) {
|
|
ICmpInst *CI = dyn_cast<ICmpInst>(U);
|
|
if (CI && CI->isEquality())
|
|
return true;
|
|
return false;
|
|
})) {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
|
|
SQ.getWithInstruction(&SI)))
|
|
return replaceInstUsesWith(SI, V);
|
|
|
|
if (Instruction *I = canonicalizeSelectToShuffle(SI))
|
|
return I;
|
|
|
|
if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this))
|
|
return I;
|
|
|
|
CmpInst::Predicate Pred;
|
|
|
|
// Avoid potential infinite loops by checking for non-constant condition.
|
|
// TODO: Can we assert instead by improving canonicalizeSelectToShuffle()?
|
|
// Scalar select must have simplified?
|
|
if (SelType->isIntOrIntVectorTy(1) && !isa<Constant>(CondVal) &&
|
|
TrueVal->getType() == CondVal->getType()) {
|
|
// Folding select to and/or i1 isn't poison safe in general. impliesPoison
|
|
// checks whether folding it does not convert a well-defined value into
|
|
// poison.
|
|
if (match(TrueVal, m_One()) && impliesPoison(FalseVal, CondVal)) {
|
|
// Change: A = select B, true, C --> A = or B, C
|
|
return BinaryOperator::CreateOr(CondVal, FalseVal);
|
|
}
|
|
if (match(FalseVal, m_Zero()) && impliesPoison(TrueVal, CondVal)) {
|
|
// Change: A = select B, C, false --> A = and B, C
|
|
return BinaryOperator::CreateAnd(CondVal, TrueVal);
|
|
}
|
|
|
|
auto *One = ConstantInt::getTrue(SelType);
|
|
auto *Zero = ConstantInt::getFalse(SelType);
|
|
|
|
// We match the "full" 0 or 1 constant here to avoid a potential infinite
|
|
// loop with vectors that may have undefined/poison elements.
|
|
// select a, false, b -> select !a, b, false
|
|
if (match(TrueVal, m_Specific(Zero))) {
|
|
Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
|
|
return SelectInst::Create(NotCond, FalseVal, Zero);
|
|
}
|
|
// select a, b, true -> select !a, true, b
|
|
if (match(FalseVal, m_Specific(One))) {
|
|
Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
|
|
return SelectInst::Create(NotCond, One, TrueVal);
|
|
}
|
|
|
|
// select a, a, b -> select a, true, b
|
|
if (CondVal == TrueVal)
|
|
return replaceOperand(SI, 1, One);
|
|
// select a, b, a -> select a, b, false
|
|
if (CondVal == FalseVal)
|
|
return replaceOperand(SI, 2, Zero);
|
|
|
|
// select a, !a, b -> select !a, b, false
|
|
if (match(TrueVal, m_Not(m_Specific(CondVal))))
|
|
return SelectInst::Create(TrueVal, FalseVal, Zero);
|
|
// select a, b, !a -> select !a, true, b
|
|
if (match(FalseVal, m_Not(m_Specific(CondVal))))
|
|
return SelectInst::Create(FalseVal, One, TrueVal);
|
|
|
|
Value *A, *B;
|
|
|
|
// DeMorgan in select form: !a && !b --> !(a || b)
|
|
// select !a, !b, false --> not (select a, true, b)
|
|
if (match(&SI, m_LogicalAnd(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
|
|
(CondVal->hasOneUse() || TrueVal->hasOneUse()) &&
|
|
!match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
|
|
return BinaryOperator::CreateNot(Builder.CreateSelect(A, One, B));
|
|
|
|
// DeMorgan in select form: !a || !b --> !(a && b)
|
|
// select !a, true, !b --> not (select a, b, false)
|
|
if (match(&SI, m_LogicalOr(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
|
|
(CondVal->hasOneUse() || FalseVal->hasOneUse()) &&
|
|
!match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
|
|
return BinaryOperator::CreateNot(Builder.CreateSelect(A, B, Zero));
|
|
|
|
// select (select a, true, b), true, b -> select a, true, b
|
|
if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
|
|
match(TrueVal, m_One()) && match(FalseVal, m_Specific(B)))
|
|
return replaceOperand(SI, 0, A);
|
|
// select (select a, b, false), b, false -> select a, b, false
|
|
if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) &&
|
|
match(TrueVal, m_Specific(B)) && match(FalseVal, m_Zero()))
|
|
return replaceOperand(SI, 0, A);
|
|
|
|
if (!SelType->isVectorTy()) {
|
|
if (Value *S = simplifyWithOpReplaced(TrueVal, CondVal, One, SQ,
|
|
/* AllowRefinement */ true))
|
|
return replaceOperand(SI, 1, S);
|
|
if (Value *S = simplifyWithOpReplaced(FalseVal, CondVal, Zero, SQ,
|
|
/* AllowRefinement */ true))
|
|
return replaceOperand(SI, 2, S);
|
|
}
|
|
|
|
if (match(FalseVal, m_Zero()) || match(TrueVal, m_One())) {
|
|
Use *Y = nullptr;
|
|
bool IsAnd = match(FalseVal, m_Zero()) ? true : false;
|
|
Value *Op1 = IsAnd ? TrueVal : FalseVal;
|
|
if (isCheckForZeroAndMulWithOverflow(CondVal, Op1, IsAnd, Y)) {
|
|
auto *FI = new FreezeInst(*Y, (*Y)->getName() + ".fr");
|
|
InsertNewInstBefore(FI, *cast<Instruction>(Y->getUser()));
|
|
replaceUse(*Y, FI);
|
|
return replaceInstUsesWith(SI, Op1);
|
|
}
|
|
|
|
if (auto *Op1SI = dyn_cast<SelectInst>(Op1))
|
|
if (auto *I = foldAndOrOfSelectUsingImpliedCond(CondVal, *Op1SI,
|
|
/* IsAnd */ IsAnd))
|
|
return I;
|
|
|
|
if (auto *ICmp0 = dyn_cast<ICmpInst>(CondVal)) {
|
|
if (auto *ICmp1 = dyn_cast<ICmpInst>(Op1)) {
|
|
if (auto *V = foldAndOrOfICmpsOfAndWithPow2(ICmp0, ICmp1, &SI, IsAnd,
|
|
/* IsLogical */ true))
|
|
return replaceInstUsesWith(SI, V);
|
|
|
|
if (auto *V = foldEqOfParts(ICmp0, ICmp1, IsAnd))
|
|
return replaceInstUsesWith(SI, V);
|
|
}
|
|
}
|
|
}
|
|
|
|
// select (select a, true, b), c, false -> select a, c, false
|
|
// select c, (select a, true, b), false -> select c, a, false
|
|
// if c implies that b is false.
|
|
if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
|
|
match(FalseVal, m_Zero())) {
|
|
Optional<bool> Res = isImpliedCondition(TrueVal, B, DL);
|
|
if (Res && *Res == false)
|
|
return replaceOperand(SI, 0, A);
|
|
}
|
|
if (match(TrueVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
|
|
match(FalseVal, m_Zero())) {
|
|
Optional<bool> Res = isImpliedCondition(CondVal, B, DL);
|
|
if (Res && *Res == false)
|
|
return replaceOperand(SI, 1, A);
|
|
}
|
|
// select c, true, (select a, b, false) -> select c, true, a
|
|
// select (select a, b, false), true, c -> select a, true, c
|
|
// if c = false implies that b = true
|
|
if (match(TrueVal, m_One()) &&
|
|
match(FalseVal, m_Select(m_Value(A), m_Value(B), m_Zero()))) {
|
|
Optional<bool> Res = isImpliedCondition(CondVal, B, DL, false);
|
|
if (Res && *Res == true)
|
|
return replaceOperand(SI, 2, A);
|
|
}
|
|
if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) &&
|
|
match(TrueVal, m_One())) {
|
|
Optional<bool> Res = isImpliedCondition(FalseVal, B, DL, false);
|
|
if (Res && *Res == true)
|
|
return replaceOperand(SI, 0, A);
|
|
}
|
|
|
|
// sel (sel c, a, false), true, (sel !c, b, false) -> sel c, a, b
|
|
// sel (sel !c, a, false), true, (sel c, b, false) -> sel c, b, a
|
|
Value *C1, *C2;
|
|
if (match(CondVal, m_Select(m_Value(C1), m_Value(A), m_Zero())) &&
|
|
match(TrueVal, m_One()) &&
|
|
match(FalseVal, m_Select(m_Value(C2), m_Value(B), m_Zero()))) {
|
|
if (match(C2, m_Not(m_Specific(C1)))) // first case
|
|
return SelectInst::Create(C1, A, B);
|
|
else if (match(C1, m_Not(m_Specific(C2)))) // second case
|
|
return SelectInst::Create(C2, B, A);
|
|
}
|
|
}
|
|
|
|
// Selecting between two integer or vector splat integer constants?
|
|
//
|
|
// Note that we don't handle a scalar select of vectors:
|
|
// select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
|
|
// because that may need 3 instructions to splat the condition value:
|
|
// extend, insertelement, shufflevector.
|
|
//
|
|
// Do not handle i1 TrueVal and FalseVal otherwise would result in
|
|
// zext/sext i1 to i1.
|
|
if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) &&
|
|
CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
|
|
// select C, 1, 0 -> zext C to int
|
|
if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
|
|
return new ZExtInst(CondVal, SelType);
|
|
|
|
// select C, -1, 0 -> sext C to int
|
|
if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
|
|
return new SExtInst(CondVal, SelType);
|
|
|
|
// select C, 0, 1 -> zext !C to int
|
|
if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
|
|
Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
|
|
return new ZExtInst(NotCond, SelType);
|
|
}
|
|
|
|
// select C, 0, -1 -> sext !C to int
|
|
if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
|
|
Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
|
|
return new SExtInst(NotCond, SelType);
|
|
}
|
|
}
|
|
|
|
if (auto *FCmp = dyn_cast<FCmpInst>(CondVal)) {
|
|
Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1);
|
|
// Are we selecting a value based on a comparison of the two values?
|
|
if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
|
|
(Cmp0 == FalseVal && Cmp1 == TrueVal)) {
|
|
// Canonicalize to use ordered comparisons by swapping the select
|
|
// operands.
|
|
//
|
|
// e.g.
|
|
// (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
|
|
if (FCmp->hasOneUse() && FCmpInst::isUnordered(FCmp->getPredicate())) {
|
|
FCmpInst::Predicate InvPred = FCmp->getInversePredicate();
|
|
IRBuilder<>::FastMathFlagGuard FMFG(Builder);
|
|
// FIXME: The FMF should propagate from the select, not the fcmp.
|
|
Builder.setFastMathFlags(FCmp->getFastMathFlags());
|
|
Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1,
|
|
FCmp->getName() + ".inv");
|
|
Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal);
|
|
return replaceInstUsesWith(SI, NewSel);
|
|
}
|
|
|
|
// NOTE: if we wanted to, this is where to detect MIN/MAX
|
|
}
|
|
}
|
|
|
|
// Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
|
|
// fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work.
|
|
// (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X)
|
|
if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
|
|
match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) &&
|
|
(Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
|
|
Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, &SI);
|
|
return replaceInstUsesWith(SI, Fabs);
|
|
}
|
|
// (X > +/-0.0) ? X : (0.0 - X) --> fabs(X)
|
|
if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
|
|
match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) &&
|
|
(Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
|
|
Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, &SI);
|
|
return replaceInstUsesWith(SI, Fabs);
|
|
}
|
|
// With nnan and nsz:
|
|
// (X < +/-0.0) ? -X : X --> fabs(X)
|
|
// (X <= +/-0.0) ? -X : X --> fabs(X)
|
|
if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
|
|
match(TrueVal, m_FNeg(m_Specific(FalseVal))) && SI.hasNoSignedZeros() &&
|
|
(Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
|
|
Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) {
|
|
Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, &SI);
|
|
return replaceInstUsesWith(SI, Fabs);
|
|
}
|
|
// With nnan and nsz:
|
|
// (X > +/-0.0) ? X : -X --> fabs(X)
|
|
// (X >= +/-0.0) ? X : -X --> fabs(X)
|
|
if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
|
|
match(FalseVal, m_FNeg(m_Specific(TrueVal))) && SI.hasNoSignedZeros() &&
|
|
(Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
|
|
Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) {
|
|
Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, &SI);
|
|
return replaceInstUsesWith(SI, Fabs);
|
|
}
|
|
|
|
// See if we are selecting two values based on a comparison of the two values.
|
|
if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
|
|
if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
|
|
return Result;
|
|
|
|
if (Instruction *Add = foldAddSubSelect(SI, Builder))
|
|
return Add;
|
|
if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder))
|
|
return Add;
|
|
if (Instruction *Or = foldSetClearBits(SI, Builder))
|
|
return Or;
|
|
if (Instruction *Mul = foldSelectZeroOrMul(SI, *this))
|
|
return Mul;
|
|
|
|
// Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
|
|
auto *TI = dyn_cast<Instruction>(TrueVal);
|
|
auto *FI = dyn_cast<Instruction>(FalseVal);
|
|
if (TI && FI && TI->getOpcode() == FI->getOpcode())
|
|
if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
|
|
return IV;
|
|
|
|
if (Instruction *I = foldSelectExtConst(SI))
|
|
return I;
|
|
|
|
// Fold (select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0))
|
|
// Fold (select C, Ptr, (gep Ptr, Idx)) -> (gep Ptr, (select C, 0, Idx))
|
|
auto SelectGepWithBase = [&](GetElementPtrInst *Gep, Value *Base,
|
|
bool Swap) -> GetElementPtrInst * {
|
|
Value *Ptr = Gep->getPointerOperand();
|
|
if (Gep->getNumOperands() != 2 || Gep->getPointerOperand() != Base ||
|
|
!Gep->hasOneUse())
|
|
return nullptr;
|
|
Value *Idx = Gep->getOperand(1);
|
|
if (isa<VectorType>(CondVal->getType()) && !isa<VectorType>(Idx->getType()))
|
|
return nullptr;
|
|
Type *ElementType = Gep->getResultElementType();
|
|
Value *NewT = Idx;
|
|
Value *NewF = Constant::getNullValue(Idx->getType());
|
|
if (Swap)
|
|
std::swap(NewT, NewF);
|
|
Value *NewSI =
|
|
Builder.CreateSelect(CondVal, NewT, NewF, SI.getName() + ".idx", &SI);
|
|
return GetElementPtrInst::Create(ElementType, Ptr, {NewSI});
|
|
};
|
|
if (auto *TrueGep = dyn_cast<GetElementPtrInst>(TrueVal))
|
|
if (auto *NewGep = SelectGepWithBase(TrueGep, FalseVal, false))
|
|
return NewGep;
|
|
if (auto *FalseGep = dyn_cast<GetElementPtrInst>(FalseVal))
|
|
if (auto *NewGep = SelectGepWithBase(FalseGep, TrueVal, true))
|
|
return NewGep;
|
|
|
|
// See if we can fold the select into one of our operands.
|
|
if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
|
|
if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
|
|
return FoldI;
|
|
|
|
Value *LHS, *RHS;
|
|
Instruction::CastOps CastOp;
|
|
SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
|
|
auto SPF = SPR.Flavor;
|
|
if (SPF) {
|
|
Value *LHS2, *RHS2;
|
|
if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
|
|
if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
|
|
RHS2, SI, SPF, RHS))
|
|
return R;
|
|
if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
|
|
if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
|
|
RHS2, SI, SPF, LHS))
|
|
return R;
|
|
// TODO.
|
|
// ABS(-X) -> ABS(X)
|
|
}
|
|
|
|
if (SelectPatternResult::isMinOrMax(SPF)) {
|
|
// Canonicalize so that
|
|
// - type casts are outside select patterns.
|
|
// - float clamp is transformed to min/max pattern
|
|
|
|
bool IsCastNeeded = LHS->getType() != SelType;
|
|
Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
|
|
Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
|
|
if (IsCastNeeded ||
|
|
(LHS->getType()->isFPOrFPVectorTy() &&
|
|
((CmpLHS != LHS && CmpLHS != RHS) ||
|
|
(CmpRHS != LHS && CmpRHS != RHS)))) {
|
|
CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered);
|
|
|
|
Value *Cmp;
|
|
if (CmpInst::isIntPredicate(MinMaxPred)) {
|
|
Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS);
|
|
} else {
|
|
IRBuilder<>::FastMathFlagGuard FMFG(Builder);
|
|
auto FMF =
|
|
cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
|
|
Builder.setFastMathFlags(FMF);
|
|
Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS);
|
|
}
|
|
|
|
Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
|
|
if (!IsCastNeeded)
|
|
return replaceInstUsesWith(SI, NewSI);
|
|
|
|
Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
|
|
return replaceInstUsesWith(SI, NewCast);
|
|
}
|
|
|
|
// MAX(~a, ~b) -> ~MIN(a, b)
|
|
// MAX(~a, C) -> ~MIN(a, ~C)
|
|
// MIN(~a, ~b) -> ~MAX(a, b)
|
|
// MIN(~a, C) -> ~MAX(a, ~C)
|
|
auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
|
|
Value *A;
|
|
if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) &&
|
|
!isFreeToInvert(A, A->hasOneUse()) &&
|
|
// Passing false to only consider m_Not and constants.
|
|
isFreeToInvert(Y, false)) {
|
|
Value *B = Builder.CreateNot(Y);
|
|
Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF),
|
|
A, B);
|
|
// Copy the profile metadata.
|
|
if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) {
|
|
cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD);
|
|
// Swap the metadata if the operands are swapped.
|
|
if (X == SI.getFalseValue() && Y == SI.getTrueValue())
|
|
cast<SelectInst>(NewMinMax)->swapProfMetadata();
|
|
}
|
|
|
|
return BinaryOperator::CreateNot(NewMinMax);
|
|
}
|
|
|
|
return nullptr;
|
|
};
|
|
|
|
if (Instruction *I = moveNotAfterMinMax(LHS, RHS))
|
|
return I;
|
|
if (Instruction *I = moveNotAfterMinMax(RHS, LHS))
|
|
return I;
|
|
|
|
if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder))
|
|
return I;
|
|
|
|
if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder))
|
|
return I;
|
|
if (Instruction *I = matchSAddSubSat(SI))
|
|
return I;
|
|
}
|
|
}
|
|
|
|
// Canonicalize select of FP values where NaN and -0.0 are not valid as
|
|
// minnum/maxnum intrinsics.
|
|
if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) {
|
|
Value *X, *Y;
|
|
if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y))))
|
|
return replaceInstUsesWith(
|
|
SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI));
|
|
|
|
if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y))))
|
|
return replaceInstUsesWith(
|
|
SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI));
|
|
}
|
|
|
|
// See if we can fold the select into a phi node if the condition is a select.
|
|
if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
|
|
// The true/false values have to be live in the PHI predecessor's blocks.
|
|
if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
|
|
canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
|
|
if (Instruction *NV = foldOpIntoPhi(SI, PN))
|
|
return NV;
|
|
|
|
if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
|
|
if (TrueSI->getCondition()->getType() == CondVal->getType()) {
|
|
// select(C, select(C, a, b), c) -> select(C, a, c)
|
|
if (TrueSI->getCondition() == CondVal) {
|
|
if (SI.getTrueValue() == TrueSI->getTrueValue())
|
|
return nullptr;
|
|
return replaceOperand(SI, 1, TrueSI->getTrueValue());
|
|
}
|
|
// select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
|
|
// We choose this as normal form to enable folding on the And and
|
|
// shortening paths for the values (this helps getUnderlyingObjects() for
|
|
// example).
|
|
if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
|
|
Value *And = Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition());
|
|
replaceOperand(SI, 0, And);
|
|
replaceOperand(SI, 1, TrueSI->getTrueValue());
|
|
return &SI;
|
|
}
|
|
}
|
|
}
|
|
if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
|
|
if (FalseSI->getCondition()->getType() == CondVal->getType()) {
|
|
// select(C, a, select(C, b, c)) -> select(C, a, c)
|
|
if (FalseSI->getCondition() == CondVal) {
|
|
if (SI.getFalseValue() == FalseSI->getFalseValue())
|
|
return nullptr;
|
|
return replaceOperand(SI, 2, FalseSI->getFalseValue());
|
|
}
|
|
// select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
|
|
if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
|
|
Value *Or = Builder.CreateLogicalOr(CondVal, FalseSI->getCondition());
|
|
replaceOperand(SI, 0, Or);
|
|
replaceOperand(SI, 2, FalseSI->getFalseValue());
|
|
return &SI;
|
|
}
|
|
}
|
|
}
|
|
|
|
auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
|
|
// The select might be preventing a division by 0.
|
|
switch (BO->getOpcode()) {
|
|
default:
|
|
return true;
|
|
case Instruction::SRem:
|
|
case Instruction::URem:
|
|
case Instruction::SDiv:
|
|
case Instruction::UDiv:
|
|
return false;
|
|
}
|
|
};
|
|
|
|
// Try to simplify a binop sandwiched between 2 selects with the same
|
|
// condition.
|
|
// select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
|
|
BinaryOperator *TrueBO;
|
|
if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
|
|
canMergeSelectThroughBinop(TrueBO)) {
|
|
if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
|
|
if (TrueBOSI->getCondition() == CondVal) {
|
|
replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue());
|
|
Worklist.push(TrueBO);
|
|
return &SI;
|
|
}
|
|
}
|
|
if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
|
|
if (TrueBOSI->getCondition() == CondVal) {
|
|
replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue());
|
|
Worklist.push(TrueBO);
|
|
return &SI;
|
|
}
|
|
}
|
|
}
|
|
|
|
// select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
|
|
BinaryOperator *FalseBO;
|
|
if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
|
|
canMergeSelectThroughBinop(FalseBO)) {
|
|
if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
|
|
if (FalseBOSI->getCondition() == CondVal) {
|
|
replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue());
|
|
Worklist.push(FalseBO);
|
|
return &SI;
|
|
}
|
|
}
|
|
if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
|
|
if (FalseBOSI->getCondition() == CondVal) {
|
|
replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue());
|
|
Worklist.push(FalseBO);
|
|
return &SI;
|
|
}
|
|
}
|
|
}
|
|
|
|
Value *NotCond;
|
|
if (match(CondVal, m_Not(m_Value(NotCond))) &&
|
|
!InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) {
|
|
replaceOperand(SI, 0, NotCond);
|
|
SI.swapValues();
|
|
SI.swapProfMetadata();
|
|
return &SI;
|
|
}
|
|
|
|
if (Instruction *I = foldVectorSelect(SI))
|
|
return I;
|
|
|
|
// If we can compute the condition, there's no need for a select.
|
|
// Like the above fold, we are attempting to reduce compile-time cost by
|
|
// putting this fold here with limitations rather than in InstSimplify.
|
|
// The motivation for this call into value tracking is to take advantage of
|
|
// the assumption cache, so make sure that is populated.
|
|
if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
|
|
KnownBits Known(1);
|
|
computeKnownBits(CondVal, Known, 0, &SI);
|
|
if (Known.One.isOne())
|
|
return replaceInstUsesWith(SI, TrueVal);
|
|
if (Known.Zero.isOne())
|
|
return replaceInstUsesWith(SI, FalseVal);
|
|
}
|
|
|
|
if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
|
|
return BitCastSel;
|
|
|
|
// Simplify selects that test the returned flag of cmpxchg instructions.
|
|
if (Value *V = foldSelectCmpXchg(SI))
|
|
return replaceInstUsesWith(SI, V);
|
|
|
|
if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this))
|
|
return Select;
|
|
|
|
if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder))
|
|
return Funnel;
|
|
|
|
if (Instruction *Copysign = foldSelectToCopysign(SI, Builder))
|
|
return Copysign;
|
|
|
|
if (Instruction *PN = foldSelectToPhi(SI, DT, Builder))
|
|
return replaceInstUsesWith(SI, PN);
|
|
|
|
if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder))
|
|
return replaceInstUsesWith(SI, Fr);
|
|
|
|
// select(mask, mload(,,mask,0), 0) -> mload(,,mask,0)
|
|
// Load inst is intentionally not checked for hasOneUse()
|
|
if (match(FalseVal, m_Zero()) &&
|
|
match(TrueVal, m_MaskedLoad(m_Value(), m_Value(), m_Specific(CondVal),
|
|
m_CombineOr(m_Undef(), m_Zero())))) {
|
|
auto *MaskedLoad = cast<IntrinsicInst>(TrueVal);
|
|
if (isa<UndefValue>(MaskedLoad->getArgOperand(3)))
|
|
MaskedLoad->setArgOperand(3, FalseVal /* Zero */);
|
|
return replaceInstUsesWith(SI, MaskedLoad);
|
|
}
|
|
|
|
Value *Mask;
|
|
if (match(TrueVal, m_Zero()) &&
|
|
match(FalseVal, m_MaskedLoad(m_Value(), m_Value(), m_Value(Mask),
|
|
m_CombineOr(m_Undef(), m_Zero()))) &&
|
|
(CondVal->getType() == Mask->getType())) {
|
|
// We can remove the select by ensuring the load zeros all lanes the
|
|
// select would have. We determine this by proving there is no overlap
|
|
// between the load and select masks.
|
|
// (i.e (load_mask & select_mask) == 0 == no overlap)
|
|
bool CanMergeSelectIntoLoad = false;
|
|
if (Value *V = SimplifyAndInst(CondVal, Mask, SQ.getWithInstruction(&SI)))
|
|
CanMergeSelectIntoLoad = match(V, m_Zero());
|
|
|
|
if (CanMergeSelectIntoLoad) {
|
|
auto *MaskedLoad = cast<IntrinsicInst>(FalseVal);
|
|
if (isa<UndefValue>(MaskedLoad->getArgOperand(3)))
|
|
MaskedLoad->setArgOperand(3, TrueVal /* Zero */);
|
|
return replaceInstUsesWith(SI, MaskedLoad);
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|