forked from OSchip/llvm-project
2149 lines
87 KiB
C++
2149 lines
87 KiB
C++
//===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the SampleProfileLoader transformation. This pass
|
|
// reads a profile file generated by a sampling profiler (e.g. Linux Perf -
|
|
// http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
|
|
// profile information in the given profile.
|
|
//
|
|
// This pass generates branch weight annotations on the IR:
|
|
//
|
|
// - prof: Represents branch weights. This annotation is added to branches
|
|
// to indicate the weights of each edge coming out of the branch.
|
|
// The weight of each edge is the weight of the target block for
|
|
// that edge. The weight of a block B is computed as the maximum
|
|
// number of samples found in B.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/IPO/SampleProfile.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/PriorityQueue.h"
|
|
#include "llvm/ADT/SCCIterator.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringMap.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
|
|
#include "llvm/Analysis/CallGraph.h"
|
|
#include "llvm/Analysis/CallGraphSCCPass.h"
|
|
#include "llvm/Analysis/InlineAdvisor.h"
|
|
#include "llvm/Analysis/InlineCost.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/Analysis/PostDominators.h"
|
|
#include "llvm/Analysis/ProfileSummaryInfo.h"
|
|
#include "llvm/Analysis/ReplayInlineAdvisor.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/IR/ValueSymbolTable.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/ProfileData/InstrProf.h"
|
|
#include "llvm/ProfileData/SampleProf.h"
|
|
#include "llvm/ProfileData/SampleProfReader.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/ErrorOr.h"
|
|
#include "llvm/Support/GenericDomTree.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include "llvm/Transforms/IPO/ProfiledCallGraph.h"
|
|
#include "llvm/Transforms/IPO/SampleContextTracker.h"
|
|
#include "llvm/Transforms/IPO/SampleProfileProbe.h"
|
|
#include "llvm/Transforms/Instrumentation.h"
|
|
#include "llvm/Transforms/Utils/CallPromotionUtils.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Transforms/Utils/SampleProfileLoaderBaseImpl.h"
|
|
#include "llvm/Transforms/Utils/SampleProfileLoaderBaseUtil.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <functional>
|
|
#include <limits>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <queue>
|
|
#include <string>
|
|
#include <system_error>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
using namespace sampleprof;
|
|
using namespace llvm::sampleprofutil;
|
|
using ProfileCount = Function::ProfileCount;
|
|
#define DEBUG_TYPE "sample-profile"
|
|
#define CSINLINE_DEBUG DEBUG_TYPE "-inline"
|
|
|
|
STATISTIC(NumCSInlined,
|
|
"Number of functions inlined with context sensitive profile");
|
|
STATISTIC(NumCSNotInlined,
|
|
"Number of functions not inlined with context sensitive profile");
|
|
STATISTIC(NumMismatchedProfile,
|
|
"Number of functions with CFG mismatched profile");
|
|
STATISTIC(NumMatchedProfile, "Number of functions with CFG matched profile");
|
|
STATISTIC(NumDuplicatedInlinesite,
|
|
"Number of inlined callsites with a partial distribution factor");
|
|
|
|
STATISTIC(NumCSInlinedHitMinLimit,
|
|
"Number of functions with FDO inline stopped due to min size limit");
|
|
STATISTIC(NumCSInlinedHitMaxLimit,
|
|
"Number of functions with FDO inline stopped due to max size limit");
|
|
STATISTIC(
|
|
NumCSInlinedHitGrowthLimit,
|
|
"Number of functions with FDO inline stopped due to growth size limit");
|
|
|
|
// Command line option to specify the file to read samples from. This is
|
|
// mainly used for debugging.
|
|
static cl::opt<std::string> SampleProfileFile(
|
|
"sample-profile-file", cl::init(""), cl::value_desc("filename"),
|
|
cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
|
|
|
|
// The named file contains a set of transformations that may have been applied
|
|
// to the symbol names between the program from which the sample data was
|
|
// collected and the current program's symbols.
|
|
static cl::opt<std::string> SampleProfileRemappingFile(
|
|
"sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"),
|
|
cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden);
|
|
|
|
static cl::opt<bool> ProfileSampleAccurate(
|
|
"profile-sample-accurate", cl::Hidden, cl::init(false),
|
|
cl::desc("If the sample profile is accurate, we will mark all un-sampled "
|
|
"callsite and function as having 0 samples. Otherwise, treat "
|
|
"un-sampled callsites and functions conservatively as unknown. "));
|
|
|
|
static cl::opt<bool> ProfileSampleBlockAccurate(
|
|
"profile-sample-block-accurate", cl::Hidden, cl::init(false),
|
|
cl::desc("If the sample profile is accurate, we will mark all un-sampled "
|
|
"branches and calls as having 0 samples. Otherwise, treat "
|
|
"them conservatively as unknown. "));
|
|
|
|
static cl::opt<bool> ProfileAccurateForSymsInList(
|
|
"profile-accurate-for-symsinlist", cl::Hidden, cl::ZeroOrMore,
|
|
cl::init(true),
|
|
cl::desc("For symbols in profile symbol list, regard their profiles to "
|
|
"be accurate. It may be overriden by profile-sample-accurate. "));
|
|
|
|
static cl::opt<bool> ProfileMergeInlinee(
|
|
"sample-profile-merge-inlinee", cl::Hidden, cl::init(true),
|
|
cl::desc("Merge past inlinee's profile to outline version if sample "
|
|
"profile loader decided not to inline a call site. It will "
|
|
"only be enabled when top-down order of profile loading is "
|
|
"enabled. "));
|
|
|
|
static cl::opt<bool> ProfileTopDownLoad(
|
|
"sample-profile-top-down-load", cl::Hidden, cl::init(true),
|
|
cl::desc("Do profile annotation and inlining for functions in top-down "
|
|
"order of call graph during sample profile loading. It only "
|
|
"works for new pass manager. "));
|
|
|
|
static cl::opt<bool>
|
|
UseProfiledCallGraph("use-profiled-call-graph", cl::init(true), cl::Hidden,
|
|
cl::desc("Process functions in a top-down order "
|
|
"defined by the profiled call graph when "
|
|
"-sample-profile-top-down-load is on."));
|
|
|
|
static cl::opt<bool> ProfileSizeInline(
|
|
"sample-profile-inline-size", cl::Hidden, cl::init(false),
|
|
cl::desc("Inline cold call sites in profile loader if it's beneficial "
|
|
"for code size."));
|
|
|
|
cl::opt<int> ProfileInlineGrowthLimit(
|
|
"sample-profile-inline-growth-limit", cl::Hidden, cl::init(12),
|
|
cl::desc("The size growth ratio limit for proirity-based sample profile "
|
|
"loader inlining."));
|
|
|
|
cl::opt<int> ProfileInlineLimitMin(
|
|
"sample-profile-inline-limit-min", cl::Hidden, cl::init(100),
|
|
cl::desc("The lower bound of size growth limit for "
|
|
"proirity-based sample profile loader inlining."));
|
|
|
|
cl::opt<int> ProfileInlineLimitMax(
|
|
"sample-profile-inline-limit-max", cl::Hidden, cl::init(10000),
|
|
cl::desc("The upper bound of size growth limit for "
|
|
"proirity-based sample profile loader inlining."));
|
|
|
|
cl::opt<int> SampleHotCallSiteThreshold(
|
|
"sample-profile-hot-inline-threshold", cl::Hidden, cl::init(3000),
|
|
cl::desc("Hot callsite threshold for proirity-based sample profile loader "
|
|
"inlining."));
|
|
|
|
cl::opt<int> SampleColdCallSiteThreshold(
|
|
"sample-profile-cold-inline-threshold", cl::Hidden, cl::init(45),
|
|
cl::desc("Threshold for inlining cold callsites"));
|
|
|
|
static cl::opt<unsigned> ProfileICPRelativeHotness(
|
|
"sample-profile-icp-relative-hotness", cl::Hidden, cl::init(25),
|
|
cl::desc(
|
|
"Relative hotness percentage threshold for indirect "
|
|
"call promotion in proirity-based sample profile loader inlining."));
|
|
|
|
static cl::opt<unsigned> ProfileICPRelativeHotnessSkip(
|
|
"sample-profile-icp-relative-hotness-skip", cl::Hidden, cl::init(1),
|
|
cl::desc(
|
|
"Skip relative hotness check for ICP up to given number of targets."));
|
|
|
|
static cl::opt<bool> CallsitePrioritizedInline(
|
|
"sample-profile-prioritized-inline", cl::Hidden, cl::ZeroOrMore,
|
|
cl::init(false),
|
|
cl::desc("Use call site prioritized inlining for sample profile loader."
|
|
"Currently only CSSPGO is supported."));
|
|
|
|
static cl::opt<bool> UsePreInlinerDecision(
|
|
"sample-profile-use-preinliner", cl::Hidden, cl::ZeroOrMore,
|
|
cl::init(false),
|
|
cl::desc("Use the preinliner decisions stored in profile context."));
|
|
|
|
static cl::opt<bool> AllowRecursiveInline(
|
|
"sample-profile-recursive-inline", cl::Hidden, cl::ZeroOrMore,
|
|
cl::init(false),
|
|
cl::desc("Allow sample loader inliner to inline recursive calls."));
|
|
|
|
static cl::opt<std::string> ProfileInlineReplayFile(
|
|
"sample-profile-inline-replay", cl::init(""), cl::value_desc("filename"),
|
|
cl::desc(
|
|
"Optimization remarks file containing inline remarks to be replayed "
|
|
"by inlining from sample profile loader."),
|
|
cl::Hidden);
|
|
|
|
static cl::opt<ReplayInlinerSettings::Scope> ProfileInlineReplayScope(
|
|
"sample-profile-inline-replay-scope",
|
|
cl::init(ReplayInlinerSettings::Scope::Function),
|
|
cl::values(clEnumValN(ReplayInlinerSettings::Scope::Function, "Function",
|
|
"Replay on functions that have remarks associated "
|
|
"with them (default)"),
|
|
clEnumValN(ReplayInlinerSettings::Scope::Module, "Module",
|
|
"Replay on the entire module")),
|
|
cl::desc("Whether inline replay should be applied to the entire "
|
|
"Module or just the Functions (default) that are present as "
|
|
"callers in remarks during sample profile inlining."),
|
|
cl::Hidden);
|
|
|
|
static cl::opt<ReplayInlinerSettings::Fallback> ProfileInlineReplayFallback(
|
|
"sample-profile-inline-replay-fallback",
|
|
cl::init(ReplayInlinerSettings::Fallback::Original),
|
|
cl::values(
|
|
clEnumValN(
|
|
ReplayInlinerSettings::Fallback::Original, "Original",
|
|
"All decisions not in replay send to original advisor (default)"),
|
|
clEnumValN(ReplayInlinerSettings::Fallback::AlwaysInline,
|
|
"AlwaysInline", "All decisions not in replay are inlined"),
|
|
clEnumValN(ReplayInlinerSettings::Fallback::NeverInline, "NeverInline",
|
|
"All decisions not in replay are not inlined")),
|
|
cl::desc("How sample profile inline replay treats sites that don't come "
|
|
"from the replay. Original: defers to original advisor, "
|
|
"AlwaysInline: inline all sites not in replay, NeverInline: "
|
|
"inline no sites not in replay"),
|
|
cl::Hidden);
|
|
|
|
static cl::opt<CallSiteFormat::Format> ProfileInlineReplayFormat(
|
|
"sample-profile-inline-replay-format",
|
|
cl::init(CallSiteFormat::Format::LineColumnDiscriminator),
|
|
cl::values(
|
|
clEnumValN(CallSiteFormat::Format::Line, "Line", "<Line Number>"),
|
|
clEnumValN(CallSiteFormat::Format::LineColumn, "LineColumn",
|
|
"<Line Number>:<Column Number>"),
|
|
clEnumValN(CallSiteFormat::Format::LineDiscriminator,
|
|
"LineDiscriminator", "<Line Number>.<Discriminator>"),
|
|
clEnumValN(CallSiteFormat::Format::LineColumnDiscriminator,
|
|
"LineColumnDiscriminator",
|
|
"<Line Number>:<Column Number>.<Discriminator> (default)")),
|
|
cl::desc("How sample profile inline replay file is formatted"), cl::Hidden);
|
|
|
|
static cl::opt<unsigned>
|
|
MaxNumPromotions("sample-profile-icp-max-prom", cl::init(3), cl::Hidden,
|
|
cl::ZeroOrMore,
|
|
cl::desc("Max number of promotions for a single indirect "
|
|
"call callsite in sample profile loader"));
|
|
|
|
static cl::opt<bool> OverwriteExistingWeights(
|
|
"overwrite-existing-weights", cl::Hidden, cl::init(false),
|
|
cl::desc("Ignore existing branch weights on IR and always overwrite."));
|
|
|
|
namespace {
|
|
|
|
using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
|
|
using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
|
|
using Edge = std::pair<const BasicBlock *, const BasicBlock *>;
|
|
using EdgeWeightMap = DenseMap<Edge, uint64_t>;
|
|
using BlockEdgeMap =
|
|
DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>;
|
|
|
|
class GUIDToFuncNameMapper {
|
|
public:
|
|
GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader,
|
|
DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap)
|
|
: CurrentReader(Reader), CurrentModule(M),
|
|
CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) {
|
|
if (!CurrentReader.useMD5())
|
|
return;
|
|
|
|
for (const auto &F : CurrentModule) {
|
|
StringRef OrigName = F.getName();
|
|
CurrentGUIDToFuncNameMap.insert(
|
|
{Function::getGUID(OrigName), OrigName});
|
|
|
|
// Local to global var promotion used by optimization like thinlto
|
|
// will rename the var and add suffix like ".llvm.xxx" to the
|
|
// original local name. In sample profile, the suffixes of function
|
|
// names are all stripped. Since it is possible that the mapper is
|
|
// built in post-thin-link phase and var promotion has been done,
|
|
// we need to add the substring of function name without the suffix
|
|
// into the GUIDToFuncNameMap.
|
|
StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
|
|
if (CanonName != OrigName)
|
|
CurrentGUIDToFuncNameMap.insert(
|
|
{Function::getGUID(CanonName), CanonName});
|
|
}
|
|
|
|
// Update GUIDToFuncNameMap for each function including inlinees.
|
|
SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap);
|
|
}
|
|
|
|
~GUIDToFuncNameMapper() {
|
|
if (!CurrentReader.useMD5())
|
|
return;
|
|
|
|
CurrentGUIDToFuncNameMap.clear();
|
|
|
|
// Reset GUIDToFuncNameMap for of each function as they're no
|
|
// longer valid at this point.
|
|
SetGUIDToFuncNameMapForAll(nullptr);
|
|
}
|
|
|
|
private:
|
|
void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) {
|
|
std::queue<FunctionSamples *> FSToUpdate;
|
|
for (auto &IFS : CurrentReader.getProfiles()) {
|
|
FSToUpdate.push(&IFS.second);
|
|
}
|
|
|
|
while (!FSToUpdate.empty()) {
|
|
FunctionSamples *FS = FSToUpdate.front();
|
|
FSToUpdate.pop();
|
|
FS->GUIDToFuncNameMap = Map;
|
|
for (const auto &ICS : FS->getCallsiteSamples()) {
|
|
const FunctionSamplesMap &FSMap = ICS.second;
|
|
for (auto &IFS : FSMap) {
|
|
FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second);
|
|
FSToUpdate.push(&FS);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
SampleProfileReader &CurrentReader;
|
|
Module &CurrentModule;
|
|
DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap;
|
|
};
|
|
|
|
// Inline candidate used by iterative callsite prioritized inliner
|
|
struct InlineCandidate {
|
|
CallBase *CallInstr;
|
|
const FunctionSamples *CalleeSamples;
|
|
// Prorated callsite count, which will be used to guide inlining. For example,
|
|
// if a callsite is duplicated in LTO prelink, then in LTO postlink the two
|
|
// copies will get their own distribution factors and their prorated counts
|
|
// will be used to decide if they should be inlined independently.
|
|
uint64_t CallsiteCount;
|
|
// Call site distribution factor to prorate the profile samples for a
|
|
// duplicated callsite. Default value is 1.0.
|
|
float CallsiteDistribution;
|
|
};
|
|
|
|
// Inline candidate comparer using call site weight
|
|
struct CandidateComparer {
|
|
bool operator()(const InlineCandidate &LHS, const InlineCandidate &RHS) {
|
|
if (LHS.CallsiteCount != RHS.CallsiteCount)
|
|
return LHS.CallsiteCount < RHS.CallsiteCount;
|
|
|
|
const FunctionSamples *LCS = LHS.CalleeSamples;
|
|
const FunctionSamples *RCS = RHS.CalleeSamples;
|
|
assert(LCS && RCS && "Expect non-null FunctionSamples");
|
|
|
|
// Tie breaker using number of samples try to favor smaller functions first
|
|
if (LCS->getBodySamples().size() != RCS->getBodySamples().size())
|
|
return LCS->getBodySamples().size() > RCS->getBodySamples().size();
|
|
|
|
// Tie breaker using GUID so we have stable/deterministic inlining order
|
|
return LCS->getGUID(LCS->getName()) < RCS->getGUID(RCS->getName());
|
|
}
|
|
};
|
|
|
|
using CandidateQueue =
|
|
PriorityQueue<InlineCandidate, std::vector<InlineCandidate>,
|
|
CandidateComparer>;
|
|
|
|
/// Sample profile pass.
|
|
///
|
|
/// This pass reads profile data from the file specified by
|
|
/// -sample-profile-file and annotates every affected function with the
|
|
/// profile information found in that file.
|
|
class SampleProfileLoader final
|
|
: public SampleProfileLoaderBaseImpl<BasicBlock> {
|
|
public:
|
|
SampleProfileLoader(
|
|
StringRef Name, StringRef RemapName, ThinOrFullLTOPhase LTOPhase,
|
|
std::function<AssumptionCache &(Function &)> GetAssumptionCache,
|
|
std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo,
|
|
std::function<const TargetLibraryInfo &(Function &)> GetTLI)
|
|
: SampleProfileLoaderBaseImpl(std::string(Name), std::string(RemapName)),
|
|
GetAC(std::move(GetAssumptionCache)),
|
|
GetTTI(std::move(GetTargetTransformInfo)), GetTLI(std::move(GetTLI)),
|
|
LTOPhase(LTOPhase) {}
|
|
|
|
bool doInitialization(Module &M, FunctionAnalysisManager *FAM = nullptr);
|
|
bool runOnModule(Module &M, ModuleAnalysisManager *AM,
|
|
ProfileSummaryInfo *_PSI, CallGraph *CG);
|
|
|
|
protected:
|
|
bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
|
|
bool emitAnnotations(Function &F);
|
|
ErrorOr<uint64_t> getInstWeight(const Instruction &I) override;
|
|
ErrorOr<uint64_t> getProbeWeight(const Instruction &I);
|
|
const FunctionSamples *findCalleeFunctionSamples(const CallBase &I) const;
|
|
const FunctionSamples *
|
|
findFunctionSamples(const Instruction &I) const override;
|
|
std::vector<const FunctionSamples *>
|
|
findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const;
|
|
void findExternalInlineCandidate(CallBase *CB, const FunctionSamples *Samples,
|
|
DenseSet<GlobalValue::GUID> &InlinedGUIDs,
|
|
const StringMap<Function *> &SymbolMap,
|
|
uint64_t Threshold);
|
|
// Attempt to promote indirect call and also inline the promoted call
|
|
bool tryPromoteAndInlineCandidate(
|
|
Function &F, InlineCandidate &Candidate, uint64_t SumOrigin,
|
|
uint64_t &Sum, SmallVector<CallBase *, 8> *InlinedCallSites = nullptr);
|
|
|
|
bool inlineHotFunctions(Function &F,
|
|
DenseSet<GlobalValue::GUID> &InlinedGUIDs);
|
|
Optional<InlineCost> getExternalInlineAdvisorCost(CallBase &CB);
|
|
bool getExternalInlineAdvisorShouldInline(CallBase &CB);
|
|
InlineCost shouldInlineCandidate(InlineCandidate &Candidate);
|
|
bool getInlineCandidate(InlineCandidate *NewCandidate, CallBase *CB);
|
|
bool
|
|
tryInlineCandidate(InlineCandidate &Candidate,
|
|
SmallVector<CallBase *, 8> *InlinedCallSites = nullptr);
|
|
bool
|
|
inlineHotFunctionsWithPriority(Function &F,
|
|
DenseSet<GlobalValue::GUID> &InlinedGUIDs);
|
|
// Inline cold/small functions in addition to hot ones
|
|
bool shouldInlineColdCallee(CallBase &CallInst);
|
|
void emitOptimizationRemarksForInlineCandidates(
|
|
const SmallVectorImpl<CallBase *> &Candidates, const Function &F,
|
|
bool Hot);
|
|
std::vector<Function *> buildFunctionOrder(Module &M, CallGraph *CG);
|
|
std::unique_ptr<ProfiledCallGraph> buildProfiledCallGraph(CallGraph &CG);
|
|
void generateMDProfMetadata(Function &F);
|
|
|
|
/// Map from function name to Function *. Used to find the function from
|
|
/// the function name. If the function name contains suffix, additional
|
|
/// entry is added to map from the stripped name to the function if there
|
|
/// is one-to-one mapping.
|
|
StringMap<Function *> SymbolMap;
|
|
|
|
std::function<AssumptionCache &(Function &)> GetAC;
|
|
std::function<TargetTransformInfo &(Function &)> GetTTI;
|
|
std::function<const TargetLibraryInfo &(Function &)> GetTLI;
|
|
|
|
/// Profile tracker for different context.
|
|
std::unique_ptr<SampleContextTracker> ContextTracker;
|
|
|
|
/// Flag indicating whether input profile is context-sensitive
|
|
bool ProfileIsCS = false;
|
|
|
|
/// Flag indicating which LTO/ThinLTO phase the pass is invoked in.
|
|
///
|
|
/// We need to know the LTO phase because for example in ThinLTOPrelink
|
|
/// phase, in annotation, we should not promote indirect calls. Instead,
|
|
/// we will mark GUIDs that needs to be annotated to the function.
|
|
ThinOrFullLTOPhase LTOPhase;
|
|
|
|
/// Profle Symbol list tells whether a function name appears in the binary
|
|
/// used to generate the current profile.
|
|
std::unique_ptr<ProfileSymbolList> PSL;
|
|
|
|
/// Total number of samples collected in this profile.
|
|
///
|
|
/// This is the sum of all the samples collected in all the functions executed
|
|
/// at runtime.
|
|
uint64_t TotalCollectedSamples = 0;
|
|
|
|
// Information recorded when we declined to inline a call site
|
|
// because we have determined it is too cold is accumulated for
|
|
// each callee function. Initially this is just the entry count.
|
|
struct NotInlinedProfileInfo {
|
|
uint64_t entryCount;
|
|
};
|
|
DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo;
|
|
|
|
// GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for
|
|
// all the function symbols defined or declared in current module.
|
|
DenseMap<uint64_t, StringRef> GUIDToFuncNameMap;
|
|
|
|
// All the Names used in FunctionSamples including outline function
|
|
// names, inline instance names and call target names.
|
|
StringSet<> NamesInProfile;
|
|
|
|
// For symbol in profile symbol list, whether to regard their profiles
|
|
// to be accurate. It is mainly decided by existance of profile symbol
|
|
// list and -profile-accurate-for-symsinlist flag, but it can be
|
|
// overriden by -profile-sample-accurate or profile-sample-accurate
|
|
// attribute.
|
|
bool ProfAccForSymsInList;
|
|
|
|
// External inline advisor used to replay inline decision from remarks.
|
|
std::unique_ptr<InlineAdvisor> ExternalInlineAdvisor;
|
|
|
|
// A pseudo probe helper to correlate the imported sample counts.
|
|
std::unique_ptr<PseudoProbeManager> ProbeManager;
|
|
};
|
|
|
|
class SampleProfileLoaderLegacyPass : public ModulePass {
|
|
public:
|
|
// Class identification, replacement for typeinfo
|
|
static char ID;
|
|
|
|
SampleProfileLoaderLegacyPass(
|
|
StringRef Name = SampleProfileFile,
|
|
ThinOrFullLTOPhase LTOPhase = ThinOrFullLTOPhase::None)
|
|
: ModulePass(ID), SampleLoader(
|
|
Name, SampleProfileRemappingFile, LTOPhase,
|
|
[&](Function &F) -> AssumptionCache & {
|
|
return ACT->getAssumptionCache(F);
|
|
},
|
|
[&](Function &F) -> TargetTransformInfo & {
|
|
return TTIWP->getTTI(F);
|
|
},
|
|
[&](Function &F) -> TargetLibraryInfo & {
|
|
return TLIWP->getTLI(F);
|
|
}) {
|
|
initializeSampleProfileLoaderLegacyPassPass(
|
|
*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void dump() { SampleLoader.dump(); }
|
|
|
|
bool doInitialization(Module &M) override {
|
|
return SampleLoader.doInitialization(M);
|
|
}
|
|
|
|
StringRef getPassName() const override { return "Sample profile pass"; }
|
|
bool runOnModule(Module &M) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
AU.addRequired<ProfileSummaryInfoWrapperPass>();
|
|
}
|
|
|
|
private:
|
|
SampleProfileLoader SampleLoader;
|
|
AssumptionCacheTracker *ACT = nullptr;
|
|
TargetTransformInfoWrapperPass *TTIWP = nullptr;
|
|
TargetLibraryInfoWrapperPass *TLIWP = nullptr;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
|
|
if (FunctionSamples::ProfileIsProbeBased)
|
|
return getProbeWeight(Inst);
|
|
|
|
const DebugLoc &DLoc = Inst.getDebugLoc();
|
|
if (!DLoc)
|
|
return std::error_code();
|
|
|
|
// Ignore all intrinsics, phinodes and branch instructions.
|
|
// Branch and phinodes instruction usually contains debug info from sources
|
|
// outside of the residing basic block, thus we ignore them during annotation.
|
|
if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst))
|
|
return std::error_code();
|
|
|
|
// For non-CS profile, if a direct call/invoke instruction is inlined in
|
|
// profile (findCalleeFunctionSamples returns non-empty result), but not
|
|
// inlined here, it means that the inlined callsite has no sample, thus the
|
|
// call instruction should have 0 count.
|
|
// For CS profile, the callsite count of previously inlined callees is
|
|
// populated with the entry count of the callees.
|
|
if (!ProfileIsCS)
|
|
if (const auto *CB = dyn_cast<CallBase>(&Inst))
|
|
if (!CB->isIndirectCall() && findCalleeFunctionSamples(*CB))
|
|
return 0;
|
|
|
|
return getInstWeightImpl(Inst);
|
|
}
|
|
|
|
// Here use error_code to represent: 1) The dangling probe. 2) Ignore the weight
|
|
// of non-probe instruction. So if all instructions of the BB give error_code,
|
|
// tell the inference algorithm to infer the BB weight.
|
|
ErrorOr<uint64_t> SampleProfileLoader::getProbeWeight(const Instruction &Inst) {
|
|
assert(FunctionSamples::ProfileIsProbeBased &&
|
|
"Profile is not pseudo probe based");
|
|
Optional<PseudoProbe> Probe = extractProbe(Inst);
|
|
// Ignore the non-probe instruction. If none of the instruction in the BB is
|
|
// probe, we choose to infer the BB's weight.
|
|
if (!Probe)
|
|
return std::error_code();
|
|
|
|
const FunctionSamples *FS = findFunctionSamples(Inst);
|
|
// If none of the instruction has FunctionSample, we choose to return zero
|
|
// value sample to indicate the BB is cold. This could happen when the
|
|
// instruction is from inlinee and no profile data is found.
|
|
// FIXME: This should not be affected by the source drift issue as 1) if the
|
|
// newly added function is top-level inliner, it won't match the CFG checksum
|
|
// in the function profile or 2) if it's the inlinee, the inlinee should have
|
|
// a profile, otherwise it wouldn't be inlined. For non-probe based profile,
|
|
// we can improve it by adding a switch for profile-sample-block-accurate for
|
|
// block level counts in the future.
|
|
if (!FS)
|
|
return 0;
|
|
|
|
// For non-CS profile, If a direct call/invoke instruction is inlined in
|
|
// profile (findCalleeFunctionSamples returns non-empty result), but not
|
|
// inlined here, it means that the inlined callsite has no sample, thus the
|
|
// call instruction should have 0 count.
|
|
// For CS profile, the callsite count of previously inlined callees is
|
|
// populated with the entry count of the callees.
|
|
if (!ProfileIsCS)
|
|
if (const auto *CB = dyn_cast<CallBase>(&Inst))
|
|
if (!CB->isIndirectCall() && findCalleeFunctionSamples(*CB))
|
|
return 0;
|
|
|
|
const ErrorOr<uint64_t> &R = FS->findSamplesAt(Probe->Id, 0);
|
|
if (R) {
|
|
uint64_t Samples = R.get() * Probe->Factor;
|
|
bool FirstMark = CoverageTracker.markSamplesUsed(FS, Probe->Id, 0, Samples);
|
|
if (FirstMark) {
|
|
ORE->emit([&]() {
|
|
OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
|
|
Remark << "Applied " << ore::NV("NumSamples", Samples);
|
|
Remark << " samples from profile (ProbeId=";
|
|
Remark << ore::NV("ProbeId", Probe->Id);
|
|
Remark << ", Factor=";
|
|
Remark << ore::NV("Factor", Probe->Factor);
|
|
Remark << ", OriginalSamples=";
|
|
Remark << ore::NV("OriginalSamples", R.get());
|
|
Remark << ")";
|
|
return Remark;
|
|
});
|
|
}
|
|
LLVM_DEBUG(dbgs() << " " << Probe->Id << ":" << Inst
|
|
<< " - weight: " << R.get() << " - factor: "
|
|
<< format("%0.2f", Probe->Factor) << ")\n");
|
|
return Samples;
|
|
}
|
|
return R;
|
|
}
|
|
|
|
/// Get the FunctionSamples for a call instruction.
|
|
///
|
|
/// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
|
|
/// instance in which that call instruction is calling to. It contains
|
|
/// all samples that resides in the inlined instance. We first find the
|
|
/// inlined instance in which the call instruction is from, then we
|
|
/// traverse its children to find the callsite with the matching
|
|
/// location.
|
|
///
|
|
/// \param Inst Call/Invoke instruction to query.
|
|
///
|
|
/// \returns The FunctionSamples pointer to the inlined instance.
|
|
const FunctionSamples *
|
|
SampleProfileLoader::findCalleeFunctionSamples(const CallBase &Inst) const {
|
|
const DILocation *DIL = Inst.getDebugLoc();
|
|
if (!DIL) {
|
|
return nullptr;
|
|
}
|
|
|
|
StringRef CalleeName;
|
|
if (Function *Callee = Inst.getCalledFunction())
|
|
CalleeName = Callee->getName();
|
|
|
|
if (ProfileIsCS)
|
|
return ContextTracker->getCalleeContextSamplesFor(Inst, CalleeName);
|
|
|
|
const FunctionSamples *FS = findFunctionSamples(Inst);
|
|
if (FS == nullptr)
|
|
return nullptr;
|
|
|
|
return FS->findFunctionSamplesAt(FunctionSamples::getCallSiteIdentifier(DIL),
|
|
CalleeName, Reader->getRemapper());
|
|
}
|
|
|
|
/// Returns a vector of FunctionSamples that are the indirect call targets
|
|
/// of \p Inst. The vector is sorted by the total number of samples. Stores
|
|
/// the total call count of the indirect call in \p Sum.
|
|
std::vector<const FunctionSamples *>
|
|
SampleProfileLoader::findIndirectCallFunctionSamples(
|
|
const Instruction &Inst, uint64_t &Sum) const {
|
|
const DILocation *DIL = Inst.getDebugLoc();
|
|
std::vector<const FunctionSamples *> R;
|
|
|
|
if (!DIL) {
|
|
return R;
|
|
}
|
|
|
|
auto FSCompare = [](const FunctionSamples *L, const FunctionSamples *R) {
|
|
assert(L && R && "Expect non-null FunctionSamples");
|
|
if (L->getEntrySamples() != R->getEntrySamples())
|
|
return L->getEntrySamples() > R->getEntrySamples();
|
|
return FunctionSamples::getGUID(L->getName()) <
|
|
FunctionSamples::getGUID(R->getName());
|
|
};
|
|
|
|
if (ProfileIsCS) {
|
|
auto CalleeSamples =
|
|
ContextTracker->getIndirectCalleeContextSamplesFor(DIL);
|
|
if (CalleeSamples.empty())
|
|
return R;
|
|
|
|
// For CSSPGO, we only use target context profile's entry count
|
|
// as that already includes both inlined callee and non-inlined ones..
|
|
Sum = 0;
|
|
for (const auto *const FS : CalleeSamples) {
|
|
Sum += FS->getEntrySamples();
|
|
R.push_back(FS);
|
|
}
|
|
llvm::sort(R, FSCompare);
|
|
return R;
|
|
}
|
|
|
|
const FunctionSamples *FS = findFunctionSamples(Inst);
|
|
if (FS == nullptr)
|
|
return R;
|
|
|
|
auto CallSite = FunctionSamples::getCallSiteIdentifier(DIL);
|
|
auto T = FS->findCallTargetMapAt(CallSite);
|
|
Sum = 0;
|
|
if (T)
|
|
for (const auto &T_C : T.get())
|
|
Sum += T_C.second;
|
|
if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(CallSite)) {
|
|
if (M->empty())
|
|
return R;
|
|
for (const auto &NameFS : *M) {
|
|
Sum += NameFS.second.getEntrySamples();
|
|
R.push_back(&NameFS.second);
|
|
}
|
|
llvm::sort(R, FSCompare);
|
|
}
|
|
return R;
|
|
}
|
|
|
|
const FunctionSamples *
|
|
SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
|
|
if (FunctionSamples::ProfileIsProbeBased) {
|
|
Optional<PseudoProbe> Probe = extractProbe(Inst);
|
|
if (!Probe)
|
|
return nullptr;
|
|
}
|
|
|
|
const DILocation *DIL = Inst.getDebugLoc();
|
|
if (!DIL)
|
|
return Samples;
|
|
|
|
auto it = DILocation2SampleMap.try_emplace(DIL,nullptr);
|
|
if (it.second) {
|
|
if (ProfileIsCS)
|
|
it.first->second = ContextTracker->getContextSamplesFor(DIL);
|
|
else
|
|
it.first->second =
|
|
Samples->findFunctionSamples(DIL, Reader->getRemapper());
|
|
}
|
|
return it.first->second;
|
|
}
|
|
|
|
/// Check whether the indirect call promotion history of \p Inst allows
|
|
/// the promotion for \p Candidate.
|
|
/// If the profile count for the promotion candidate \p Candidate is
|
|
/// NOMORE_ICP_MAGICNUM, it means \p Candidate has already been promoted
|
|
/// for \p Inst. If we already have at least MaxNumPromotions
|
|
/// NOMORE_ICP_MAGICNUM count values in the value profile of \p Inst, we
|
|
/// cannot promote for \p Inst anymore.
|
|
static bool doesHistoryAllowICP(const Instruction &Inst, StringRef Candidate) {
|
|
uint32_t NumVals = 0;
|
|
uint64_t TotalCount = 0;
|
|
std::unique_ptr<InstrProfValueData[]> ValueData =
|
|
std::make_unique<InstrProfValueData[]>(MaxNumPromotions);
|
|
bool Valid =
|
|
getValueProfDataFromInst(Inst, IPVK_IndirectCallTarget, MaxNumPromotions,
|
|
ValueData.get(), NumVals, TotalCount, true);
|
|
// No valid value profile so no promoted targets have been recorded
|
|
// before. Ok to do ICP.
|
|
if (!Valid)
|
|
return true;
|
|
|
|
unsigned NumPromoted = 0;
|
|
for (uint32_t I = 0; I < NumVals; I++) {
|
|
if (ValueData[I].Count != NOMORE_ICP_MAGICNUM)
|
|
continue;
|
|
|
|
// If the promotion candidate has NOMORE_ICP_MAGICNUM count in the
|
|
// metadata, it means the candidate has been promoted for this
|
|
// indirect call.
|
|
if (ValueData[I].Value == Function::getGUID(Candidate))
|
|
return false;
|
|
NumPromoted++;
|
|
// If already have MaxNumPromotions promotion, don't do it anymore.
|
|
if (NumPromoted == MaxNumPromotions)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Update indirect call target profile metadata for \p Inst.
|
|
/// Usually \p Sum is the sum of counts of all the targets for \p Inst.
|
|
/// If it is 0, it means updateIDTMetaData is used to mark a
|
|
/// certain target to be promoted already. If it is not zero,
|
|
/// we expect to use it to update the total count in the value profile.
|
|
static void
|
|
updateIDTMetaData(Instruction &Inst,
|
|
const SmallVectorImpl<InstrProfValueData> &CallTargets,
|
|
uint64_t Sum) {
|
|
uint32_t NumVals = 0;
|
|
// OldSum is the existing total count in the value profile data.
|
|
uint64_t OldSum = 0;
|
|
std::unique_ptr<InstrProfValueData[]> ValueData =
|
|
std::make_unique<InstrProfValueData[]>(MaxNumPromotions);
|
|
bool Valid =
|
|
getValueProfDataFromInst(Inst, IPVK_IndirectCallTarget, MaxNumPromotions,
|
|
ValueData.get(), NumVals, OldSum, true);
|
|
|
|
DenseMap<uint64_t, uint64_t> ValueCountMap;
|
|
if (Sum == 0) {
|
|
assert((CallTargets.size() == 1 &&
|
|
CallTargets[0].Count == NOMORE_ICP_MAGICNUM) &&
|
|
"If sum is 0, assume only one element in CallTargets "
|
|
"with count being NOMORE_ICP_MAGICNUM");
|
|
// Initialize ValueCountMap with existing value profile data.
|
|
if (Valid) {
|
|
for (uint32_t I = 0; I < NumVals; I++)
|
|
ValueCountMap[ValueData[I].Value] = ValueData[I].Count;
|
|
}
|
|
auto Pair =
|
|
ValueCountMap.try_emplace(CallTargets[0].Value, CallTargets[0].Count);
|
|
// If the target already exists in value profile, decrease the total
|
|
// count OldSum and reset the target's count to NOMORE_ICP_MAGICNUM.
|
|
if (!Pair.second) {
|
|
OldSum -= Pair.first->second;
|
|
Pair.first->second = NOMORE_ICP_MAGICNUM;
|
|
}
|
|
Sum = OldSum;
|
|
} else {
|
|
// Initialize ValueCountMap with existing NOMORE_ICP_MAGICNUM
|
|
// counts in the value profile.
|
|
if (Valid) {
|
|
for (uint32_t I = 0; I < NumVals; I++) {
|
|
if (ValueData[I].Count == NOMORE_ICP_MAGICNUM)
|
|
ValueCountMap[ValueData[I].Value] = ValueData[I].Count;
|
|
}
|
|
}
|
|
|
|
for (const auto &Data : CallTargets) {
|
|
auto Pair = ValueCountMap.try_emplace(Data.Value, Data.Count);
|
|
if (Pair.second)
|
|
continue;
|
|
// The target represented by Data.Value has already been promoted.
|
|
// Keep the count as NOMORE_ICP_MAGICNUM in the profile and decrease
|
|
// Sum by Data.Count.
|
|
assert(Sum >= Data.Count && "Sum should never be less than Data.Count");
|
|
Sum -= Data.Count;
|
|
}
|
|
}
|
|
|
|
SmallVector<InstrProfValueData, 8> NewCallTargets;
|
|
for (const auto &ValueCount : ValueCountMap) {
|
|
NewCallTargets.emplace_back(
|
|
InstrProfValueData{ValueCount.first, ValueCount.second});
|
|
}
|
|
|
|
llvm::sort(NewCallTargets,
|
|
[](const InstrProfValueData &L, const InstrProfValueData &R) {
|
|
if (L.Count != R.Count)
|
|
return L.Count > R.Count;
|
|
return L.Value > R.Value;
|
|
});
|
|
|
|
uint32_t MaxMDCount =
|
|
std::min(NewCallTargets.size(), static_cast<size_t>(MaxNumPromotions));
|
|
annotateValueSite(*Inst.getParent()->getParent()->getParent(), Inst,
|
|
NewCallTargets, Sum, IPVK_IndirectCallTarget, MaxMDCount);
|
|
}
|
|
|
|
/// Attempt to promote indirect call and also inline the promoted call.
|
|
///
|
|
/// \param F Caller function.
|
|
/// \param Candidate ICP and inline candidate.
|
|
/// \param SumOrigin Original sum of target counts for indirect call before
|
|
/// promoting given candidate.
|
|
/// \param Sum Prorated sum of remaining target counts for indirect call
|
|
/// after promoting given candidate.
|
|
/// \param InlinedCallSite Output vector for new call sites exposed after
|
|
/// inlining.
|
|
bool SampleProfileLoader::tryPromoteAndInlineCandidate(
|
|
Function &F, InlineCandidate &Candidate, uint64_t SumOrigin, uint64_t &Sum,
|
|
SmallVector<CallBase *, 8> *InlinedCallSite) {
|
|
auto CalleeFunctionName = Candidate.CalleeSamples->getFuncName();
|
|
auto R = SymbolMap.find(CalleeFunctionName);
|
|
if (R == SymbolMap.end() || !R->getValue())
|
|
return false;
|
|
|
|
auto &CI = *Candidate.CallInstr;
|
|
if (!doesHistoryAllowICP(CI, R->getValue()->getName()))
|
|
return false;
|
|
|
|
const char *Reason = "Callee function not available";
|
|
// R->getValue() != &F is to prevent promoting a recursive call.
|
|
// If it is a recursive call, we do not inline it as it could bloat
|
|
// the code exponentially. There is way to better handle this, e.g.
|
|
// clone the caller first, and inline the cloned caller if it is
|
|
// recursive. As llvm does not inline recursive calls, we will
|
|
// simply ignore it instead of handling it explicitly.
|
|
if (!R->getValue()->isDeclaration() && R->getValue()->getSubprogram() &&
|
|
R->getValue()->hasFnAttribute("use-sample-profile") &&
|
|
R->getValue() != &F && isLegalToPromote(CI, R->getValue(), &Reason)) {
|
|
// For promoted target, set its value with NOMORE_ICP_MAGICNUM count
|
|
// in the value profile metadata so the target won't be promoted again.
|
|
SmallVector<InstrProfValueData, 1> SortedCallTargets = {InstrProfValueData{
|
|
Function::getGUID(R->getValue()->getName()), NOMORE_ICP_MAGICNUM}};
|
|
updateIDTMetaData(CI, SortedCallTargets, 0);
|
|
|
|
auto *DI = &pgo::promoteIndirectCall(
|
|
CI, R->getValue(), Candidate.CallsiteCount, Sum, false, ORE);
|
|
if (DI) {
|
|
Sum -= Candidate.CallsiteCount;
|
|
// Do not prorate the indirect callsite distribution since the original
|
|
// distribution will be used to scale down non-promoted profile target
|
|
// counts later. By doing this we lose track of the real callsite count
|
|
// for the leftover indirect callsite as a trade off for accurate call
|
|
// target counts.
|
|
// TODO: Ideally we would have two separate factors, one for call site
|
|
// counts and one is used to prorate call target counts.
|
|
// Do not update the promoted direct callsite distribution at this
|
|
// point since the original distribution combined with the callee profile
|
|
// will be used to prorate callsites from the callee if inlined. Once not
|
|
// inlined, the direct callsite distribution should be prorated so that
|
|
// the it will reflect the real callsite counts.
|
|
Candidate.CallInstr = DI;
|
|
if (isa<CallInst>(DI) || isa<InvokeInst>(DI)) {
|
|
bool Inlined = tryInlineCandidate(Candidate, InlinedCallSite);
|
|
if (!Inlined) {
|
|
// Prorate the direct callsite distribution so that it reflects real
|
|
// callsite counts.
|
|
setProbeDistributionFactor(
|
|
*DI, static_cast<float>(Candidate.CallsiteCount) / SumOrigin);
|
|
}
|
|
return Inlined;
|
|
}
|
|
}
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "\nFailed to promote indirect call to "
|
|
<< Candidate.CalleeSamples->getFuncName() << " because "
|
|
<< Reason << "\n");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool SampleProfileLoader::shouldInlineColdCallee(CallBase &CallInst) {
|
|
if (!ProfileSizeInline)
|
|
return false;
|
|
|
|
Function *Callee = CallInst.getCalledFunction();
|
|
if (Callee == nullptr)
|
|
return false;
|
|
|
|
InlineCost Cost = getInlineCost(CallInst, getInlineParams(), GetTTI(*Callee),
|
|
GetAC, GetTLI);
|
|
|
|
if (Cost.isNever())
|
|
return false;
|
|
|
|
if (Cost.isAlways())
|
|
return true;
|
|
|
|
return Cost.getCost() <= SampleColdCallSiteThreshold;
|
|
}
|
|
|
|
void SampleProfileLoader::emitOptimizationRemarksForInlineCandidates(
|
|
const SmallVectorImpl<CallBase *> &Candidates, const Function &F,
|
|
bool Hot) {
|
|
for (auto I : Candidates) {
|
|
Function *CalledFunction = I->getCalledFunction();
|
|
if (CalledFunction) {
|
|
ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineAttempt",
|
|
I->getDebugLoc(), I->getParent())
|
|
<< "previous inlining reattempted for "
|
|
<< (Hot ? "hotness: '" : "size: '")
|
|
<< ore::NV("Callee", CalledFunction) << "' into '"
|
|
<< ore::NV("Caller", &F) << "'");
|
|
}
|
|
}
|
|
}
|
|
|
|
void SampleProfileLoader::findExternalInlineCandidate(
|
|
CallBase *CB, const FunctionSamples *Samples,
|
|
DenseSet<GlobalValue::GUID> &InlinedGUIDs,
|
|
const StringMap<Function *> &SymbolMap, uint64_t Threshold) {
|
|
|
|
// If ExternalInlineAdvisor wants to inline an external function
|
|
// make sure it's imported
|
|
if (CB && getExternalInlineAdvisorShouldInline(*CB)) {
|
|
// Samples may not exist for replayed function, if so
|
|
// just add the direct GUID and move on
|
|
if (!Samples) {
|
|
InlinedGUIDs.insert(
|
|
FunctionSamples::getGUID(CB->getCalledFunction()->getName()));
|
|
return;
|
|
}
|
|
// Otherwise, drop the threshold to import everything that we can
|
|
Threshold = 0;
|
|
}
|
|
|
|
assert(Samples && "expect non-null caller profile");
|
|
|
|
// For AutoFDO profile, retrieve candidate profiles by walking over
|
|
// the nested inlinee profiles.
|
|
if (!ProfileIsCS) {
|
|
Samples->findInlinedFunctions(InlinedGUIDs, SymbolMap, Threshold);
|
|
return;
|
|
}
|
|
|
|
ContextTrieNode *Caller =
|
|
ContextTracker->getContextFor(Samples->getContext());
|
|
std::queue<ContextTrieNode *> CalleeList;
|
|
CalleeList.push(Caller);
|
|
while (!CalleeList.empty()) {
|
|
ContextTrieNode *Node = CalleeList.front();
|
|
CalleeList.pop();
|
|
FunctionSamples *CalleeSample = Node->getFunctionSamples();
|
|
// For CSSPGO profile, retrieve candidate profile by walking over the
|
|
// trie built for context profile. Note that also take call targets
|
|
// even if callee doesn't have a corresponding context profile.
|
|
if (!CalleeSample)
|
|
continue;
|
|
|
|
// If pre-inliner decision is used, honor that for importing as well.
|
|
bool PreInline =
|
|
UsePreInlinerDecision &&
|
|
CalleeSample->getContext().hasAttribute(ContextShouldBeInlined);
|
|
if (!PreInline && CalleeSample->getEntrySamples() < Threshold)
|
|
continue;
|
|
|
|
StringRef Name = CalleeSample->getFuncName();
|
|
Function *Func = SymbolMap.lookup(Name);
|
|
// Add to the import list only when it's defined out of module.
|
|
if (!Func || Func->isDeclaration())
|
|
InlinedGUIDs.insert(FunctionSamples::getGUID(CalleeSample->getName()));
|
|
|
|
// Import hot CallTargets, which may not be available in IR because full
|
|
// profile annotation cannot be done until backend compilation in ThinLTO.
|
|
for (const auto &BS : CalleeSample->getBodySamples())
|
|
for (const auto &TS : BS.second.getCallTargets())
|
|
if (TS.getValue() > Threshold) {
|
|
StringRef CalleeName = CalleeSample->getFuncName(TS.getKey());
|
|
const Function *Callee = SymbolMap.lookup(CalleeName);
|
|
if (!Callee || Callee->isDeclaration())
|
|
InlinedGUIDs.insert(FunctionSamples::getGUID(TS.getKey()));
|
|
}
|
|
|
|
// Import hot child context profile associted with callees. Note that this
|
|
// may have some overlap with the call target loop above, but doing this
|
|
// based child context profile again effectively allow us to use the max of
|
|
// entry count and call target count to determine importing.
|
|
for (auto &Child : Node->getAllChildContext()) {
|
|
ContextTrieNode *CalleeNode = &Child.second;
|
|
CalleeList.push(CalleeNode);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Iteratively inline hot callsites of a function.
|
|
///
|
|
/// Iteratively traverse all callsites of the function \p F, and find if
|
|
/// the corresponding inlined instance exists and is hot in profile. If
|
|
/// it is hot enough, inline the callsites and adds new callsites of the
|
|
/// callee into the caller. If the call is an indirect call, first promote
|
|
/// it to direct call. Each indirect call is limited with a single target.
|
|
///
|
|
/// \param F function to perform iterative inlining.
|
|
/// \param InlinedGUIDs a set to be updated to include all GUIDs that are
|
|
/// inlined in the profiled binary.
|
|
///
|
|
/// \returns True if there is any inline happened.
|
|
bool SampleProfileLoader::inlineHotFunctions(
|
|
Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
|
|
// ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure
|
|
// Profile symbol list is ignored when profile-sample-accurate is on.
|
|
assert((!ProfAccForSymsInList ||
|
|
(!ProfileSampleAccurate &&
|
|
!F.hasFnAttribute("profile-sample-accurate"))) &&
|
|
"ProfAccForSymsInList should be false when profile-sample-accurate "
|
|
"is enabled");
|
|
|
|
DenseMap<CallBase *, const FunctionSamples *> LocalNotInlinedCallSites;
|
|
bool Changed = false;
|
|
bool LocalChanged = true;
|
|
while (LocalChanged) {
|
|
LocalChanged = false;
|
|
SmallVector<CallBase *, 10> CIS;
|
|
for (auto &BB : F) {
|
|
bool Hot = false;
|
|
SmallVector<CallBase *, 10> AllCandidates;
|
|
SmallVector<CallBase *, 10> ColdCandidates;
|
|
for (auto &I : BB.getInstList()) {
|
|
const FunctionSamples *FS = nullptr;
|
|
if (auto *CB = dyn_cast<CallBase>(&I)) {
|
|
if (!isa<IntrinsicInst>(I)) {
|
|
if ((FS = findCalleeFunctionSamples(*CB))) {
|
|
assert((!FunctionSamples::UseMD5 || FS->GUIDToFuncNameMap) &&
|
|
"GUIDToFuncNameMap has to be populated");
|
|
AllCandidates.push_back(CB);
|
|
if (FS->getEntrySamples() > 0 || ProfileIsCS)
|
|
LocalNotInlinedCallSites.try_emplace(CB, FS);
|
|
if (callsiteIsHot(FS, PSI, ProfAccForSymsInList))
|
|
Hot = true;
|
|
else if (shouldInlineColdCallee(*CB))
|
|
ColdCandidates.push_back(CB);
|
|
} else if (getExternalInlineAdvisorShouldInline(*CB)) {
|
|
AllCandidates.push_back(CB);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (Hot || ExternalInlineAdvisor) {
|
|
CIS.insert(CIS.begin(), AllCandidates.begin(), AllCandidates.end());
|
|
emitOptimizationRemarksForInlineCandidates(AllCandidates, F, true);
|
|
} else {
|
|
CIS.insert(CIS.begin(), ColdCandidates.begin(), ColdCandidates.end());
|
|
emitOptimizationRemarksForInlineCandidates(ColdCandidates, F, false);
|
|
}
|
|
}
|
|
for (CallBase *I : CIS) {
|
|
Function *CalledFunction = I->getCalledFunction();
|
|
InlineCandidate Candidate = {
|
|
I,
|
|
LocalNotInlinedCallSites.count(I) ? LocalNotInlinedCallSites[I]
|
|
: nullptr,
|
|
0 /* dummy count */, 1.0 /* dummy distribution factor */};
|
|
// Do not inline recursive calls.
|
|
if (CalledFunction == &F)
|
|
continue;
|
|
if (I->isIndirectCall()) {
|
|
uint64_t Sum;
|
|
for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) {
|
|
uint64_t SumOrigin = Sum;
|
|
if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) {
|
|
findExternalInlineCandidate(I, FS, InlinedGUIDs, SymbolMap,
|
|
PSI->getOrCompHotCountThreshold());
|
|
continue;
|
|
}
|
|
if (!callsiteIsHot(FS, PSI, ProfAccForSymsInList))
|
|
continue;
|
|
|
|
Candidate = {I, FS, FS->getEntrySamples(), 1.0};
|
|
if (tryPromoteAndInlineCandidate(F, Candidate, SumOrigin, Sum)) {
|
|
LocalNotInlinedCallSites.erase(I);
|
|
LocalChanged = true;
|
|
}
|
|
}
|
|
} else if (CalledFunction && CalledFunction->getSubprogram() &&
|
|
!CalledFunction->isDeclaration()) {
|
|
if (tryInlineCandidate(Candidate)) {
|
|
LocalNotInlinedCallSites.erase(I);
|
|
LocalChanged = true;
|
|
}
|
|
} else if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) {
|
|
findExternalInlineCandidate(I, findCalleeFunctionSamples(*I),
|
|
InlinedGUIDs, SymbolMap,
|
|
PSI->getOrCompHotCountThreshold());
|
|
}
|
|
}
|
|
Changed |= LocalChanged;
|
|
}
|
|
|
|
// For CS profile, profile for not inlined context will be merged when
|
|
// base profile is being trieved
|
|
if (ProfileIsCS)
|
|
return Changed;
|
|
|
|
// Accumulate not inlined callsite information into notInlinedSamples
|
|
for (const auto &Pair : LocalNotInlinedCallSites) {
|
|
CallBase *I = Pair.getFirst();
|
|
Function *Callee = I->getCalledFunction();
|
|
if (!Callee || Callee->isDeclaration())
|
|
continue;
|
|
|
|
ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "NotInline",
|
|
I->getDebugLoc(), I->getParent())
|
|
<< "previous inlining not repeated: '"
|
|
<< ore::NV("Callee", Callee) << "' into '"
|
|
<< ore::NV("Caller", &F) << "'");
|
|
|
|
++NumCSNotInlined;
|
|
const FunctionSamples *FS = Pair.getSecond();
|
|
if (FS->getTotalSamples() == 0 && FS->getEntrySamples() == 0) {
|
|
continue;
|
|
}
|
|
|
|
if (ProfileMergeInlinee) {
|
|
// A function call can be replicated by optimizations like callsite
|
|
// splitting or jump threading and the replicates end up sharing the
|
|
// sample nested callee profile instead of slicing the original inlinee's
|
|
// profile. We want to do merge exactly once by filtering out callee
|
|
// profiles with a non-zero head sample count.
|
|
if (FS->getHeadSamples() == 0) {
|
|
// Use entry samples as head samples during the merge, as inlinees
|
|
// don't have head samples.
|
|
const_cast<FunctionSamples *>(FS)->addHeadSamples(
|
|
FS->getEntrySamples());
|
|
|
|
// Note that we have to do the merge right after processing function.
|
|
// This allows OutlineFS's profile to be used for annotation during
|
|
// top-down processing of functions' annotation.
|
|
FunctionSamples *OutlineFS = Reader->getOrCreateSamplesFor(*Callee);
|
|
OutlineFS->merge(*FS);
|
|
}
|
|
} else {
|
|
auto pair =
|
|
notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0});
|
|
pair.first->second.entryCount += FS->getEntrySamples();
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
bool SampleProfileLoader::tryInlineCandidate(
|
|
InlineCandidate &Candidate, SmallVector<CallBase *, 8> *InlinedCallSites) {
|
|
|
|
CallBase &CB = *Candidate.CallInstr;
|
|
Function *CalledFunction = CB.getCalledFunction();
|
|
assert(CalledFunction && "Expect a callee with definition");
|
|
DebugLoc DLoc = CB.getDebugLoc();
|
|
BasicBlock *BB = CB.getParent();
|
|
|
|
InlineCost Cost = shouldInlineCandidate(Candidate);
|
|
if (Cost.isNever()) {
|
|
ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineFail", DLoc, BB)
|
|
<< "incompatible inlining");
|
|
return false;
|
|
}
|
|
|
|
if (!Cost)
|
|
return false;
|
|
|
|
InlineFunctionInfo IFI(nullptr, GetAC);
|
|
IFI.UpdateProfile = false;
|
|
if (InlineFunction(CB, IFI).isSuccess()) {
|
|
// Merge the attributes based on the inlining.
|
|
AttributeFuncs::mergeAttributesForInlining(*BB->getParent(),
|
|
*CalledFunction);
|
|
|
|
// The call to InlineFunction erases I, so we can't pass it here.
|
|
emitInlinedIntoBasedOnCost(*ORE, DLoc, BB, *CalledFunction,
|
|
*BB->getParent(), Cost, true, CSINLINE_DEBUG);
|
|
|
|
// Now populate the list of newly exposed call sites.
|
|
if (InlinedCallSites) {
|
|
InlinedCallSites->clear();
|
|
for (auto &I : IFI.InlinedCallSites)
|
|
InlinedCallSites->push_back(I);
|
|
}
|
|
|
|
if (ProfileIsCS)
|
|
ContextTracker->markContextSamplesInlined(Candidate.CalleeSamples);
|
|
++NumCSInlined;
|
|
|
|
// Prorate inlined probes for a duplicated inlining callsite which probably
|
|
// has a distribution less than 100%. Samples for an inlinee should be
|
|
// distributed among the copies of the original callsite based on each
|
|
// callsite's distribution factor for counts accuracy. Note that an inlined
|
|
// probe may come with its own distribution factor if it has been duplicated
|
|
// in the inlinee body. The two factor are multiplied to reflect the
|
|
// aggregation of duplication.
|
|
if (Candidate.CallsiteDistribution < 1) {
|
|
for (auto &I : IFI.InlinedCallSites) {
|
|
if (Optional<PseudoProbe> Probe = extractProbe(*I))
|
|
setProbeDistributionFactor(*I, Probe->Factor *
|
|
Candidate.CallsiteDistribution);
|
|
}
|
|
NumDuplicatedInlinesite++;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool SampleProfileLoader::getInlineCandidate(InlineCandidate *NewCandidate,
|
|
CallBase *CB) {
|
|
assert(CB && "Expect non-null call instruction");
|
|
|
|
if (isa<IntrinsicInst>(CB))
|
|
return false;
|
|
|
|
// Find the callee's profile. For indirect call, find hottest target profile.
|
|
const FunctionSamples *CalleeSamples = findCalleeFunctionSamples(*CB);
|
|
// If ExternalInlineAdvisor wants to inline this site, do so even
|
|
// if Samples are not present.
|
|
if (!CalleeSamples && !getExternalInlineAdvisorShouldInline(*CB))
|
|
return false;
|
|
|
|
float Factor = 1.0;
|
|
if (Optional<PseudoProbe> Probe = extractProbe(*CB))
|
|
Factor = Probe->Factor;
|
|
|
|
uint64_t CallsiteCount = 0;
|
|
ErrorOr<uint64_t> Weight = getBlockWeight(CB->getParent());
|
|
if (Weight)
|
|
CallsiteCount = Weight.get();
|
|
if (CalleeSamples)
|
|
CallsiteCount = std::max(
|
|
CallsiteCount, uint64_t(CalleeSamples->getEntrySamples() * Factor));
|
|
|
|
*NewCandidate = {CB, CalleeSamples, CallsiteCount, Factor};
|
|
return true;
|
|
}
|
|
|
|
Optional<InlineCost>
|
|
SampleProfileLoader::getExternalInlineAdvisorCost(CallBase &CB) {
|
|
std::unique_ptr<InlineAdvice> Advice = nullptr;
|
|
if (ExternalInlineAdvisor) {
|
|
Advice = ExternalInlineAdvisor->getAdvice(CB);
|
|
if (Advice) {
|
|
if (!Advice->isInliningRecommended()) {
|
|
Advice->recordUnattemptedInlining();
|
|
return InlineCost::getNever("not previously inlined");
|
|
}
|
|
Advice->recordInlining();
|
|
return InlineCost::getAlways("previously inlined");
|
|
}
|
|
}
|
|
|
|
return {};
|
|
}
|
|
|
|
bool SampleProfileLoader::getExternalInlineAdvisorShouldInline(CallBase &CB) {
|
|
Optional<InlineCost> Cost = getExternalInlineAdvisorCost(CB);
|
|
return Cost ? !!Cost.getValue() : false;
|
|
}
|
|
|
|
InlineCost
|
|
SampleProfileLoader::shouldInlineCandidate(InlineCandidate &Candidate) {
|
|
if (Optional<InlineCost> ReplayCost =
|
|
getExternalInlineAdvisorCost(*Candidate.CallInstr))
|
|
return ReplayCost.getValue();
|
|
// Adjust threshold based on call site hotness, only do this for callsite
|
|
// prioritized inliner because otherwise cost-benefit check is done earlier.
|
|
int SampleThreshold = SampleColdCallSiteThreshold;
|
|
if (CallsitePrioritizedInline) {
|
|
if (Candidate.CallsiteCount > PSI->getHotCountThreshold())
|
|
SampleThreshold = SampleHotCallSiteThreshold;
|
|
else if (!ProfileSizeInline)
|
|
return InlineCost::getNever("cold callsite");
|
|
}
|
|
|
|
Function *Callee = Candidate.CallInstr->getCalledFunction();
|
|
assert(Callee && "Expect a definition for inline candidate of direct call");
|
|
|
|
InlineParams Params = getInlineParams();
|
|
// We will ignore the threshold from inline cost, so always get full cost.
|
|
Params.ComputeFullInlineCost = true;
|
|
Params.AllowRecursiveCall = AllowRecursiveInline;
|
|
// Checks if there is anything in the reachable portion of the callee at
|
|
// this callsite that makes this inlining potentially illegal. Need to
|
|
// set ComputeFullInlineCost, otherwise getInlineCost may return early
|
|
// when cost exceeds threshold without checking all IRs in the callee.
|
|
// The acutal cost does not matter because we only checks isNever() to
|
|
// see if it is legal to inline the callsite.
|
|
InlineCost Cost = getInlineCost(*Candidate.CallInstr, Callee, Params,
|
|
GetTTI(*Callee), GetAC, GetTLI);
|
|
|
|
// Honor always inline and never inline from call analyzer
|
|
if (Cost.isNever() || Cost.isAlways())
|
|
return Cost;
|
|
|
|
// With CSSPGO, the preinliner in llvm-profgen can estimate global inline
|
|
// decisions based on hotness as well as accurate function byte sizes for
|
|
// given context using function/inlinee sizes from previous build. It
|
|
// stores the decision in profile, and also adjust/merge context profile
|
|
// aiming at better context-sensitive post-inline profile quality, assuming
|
|
// all inline decision estimates are going to be honored by compiler. Here
|
|
// we replay that inline decision under `sample-profile-use-preinliner`.
|
|
// Note that we don't need to handle negative decision from preinliner as
|
|
// context profile for not inlined calls are merged by preinliner already.
|
|
if (UsePreInlinerDecision && Candidate.CalleeSamples) {
|
|
// Once two node are merged due to promotion, we're losing some context
|
|
// so the original context-sensitive preinliner decision should be ignored
|
|
// for SyntheticContext.
|
|
SampleContext &Context = Candidate.CalleeSamples->getContext();
|
|
if (!Context.hasState(SyntheticContext) &&
|
|
Context.hasAttribute(ContextShouldBeInlined))
|
|
return InlineCost::getAlways("preinliner");
|
|
}
|
|
|
|
// For old FDO inliner, we inline the call site as long as cost is not
|
|
// "Never". The cost-benefit check is done earlier.
|
|
if (!CallsitePrioritizedInline) {
|
|
return InlineCost::get(Cost.getCost(), INT_MAX);
|
|
}
|
|
|
|
// Otherwise only use the cost from call analyzer, but overwite threshold with
|
|
// Sample PGO threshold.
|
|
return InlineCost::get(Cost.getCost(), SampleThreshold);
|
|
}
|
|
|
|
bool SampleProfileLoader::inlineHotFunctionsWithPriority(
|
|
Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
|
|
assert(ProfileIsCS && "Prioritiy based inliner only works with CSSPGO now");
|
|
|
|
// ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure
|
|
// Profile symbol list is ignored when profile-sample-accurate is on.
|
|
assert((!ProfAccForSymsInList ||
|
|
(!ProfileSampleAccurate &&
|
|
!F.hasFnAttribute("profile-sample-accurate"))) &&
|
|
"ProfAccForSymsInList should be false when profile-sample-accurate "
|
|
"is enabled");
|
|
|
|
// Populating worklist with initial call sites from root inliner, along
|
|
// with call site weights.
|
|
CandidateQueue CQueue;
|
|
InlineCandidate NewCandidate;
|
|
for (auto &BB : F) {
|
|
for (auto &I : BB.getInstList()) {
|
|
auto *CB = dyn_cast<CallBase>(&I);
|
|
if (!CB)
|
|
continue;
|
|
if (getInlineCandidate(&NewCandidate, CB))
|
|
CQueue.push(NewCandidate);
|
|
}
|
|
}
|
|
|
|
// Cap the size growth from profile guided inlining. This is needed even
|
|
// though cost of each inline candidate already accounts for callee size,
|
|
// because with top-down inlining, we can grow inliner size significantly
|
|
// with large number of smaller inlinees each pass the cost check.
|
|
assert(ProfileInlineLimitMax >= ProfileInlineLimitMin &&
|
|
"Max inline size limit should not be smaller than min inline size "
|
|
"limit.");
|
|
unsigned SizeLimit = F.getInstructionCount() * ProfileInlineGrowthLimit;
|
|
SizeLimit = std::min(SizeLimit, (unsigned)ProfileInlineLimitMax);
|
|
SizeLimit = std::max(SizeLimit, (unsigned)ProfileInlineLimitMin);
|
|
if (ExternalInlineAdvisor)
|
|
SizeLimit = std::numeric_limits<unsigned>::max();
|
|
|
|
// Perform iterative BFS call site prioritized inlining
|
|
bool Changed = false;
|
|
while (!CQueue.empty() && F.getInstructionCount() < SizeLimit) {
|
|
InlineCandidate Candidate = CQueue.top();
|
|
CQueue.pop();
|
|
CallBase *I = Candidate.CallInstr;
|
|
Function *CalledFunction = I->getCalledFunction();
|
|
|
|
if (CalledFunction == &F)
|
|
continue;
|
|
if (I->isIndirectCall()) {
|
|
uint64_t Sum = 0;
|
|
auto CalleeSamples = findIndirectCallFunctionSamples(*I, Sum);
|
|
uint64_t SumOrigin = Sum;
|
|
Sum *= Candidate.CallsiteDistribution;
|
|
unsigned ICPCount = 0;
|
|
for (const auto *FS : CalleeSamples) {
|
|
// TODO: Consider disable pre-lTO ICP for MonoLTO as well
|
|
if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) {
|
|
findExternalInlineCandidate(I, FS, InlinedGUIDs, SymbolMap,
|
|
PSI->getOrCompHotCountThreshold());
|
|
continue;
|
|
}
|
|
uint64_t EntryCountDistributed =
|
|
FS->getEntrySamples() * Candidate.CallsiteDistribution;
|
|
// In addition to regular inline cost check, we also need to make sure
|
|
// ICP isn't introducing excessive speculative checks even if individual
|
|
// target looks beneficial to promote and inline. That means we should
|
|
// only do ICP when there's a small number dominant targets.
|
|
if (ICPCount >= ProfileICPRelativeHotnessSkip &&
|
|
EntryCountDistributed * 100 < SumOrigin * ProfileICPRelativeHotness)
|
|
break;
|
|
// TODO: Fix CallAnalyzer to handle all indirect calls.
|
|
// For indirect call, we don't run CallAnalyzer to get InlineCost
|
|
// before actual inlining. This is because we could see two different
|
|
// types from the same definition, which makes CallAnalyzer choke as
|
|
// it's expecting matching parameter type on both caller and callee
|
|
// side. See example from PR18962 for the triggering cases (the bug was
|
|
// fixed, but we generate different types).
|
|
if (!PSI->isHotCount(EntryCountDistributed))
|
|
break;
|
|
SmallVector<CallBase *, 8> InlinedCallSites;
|
|
// Attach function profile for promoted indirect callee, and update
|
|
// call site count for the promoted inline candidate too.
|
|
Candidate = {I, FS, EntryCountDistributed,
|
|
Candidate.CallsiteDistribution};
|
|
if (tryPromoteAndInlineCandidate(F, Candidate, SumOrigin, Sum,
|
|
&InlinedCallSites)) {
|
|
for (auto *CB : InlinedCallSites) {
|
|
if (getInlineCandidate(&NewCandidate, CB))
|
|
CQueue.emplace(NewCandidate);
|
|
}
|
|
ICPCount++;
|
|
Changed = true;
|
|
}
|
|
}
|
|
} else if (CalledFunction && CalledFunction->getSubprogram() &&
|
|
!CalledFunction->isDeclaration()) {
|
|
SmallVector<CallBase *, 8> InlinedCallSites;
|
|
if (tryInlineCandidate(Candidate, &InlinedCallSites)) {
|
|
for (auto *CB : InlinedCallSites) {
|
|
if (getInlineCandidate(&NewCandidate, CB))
|
|
CQueue.emplace(NewCandidate);
|
|
}
|
|
Changed = true;
|
|
}
|
|
} else if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) {
|
|
findExternalInlineCandidate(I, findCalleeFunctionSamples(*I),
|
|
InlinedGUIDs, SymbolMap,
|
|
PSI->getOrCompHotCountThreshold());
|
|
}
|
|
}
|
|
|
|
if (!CQueue.empty()) {
|
|
if (SizeLimit == (unsigned)ProfileInlineLimitMax)
|
|
++NumCSInlinedHitMaxLimit;
|
|
else if (SizeLimit == (unsigned)ProfileInlineLimitMin)
|
|
++NumCSInlinedHitMinLimit;
|
|
else
|
|
++NumCSInlinedHitGrowthLimit;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Returns the sorted CallTargetMap \p M by count in descending order.
|
|
static SmallVector<InstrProfValueData, 2>
|
|
GetSortedValueDataFromCallTargets(const SampleRecord::CallTargetMap &M) {
|
|
SmallVector<InstrProfValueData, 2> R;
|
|
for (const auto &I : SampleRecord::SortCallTargets(M)) {
|
|
R.emplace_back(
|
|
InstrProfValueData{FunctionSamples::getGUID(I.first), I.second});
|
|
}
|
|
return R;
|
|
}
|
|
|
|
// Generate MD_prof metadata for every branch instruction using the
|
|
// edge weights computed during propagation.
|
|
void SampleProfileLoader::generateMDProfMetadata(Function &F) {
|
|
// Generate MD_prof metadata for every branch instruction using the
|
|
// edge weights computed during propagation.
|
|
LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
|
|
LLVMContext &Ctx = F.getContext();
|
|
MDBuilder MDB(Ctx);
|
|
for (auto &BI : F) {
|
|
BasicBlock *BB = &BI;
|
|
|
|
if (BlockWeights[BB]) {
|
|
for (auto &I : BB->getInstList()) {
|
|
if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
|
|
continue;
|
|
if (!cast<CallBase>(I).getCalledFunction()) {
|
|
const DebugLoc &DLoc = I.getDebugLoc();
|
|
if (!DLoc)
|
|
continue;
|
|
const DILocation *DIL = DLoc;
|
|
const FunctionSamples *FS = findFunctionSamples(I);
|
|
if (!FS)
|
|
continue;
|
|
auto CallSite = FunctionSamples::getCallSiteIdentifier(DIL);
|
|
auto T = FS->findCallTargetMapAt(CallSite);
|
|
if (!T || T.get().empty())
|
|
continue;
|
|
if (FunctionSamples::ProfileIsProbeBased) {
|
|
// Prorate the callsite counts based on the pre-ICP distribution
|
|
// factor to reflect what is already done to the callsite before
|
|
// ICP, such as calliste cloning.
|
|
if (Optional<PseudoProbe> Probe = extractProbe(I)) {
|
|
if (Probe->Factor < 1)
|
|
T = SampleRecord::adjustCallTargets(T.get(), Probe->Factor);
|
|
}
|
|
}
|
|
SmallVector<InstrProfValueData, 2> SortedCallTargets =
|
|
GetSortedValueDataFromCallTargets(T.get());
|
|
uint64_t Sum = 0;
|
|
for (const auto &C : T.get())
|
|
Sum += C.second;
|
|
// With CSSPGO all indirect call targets are counted torwards the
|
|
// original indirect call site in the profile, including both
|
|
// inlined and non-inlined targets.
|
|
if (!FunctionSamples::ProfileIsCS) {
|
|
if (const FunctionSamplesMap *M =
|
|
FS->findFunctionSamplesMapAt(CallSite)) {
|
|
for (const auto &NameFS : *M)
|
|
Sum += NameFS.second.getEntrySamples();
|
|
}
|
|
}
|
|
if (Sum)
|
|
updateIDTMetaData(I, SortedCallTargets, Sum);
|
|
else if (OverwriteExistingWeights)
|
|
I.setMetadata(LLVMContext::MD_prof, nullptr);
|
|
} else if (!isa<IntrinsicInst>(&I)) {
|
|
I.setMetadata(LLVMContext::MD_prof,
|
|
MDB.createBranchWeights(
|
|
{static_cast<uint32_t>(BlockWeights[BB])}));
|
|
}
|
|
}
|
|
} else if (OverwriteExistingWeights || ProfileSampleBlockAccurate) {
|
|
// Set profile metadata (possibly annotated by LTO prelink) to zero or
|
|
// clear it for cold code.
|
|
for (auto &I : BB->getInstList()) {
|
|
if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
|
|
if (cast<CallBase>(I).isIndirectCall())
|
|
I.setMetadata(LLVMContext::MD_prof, nullptr);
|
|
else
|
|
I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(0));
|
|
}
|
|
}
|
|
}
|
|
|
|
Instruction *TI = BB->getTerminator();
|
|
if (TI->getNumSuccessors() == 1)
|
|
continue;
|
|
if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI) &&
|
|
!isa<IndirectBrInst>(TI))
|
|
continue;
|
|
|
|
DebugLoc BranchLoc = TI->getDebugLoc();
|
|
LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line "
|
|
<< ((BranchLoc) ? Twine(BranchLoc.getLine())
|
|
: Twine("<UNKNOWN LOCATION>"))
|
|
<< ".\n");
|
|
SmallVector<uint32_t, 4> Weights;
|
|
uint32_t MaxWeight = 0;
|
|
Instruction *MaxDestInst;
|
|
for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
|
|
BasicBlock *Succ = TI->getSuccessor(I);
|
|
Edge E = std::make_pair(BB, Succ);
|
|
uint64_t Weight = EdgeWeights[E];
|
|
LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
|
|
// Use uint32_t saturated arithmetic to adjust the incoming weights,
|
|
// if needed. Sample counts in profiles are 64-bit unsigned values,
|
|
// but internally branch weights are expressed as 32-bit values.
|
|
if (Weight > std::numeric_limits<uint32_t>::max()) {
|
|
LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
|
|
Weight = std::numeric_limits<uint32_t>::max();
|
|
}
|
|
// Weight is added by one to avoid propagation errors introduced by
|
|
// 0 weights.
|
|
Weights.push_back(static_cast<uint32_t>(Weight + 1));
|
|
if (Weight != 0) {
|
|
if (Weight > MaxWeight) {
|
|
MaxWeight = Weight;
|
|
MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
|
|
}
|
|
}
|
|
}
|
|
|
|
uint64_t TempWeight;
|
|
// Only set weights if there is at least one non-zero weight.
|
|
// In any other case, let the analyzer set weights.
|
|
// Do not set weights if the weights are present unless under
|
|
// OverwriteExistingWeights. In ThinLTO, the profile annotation is done
|
|
// twice. If the first annotation already set the weights, the second pass
|
|
// does not need to set it. With OverwriteExistingWeights, Blocks with zero
|
|
// weight should have their existing metadata (possibly annotated by LTO
|
|
// prelink) cleared.
|
|
if (MaxWeight > 0 &&
|
|
(!TI->extractProfTotalWeight(TempWeight) || OverwriteExistingWeights)) {
|
|
LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
|
|
TI->setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights));
|
|
ORE->emit([&]() {
|
|
return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
|
|
<< "most popular destination for conditional branches at "
|
|
<< ore::NV("CondBranchesLoc", BranchLoc);
|
|
});
|
|
} else {
|
|
if (OverwriteExistingWeights) {
|
|
TI->setMetadata(LLVMContext::MD_prof, nullptr);
|
|
LLVM_DEBUG(dbgs() << "CLEARED. All branch weights are zero.\n");
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Once all the branch weights are computed, we emit the MD_prof
|
|
/// metadata on BB using the computed values for each of its branches.
|
|
///
|
|
/// \param F The function to query.
|
|
///
|
|
/// \returns true if \p F was modified. Returns false, otherwise.
|
|
bool SampleProfileLoader::emitAnnotations(Function &F) {
|
|
bool Changed = false;
|
|
|
|
if (FunctionSamples::ProfileIsProbeBased) {
|
|
if (!ProbeManager->profileIsValid(F, *Samples)) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "Profile is invalid due to CFG mismatch for Function "
|
|
<< F.getName());
|
|
++NumMismatchedProfile;
|
|
return false;
|
|
}
|
|
++NumMatchedProfile;
|
|
} else {
|
|
if (getFunctionLoc(F) == 0)
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "Line number for the first instruction in "
|
|
<< F.getName() << ": " << getFunctionLoc(F) << "\n");
|
|
}
|
|
|
|
DenseSet<GlobalValue::GUID> InlinedGUIDs;
|
|
if (ProfileIsCS && CallsitePrioritizedInline)
|
|
Changed |= inlineHotFunctionsWithPriority(F, InlinedGUIDs);
|
|
else
|
|
Changed |= inlineHotFunctions(F, InlinedGUIDs);
|
|
|
|
Changed |= computeAndPropagateWeights(F, InlinedGUIDs);
|
|
|
|
if (Changed)
|
|
generateMDProfMetadata(F);
|
|
|
|
emitCoverageRemarks(F);
|
|
return Changed;
|
|
}
|
|
|
|
char SampleProfileLoaderLegacyPass::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
|
|
"Sample Profile loader", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
|
|
INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
|
|
"Sample Profile loader", false, false)
|
|
|
|
std::unique_ptr<ProfiledCallGraph>
|
|
SampleProfileLoader::buildProfiledCallGraph(CallGraph &CG) {
|
|
std::unique_ptr<ProfiledCallGraph> ProfiledCG;
|
|
if (ProfileIsCS)
|
|
ProfiledCG = std::make_unique<ProfiledCallGraph>(*ContextTracker);
|
|
else
|
|
ProfiledCG = std::make_unique<ProfiledCallGraph>(Reader->getProfiles());
|
|
|
|
// Add all functions into the profiled call graph even if they are not in
|
|
// the profile. This makes sure functions missing from the profile still
|
|
// gets a chance to be processed.
|
|
for (auto &Node : CG) {
|
|
const auto *F = Node.first;
|
|
if (!F || F->isDeclaration() || !F->hasFnAttribute("use-sample-profile"))
|
|
continue;
|
|
ProfiledCG->addProfiledFunction(FunctionSamples::getCanonicalFnName(*F));
|
|
}
|
|
|
|
return ProfiledCG;
|
|
}
|
|
|
|
std::vector<Function *>
|
|
SampleProfileLoader::buildFunctionOrder(Module &M, CallGraph *CG) {
|
|
std::vector<Function *> FunctionOrderList;
|
|
FunctionOrderList.reserve(M.size());
|
|
|
|
if (!ProfileTopDownLoad && UseProfiledCallGraph)
|
|
errs() << "WARNING: -use-profiled-call-graph ignored, should be used "
|
|
"together with -sample-profile-top-down-load.\n";
|
|
|
|
if (!ProfileTopDownLoad || CG == nullptr) {
|
|
if (ProfileMergeInlinee) {
|
|
// Disable ProfileMergeInlinee if profile is not loaded in top down order,
|
|
// because the profile for a function may be used for the profile
|
|
// annotation of its outline copy before the profile merging of its
|
|
// non-inlined inline instances, and that is not the way how
|
|
// ProfileMergeInlinee is supposed to work.
|
|
ProfileMergeInlinee = false;
|
|
}
|
|
|
|
for (Function &F : M)
|
|
if (!F.isDeclaration() && F.hasFnAttribute("use-sample-profile"))
|
|
FunctionOrderList.push_back(&F);
|
|
return FunctionOrderList;
|
|
}
|
|
|
|
assert(&CG->getModule() == &M);
|
|
|
|
if (UseProfiledCallGraph ||
|
|
(ProfileIsCS && !UseProfiledCallGraph.getNumOccurrences())) {
|
|
// Use profiled call edges to augment the top-down order. There are cases
|
|
// that the top-down order computed based on the static call graph doesn't
|
|
// reflect real execution order. For example
|
|
//
|
|
// 1. Incomplete static call graph due to unknown indirect call targets.
|
|
// Adjusting the order by considering indirect call edges from the
|
|
// profile can enable the inlining of indirect call targets by allowing
|
|
// the caller processed before them.
|
|
// 2. Mutual call edges in an SCC. The static processing order computed for
|
|
// an SCC may not reflect the call contexts in the context-sensitive
|
|
// profile, thus may cause potential inlining to be overlooked. The
|
|
// function order in one SCC is being adjusted to a top-down order based
|
|
// on the profile to favor more inlining. This is only a problem with CS
|
|
// profile.
|
|
// 3. Transitive indirect call edges due to inlining. When a callee function
|
|
// (say B) is inlined into into a caller function (say A) in LTO prelink,
|
|
// every call edge originated from the callee B will be transferred to
|
|
// the caller A. If any transferred edge (say A->C) is indirect, the
|
|
// original profiled indirect edge B->C, even if considered, would not
|
|
// enforce a top-down order from the caller A to the potential indirect
|
|
// call target C in LTO postlink since the inlined callee B is gone from
|
|
// the static call graph.
|
|
// 4. #3 can happen even for direct call targets, due to functions defined
|
|
// in header files. A header function (say A), when included into source
|
|
// files, is defined multiple times but only one definition survives due
|
|
// to ODR. Therefore, the LTO prelink inlining done on those dropped
|
|
// definitions can be useless based on a local file scope. More
|
|
// importantly, the inlinee (say B), once fully inlined to a
|
|
// to-be-dropped A, will have no profile to consume when its outlined
|
|
// version is compiled. This can lead to a profile-less prelink
|
|
// compilation for the outlined version of B which may be called from
|
|
// external modules. while this isn't easy to fix, we rely on the
|
|
// postlink AutoFDO pipeline to optimize B. Since the survived copy of
|
|
// the A can be inlined in its local scope in prelink, it may not exist
|
|
// in the merged IR in postlink, and we'll need the profiled call edges
|
|
// to enforce a top-down order for the rest of the functions.
|
|
//
|
|
// Considering those cases, a profiled call graph completely independent of
|
|
// the static call graph is constructed based on profile data, where
|
|
// function objects are not even needed to handle case #3 and case 4.
|
|
//
|
|
// Note that static callgraph edges are completely ignored since they
|
|
// can be conflicting with profiled edges for cyclic SCCs and may result in
|
|
// an SCC order incompatible with profile-defined one. Using strictly
|
|
// profile order ensures a maximum inlining experience. On the other hand,
|
|
// static call edges are not so important when they don't correspond to a
|
|
// context in the profile.
|
|
|
|
std::unique_ptr<ProfiledCallGraph> ProfiledCG = buildProfiledCallGraph(*CG);
|
|
scc_iterator<ProfiledCallGraph *> CGI = scc_begin(ProfiledCG.get());
|
|
while (!CGI.isAtEnd()) {
|
|
for (ProfiledCallGraphNode *Node : *CGI) {
|
|
Function *F = SymbolMap.lookup(Node->Name);
|
|
if (F && !F->isDeclaration() && F->hasFnAttribute("use-sample-profile"))
|
|
FunctionOrderList.push_back(F);
|
|
}
|
|
++CGI;
|
|
}
|
|
} else {
|
|
scc_iterator<CallGraph *> CGI = scc_begin(CG);
|
|
while (!CGI.isAtEnd()) {
|
|
for (CallGraphNode *Node : *CGI) {
|
|
auto *F = Node->getFunction();
|
|
if (F && !F->isDeclaration() && F->hasFnAttribute("use-sample-profile"))
|
|
FunctionOrderList.push_back(F);
|
|
}
|
|
++CGI;
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG({
|
|
dbgs() << "Function processing order:\n";
|
|
for (auto F : reverse(FunctionOrderList)) {
|
|
dbgs() << F->getName() << "\n";
|
|
}
|
|
});
|
|
|
|
std::reverse(FunctionOrderList.begin(), FunctionOrderList.end());
|
|
return FunctionOrderList;
|
|
}
|
|
|
|
bool SampleProfileLoader::doInitialization(Module &M,
|
|
FunctionAnalysisManager *FAM) {
|
|
auto &Ctx = M.getContext();
|
|
|
|
auto ReaderOrErr = SampleProfileReader::create(
|
|
Filename, Ctx, FSDiscriminatorPass::Base, RemappingFilename);
|
|
if (std::error_code EC = ReaderOrErr.getError()) {
|
|
std::string Msg = "Could not open profile: " + EC.message();
|
|
Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
|
|
return false;
|
|
}
|
|
Reader = std::move(ReaderOrErr.get());
|
|
Reader->setSkipFlatProf(LTOPhase == ThinOrFullLTOPhase::ThinLTOPostLink);
|
|
// set module before reading the profile so reader may be able to only
|
|
// read the function profiles which are used by the current module.
|
|
Reader->setModule(&M);
|
|
if (std::error_code EC = Reader->read()) {
|
|
std::string Msg = "profile reading failed: " + EC.message();
|
|
Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
|
|
return false;
|
|
}
|
|
|
|
PSL = Reader->getProfileSymbolList();
|
|
|
|
// While profile-sample-accurate is on, ignore symbol list.
|
|
ProfAccForSymsInList =
|
|
ProfileAccurateForSymsInList && PSL && !ProfileSampleAccurate;
|
|
if (ProfAccForSymsInList) {
|
|
NamesInProfile.clear();
|
|
if (auto NameTable = Reader->getNameTable())
|
|
NamesInProfile.insert(NameTable->begin(), NameTable->end());
|
|
CoverageTracker.setProfAccForSymsInList(true);
|
|
}
|
|
|
|
if (FAM && !ProfileInlineReplayFile.empty()) {
|
|
ExternalInlineAdvisor = getReplayInlineAdvisor(
|
|
M, *FAM, Ctx, /*OriginalAdvisor=*/nullptr,
|
|
ReplayInlinerSettings{ProfileInlineReplayFile,
|
|
ProfileInlineReplayScope,
|
|
ProfileInlineReplayFallback,
|
|
{ProfileInlineReplayFormat}},
|
|
/*EmitRemarks=*/false);
|
|
}
|
|
|
|
// Apply tweaks if context-sensitive profile is available.
|
|
if (Reader->profileIsCS()) {
|
|
ProfileIsCS = true;
|
|
FunctionSamples::ProfileIsCS = true;
|
|
|
|
// Enable priority-base inliner and size inline by default for CSSPGO.
|
|
if (!ProfileSizeInline.getNumOccurrences())
|
|
ProfileSizeInline = true;
|
|
if (!CallsitePrioritizedInline.getNumOccurrences())
|
|
CallsitePrioritizedInline = true;
|
|
|
|
// For CSSPGO, use preinliner decision by default when available.
|
|
if (!UsePreInlinerDecision.getNumOccurrences())
|
|
UsePreInlinerDecision = true;
|
|
|
|
// For CSSPGO, we also allow recursive inline to best use context profile.
|
|
if (!AllowRecursiveInline.getNumOccurrences())
|
|
AllowRecursiveInline = true;
|
|
|
|
// Enable iterative-BFI by default for CSSPGO.
|
|
if (!UseIterativeBFIInference.getNumOccurrences())
|
|
UseIterativeBFIInference = true;
|
|
|
|
// Tracker for profiles under different context
|
|
ContextTracker = std::make_unique<SampleContextTracker>(
|
|
Reader->getProfiles(), &GUIDToFuncNameMap);
|
|
}
|
|
|
|
// Load pseudo probe descriptors for probe-based function samples.
|
|
if (Reader->profileIsProbeBased()) {
|
|
ProbeManager = std::make_unique<PseudoProbeManager>(M);
|
|
if (!ProbeManager->moduleIsProbed(M)) {
|
|
const char *Msg =
|
|
"Pseudo-probe-based profile requires SampleProfileProbePass";
|
|
Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
ModulePass *llvm::createSampleProfileLoaderPass() {
|
|
return new SampleProfileLoaderLegacyPass();
|
|
}
|
|
|
|
ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
|
|
return new SampleProfileLoaderLegacyPass(Name);
|
|
}
|
|
|
|
bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM,
|
|
ProfileSummaryInfo *_PSI, CallGraph *CG) {
|
|
GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap);
|
|
|
|
PSI = _PSI;
|
|
if (M.getProfileSummary(/* IsCS */ false) == nullptr) {
|
|
M.setProfileSummary(Reader->getSummary().getMD(M.getContext()),
|
|
ProfileSummary::PSK_Sample);
|
|
PSI->refresh();
|
|
}
|
|
// Compute the total number of samples collected in this profile.
|
|
for (const auto &I : Reader->getProfiles())
|
|
TotalCollectedSamples += I.second.getTotalSamples();
|
|
|
|
auto Remapper = Reader->getRemapper();
|
|
// Populate the symbol map.
|
|
for (const auto &N_F : M.getValueSymbolTable()) {
|
|
StringRef OrigName = N_F.getKey();
|
|
Function *F = dyn_cast<Function>(N_F.getValue());
|
|
if (F == nullptr || OrigName.empty())
|
|
continue;
|
|
SymbolMap[OrigName] = F;
|
|
StringRef NewName = FunctionSamples::getCanonicalFnName(*F);
|
|
if (OrigName != NewName && !NewName.empty()) {
|
|
auto r = SymbolMap.insert(std::make_pair(NewName, F));
|
|
// Failiing to insert means there is already an entry in SymbolMap,
|
|
// thus there are multiple functions that are mapped to the same
|
|
// stripped name. In this case of name conflicting, set the value
|
|
// to nullptr to avoid confusion.
|
|
if (!r.second)
|
|
r.first->second = nullptr;
|
|
OrigName = NewName;
|
|
}
|
|
// Insert the remapped names into SymbolMap.
|
|
if (Remapper) {
|
|
if (auto MapName = Remapper->lookUpNameInProfile(OrigName)) {
|
|
if (*MapName != OrigName && !MapName->empty())
|
|
SymbolMap.insert(std::make_pair(*MapName, F));
|
|
}
|
|
}
|
|
}
|
|
assert(SymbolMap.count(StringRef()) == 0 &&
|
|
"No empty StringRef should be added in SymbolMap");
|
|
|
|
bool retval = false;
|
|
for (auto F : buildFunctionOrder(M, CG)) {
|
|
assert(!F->isDeclaration());
|
|
clearFunctionData();
|
|
retval |= runOnFunction(*F, AM);
|
|
}
|
|
|
|
// Account for cold calls not inlined....
|
|
if (!ProfileIsCS)
|
|
for (const std::pair<Function *, NotInlinedProfileInfo> &pair :
|
|
notInlinedCallInfo)
|
|
updateProfileCallee(pair.first, pair.second.entryCount);
|
|
|
|
return retval;
|
|
}
|
|
|
|
bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
|
|
ACT = &getAnalysis<AssumptionCacheTracker>();
|
|
TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
|
|
TLIWP = &getAnalysis<TargetLibraryInfoWrapperPass>();
|
|
ProfileSummaryInfo *PSI =
|
|
&getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
|
|
return SampleLoader.runOnModule(M, nullptr, PSI, nullptr);
|
|
}
|
|
|
|
bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {
|
|
LLVM_DEBUG(dbgs() << "\n\nProcessing Function " << F.getName() << "\n");
|
|
DILocation2SampleMap.clear();
|
|
// By default the entry count is initialized to -1, which will be treated
|
|
// conservatively by getEntryCount as the same as unknown (None). This is
|
|
// to avoid newly added code to be treated as cold. If we have samples
|
|
// this will be overwritten in emitAnnotations.
|
|
uint64_t initialEntryCount = -1;
|
|
|
|
ProfAccForSymsInList = ProfileAccurateForSymsInList && PSL;
|
|
if (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) {
|
|
// initialize all the function entry counts to 0. It means all the
|
|
// functions without profile will be regarded as cold.
|
|
initialEntryCount = 0;
|
|
// profile-sample-accurate is a user assertion which has a higher precedence
|
|
// than symbol list. When profile-sample-accurate is on, ignore symbol list.
|
|
ProfAccForSymsInList = false;
|
|
}
|
|
CoverageTracker.setProfAccForSymsInList(ProfAccForSymsInList);
|
|
|
|
// PSL -- profile symbol list include all the symbols in sampled binary.
|
|
// If ProfileAccurateForSymsInList is enabled, PSL is used to treat
|
|
// old functions without samples being cold, without having to worry
|
|
// about new and hot functions being mistakenly treated as cold.
|
|
if (ProfAccForSymsInList) {
|
|
// Initialize the entry count to 0 for functions in the list.
|
|
if (PSL->contains(F.getName()))
|
|
initialEntryCount = 0;
|
|
|
|
// Function in the symbol list but without sample will be regarded as
|
|
// cold. To minimize the potential negative performance impact it could
|
|
// have, we want to be a little conservative here saying if a function
|
|
// shows up in the profile, no matter as outline function, inline instance
|
|
// or call targets, treat the function as not being cold. This will handle
|
|
// the cases such as most callsites of a function are inlined in sampled
|
|
// binary but not inlined in current build (because of source code drift,
|
|
// imprecise debug information, or the callsites are all cold individually
|
|
// but not cold accumulatively...), so the outline function showing up as
|
|
// cold in sampled binary will actually not be cold after current build.
|
|
StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
|
|
if (NamesInProfile.count(CanonName))
|
|
initialEntryCount = -1;
|
|
}
|
|
|
|
// Initialize entry count when the function has no existing entry
|
|
// count value.
|
|
if (!F.getEntryCount().hasValue())
|
|
F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real));
|
|
std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
|
|
if (AM) {
|
|
auto &FAM =
|
|
AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
|
|
.getManager();
|
|
ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
|
|
} else {
|
|
OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F);
|
|
ORE = OwnedORE.get();
|
|
}
|
|
|
|
if (ProfileIsCS)
|
|
Samples = ContextTracker->getBaseSamplesFor(F);
|
|
else
|
|
Samples = Reader->getSamplesFor(F);
|
|
|
|
if (Samples && !Samples->empty())
|
|
return emitAnnotations(F);
|
|
return false;
|
|
}
|
|
|
|
PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
|
|
ModuleAnalysisManager &AM) {
|
|
FunctionAnalysisManager &FAM =
|
|
AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
|
|
|
|
auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
|
|
return FAM.getResult<AssumptionAnalysis>(F);
|
|
};
|
|
auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
|
|
return FAM.getResult<TargetIRAnalysis>(F);
|
|
};
|
|
auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & {
|
|
return FAM.getResult<TargetLibraryAnalysis>(F);
|
|
};
|
|
|
|
SampleProfileLoader SampleLoader(
|
|
ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
|
|
ProfileRemappingFileName.empty() ? SampleProfileRemappingFile
|
|
: ProfileRemappingFileName,
|
|
LTOPhase, GetAssumptionCache, GetTTI, GetTLI);
|
|
|
|
if (!SampleLoader.doInitialization(M, &FAM))
|
|
return PreservedAnalyses::all();
|
|
|
|
ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
|
|
CallGraph &CG = AM.getResult<CallGraphAnalysis>(M);
|
|
if (!SampleLoader.runOnModule(M, &AM, PSI, &CG))
|
|
return PreservedAnalyses::all();
|
|
|
|
return PreservedAnalyses::none();
|
|
}
|