llvm-project/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp

1625 lines
61 KiB
C++

//===- InstCombineMulDivRem.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
// srem, urem, frem.
//
//===----------------------------------------------------------------------===//
#include "InstCombineInternal.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Transforms/InstCombine/InstCombiner.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <utility>
#define DEBUG_TYPE "instcombine"
#include "llvm/Transforms/Utils/InstructionWorklist.h"
using namespace llvm;
using namespace PatternMatch;
/// The specific integer value is used in a context where it is known to be
/// non-zero. If this allows us to simplify the computation, do so and return
/// the new operand, otherwise return null.
static Value *simplifyValueKnownNonZero(Value *V, InstCombinerImpl &IC,
Instruction &CxtI) {
// If V has multiple uses, then we would have to do more analysis to determine
// if this is safe. For example, the use could be in dynamically unreached
// code.
if (!V->hasOneUse()) return nullptr;
bool MadeChange = false;
// ((1 << A) >>u B) --> (1 << (A-B))
// Because V cannot be zero, we know that B is less than A.
Value *A = nullptr, *B = nullptr, *One = nullptr;
if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
match(One, m_One())) {
A = IC.Builder.CreateSub(A, B);
return IC.Builder.CreateShl(One, A);
}
// (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
// inexact. Similarly for <<.
BinaryOperator *I = dyn_cast<BinaryOperator>(V);
if (I && I->isLogicalShift() &&
IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) {
// We know that this is an exact/nuw shift and that the input is a
// non-zero context as well.
if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
IC.replaceOperand(*I, 0, V2);
MadeChange = true;
}
if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
I->setIsExact();
MadeChange = true;
}
if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
I->setHasNoUnsignedWrap();
MadeChange = true;
}
}
// TODO: Lots more we could do here:
// If V is a phi node, we can call this on each of its operands.
// "select cond, X, 0" can simplify to "X".
return MadeChange ? V : nullptr;
}
// TODO: This is a specific form of a much more general pattern.
// We could detect a select with any binop identity constant, or we
// could use SimplifyBinOp to see if either arm of the select reduces.
// But that needs to be done carefully and/or while removing potential
// reverse canonicalizations as in InstCombiner::foldSelectIntoOp().
static Value *foldMulSelectToNegate(BinaryOperator &I,
InstCombiner::BuilderTy &Builder) {
Value *Cond, *OtherOp;
// mul (select Cond, 1, -1), OtherOp --> select Cond, OtherOp, -OtherOp
// mul OtherOp, (select Cond, 1, -1) --> select Cond, OtherOp, -OtherOp
if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_One(), m_AllOnes())),
m_Value(OtherOp)))) {
bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap();
Value *Neg = Builder.CreateNeg(OtherOp, "", false, HasAnyNoWrap);
return Builder.CreateSelect(Cond, OtherOp, Neg);
}
// mul (select Cond, -1, 1), OtherOp --> select Cond, -OtherOp, OtherOp
// mul OtherOp, (select Cond, -1, 1) --> select Cond, -OtherOp, OtherOp
if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_AllOnes(), m_One())),
m_Value(OtherOp)))) {
bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap();
Value *Neg = Builder.CreateNeg(OtherOp, "", false, HasAnyNoWrap);
return Builder.CreateSelect(Cond, Neg, OtherOp);
}
// fmul (select Cond, 1.0, -1.0), OtherOp --> select Cond, OtherOp, -OtherOp
// fmul OtherOp, (select Cond, 1.0, -1.0) --> select Cond, OtherOp, -OtherOp
if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(1.0),
m_SpecificFP(-1.0))),
m_Value(OtherOp)))) {
IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
Builder.setFastMathFlags(I.getFastMathFlags());
return Builder.CreateSelect(Cond, OtherOp, Builder.CreateFNeg(OtherOp));
}
// fmul (select Cond, -1.0, 1.0), OtherOp --> select Cond, -OtherOp, OtherOp
// fmul OtherOp, (select Cond, -1.0, 1.0) --> select Cond, -OtherOp, OtherOp
if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(-1.0),
m_SpecificFP(1.0))),
m_Value(OtherOp)))) {
IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
Builder.setFastMathFlags(I.getFastMathFlags());
return Builder.CreateSelect(Cond, Builder.CreateFNeg(OtherOp), OtherOp);
}
return nullptr;
}
Instruction *InstCombinerImpl::visitMul(BinaryOperator &I) {
if (Value *V = SimplifyMulInst(I.getOperand(0), I.getOperand(1),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (SimplifyAssociativeOrCommutative(I))
return &I;
if (Instruction *X = foldVectorBinop(I))
return X;
if (Value *V = SimplifyUsingDistributiveLaws(I))
return replaceInstUsesWith(I, V);
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
unsigned BitWidth = I.getType()->getScalarSizeInBits();
// X * -1 == 0 - X
if (match(Op1, m_AllOnes())) {
BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName());
if (I.hasNoSignedWrap())
BO->setHasNoSignedWrap();
return BO;
}
// Also allow combining multiply instructions on vectors.
{
Value *NewOp;
Constant *C1, *C2;
const APInt *IVal;
if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
m_Constant(C1))) &&
match(C1, m_APInt(IVal))) {
// ((X << C2)*C1) == (X * (C1 << C2))
Constant *Shl = ConstantExpr::getShl(C1, C2);
BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap())
BO->setHasNoUnsignedWrap();
if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() &&
Shl->isNotMinSignedValue())
BO->setHasNoSignedWrap();
return BO;
}
if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
// Replace X*(2^C) with X << C, where C is either a scalar or a vector.
if (Constant *NewCst = ConstantExpr::getExactLogBase2(C1)) {
BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
if (I.hasNoUnsignedWrap())
Shl->setHasNoUnsignedWrap();
if (I.hasNoSignedWrap()) {
const APInt *V;
if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1)
Shl->setHasNoSignedWrap();
}
return Shl;
}
}
}
if (Op0->hasOneUse() && match(Op1, m_NegatedPower2())) {
// Interpret X * (-1<<C) as (-X) * (1<<C) and try to sink the negation.
// The "* (1<<C)" thus becomes a potential shifting opportunity.
if (Value *NegOp0 = Negator::Negate(/*IsNegation*/ true, Op0, *this))
return BinaryOperator::CreateMul(
NegOp0, ConstantExpr::getNeg(cast<Constant>(Op1)), I.getName());
}
if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
return FoldedMul;
if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
return replaceInstUsesWith(I, FoldedMul);
// Simplify mul instructions with a constant RHS.
if (isa<Constant>(Op1)) {
// Canonicalize (X+C1)*CI -> X*CI+C1*CI.
Value *X;
Constant *C1;
if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) {
Value *Mul = Builder.CreateMul(C1, Op1);
// Only go forward with the transform if C1*CI simplifies to a tidier
// constant.
if (!match(Mul, m_Mul(m_Value(), m_Value())))
return BinaryOperator::CreateAdd(Builder.CreateMul(X, Op1), Mul);
}
}
// abs(X) * abs(X) -> X * X
// nabs(X) * nabs(X) -> X * X
if (Op0 == Op1) {
Value *X, *Y;
SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
if (SPF == SPF_ABS || SPF == SPF_NABS)
return BinaryOperator::CreateMul(X, X);
if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X))))
return BinaryOperator::CreateMul(X, X);
}
// -X * C --> X * -C
Value *X, *Y;
Constant *Op1C;
if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C)))
return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C));
// -X * -Y --> X * Y
if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) {
auto *NewMul = BinaryOperator::CreateMul(X, Y);
if (I.hasNoSignedWrap() &&
cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() &&
cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap())
NewMul->setHasNoSignedWrap();
return NewMul;
}
// -X * Y --> -(X * Y)
// X * -Y --> -(X * Y)
if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))
return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y));
// (X / Y) * Y = X - (X % Y)
// (X / Y) * -Y = (X % Y) - X
{
Value *Y = Op1;
BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0);
if (!Div || (Div->getOpcode() != Instruction::UDiv &&
Div->getOpcode() != Instruction::SDiv)) {
Y = Op0;
Div = dyn_cast<BinaryOperator>(Op1);
}
Value *Neg = dyn_castNegVal(Y);
if (Div && Div->hasOneUse() &&
(Div->getOperand(1) == Y || Div->getOperand(1) == Neg) &&
(Div->getOpcode() == Instruction::UDiv ||
Div->getOpcode() == Instruction::SDiv)) {
Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1);
// If the division is exact, X % Y is zero, so we end up with X or -X.
if (Div->isExact()) {
if (DivOp1 == Y)
return replaceInstUsesWith(I, X);
return BinaryOperator::CreateNeg(X);
}
auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem
: Instruction::SRem;
Value *Rem = Builder.CreateBinOp(RemOpc, X, DivOp1);
if (DivOp1 == Y)
return BinaryOperator::CreateSub(X, Rem);
return BinaryOperator::CreateSub(Rem, X);
}
}
/// i1 mul -> i1 and.
if (I.getType()->isIntOrIntVectorTy(1))
return BinaryOperator::CreateAnd(Op0, Op1);
// X*(1 << Y) --> X << Y
// (1 << Y)*X --> X << Y
{
Value *Y;
BinaryOperator *BO = nullptr;
bool ShlNSW = false;
if (match(Op0, m_Shl(m_One(), m_Value(Y)))) {
BO = BinaryOperator::CreateShl(Op1, Y);
ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap();
} else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) {
BO = BinaryOperator::CreateShl(Op0, Y);
ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap();
}
if (BO) {
if (I.hasNoUnsignedWrap())
BO->setHasNoUnsignedWrap();
if (I.hasNoSignedWrap() && ShlNSW)
BO->setHasNoSignedWrap();
return BO;
}
}
// (zext bool X) * (zext bool Y) --> zext (and X, Y)
// (sext bool X) * (sext bool Y) --> zext (and X, Y)
// Note: -1 * -1 == 1 * 1 == 1 (if the extends match, the result is the same)
if (((match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
(match(Op0, m_SExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
(Op0->hasOneUse() || Op1->hasOneUse() || X == Y)) {
Value *And = Builder.CreateAnd(X, Y, "mulbool");
return CastInst::Create(Instruction::ZExt, And, I.getType());
}
// (sext bool X) * (zext bool Y) --> sext (and X, Y)
// (zext bool X) * (sext bool Y) --> sext (and X, Y)
// Note: -1 * 1 == 1 * -1 == -1
if (((match(Op0, m_SExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
(match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
(Op0->hasOneUse() || Op1->hasOneUse())) {
Value *And = Builder.CreateAnd(X, Y, "mulbool");
return CastInst::Create(Instruction::SExt, And, I.getType());
}
// (bool X) * Y --> X ? Y : 0
// Y * (bool X) --> X ? Y : 0
if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
return SelectInst::Create(X, Op1, ConstantInt::get(I.getType(), 0));
if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
return SelectInst::Create(X, Op0, ConstantInt::get(I.getType(), 0));
// (lshr X, 31) * Y --> (ashr X, 31) & Y
// Y * (lshr X, 31) --> (ashr X, 31) & Y
// TODO: We are not checking one-use because the elimination of the multiply
// is better for analysis?
// TODO: Should we canonicalize to '(X < 0) ? Y : 0' instead? That would be
// more similar to what we're doing above.
const APInt *C;
if (match(Op0, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op1);
if (match(Op1, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op0);
// ((ashr X, 31) | 1) * X --> abs(X)
// X * ((ashr X, 31) | 1) --> abs(X)
if (match(&I, m_c_BinOp(m_Or(m_AShr(m_Value(X),
m_SpecificIntAllowUndef(BitWidth - 1)),
m_One()),
m_Deferred(X)))) {
Value *Abs = Builder.CreateBinaryIntrinsic(
Intrinsic::abs, X,
ConstantInt::getBool(I.getContext(), I.hasNoSignedWrap()));
Abs->takeName(&I);
return replaceInstUsesWith(I, Abs);
}
if (Instruction *Ext = narrowMathIfNoOverflow(I))
return Ext;
bool Changed = false;
if (!I.hasNoSignedWrap() && willNotOverflowSignedMul(Op0, Op1, I)) {
Changed = true;
I.setHasNoSignedWrap(true);
}
if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedMul(Op0, Op1, I)) {
Changed = true;
I.setHasNoUnsignedWrap(true);
}
return Changed ? &I : nullptr;
}
Instruction *InstCombinerImpl::foldFPSignBitOps(BinaryOperator &I) {
BinaryOperator::BinaryOps Opcode = I.getOpcode();
assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) &&
"Expected fmul or fdiv");
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Value *X, *Y;
// -X * -Y --> X * Y
// -X / -Y --> X / Y
if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
return BinaryOperator::CreateWithCopiedFlags(Opcode, X, Y, &I);
// fabs(X) * fabs(X) -> X * X
// fabs(X) / fabs(X) -> X / X
if (Op0 == Op1 && match(Op0, m_FAbs(m_Value(X))))
return BinaryOperator::CreateWithCopiedFlags(Opcode, X, X, &I);
// fabs(X) * fabs(Y) --> fabs(X * Y)
// fabs(X) / fabs(Y) --> fabs(X / Y)
if (match(Op0, m_FAbs(m_Value(X))) && match(Op1, m_FAbs(m_Value(Y))) &&
(Op0->hasOneUse() || Op1->hasOneUse())) {
IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
Builder.setFastMathFlags(I.getFastMathFlags());
Value *XY = Builder.CreateBinOp(Opcode, X, Y);
Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, XY);
Fabs->takeName(&I);
return replaceInstUsesWith(I, Fabs);
}
return nullptr;
}
Instruction *InstCombinerImpl::visitFMul(BinaryOperator &I) {
if (Value *V = SimplifyFMulInst(I.getOperand(0), I.getOperand(1),
I.getFastMathFlags(),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (SimplifyAssociativeOrCommutative(I))
return &I;
if (Instruction *X = foldVectorBinop(I))
return X;
if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
return FoldedMul;
if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
return replaceInstUsesWith(I, FoldedMul);
if (Instruction *R = foldFPSignBitOps(I))
return R;
// X * -1.0 --> -X
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (match(Op1, m_SpecificFP(-1.0)))
return UnaryOperator::CreateFNegFMF(Op0, &I);
// -X * C --> X * -C
Value *X, *Y;
Constant *C;
if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C)))
return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
// (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E)
if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
return replaceInstUsesWith(I, V);
if (I.hasAllowReassoc()) {
// Reassociate constant RHS with another constant to form constant
// expression.
if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
Constant *C1;
if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
// (C1 / X) * C --> (C * C1) / X
Constant *CC1 = ConstantExpr::getFMul(C, C1);
if (CC1->isNormalFP())
return BinaryOperator::CreateFDivFMF(CC1, X, &I);
}
if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
// (X / C1) * C --> X * (C / C1)
Constant *CDivC1 = ConstantExpr::getFDiv(C, C1);
if (CDivC1->isNormalFP())
return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);
// If the constant was a denormal, try reassociating differently.
// (X / C1) * C --> X / (C1 / C)
Constant *C1DivC = ConstantExpr::getFDiv(C1, C);
if (Op0->hasOneUse() && C1DivC->isNormalFP())
return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
}
// We do not need to match 'fadd C, X' and 'fsub X, C' because they are
// canonicalized to 'fadd X, C'. Distributing the multiply may allow
// further folds and (X * C) + C2 is 'fma'.
if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
// (X + C1) * C --> (X * C) + (C * C1)
Constant *CC1 = ConstantExpr::getFMul(C, C1);
Value *XC = Builder.CreateFMulFMF(X, C, &I);
return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
}
if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
// (C1 - X) * C --> (C * C1) - (X * C)
Constant *CC1 = ConstantExpr::getFMul(C, C1);
Value *XC = Builder.CreateFMulFMF(X, C, &I);
return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
}
}
Value *Z;
if (match(&I, m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))),
m_Value(Z)))) {
// Sink division: (X / Y) * Z --> (X * Z) / Y
Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I);
return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I);
}
// sqrt(X) * sqrt(Y) -> sqrt(X * Y)
// nnan disallows the possibility of returning a number if both operands are
// negative (in that case, we should return NaN).
if (I.hasNoNaNs() &&
match(Op0, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(X)))) &&
match(Op1, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
Value *XY = Builder.CreateFMulFMF(X, Y, &I);
Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I);
return replaceInstUsesWith(I, Sqrt);
}
// The following transforms are done irrespective of the number of uses
// for the expression "1.0/sqrt(X)".
// 1) 1.0/sqrt(X) * X -> X/sqrt(X)
// 2) X * 1.0/sqrt(X) -> X/sqrt(X)
// We always expect the backend to reduce X/sqrt(X) to sqrt(X), if it
// has the necessary (reassoc) fast-math-flags.
if (I.hasNoSignedZeros() &&
match(Op0, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
match(Y, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && Op1 == X)
return BinaryOperator::CreateFDivFMF(X, Y, &I);
if (I.hasNoSignedZeros() &&
match(Op1, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
match(Y, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && Op0 == X)
return BinaryOperator::CreateFDivFMF(X, Y, &I);
// Like the similar transform in instsimplify, this requires 'nsz' because
// sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0.
if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 &&
Op0->hasNUses(2)) {
// Peek through fdiv to find squaring of square root:
// (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y
if (match(Op0, m_FDiv(m_Value(X),
m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
Value *XX = Builder.CreateFMulFMF(X, X, &I);
return BinaryOperator::CreateFDivFMF(XX, Y, &I);
}
// (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X)
if (match(Op0, m_FDiv(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y)),
m_Value(X)))) {
Value *XX = Builder.CreateFMulFMF(X, X, &I);
return BinaryOperator::CreateFDivFMF(Y, XX, &I);
}
}
if (I.isOnlyUserOfAnyOperand()) {
// pow(x, y) * pow(x, z) -> pow(x, y + z)
if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
match(Op1, m_Intrinsic<Intrinsic::pow>(m_Specific(X), m_Value(Z)))) {
auto *YZ = Builder.CreateFAddFMF(Y, Z, &I);
auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, YZ, &I);
return replaceInstUsesWith(I, NewPow);
}
// powi(x, y) * powi(x, z) -> powi(x, y + z)
if (match(Op0, m_Intrinsic<Intrinsic::powi>(m_Value(X), m_Value(Y))) &&
match(Op1, m_Intrinsic<Intrinsic::powi>(m_Specific(X), m_Value(Z))) &&
Y->getType() == Z->getType()) {
auto *YZ = Builder.CreateAdd(Y, Z);
auto *NewPow = Builder.CreateIntrinsic(
Intrinsic::powi, {X->getType(), YZ->getType()}, {X, YZ}, &I);
return replaceInstUsesWith(I, NewPow);
}
// exp(X) * exp(Y) -> exp(X + Y)
if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) &&
match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y)))) {
Value *XY = Builder.CreateFAddFMF(X, Y, &I);
Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I);
return replaceInstUsesWith(I, Exp);
}
// exp2(X) * exp2(Y) -> exp2(X + Y)
if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) &&
match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y)))) {
Value *XY = Builder.CreateFAddFMF(X, Y, &I);
Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I);
return replaceInstUsesWith(I, Exp2);
}
}
// (X*Y) * X => (X*X) * Y where Y != X
// The purpose is two-fold:
// 1) to form a power expression (of X).
// 2) potentially shorten the critical path: After transformation, the
// latency of the instruction Y is amortized by the expression of X*X,
// and therefore Y is in a "less critical" position compared to what it
// was before the transformation.
if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) &&
Op1 != Y) {
Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
return BinaryOperator::CreateFMulFMF(XX, Y, &I);
}
if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) &&
Op0 != Y) {
Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
return BinaryOperator::CreateFMulFMF(XX, Y, &I);
}
}
// log2(X * 0.5) * Y = log2(X) * Y - Y
if (I.isFast()) {
IntrinsicInst *Log2 = nullptr;
if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>(
m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
Log2 = cast<IntrinsicInst>(Op0);
Y = Op1;
}
if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>(
m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
Log2 = cast<IntrinsicInst>(Op1);
Y = Op0;
}
if (Log2) {
Value *Log2 = Builder.CreateUnaryIntrinsic(Intrinsic::log2, X, &I);
Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I);
return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I);
}
}
return nullptr;
}
/// Fold a divide or remainder with a select instruction divisor when one of the
/// select operands is zero. In that case, we can use the other select operand
/// because div/rem by zero is undefined.
bool InstCombinerImpl::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) {
SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1));
if (!SI)
return false;
int NonNullOperand;
if (match(SI->getTrueValue(), m_Zero()))
// div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
NonNullOperand = 2;
else if (match(SI->getFalseValue(), m_Zero()))
// div/rem X, (Cond ? Y : 0) -> div/rem X, Y
NonNullOperand = 1;
else
return false;
// Change the div/rem to use 'Y' instead of the select.
replaceOperand(I, 1, SI->getOperand(NonNullOperand));
// Okay, we know we replace the operand of the div/rem with 'Y' with no
// problem. However, the select, or the condition of the select may have
// multiple uses. Based on our knowledge that the operand must be non-zero,
// propagate the known value for the select into other uses of it, and
// propagate a known value of the condition into its other users.
// If the select and condition only have a single use, don't bother with this,
// early exit.
Value *SelectCond = SI->getCondition();
if (SI->use_empty() && SelectCond->hasOneUse())
return true;
// Scan the current block backward, looking for other uses of SI.
BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
Type *CondTy = SelectCond->getType();
while (BBI != BBFront) {
--BBI;
// If we found an instruction that we can't assume will return, so
// information from below it cannot be propagated above it.
if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
break;
// Replace uses of the select or its condition with the known values.
for (Use &Op : BBI->operands()) {
if (Op == SI) {
replaceUse(Op, SI->getOperand(NonNullOperand));
Worklist.push(&*BBI);
} else if (Op == SelectCond) {
replaceUse(Op, NonNullOperand == 1 ? ConstantInt::getTrue(CondTy)
: ConstantInt::getFalse(CondTy));
Worklist.push(&*BBI);
}
}
// If we past the instruction, quit looking for it.
if (&*BBI == SI)
SI = nullptr;
if (&*BBI == SelectCond)
SelectCond = nullptr;
// If we ran out of things to eliminate, break out of the loop.
if (!SelectCond && !SI)
break;
}
return true;
}
/// True if the multiply can not be expressed in an int this size.
static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
bool IsSigned) {
bool Overflow;
Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow);
return Overflow;
}
/// True if C1 is a multiple of C2. Quotient contains C1/C2.
static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
bool IsSigned) {
assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal");
// Bail if we will divide by zero.
if (C2.isZero())
return false;
// Bail if we would divide INT_MIN by -1.
if (IsSigned && C1.isMinSignedValue() && C2.isAllOnes())
return false;
APInt Remainder(C1.getBitWidth(), /*val=*/0ULL, IsSigned);
if (IsSigned)
APInt::sdivrem(C1, C2, Quotient, Remainder);
else
APInt::udivrem(C1, C2, Quotient, Remainder);
return Remainder.isMinValue();
}
/// This function implements the transforms common to both integer division
/// instructions (udiv and sdiv). It is called by the visitors to those integer
/// division instructions.
/// Common integer divide transforms
Instruction *InstCombinerImpl::commonIDivTransforms(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
bool IsSigned = I.getOpcode() == Instruction::SDiv;
Type *Ty = I.getType();
// The RHS is known non-zero.
if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
return replaceOperand(I, 1, V);
// Handle cases involving: [su]div X, (select Cond, Y, Z)
// This does not apply for fdiv.
if (simplifyDivRemOfSelectWithZeroOp(I))
return &I;
const APInt *C2;
if (match(Op1, m_APInt(C2))) {
Value *X;
const APInt *C1;
// (X / C1) / C2 -> X / (C1*C2)
if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) ||
(!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) {
APInt Product(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
if (!multiplyOverflows(*C1, *C2, Product, IsSigned))
return BinaryOperator::Create(I.getOpcode(), X,
ConstantInt::get(Ty, Product));
}
if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
(!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) {
APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
// (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
if (isMultiple(*C2, *C1, Quotient, IsSigned)) {
auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X,
ConstantInt::get(Ty, Quotient));
NewDiv->setIsExact(I.isExact());
return NewDiv;
}
// (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
if (isMultiple(*C1, *C2, Quotient, IsSigned)) {
auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
ConstantInt::get(Ty, Quotient));
auto *OBO = cast<OverflowingBinaryOperator>(Op0);
Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
return Mul;
}
}
if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) &&
C1->ult(C1->getBitWidth() - 1)) ||
(!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))) &&
C1->ult(C1->getBitWidth()))) {
APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
APInt C1Shifted = APInt::getOneBitSet(
C1->getBitWidth(), static_cast<unsigned>(C1->getZExtValue()));
// (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1.
if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
auto *BO = BinaryOperator::Create(I.getOpcode(), X,
ConstantInt::get(Ty, Quotient));
BO->setIsExact(I.isExact());
return BO;
}
// (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2.
if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
ConstantInt::get(Ty, Quotient));
auto *OBO = cast<OverflowingBinaryOperator>(Op0);
Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
return Mul;
}
}
if (!C2->isZero()) // avoid X udiv 0
if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I))
return FoldedDiv;
}
if (match(Op0, m_One())) {
assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?");
if (IsSigned) {
// If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the
// result is one, if Op1 is -1 then the result is minus one, otherwise
// it's zero.
Value *Inc = Builder.CreateAdd(Op1, Op0);
Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3));
return SelectInst::Create(Cmp, Op1, ConstantInt::get(Ty, 0));
} else {
// If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
// result is one, otherwise it's zero.
return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty);
}
}
// See if we can fold away this div instruction.
if (SimplifyDemandedInstructionBits(I))
return &I;
// (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
Value *X, *Z;
if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1
if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
(!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
return BinaryOperator::Create(I.getOpcode(), X, Op1);
// (X << Y) / X -> 1 << Y
Value *Y;
if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y))))
return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y);
if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y))))
return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y);
// X / (X * Y) -> 1 / Y if the multiplication does not overflow.
if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) {
bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
replaceOperand(I, 0, ConstantInt::get(Ty, 1));
replaceOperand(I, 1, Y);
return &I;
}
}
return nullptr;
}
static const unsigned MaxDepth = 6;
namespace {
using FoldUDivOperandCb = Instruction *(*)(Value *Op0, Value *Op1,
const BinaryOperator &I,
InstCombinerImpl &IC);
/// Used to maintain state for visitUDivOperand().
struct UDivFoldAction {
/// Informs visitUDiv() how to fold this operand. This can be zero if this
/// action joins two actions together.
FoldUDivOperandCb FoldAction;
/// Which operand to fold.
Value *OperandToFold;
union {
/// The instruction returned when FoldAction is invoked.
Instruction *FoldResult;
/// Stores the LHS action index if this action joins two actions together.
size_t SelectLHSIdx;
};
UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand)
: FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {}
UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS)
: FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {}
};
} // end anonymous namespace
// X udiv 2^C -> X >> C
static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1,
const BinaryOperator &I,
InstCombinerImpl &IC) {
Constant *C1 = ConstantExpr::getExactLogBase2(cast<Constant>(Op1));
if (!C1)
llvm_unreachable("Failed to constant fold udiv -> logbase2");
BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, C1);
if (I.isExact())
LShr->setIsExact();
return LShr;
}
// X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
// X udiv (zext (C1 << N)), where C1 is "1<<C2" --> X >> (N+C2)
static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
InstCombinerImpl &IC) {
Value *ShiftLeft;
if (!match(Op1, m_ZExt(m_Value(ShiftLeft))))
ShiftLeft = Op1;
Constant *CI;
Value *N;
if (!match(ShiftLeft, m_Shl(m_Constant(CI), m_Value(N))))
llvm_unreachable("match should never fail here!");
Constant *Log2Base = ConstantExpr::getExactLogBase2(CI);
if (!Log2Base)
llvm_unreachable("getLogBase2 should never fail here!");
N = IC.Builder.CreateAdd(N, Log2Base);
if (Op1 != ShiftLeft)
N = IC.Builder.CreateZExt(N, Op1->getType());
BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
if (I.isExact())
LShr->setIsExact();
return LShr;
}
// Recursively visits the possible right hand operands of a udiv
// instruction, seeing through select instructions, to determine if we can
// replace the udiv with something simpler. If we find that an operand is not
// able to simplify the udiv, we abort the entire transformation.
static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
SmallVectorImpl<UDivFoldAction> &Actions,
unsigned Depth = 0) {
// FIXME: assert that Op1 isn't/doesn't contain undef.
// Check to see if this is an unsigned division with an exact power of 2,
// if so, convert to a right shift.
if (match(Op1, m_Power2())) {
Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1));
return Actions.size();
}
// X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
Actions.push_back(UDivFoldAction(foldUDivShl, Op1));
return Actions.size();
}
// The remaining tests are all recursive, so bail out if we hit the limit.
if (Depth++ == MaxDepth)
return 0;
if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
// FIXME: missed optimization: if one of the hands of select is/contains
// undef, just directly pick the other one.
// FIXME: can both hands contain undef?
if (size_t LHSIdx =
visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth))
if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) {
Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1));
return Actions.size();
}
return 0;
}
/// If we have zero-extended operands of an unsigned div or rem, we may be able
/// to narrow the operation (sink the zext below the math).
static Instruction *narrowUDivURem(BinaryOperator &I,
InstCombiner::BuilderTy &Builder) {
Instruction::BinaryOps Opcode = I.getOpcode();
Value *N = I.getOperand(0);
Value *D = I.getOperand(1);
Type *Ty = I.getType();
Value *X, *Y;
if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) &&
X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) {
// udiv (zext X), (zext Y) --> zext (udiv X, Y)
// urem (zext X), (zext Y) --> zext (urem X, Y)
Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y);
return new ZExtInst(NarrowOp, Ty);
}
Constant *C;
if ((match(N, m_OneUse(m_ZExt(m_Value(X)))) && match(D, m_Constant(C))) ||
(match(D, m_OneUse(m_ZExt(m_Value(X)))) && match(N, m_Constant(C)))) {
// If the constant is the same in the smaller type, use the narrow version.
Constant *TruncC = ConstantExpr::getTrunc(C, X->getType());
if (ConstantExpr::getZExt(TruncC, Ty) != C)
return nullptr;
// udiv (zext X), C --> zext (udiv X, C')
// urem (zext X), C --> zext (urem X, C')
// udiv C, (zext X) --> zext (udiv C', X)
// urem C, (zext X) --> zext (urem C', X)
Value *NarrowOp = isa<Constant>(D) ? Builder.CreateBinOp(Opcode, X, TruncC)
: Builder.CreateBinOp(Opcode, TruncC, X);
return new ZExtInst(NarrowOp, Ty);
}
return nullptr;
}
Instruction *InstCombinerImpl::visitUDiv(BinaryOperator &I) {
if (Value *V = SimplifyUDivInst(I.getOperand(0), I.getOperand(1),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (Instruction *X = foldVectorBinop(I))
return X;
// Handle the integer div common cases
if (Instruction *Common = commonIDivTransforms(I))
return Common;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Value *X;
const APInt *C1, *C2;
if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) {
// (X lshr C1) udiv C2 --> X udiv (C2 << C1)
bool Overflow;
APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
if (!Overflow) {
bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
BinaryOperator *BO = BinaryOperator::CreateUDiv(
X, ConstantInt::get(X->getType(), C2ShlC1));
if (IsExact)
BO->setIsExact();
return BO;
}
}
// Op0 / C where C is large (negative) --> zext (Op0 >= C)
// TODO: Could use isKnownNegative() to handle non-constant values.
Type *Ty = I.getType();
if (match(Op1, m_Negative())) {
Value *Cmp = Builder.CreateICmpUGE(Op0, Op1);
return CastInst::CreateZExtOrBitCast(Cmp, Ty);
}
// Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined)
if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
return CastInst::CreateZExtOrBitCast(Cmp, Ty);
}
if (Instruction *NarrowDiv = narrowUDivURem(I, Builder))
return NarrowDiv;
// If the udiv operands are non-overflowing multiplies with a common operand,
// then eliminate the common factor:
// (A * B) / (A * X) --> B / X (and commuted variants)
// TODO: The code would be reduced if we had m_c_NUWMul pattern matching.
// TODO: If -reassociation handled this generally, we could remove this.
Value *A, *B;
if (match(Op0, m_NUWMul(m_Value(A), m_Value(B)))) {
if (match(Op1, m_NUWMul(m_Specific(A), m_Value(X))) ||
match(Op1, m_NUWMul(m_Value(X), m_Specific(A))))
return BinaryOperator::CreateUDiv(B, X);
if (match(Op1, m_NUWMul(m_Specific(B), m_Value(X))) ||
match(Op1, m_NUWMul(m_Value(X), m_Specific(B))))
return BinaryOperator::CreateUDiv(A, X);
}
// (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
SmallVector<UDivFoldAction, 6> UDivActions;
if (visitUDivOperand(Op0, Op1, I, UDivActions))
for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) {
FoldUDivOperandCb Action = UDivActions[i].FoldAction;
Value *ActionOp1 = UDivActions[i].OperandToFold;
Instruction *Inst;
if (Action)
Inst = Action(Op0, ActionOp1, I, *this);
else {
// This action joins two actions together. The RHS of this action is
// simply the last action we processed, we saved the LHS action index in
// the joining action.
size_t SelectRHSIdx = i - 1;
Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult;
size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx;
Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult;
Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(),
SelectLHS, SelectRHS);
}
// If this is the last action to process, return it to the InstCombiner.
// Otherwise, we insert it before the UDiv and record it so that we may
// use it as part of a joining action (i.e., a SelectInst).
if (e - i != 1) {
Inst->insertBefore(&I);
UDivActions[i].FoldResult = Inst;
} else
return Inst;
}
return nullptr;
}
Instruction *InstCombinerImpl::visitSDiv(BinaryOperator &I) {
if (Value *V = SimplifySDivInst(I.getOperand(0), I.getOperand(1),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (Instruction *X = foldVectorBinop(I))
return X;
// Handle the integer div common cases
if (Instruction *Common = commonIDivTransforms(I))
return Common;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Type *Ty = I.getType();
Value *X;
// sdiv Op0, -1 --> -Op0
// sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined)
if (match(Op1, m_AllOnes()) ||
(match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
return BinaryOperator::CreateNeg(Op0);
// X / INT_MIN --> X == INT_MIN
if (match(Op1, m_SignMask()))
return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), Ty);
// sdiv exact X, 1<<C --> ashr exact X, C iff 1<<C is non-negative
// sdiv exact X, -1<<C --> -(ashr exact X, C)
if (I.isExact() && ((match(Op1, m_Power2()) && match(Op1, m_NonNegative())) ||
match(Op1, m_NegatedPower2()))) {
bool DivisorWasNegative = match(Op1, m_NegatedPower2());
if (DivisorWasNegative)
Op1 = ConstantExpr::getNeg(cast<Constant>(Op1));
auto *AShr = BinaryOperator::CreateExactAShr(
Op0, ConstantExpr::getExactLogBase2(cast<Constant>(Op1)), I.getName());
if (!DivisorWasNegative)
return AShr;
Builder.Insert(AShr);
AShr->setName(I.getName() + ".neg");
return BinaryOperator::CreateNeg(AShr, I.getName());
}
const APInt *Op1C;
if (match(Op1, m_APInt(Op1C))) {
// If the dividend is sign-extended and the constant divisor is small enough
// to fit in the source type, shrink the division to the narrower type:
// (sext X) sdiv C --> sext (X sdiv C)
Value *Op0Src;
if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) &&
Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) {
// In the general case, we need to make sure that the dividend is not the
// minimum signed value because dividing that by -1 is UB. But here, we
// know that the -1 divisor case is already handled above.
Constant *NarrowDivisor =
ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType());
Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor);
return new SExtInst(NarrowOp, Ty);
}
// -X / C --> X / -C (if the negation doesn't overflow).
// TODO: This could be enhanced to handle arbitrary vector constants by
// checking if all elements are not the min-signed-val.
if (!Op1C->isMinSignedValue() &&
match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
Constant *NegC = ConstantInt::get(Ty, -(*Op1C));
Instruction *BO = BinaryOperator::CreateSDiv(X, NegC);
BO->setIsExact(I.isExact());
return BO;
}
}
// -X / Y --> -(X / Y)
Value *Y;
if (match(&I, m_SDiv(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
return BinaryOperator::CreateNSWNeg(
Builder.CreateSDiv(X, Y, I.getName(), I.isExact()));
// abs(X) / X --> X > -1 ? 1 : -1
// X / abs(X) --> X > -1 ? 1 : -1
if (match(&I, m_c_BinOp(
m_OneUse(m_Intrinsic<Intrinsic::abs>(m_Value(X), m_One())),
m_Deferred(X)))) {
Constant *NegOne = ConstantInt::getAllOnesValue(Ty);
Value *Cond = Builder.CreateICmpSGT(X, NegOne);
return SelectInst::Create(Cond, ConstantInt::get(Ty, 1), NegOne);
}
// If the sign bits of both operands are zero (i.e. we can prove they are
// unsigned inputs), turn this into a udiv.
APInt Mask(APInt::getSignMask(Ty->getScalarSizeInBits()));
if (MaskedValueIsZero(Op0, Mask, 0, &I)) {
if (MaskedValueIsZero(Op1, Mask, 0, &I)) {
// X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
BO->setIsExact(I.isExact());
return BO;
}
if (match(Op1, m_NegatedPower2())) {
// X sdiv (-(1 << C)) -> -(X sdiv (1 << C)) ->
// -> -(X udiv (1 << C)) -> -(X u>> C)
return BinaryOperator::CreateNeg(Builder.Insert(foldUDivPow2Cst(
Op0, ConstantExpr::getNeg(cast<Constant>(Op1)), I, *this)));
}
if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
// X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
// Safe because the only negative value (1 << Y) can take on is
// INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
// the sign bit set.
auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
BO->setIsExact(I.isExact());
return BO;
}
}
return nullptr;
}
/// Remove negation and try to convert division into multiplication.
static Instruction *foldFDivConstantDivisor(BinaryOperator &I) {
Constant *C;
if (!match(I.getOperand(1), m_Constant(C)))
return nullptr;
// -X / C --> X / -C
Value *X;
if (match(I.getOperand(0), m_FNeg(m_Value(X))))
return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
// If the constant divisor has an exact inverse, this is always safe. If not,
// then we can still create a reciprocal if fast-math-flags allow it and the
// constant is a regular number (not zero, infinite, or denormal).
if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
return nullptr;
// Disallow denormal constants because we don't know what would happen
// on all targets.
// TODO: Use Intrinsic::canonicalize or let function attributes tell us that
// denorms are flushed?
auto *RecipC = ConstantExpr::getFDiv(ConstantFP::get(I.getType(), 1.0), C);
if (!RecipC->isNormalFP())
return nullptr;
// X / C --> X * (1 / C)
return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I);
}
/// Remove negation and try to reassociate constant math.
static Instruction *foldFDivConstantDividend(BinaryOperator &I) {
Constant *C;
if (!match(I.getOperand(0), m_Constant(C)))
return nullptr;
// C / -X --> -C / X
Value *X;
if (match(I.getOperand(1), m_FNeg(m_Value(X))))
return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
return nullptr;
// Try to reassociate C / X expressions where X includes another constant.
Constant *C2, *NewC = nullptr;
if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) {
// C / (X * C2) --> (C / C2) / X
NewC = ConstantExpr::getFDiv(C, C2);
} else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) {
// C / (X / C2) --> (C * C2) / X
NewC = ConstantExpr::getFMul(C, C2);
}
// Disallow denormal constants because we don't know what would happen
// on all targets.
// TODO: Use Intrinsic::canonicalize or let function attributes tell us that
// denorms are flushed?
if (!NewC || !NewC->isNormalFP())
return nullptr;
return BinaryOperator::CreateFDivFMF(NewC, X, &I);
}
/// Negate the exponent of pow/exp to fold division-by-pow() into multiply.
static Instruction *foldFDivPowDivisor(BinaryOperator &I,
InstCombiner::BuilderTy &Builder) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
auto *II = dyn_cast<IntrinsicInst>(Op1);
if (!II || !II->hasOneUse() || !I.hasAllowReassoc() ||
!I.hasAllowReciprocal())
return nullptr;
// Z / pow(X, Y) --> Z * pow(X, -Y)
// Z / exp{2}(Y) --> Z * exp{2}(-Y)
// In the general case, this creates an extra instruction, but fmul allows
// for better canonicalization and optimization than fdiv.
Intrinsic::ID IID = II->getIntrinsicID();
SmallVector<Value *> Args;
switch (IID) {
case Intrinsic::pow:
Args.push_back(II->getArgOperand(0));
Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(1), &I));
break;
case Intrinsic::powi: {
// Require 'ninf' assuming that makes powi(X, -INT_MIN) acceptable.
// That is, X ** (huge negative number) is 0.0, ~1.0, or INF and so
// dividing by that is INF, ~1.0, or 0.0. Code that uses powi allows
// non-standard results, so this corner case should be acceptable if the
// code rules out INF values.
if (!I.hasNoInfs())
return nullptr;
Args.push_back(II->getArgOperand(0));
Args.push_back(Builder.CreateNeg(II->getArgOperand(1)));
Type *Tys[] = {I.getType(), II->getArgOperand(1)->getType()};
Value *Pow = Builder.CreateIntrinsic(IID, Tys, Args, &I);
return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
}
case Intrinsic::exp:
case Intrinsic::exp2:
Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(0), &I));
break;
default:
return nullptr;
}
Value *Pow = Builder.CreateIntrinsic(IID, I.getType(), Args, &I);
return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
}
Instruction *InstCombinerImpl::visitFDiv(BinaryOperator &I) {
if (Value *V = SimplifyFDivInst(I.getOperand(0), I.getOperand(1),
I.getFastMathFlags(),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (Instruction *X = foldVectorBinop(I))
return X;
if (Instruction *R = foldFDivConstantDivisor(I))
return R;
if (Instruction *R = foldFDivConstantDividend(I))
return R;
if (Instruction *R = foldFPSignBitOps(I))
return R;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (isa<Constant>(Op0))
if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
if (Instruction *R = FoldOpIntoSelect(I, SI))
return R;
if (isa<Constant>(Op1))
if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
if (Instruction *R = FoldOpIntoSelect(I, SI))
return R;
if (I.hasAllowReassoc() && I.hasAllowReciprocal()) {
Value *X, *Y;
if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
(!isa<Constant>(Y) || !isa<Constant>(Op1))) {
// (X / Y) / Z => X / (Y * Z)
Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I);
return BinaryOperator::CreateFDivFMF(X, YZ, &I);
}
if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
(!isa<Constant>(Y) || !isa<Constant>(Op0))) {
// Z / (X / Y) => (Y * Z) / X
Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I);
return BinaryOperator::CreateFDivFMF(YZ, X, &I);
}
// Z / (1.0 / Y) => (Y * Z)
//
// This is a special case of Z / (X / Y) => (Y * Z) / X, with X = 1.0. The
// m_OneUse check is avoided because even in the case of the multiple uses
// for 1.0/Y, the number of instructions remain the same and a division is
// replaced by a multiplication.
if (match(Op1, m_FDiv(m_SpecificFP(1.0), m_Value(Y))))
return BinaryOperator::CreateFMulFMF(Y, Op0, &I);
}
if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) {
// sin(X) / cos(X) -> tan(X)
// cos(X) / sin(X) -> 1/tan(X) (cotangent)
Value *X;
bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) &&
match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X)));
bool IsCot =
!IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) &&
match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X)));
if ((IsTan || IsCot) &&
hasFloatFn(&TLI, I.getType(), LibFunc_tan, LibFunc_tanf, LibFunc_tanl)) {
IRBuilder<> B(&I);
IRBuilder<>::FastMathFlagGuard FMFGuard(B);
B.setFastMathFlags(I.getFastMathFlags());
AttributeList Attrs =
cast<CallBase>(Op0)->getCalledFunction()->getAttributes();
Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf,
LibFunc_tanl, B, Attrs);
if (IsCot)
Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res);
return replaceInstUsesWith(I, Res);
}
}
// X / (X * Y) --> 1.0 / Y
// Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
// We can ignore the possibility that X is infinity because INF/INF is NaN.
Value *X, *Y;
if (I.hasNoNaNs() && I.hasAllowReassoc() &&
match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {
replaceOperand(I, 0, ConstantFP::get(I.getType(), 1.0));
replaceOperand(I, 1, Y);
return &I;
}
// X / fabs(X) -> copysign(1.0, X)
// fabs(X) / X -> copysign(1.0, X)
if (I.hasNoNaNs() && I.hasNoInfs() &&
(match(&I, m_FDiv(m_Value(X), m_FAbs(m_Deferred(X)))) ||
match(&I, m_FDiv(m_FAbs(m_Value(X)), m_Deferred(X))))) {
Value *V = Builder.CreateBinaryIntrinsic(
Intrinsic::copysign, ConstantFP::get(I.getType(), 1.0), X, &I);
return replaceInstUsesWith(I, V);
}
if (Instruction *Mul = foldFDivPowDivisor(I, Builder))
return Mul;
return nullptr;
}
/// This function implements the transforms common to both integer remainder
/// instructions (urem and srem). It is called by the visitors to those integer
/// remainder instructions.
/// Common integer remainder transforms
Instruction *InstCombinerImpl::commonIRemTransforms(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
// The RHS is known non-zero.
if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
return replaceOperand(I, 1, V);
// Handle cases involving: rem X, (select Cond, Y, Z)
if (simplifyDivRemOfSelectWithZeroOp(I))
return &I;
if (isa<Constant>(Op1)) {
if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
if (Instruction *R = FoldOpIntoSelect(I, SI))
return R;
} else if (auto *PN = dyn_cast<PHINode>(Op0I)) {
const APInt *Op1Int;
if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() &&
(I.getOpcode() == Instruction::URem ||
!Op1Int->isMinSignedValue())) {
// foldOpIntoPhi will speculate instructions to the end of the PHI's
// predecessor blocks, so do this only if we know the srem or urem
// will not fault.
if (Instruction *NV = foldOpIntoPhi(I, PN))
return NV;
}
}
// See if we can fold away this rem instruction.
if (SimplifyDemandedInstructionBits(I))
return &I;
}
}
return nullptr;
}
Instruction *InstCombinerImpl::visitURem(BinaryOperator &I) {
if (Value *V = SimplifyURemInst(I.getOperand(0), I.getOperand(1),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (Instruction *X = foldVectorBinop(I))
return X;
if (Instruction *common = commonIRemTransforms(I))
return common;
if (Instruction *NarrowRem = narrowUDivURem(I, Builder))
return NarrowRem;
// X urem Y -> X and Y-1, where Y is a power of 2,
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Type *Ty = I.getType();
if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
// This may increase instruction count, we don't enforce that Y is a
// constant.
Constant *N1 = Constant::getAllOnesValue(Ty);
Value *Add = Builder.CreateAdd(Op1, N1);
return BinaryOperator::CreateAnd(Op0, Add);
}
// 1 urem X -> zext(X != 1)
if (match(Op0, m_One())) {
Value *Cmp = Builder.CreateICmpNE(Op1, ConstantInt::get(Ty, 1));
return CastInst::CreateZExtOrBitCast(Cmp, Ty);
}
// X urem C -> X < C ? X : X - C, where C >= signbit.
if (match(Op1, m_Negative())) {
Value *Cmp = Builder.CreateICmpULT(Op0, Op1);
Value *Sub = Builder.CreateSub(Op0, Op1);
return SelectInst::Create(Cmp, Op0, Sub);
}
// If the divisor is a sext of a boolean, then the divisor must be max
// unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also
// max unsigned value. In that case, the remainder is 0:
// urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0
Value *X;
if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Op0);
}
return nullptr;
}
Instruction *InstCombinerImpl::visitSRem(BinaryOperator &I) {
if (Value *V = SimplifySRemInst(I.getOperand(0), I.getOperand(1),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (Instruction *X = foldVectorBinop(I))
return X;
// Handle the integer rem common cases
if (Instruction *Common = commonIRemTransforms(I))
return Common;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
{
const APInt *Y;
// X % -Y -> X % Y
if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue())
return replaceOperand(I, 1, ConstantInt::get(I.getType(), -*Y));
}
// -X srem Y --> -(X srem Y)
Value *X, *Y;
if (match(&I, m_SRem(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
return BinaryOperator::CreateNSWNeg(Builder.CreateSRem(X, Y));
// If the sign bits of both operands are zero (i.e. we can prove they are
// unsigned inputs), turn this into a urem.
APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
MaskedValueIsZero(Op0, Mask, 0, &I)) {
// X srem Y -> X urem Y, iff X and Y don't have sign bit set
return BinaryOperator::CreateURem(Op0, Op1, I.getName());
}
// If it's a constant vector, flip any negative values positive.
if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
Constant *C = cast<Constant>(Op1);
unsigned VWidth = cast<FixedVectorType>(C->getType())->getNumElements();
bool hasNegative = false;
bool hasMissing = false;
for (unsigned i = 0; i != VWidth; ++i) {
Constant *Elt = C->getAggregateElement(i);
if (!Elt) {
hasMissing = true;
break;
}
if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
if (RHS->isNegative())
hasNegative = true;
}
if (hasNegative && !hasMissing) {
SmallVector<Constant *, 16> Elts(VWidth);
for (unsigned i = 0; i != VWidth; ++i) {
Elts[i] = C->getAggregateElement(i); // Handle undef, etc.
if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
if (RHS->isNegative())
Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
}
}
Constant *NewRHSV = ConstantVector::get(Elts);
if (NewRHSV != C) // Don't loop on -MININT
return replaceOperand(I, 1, NewRHSV);
}
}
return nullptr;
}
Instruction *InstCombinerImpl::visitFRem(BinaryOperator &I) {
if (Value *V = SimplifyFRemInst(I.getOperand(0), I.getOperand(1),
I.getFastMathFlags(),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (Instruction *X = foldVectorBinop(I))
return X;
return nullptr;
}