llvm-project/llvm/lib/Target/PowerPC/PPCSubtarget.h

396 lines
13 KiB
C++

//===-- PPCSubtarget.h - Define Subtarget for the PPC ----------*- C++ -*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file declares the PowerPC specific subclass of TargetSubtargetInfo.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_POWERPC_PPCSUBTARGET_H
#define LLVM_LIB_TARGET_POWERPC_PPCSUBTARGET_H
#include "PPCFrameLowering.h"
#include "PPCISelLowering.h"
#include "PPCInstrInfo.h"
#include "llvm/ADT/Triple.h"
#include "llvm/CodeGen/SelectionDAGTargetInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/MC/MCInstrItineraries.h"
#include <string>
#define GET_SUBTARGETINFO_HEADER
#include "PPCGenSubtargetInfo.inc"
// GCC #defines PPC on Linux but we use it as our namespace name
#undef PPC
namespace llvm {
class StringRef;
namespace PPC {
// -m directive values.
enum {
DIR_NONE,
DIR_32,
DIR_440,
DIR_601,
DIR_602,
DIR_603,
DIR_7400,
DIR_750,
DIR_970,
DIR_A2,
DIR_E500,
DIR_E500mc,
DIR_E5500,
DIR_PWR3,
DIR_PWR4,
DIR_PWR5,
DIR_PWR5X,
DIR_PWR6,
DIR_PWR6X,
DIR_PWR7,
DIR_PWR8,
DIR_PWR9,
DIR_PWR_FUTURE,
DIR_64
};
}
class GlobalValue;
class TargetMachine;
class PPCSubtarget : public PPCGenSubtargetInfo {
public:
enum POPCNTDKind {
POPCNTD_Unavailable,
POPCNTD_Slow,
POPCNTD_Fast
};
protected:
/// TargetTriple - What processor and OS we're targeting.
Triple TargetTriple;
/// stackAlignment - The minimum alignment known to hold of the stack frame on
/// entry to the function and which must be maintained by every function.
Align StackAlignment;
/// Selected instruction itineraries (one entry per itinerary class.)
InstrItineraryData InstrItins;
/// Which cpu directive was used.
unsigned CPUDirective;
/// Used by the ISel to turn in optimizations for POWER4-derived architectures
bool HasMFOCRF;
bool Has64BitSupport;
bool Use64BitRegs;
bool UseCRBits;
bool HasHardFloat;
bool IsPPC64;
bool HasAltivec;
bool HasFPU;
bool HasSPE;
bool HasQPX;
bool HasVSX;
bool NeedsTwoConstNR;
bool HasP8Vector;
bool HasP8Altivec;
bool HasP8Crypto;
bool HasP9Vector;
bool HasP9Altivec;
bool HasFCPSGN;
bool HasFSQRT;
bool HasFRE, HasFRES, HasFRSQRTE, HasFRSQRTES;
bool HasRecipPrec;
bool HasSTFIWX;
bool HasLFIWAX;
bool HasFPRND;
bool HasFPCVT;
bool HasISEL;
bool HasBPERMD;
bool HasExtDiv;
bool HasCMPB;
bool HasLDBRX;
bool IsBookE;
bool HasOnlyMSYNC;
bool IsE500;
bool IsPPC4xx;
bool IsPPC6xx;
bool FeatureMFTB;
bool AllowsUnalignedFPAccess;
bool DeprecatedDST;
bool HasLazyResolverStubs;
bool IsLittleEndian;
bool HasICBT;
bool HasInvariantFunctionDescriptors;
bool HasPartwordAtomics;
bool HasDirectMove;
bool HasHTM;
bool HasFloat128;
bool IsISA3_0;
bool UseLongCalls;
bool SecurePlt;
bool VectorsUseTwoUnits;
bool UsePPCPreRASchedStrategy;
bool UsePPCPostRASchedStrategy;
POPCNTDKind HasPOPCNTD;
/// When targeting QPX running a stock PPC64 Linux kernel where the stack
/// alignment has not been changed, we need to keep the 16-byte alignment
/// of the stack.
bool IsQPXStackUnaligned;
const PPCTargetMachine &TM;
PPCFrameLowering FrameLowering;
PPCInstrInfo InstrInfo;
PPCTargetLowering TLInfo;
SelectionDAGTargetInfo TSInfo;
public:
/// This constructor initializes the data members to match that
/// of the specified triple.
///
PPCSubtarget(const Triple &TT, const std::string &CPU, const std::string &FS,
const PPCTargetMachine &TM);
/// ParseSubtargetFeatures - Parses features string setting specified
/// subtarget options. Definition of function is auto generated by tblgen.
void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
/// getStackAlignment - Returns the minimum alignment known to hold of the
/// stack frame on entry to the function and which must be maintained by every
/// function for this subtarget.
Align getStackAlignment() const { return StackAlignment; }
/// getDarwinDirective - Returns the -m directive specified for the cpu.
unsigned getDarwinDirective() const { return CPUDirective; }
/// getCPUDirective - Returns the -m directive specified for the cpu.
///
unsigned getCPUDirective() const { return CPUDirective; }
/// getInstrItins - Return the instruction itineraries based on subtarget
/// selection.
const InstrItineraryData *getInstrItineraryData() const override {
return &InstrItins;
}
const PPCFrameLowering *getFrameLowering() const override {
return &FrameLowering;
}
const PPCInstrInfo *getInstrInfo() const override { return &InstrInfo; }
const PPCTargetLowering *getTargetLowering() const override {
return &TLInfo;
}
const SelectionDAGTargetInfo *getSelectionDAGInfo() const override {
return &TSInfo;
}
const PPCRegisterInfo *getRegisterInfo() const override {
return &getInstrInfo()->getRegisterInfo();
}
const PPCTargetMachine &getTargetMachine() const { return TM; }
/// initializeSubtargetDependencies - Initializes using a CPU and feature string
/// so that we can use initializer lists for subtarget initialization.
PPCSubtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS);
private:
void initializeEnvironment();
void initSubtargetFeatures(StringRef CPU, StringRef FS);
public:
/// isPPC64 - Return true if we are generating code for 64-bit pointer mode.
///
bool isPPC64() const;
/// has64BitSupport - Return true if the selected CPU supports 64-bit
/// instructions, regardless of whether we are in 32-bit or 64-bit mode.
bool has64BitSupport() const { return Has64BitSupport; }
// useSoftFloat - Return true if soft-float option is turned on.
bool useSoftFloat() const {
if (isAIXABI() && !HasHardFloat)
report_fatal_error("soft-float is not yet supported on AIX.");
return !HasHardFloat;
}
/// use64BitRegs - Return true if in 64-bit mode or if we should use 64-bit
/// registers in 32-bit mode when possible. This can only true if
/// has64BitSupport() returns true.
bool use64BitRegs() const { return Use64BitRegs; }
/// useCRBits - Return true if we should store and manipulate i1 values in
/// the individual condition register bits.
bool useCRBits() const { return UseCRBits; }
/// hasLazyResolverStub - Return true if accesses to the specified global have
/// to go through a dyld lazy resolution stub. This means that an extra load
/// is required to get the address of the global.
bool hasLazyResolverStub(const GlobalValue *GV) const;
// isLittleEndian - True if generating little-endian code
bool isLittleEndian() const { return IsLittleEndian; }
// Specific obvious features.
bool hasFCPSGN() const { return HasFCPSGN; }
bool hasFSQRT() const { return HasFSQRT; }
bool hasFRE() const { return HasFRE; }
bool hasFRES() const { return HasFRES; }
bool hasFRSQRTE() const { return HasFRSQRTE; }
bool hasFRSQRTES() const { return HasFRSQRTES; }
bool hasRecipPrec() const { return HasRecipPrec; }
bool hasSTFIWX() const { return HasSTFIWX; }
bool hasLFIWAX() const { return HasLFIWAX; }
bool hasFPRND() const { return HasFPRND; }
bool hasFPCVT() const { return HasFPCVT; }
bool hasAltivec() const { return HasAltivec; }
bool hasSPE() const { return HasSPE; }
bool hasFPU() const { return HasFPU; }
bool hasQPX() const { return HasQPX; }
bool hasVSX() const { return HasVSX; }
bool needsTwoConstNR() const { return NeedsTwoConstNR; }
bool hasP8Vector() const { return HasP8Vector; }
bool hasP8Altivec() const { return HasP8Altivec; }
bool hasP8Crypto() const { return HasP8Crypto; }
bool hasP9Vector() const { return HasP9Vector; }
bool hasP9Altivec() const { return HasP9Altivec; }
bool hasMFOCRF() const { return HasMFOCRF; }
bool hasISEL() const { return HasISEL; }
bool hasBPERMD() const { return HasBPERMD; }
bool hasExtDiv() const { return HasExtDiv; }
bool hasCMPB() const { return HasCMPB; }
bool hasLDBRX() const { return HasLDBRX; }
bool isBookE() const { return IsBookE; }
bool hasOnlyMSYNC() const { return HasOnlyMSYNC; }
bool isPPC4xx() const { return IsPPC4xx; }
bool isPPC6xx() const { return IsPPC6xx; }
bool isSecurePlt() const {return SecurePlt; }
bool vectorsUseTwoUnits() const {return VectorsUseTwoUnits; }
bool isE500() const { return IsE500; }
bool isFeatureMFTB() const { return FeatureMFTB; }
bool allowsUnalignedFPAccess() const { return AllowsUnalignedFPAccess; }
bool isDeprecatedDST() const { return DeprecatedDST; }
bool hasICBT() const { return HasICBT; }
bool hasInvariantFunctionDescriptors() const {
return HasInvariantFunctionDescriptors;
}
bool usePPCPreRASchedStrategy() const { return UsePPCPreRASchedStrategy; }
bool usePPCPostRASchedStrategy() const { return UsePPCPostRASchedStrategy; }
bool hasPartwordAtomics() const { return HasPartwordAtomics; }
bool hasDirectMove() const { return HasDirectMove; }
bool isQPXStackUnaligned() const { return IsQPXStackUnaligned; }
Align getPlatformStackAlignment() const {
if ((hasQPX() || isBGQ()) && !isQPXStackUnaligned())
return Align(32);
return Align(16);
}
// DarwinABI has a 224-byte red zone. PPC32 SVR4ABI(Non-DarwinABI) has no
// red zone and PPC64 SVR4ABI has a 288-byte red zone.
unsigned getRedZoneSize() const {
return isDarwinABI() ? 224 : (isPPC64() ? 288 : 0);
}
bool hasHTM() const { return HasHTM; }
bool hasFloat128() const { return HasFloat128; }
bool isISA3_0() const { return IsISA3_0; }
bool useLongCalls() const { return UseLongCalls; }
bool needsSwapsForVSXMemOps() const {
return hasVSX() && isLittleEndian() && !hasP9Vector();
}
POPCNTDKind hasPOPCNTD() const { return HasPOPCNTD; }
const Triple &getTargetTriple() const { return TargetTriple; }
/// isDarwin - True if this is any darwin platform.
bool isDarwin() const { return TargetTriple.isMacOSX(); }
/// isBGQ - True if this is a BG/Q platform.
bool isBGQ() const { return TargetTriple.getVendor() == Triple::BGQ; }
bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); }
bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); }
bool isTargetLinux() const { return TargetTriple.isOSLinux(); }
bool isDarwinABI() const { return isTargetMachO() || isDarwin(); }
bool isAIXABI() const { return TargetTriple.isOSAIX(); }
bool isSVR4ABI() const { return !isDarwinABI() && !isAIXABI(); }
bool isELFv2ABI() const;
bool is64BitELFABI() const { return isSVR4ABI() && isPPC64(); }
bool is32BitELFABI() const { return isSVR4ABI() && !isPPC64(); }
/// Originally, this function return hasISEL(). Now we always enable it,
/// but may expand the ISEL instruction later.
bool enableEarlyIfConversion() const override { return true; }
/// Scheduling customization.
bool enableMachineScheduler() const override;
/// Pipeliner customization.
bool enableMachinePipeliner() const override;
/// Machine Pipeliner customization
bool useDFAforSMS() const override;
/// This overrides the PostRAScheduler bit in the SchedModel for each CPU.
bool enablePostRAScheduler() const override;
AntiDepBreakMode getAntiDepBreakMode() const override;
void getCriticalPathRCs(RegClassVector &CriticalPathRCs) const override;
void overrideSchedPolicy(MachineSchedPolicy &Policy,
unsigned NumRegionInstrs) const override;
bool useAA() const override;
bool enableSubRegLiveness() const override;
/// True if the GV will be accessed via an indirect symbol.
bool isGVIndirectSymbol(const GlobalValue *GV) const;
/// True if the ABI is descriptor based.
bool usesFunctionDescriptors() const {
// Both 32-bit and 64-bit AIX are descriptor based. For ELF only the 64-bit
// v1 ABI uses descriptors.
return isAIXABI() || (is64BitELFABI() && !isELFv2ABI());
}
unsigned descriptorTOCAnchorOffset() const {
assert(usesFunctionDescriptors() &&
"Should only be called when the target uses descriptors.");
return IsPPC64 ? 8 : 4;
}
unsigned descriptorEnvironmentPointerOffset() const {
assert(usesFunctionDescriptors() &&
"Should only be called when the target uses descriptors.");
return IsPPC64 ? 16 : 8;
}
MCRegister getEnvironmentPointerRegister() const {
assert(usesFunctionDescriptors() &&
"Should only be called when the target uses descriptors.");
return IsPPC64 ? PPC::X11 : PPC::R11;
}
MCRegister getTOCPointerRegister() const {
assert((is64BitELFABI() || isAIXABI()) &&
"Should only be called when the target is a TOC based ABI.");
return IsPPC64 ? PPC::X2 : PPC::R2;
}
MCRegister getStackPointerRegister() const {
return IsPPC64 ? PPC::X1 : PPC::R1;
}
bool isXRaySupported() const override { return IsPPC64 && IsLittleEndian; }
};
} // End llvm namespace
#endif