llvm-project/llvm/lib/ProfileData/SampleProf.cpp

548 lines
20 KiB
C++

//=-- SampleProf.cpp - Sample profiling format support --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains common definitions used in the reading and writing of
// sample profile data.
//
//===----------------------------------------------------------------------===//
#include "llvm/ProfileData/SampleProf.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/PseudoProbe.h"
#include "llvm/ProfileData/SampleProfReader.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <string>
#include <system_error>
using namespace llvm;
using namespace sampleprof;
static cl::opt<uint64_t> ProfileSymbolListCutOff(
"profile-symbol-list-cutoff", cl::Hidden, cl::init(-1),
cl::desc("Cutoff value about how many symbols in profile symbol list "
"will be used. This is very useful for performance debugging"));
cl::opt<bool> GenerateMergedBaseProfiles(
"generate-merged-base-profiles",
cl::desc("When generating nested context-sensitive profiles, always "
"generate extra base profile for function with all its context "
"profiles merged into it."));
namespace llvm {
namespace sampleprof {
bool FunctionSamples::ProfileIsProbeBased = false;
bool FunctionSamples::ProfileIsCS = false;
bool FunctionSamples::ProfileIsPreInlined = false;
bool FunctionSamples::UseMD5 = false;
bool FunctionSamples::HasUniqSuffix = true;
bool FunctionSamples::ProfileIsFS = false;
} // namespace sampleprof
} // namespace llvm
namespace {
// FIXME: This class is only here to support the transition to llvm::Error. It
// will be removed once this transition is complete. Clients should prefer to
// deal with the Error value directly, rather than converting to error_code.
class SampleProfErrorCategoryType : public std::error_category {
const char *name() const noexcept override { return "llvm.sampleprof"; }
std::string message(int IE) const override {
sampleprof_error E = static_cast<sampleprof_error>(IE);
switch (E) {
case sampleprof_error::success:
return "Success";
case sampleprof_error::bad_magic:
return "Invalid sample profile data (bad magic)";
case sampleprof_error::unsupported_version:
return "Unsupported sample profile format version";
case sampleprof_error::too_large:
return "Too much profile data";
case sampleprof_error::truncated:
return "Truncated profile data";
case sampleprof_error::malformed:
return "Malformed sample profile data";
case sampleprof_error::unrecognized_format:
return "Unrecognized sample profile encoding format";
case sampleprof_error::unsupported_writing_format:
return "Profile encoding format unsupported for writing operations";
case sampleprof_error::truncated_name_table:
return "Truncated function name table";
case sampleprof_error::not_implemented:
return "Unimplemented feature";
case sampleprof_error::counter_overflow:
return "Counter overflow";
case sampleprof_error::ostream_seek_unsupported:
return "Ostream does not support seek";
case sampleprof_error::uncompress_failed:
return "Uncompress failure";
case sampleprof_error::zlib_unavailable:
return "Zlib is unavailable";
case sampleprof_error::hash_mismatch:
return "Function hash mismatch";
}
llvm_unreachable("A value of sampleprof_error has no message.");
}
};
} // end anonymous namespace
const std::error_category &llvm::sampleprof_category() {
static SampleProfErrorCategoryType ErrorCategory;
return ErrorCategory;
}
void LineLocation::print(raw_ostream &OS) const {
OS << LineOffset;
if (Discriminator > 0)
OS << "." << Discriminator;
}
raw_ostream &llvm::sampleprof::operator<<(raw_ostream &OS,
const LineLocation &Loc) {
Loc.print(OS);
return OS;
}
/// Merge the samples in \p Other into this record.
/// Optionally scale sample counts by \p Weight.
sampleprof_error SampleRecord::merge(const SampleRecord &Other,
uint64_t Weight) {
sampleprof_error Result;
Result = addSamples(Other.getSamples(), Weight);
for (const auto &I : Other.getCallTargets()) {
MergeResult(Result, addCalledTarget(I.first(), I.second, Weight));
}
return Result;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void LineLocation::dump() const { print(dbgs()); }
#endif
/// Print the sample record to the stream \p OS indented by \p Indent.
void SampleRecord::print(raw_ostream &OS, unsigned Indent) const {
OS << NumSamples;
if (hasCalls()) {
OS << ", calls:";
for (const auto &I : getSortedCallTargets())
OS << " " << I.first << ":" << I.second;
}
OS << "\n";
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void SampleRecord::dump() const { print(dbgs(), 0); }
#endif
raw_ostream &llvm::sampleprof::operator<<(raw_ostream &OS,
const SampleRecord &Sample) {
Sample.print(OS, 0);
return OS;
}
/// Print the samples collected for a function on stream \p OS.
void FunctionSamples::print(raw_ostream &OS, unsigned Indent) const {
if (getFunctionHash())
OS << "CFG checksum " << getFunctionHash() << "\n";
OS << TotalSamples << ", " << TotalHeadSamples << ", " << BodySamples.size()
<< " sampled lines\n";
OS.indent(Indent);
if (!BodySamples.empty()) {
OS << "Samples collected in the function's body {\n";
SampleSorter<LineLocation, SampleRecord> SortedBodySamples(BodySamples);
for (const auto &SI : SortedBodySamples.get()) {
OS.indent(Indent + 2);
OS << SI->first << ": " << SI->second;
}
OS.indent(Indent);
OS << "}\n";
} else {
OS << "No samples collected in the function's body\n";
}
OS.indent(Indent);
if (!CallsiteSamples.empty()) {
OS << "Samples collected in inlined callsites {\n";
SampleSorter<LineLocation, FunctionSamplesMap> SortedCallsiteSamples(
CallsiteSamples);
for (const auto &CS : SortedCallsiteSamples.get()) {
for (const auto &FS : CS->second) {
OS.indent(Indent + 2);
OS << CS->first << ": inlined callee: " << FS.second.getName() << ": ";
FS.second.print(OS, Indent + 4);
}
}
OS.indent(Indent);
OS << "}\n";
} else {
OS << "No inlined callsites in this function\n";
}
}
raw_ostream &llvm::sampleprof::operator<<(raw_ostream &OS,
const FunctionSamples &FS) {
FS.print(OS);
return OS;
}
void sampleprof::sortFuncProfiles(
const SampleProfileMap &ProfileMap,
std::vector<NameFunctionSamples> &SortedProfiles) {
for (const auto &I : ProfileMap) {
assert(I.first == I.second.getContext() && "Inconsistent profile map");
SortedProfiles.push_back(std::make_pair(I.second.getContext(), &I.second));
}
llvm::stable_sort(SortedProfiles, [](const NameFunctionSamples &A,
const NameFunctionSamples &B) {
if (A.second->getTotalSamples() == B.second->getTotalSamples())
return A.first < B.first;
return A.second->getTotalSamples() > B.second->getTotalSamples();
});
}
unsigned FunctionSamples::getOffset(const DILocation *DIL) {
return (DIL->getLine() - DIL->getScope()->getSubprogram()->getLine()) &
0xffff;
}
LineLocation FunctionSamples::getCallSiteIdentifier(const DILocation *DIL,
bool ProfileIsFS) {
if (FunctionSamples::ProfileIsProbeBased) {
// In a pseudo-probe based profile, a callsite is simply represented by the
// ID of the probe associated with the call instruction. The probe ID is
// encoded in the Discriminator field of the call instruction's debug
// metadata.
return LineLocation(PseudoProbeDwarfDiscriminator::extractProbeIndex(
DIL->getDiscriminator()),
0);
} else {
unsigned Discriminator =
ProfileIsFS ? DIL->getDiscriminator() : DIL->getBaseDiscriminator();
return LineLocation(FunctionSamples::getOffset(DIL), Discriminator);
}
}
uint64_t FunctionSamples::getCallSiteHash(StringRef CalleeName,
const LineLocation &Callsite) {
uint64_t NameHash = std::hash<std::string>{}(CalleeName.str());
uint64_t LocId =
(((uint64_t)Callsite.LineOffset) << 32) | Callsite.Discriminator;
return NameHash + (LocId << 5) + LocId;
}
const FunctionSamples *FunctionSamples::findFunctionSamples(
const DILocation *DIL, SampleProfileReaderItaniumRemapper *Remapper) const {
assert(DIL);
SmallVector<std::pair<LineLocation, StringRef>, 10> S;
const DILocation *PrevDIL = DIL;
for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt()) {
// Use C++ linkage name if possible.
StringRef Name = PrevDIL->getScope()->getSubprogram()->getLinkageName();
if (Name.empty())
Name = PrevDIL->getScope()->getSubprogram()->getName();
S.emplace_back(FunctionSamples::getCallSiteIdentifier(
DIL, FunctionSamples::ProfileIsFS),
Name);
PrevDIL = DIL;
}
if (S.size() == 0)
return this;
const FunctionSamples *FS = this;
for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) {
FS = FS->findFunctionSamplesAt(S[i].first, S[i].second, Remapper);
}
return FS;
}
void FunctionSamples::findAllNames(DenseSet<StringRef> &NameSet) const {
NameSet.insert(getName());
for (const auto &BS : BodySamples)
for (const auto &TS : BS.second.getCallTargets())
NameSet.insert(TS.getKey());
for (const auto &CS : CallsiteSamples) {
for (const auto &NameFS : CS.second) {
NameSet.insert(NameFS.first);
NameFS.second.findAllNames(NameSet);
}
}
}
const FunctionSamples *FunctionSamples::findFunctionSamplesAt(
const LineLocation &Loc, StringRef CalleeName,
SampleProfileReaderItaniumRemapper *Remapper) const {
CalleeName = getCanonicalFnName(CalleeName);
std::string CalleeGUID;
CalleeName = getRepInFormat(CalleeName, UseMD5, CalleeGUID);
auto iter = CallsiteSamples.find(Loc);
if (iter == CallsiteSamples.end())
return nullptr;
auto FS = iter->second.find(CalleeName);
if (FS != iter->second.end())
return &FS->second;
if (Remapper) {
if (auto NameInProfile = Remapper->lookUpNameInProfile(CalleeName)) {
auto FS = iter->second.find(*NameInProfile);
if (FS != iter->second.end())
return &FS->second;
}
}
// If we cannot find exact match of the callee name, return the FS with
// the max total count. Only do this when CalleeName is not provided,
// i.e., only for indirect calls.
if (!CalleeName.empty())
return nullptr;
uint64_t MaxTotalSamples = 0;
const FunctionSamples *R = nullptr;
for (const auto &NameFS : iter->second)
if (NameFS.second.getTotalSamples() >= MaxTotalSamples) {
MaxTotalSamples = NameFS.second.getTotalSamples();
R = &NameFS.second;
}
return R;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void FunctionSamples::dump() const { print(dbgs(), 0); }
#endif
std::error_code ProfileSymbolList::read(const uint8_t *Data,
uint64_t ListSize) {
const char *ListStart = reinterpret_cast<const char *>(Data);
uint64_t Size = 0;
uint64_t StrNum = 0;
while (Size < ListSize && StrNum < ProfileSymbolListCutOff) {
StringRef Str(ListStart + Size);
add(Str);
Size += Str.size() + 1;
StrNum++;
}
if (Size != ListSize && StrNum != ProfileSymbolListCutOff)
return sampleprof_error::malformed;
return sampleprof_error::success;
}
void SampleContextTrimmer::trimAndMergeColdContextProfiles(
uint64_t ColdCountThreshold, bool TrimColdContext, bool MergeColdContext,
uint32_t ColdContextFrameLength, bool TrimBaseProfileOnly) {
if (!TrimColdContext && !MergeColdContext)
return;
// Nothing to merge if sample threshold is zero
if (ColdCountThreshold == 0)
return;
// Trimming base profiles only is mainly to honor the preinliner decsion. When
// MergeColdContext is true preinliner decsion is not honored anyway so turn
// off TrimBaseProfileOnly.
if (MergeColdContext)
TrimBaseProfileOnly = false;
// Filter the cold profiles from ProfileMap and move them into a tmp
// container
std::vector<std::pair<SampleContext, const FunctionSamples *>> ColdProfiles;
for (const auto &I : ProfileMap) {
const SampleContext &Context = I.first;
const FunctionSamples &FunctionProfile = I.second;
if (FunctionProfile.getTotalSamples() < ColdCountThreshold &&
(!TrimBaseProfileOnly || Context.isBaseContext()))
ColdProfiles.emplace_back(Context, &I.second);
}
// Remove the cold profile from ProfileMap and merge them into
// MergedProfileMap by the last K frames of context
SampleProfileMap MergedProfileMap;
for (const auto &I : ColdProfiles) {
if (MergeColdContext) {
auto MergedContext = I.second->getContext().getContextFrames();
if (ColdContextFrameLength < MergedContext.size())
MergedContext = MergedContext.take_back(ColdContextFrameLength);
auto Ret = MergedProfileMap.emplace(MergedContext, FunctionSamples());
FunctionSamples &MergedProfile = Ret.first->second;
MergedProfile.merge(*I.second);
}
ProfileMap.erase(I.first);
}
// Move the merged profiles into ProfileMap;
for (const auto &I : MergedProfileMap) {
// Filter the cold merged profile
if (TrimColdContext && I.second.getTotalSamples() < ColdCountThreshold &&
ProfileMap.find(I.first) == ProfileMap.end())
continue;
// Merge the profile if the original profile exists, otherwise just insert
// as a new profile
auto Ret = ProfileMap.emplace(I.first, FunctionSamples());
if (Ret.second) {
SampleContext FContext(Ret.first->first, RawContext);
FunctionSamples &FProfile = Ret.first->second;
FProfile.setContext(FContext);
}
FunctionSamples &OrigProfile = Ret.first->second;
OrigProfile.merge(I.second);
}
}
void SampleContextTrimmer::canonicalizeContextProfiles() {
std::vector<SampleContext> ProfilesToBeRemoved;
SampleProfileMap ProfilesToBeAdded;
for (auto &I : ProfileMap) {
FunctionSamples &FProfile = I.second;
SampleContext &Context = FProfile.getContext();
if (I.first == Context)
continue;
// Use the context string from FunctionSamples to update the keys of
// ProfileMap. They can get out of sync after context profile promotion
// through pre-inliner.
// Duplicate the function profile for later insertion to avoid a conflict
// caused by a context both to be add and to be removed. This could happen
// when a context is promoted to another context which is also promoted to
// the third context. For example, given an original context A @ B @ C that
// is promoted to B @ C and the original context B @ C which is promoted to
// just C, adding B @ C to the profile map while removing same context (but
// with different profiles) from the map can cause a conflict if they are
// not handled in a right order. This can be solved by just caching the
// profiles to be added.
auto Ret = ProfilesToBeAdded.emplace(Context, FProfile);
(void)Ret;
assert(Ret.second && "Context conflict during canonicalization");
ProfilesToBeRemoved.push_back(I.first);
}
for (auto &I : ProfilesToBeRemoved) {
ProfileMap.erase(I);
}
for (auto &I : ProfilesToBeAdded) {
ProfileMap.emplace(I.first, I.second);
}
}
std::error_code ProfileSymbolList::write(raw_ostream &OS) {
// Sort the symbols before output. If doing compression.
// It will make the compression much more effective.
std::vector<StringRef> SortedList(Syms.begin(), Syms.end());
llvm::sort(SortedList);
std::string OutputString;
for (auto &Sym : SortedList) {
OutputString.append(Sym.str());
OutputString.append(1, '\0');
}
OS << OutputString;
return sampleprof_error::success;
}
void ProfileSymbolList::dump(raw_ostream &OS) const {
OS << "======== Dump profile symbol list ========\n";
std::vector<StringRef> SortedList(Syms.begin(), Syms.end());
llvm::sort(SortedList);
for (auto &Sym : SortedList)
OS << Sym << "\n";
}
CSProfileConverter::FrameNode *
CSProfileConverter::FrameNode::getOrCreateChildFrame(
const LineLocation &CallSite, StringRef CalleeName) {
uint64_t Hash = FunctionSamples::getCallSiteHash(CalleeName, CallSite);
auto It = AllChildFrames.find(Hash);
if (It != AllChildFrames.end()) {
assert(It->second.FuncName == CalleeName &&
"Hash collision for child context node");
return &It->second;
}
AllChildFrames[Hash] = FrameNode(CalleeName, nullptr, CallSite);
return &AllChildFrames[Hash];
}
CSProfileConverter::CSProfileConverter(SampleProfileMap &Profiles)
: ProfileMap(Profiles) {
for (auto &FuncSample : Profiles) {
FunctionSamples *FSamples = &FuncSample.second;
auto *NewNode = getOrCreateContextPath(FSamples->getContext());
assert(!NewNode->FuncSamples && "New node cannot have sample profile");
NewNode->FuncSamples = FSamples;
}
}
CSProfileConverter::FrameNode *
CSProfileConverter::getOrCreateContextPath(const SampleContext &Context) {
auto Node = &RootFrame;
LineLocation CallSiteLoc(0, 0);
for (auto &Callsite : Context.getContextFrames()) {
Node = Node->getOrCreateChildFrame(CallSiteLoc, Callsite.FuncName);
CallSiteLoc = Callsite.Location;
}
return Node;
}
void CSProfileConverter::convertProfiles(CSProfileConverter::FrameNode &Node) {
// Process each child profile. Add each child profile to callsite profile map
// of the current node `Node` if `Node` comes with a profile. Otherwise
// promote the child profile to a standalone profile.
auto *NodeProfile = Node.FuncSamples;
for (auto &It : Node.AllChildFrames) {
auto &ChildNode = It.second;
convertProfiles(ChildNode);
auto *ChildProfile = ChildNode.FuncSamples;
if (!ChildProfile)
continue;
SampleContext OrigChildContext = ChildProfile->getContext();
// Reset the child context to be contextless.
ChildProfile->getContext().setName(OrigChildContext.getName());
if (NodeProfile) {
// Add child profile to the callsite profile map.
auto &SamplesMap = NodeProfile->functionSamplesAt(ChildNode.CallSiteLoc);
SamplesMap.emplace(OrigChildContext.getName().str(), *ChildProfile);
NodeProfile->addTotalSamples(ChildProfile->getTotalSamples());
// Remove the corresponding body sample for the callsite and update the
// total weight.
auto Count = NodeProfile->removeCalledTargetAndBodySample(
ChildNode.CallSiteLoc.LineOffset, ChildNode.CallSiteLoc.Discriminator,
OrigChildContext.getName());
NodeProfile->removeTotalSamples(Count);
}
// Separate child profile to be a standalone profile, if the current parent
// profile doesn't exist. This is a duplicating operation when the child
// profile is already incorporated into the parent which is still useful and
// thus done optionally. It is seen that duplicating context profiles into
// base profiles improves the code quality for thinlto build by allowing a
// profile in the prelink phase for to-be-fully-inlined functions.
if (!NodeProfile) {
ProfileMap[ChildProfile->getContext()].merge(*ChildProfile);
} else if (GenerateMergedBaseProfiles) {
ProfileMap[ChildProfile->getContext()].merge(*ChildProfile);
auto &SamplesMap = NodeProfile->functionSamplesAt(ChildNode.CallSiteLoc);
SamplesMap[ChildProfile->getName().str()].getContext().setAttribute(
ContextDuplicatedIntoBase);
}
// Remove the original child profile.
ProfileMap.erase(OrigChildContext);
}
}
void CSProfileConverter::convertProfiles() { convertProfiles(RootFrame); }