forked from OSchip/llvm-project
2364 lines
81 KiB
C++
2364 lines
81 KiB
C++
//===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is part of the X86 Disassembler.
|
|
// It contains code to translate the data produced by the decoder into
|
|
// MCInsts.
|
|
//
|
|
//
|
|
// The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
|
|
// 64-bit X86 instruction sets. The main decode sequence for an assembly
|
|
// instruction in this disassembler is:
|
|
//
|
|
// 1. Read the prefix bytes and determine the attributes of the instruction.
|
|
// These attributes, recorded in enum attributeBits
|
|
// (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM
|
|
// provides a mapping from bitmasks to contexts, which are represented by
|
|
// enum InstructionContext (ibid.).
|
|
//
|
|
// 2. Read the opcode, and determine what kind of opcode it is. The
|
|
// disassembler distinguishes four kinds of opcodes, which are enumerated in
|
|
// OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
|
|
// (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
|
|
// (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context.
|
|
//
|
|
// 3. Depending on the opcode type, look in one of four ClassDecision structures
|
|
// (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which
|
|
// OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get
|
|
// a ModRMDecision (ibid.).
|
|
//
|
|
// 4. Some instructions, such as escape opcodes or extended opcodes, or even
|
|
// instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
|
|
// ModR/M byte to complete decode. The ModRMDecision's type is an entry from
|
|
// ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
|
|
// ModR/M byte is required and how to interpret it.
|
|
//
|
|
// 5. After resolving the ModRMDecision, the disassembler has a unique ID
|
|
// of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in
|
|
// INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
|
|
// meanings of its operands.
|
|
//
|
|
// 6. For each operand, its encoding is an entry from OperandEncoding
|
|
// (X86DisassemblerDecoderCommon.h) and its type is an entry from
|
|
// OperandType (ibid.). The encoding indicates how to read it from the
|
|
// instruction; the type indicates how to interpret the value once it has
|
|
// been read. For example, a register operand could be stored in the R/M
|
|
// field of the ModR/M byte, the REG field of the ModR/M byte, or added to
|
|
// the main opcode. This is orthogonal from its meaning (an GPR or an XMM
|
|
// register, for instance). Given this information, the operands can be
|
|
// extracted and interpreted.
|
|
//
|
|
// 7. As the last step, the disassembler translates the instruction information
|
|
// and operands into a format understandable by the client - in this case, an
|
|
// MCInst for use by the MC infrastructure.
|
|
//
|
|
// The disassembler is broken broadly into two parts: the table emitter that
|
|
// emits the instruction decode tables discussed above during compilation, and
|
|
// the disassembler itself. The table emitter is documented in more detail in
|
|
// utils/TableGen/X86DisassemblerEmitter.h.
|
|
//
|
|
// X86Disassembler.cpp contains the code responsible for step 7, and for
|
|
// invoking the decoder to execute steps 1-6.
|
|
// X86DisassemblerDecoderCommon.h contains the definitions needed by both the
|
|
// table emitter and the disassembler.
|
|
// X86DisassemblerDecoder.h contains the public interface of the decoder,
|
|
// factored out into C for possible use by other projects.
|
|
// X86DisassemblerDecoder.c contains the source code of the decoder, which is
|
|
// responsible for steps 1-6.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "MCTargetDesc/X86BaseInfo.h"
|
|
#include "MCTargetDesc/X86MCTargetDesc.h"
|
|
#include "TargetInfo/X86TargetInfo.h"
|
|
#include "X86DisassemblerDecoder.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
|
|
#include "llvm/MC/MCExpr.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/MC/MCInstrInfo.h"
|
|
#include "llvm/MC/MCSubtargetInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::X86Disassembler;
|
|
|
|
#define DEBUG_TYPE "x86-disassembler"
|
|
|
|
#define debug(s) LLVM_DEBUG(dbgs() << __LINE__ << ": " << s);
|
|
|
|
// Specifies whether a ModR/M byte is needed and (if so) which
|
|
// instruction each possible value of the ModR/M byte corresponds to. Once
|
|
// this information is known, we have narrowed down to a single instruction.
|
|
struct ModRMDecision {
|
|
uint8_t modrm_type;
|
|
uint16_t instructionIDs;
|
|
};
|
|
|
|
// Specifies which set of ModR/M->instruction tables to look at
|
|
// given a particular opcode.
|
|
struct OpcodeDecision {
|
|
ModRMDecision modRMDecisions[256];
|
|
};
|
|
|
|
// Specifies which opcode->instruction tables to look at given
|
|
// a particular context (set of attributes). Since there are many possible
|
|
// contexts, the decoder first uses CONTEXTS_SYM to determine which context
|
|
// applies given a specific set of attributes. Hence there are only IC_max
|
|
// entries in this table, rather than 2^(ATTR_max).
|
|
struct ContextDecision {
|
|
OpcodeDecision opcodeDecisions[IC_max];
|
|
};
|
|
|
|
#include "X86GenDisassemblerTables.inc"
|
|
|
|
static InstrUID decode(OpcodeType type, InstructionContext insnContext,
|
|
uint8_t opcode, uint8_t modRM) {
|
|
const struct ModRMDecision *dec;
|
|
|
|
switch (type) {
|
|
case ONEBYTE:
|
|
dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
|
|
break;
|
|
case TWOBYTE:
|
|
dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
|
|
break;
|
|
case THREEBYTE_38:
|
|
dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
|
|
break;
|
|
case THREEBYTE_3A:
|
|
dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
|
|
break;
|
|
case XOP8_MAP:
|
|
dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
|
|
break;
|
|
case XOP9_MAP:
|
|
dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
|
|
break;
|
|
case XOPA_MAP:
|
|
dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
|
|
break;
|
|
case THREEDNOW_MAP:
|
|
dec =
|
|
&THREEDNOW_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
|
|
break;
|
|
}
|
|
|
|
switch (dec->modrm_type) {
|
|
default:
|
|
llvm_unreachable("Corrupt table! Unknown modrm_type");
|
|
return 0;
|
|
case MODRM_ONEENTRY:
|
|
return modRMTable[dec->instructionIDs];
|
|
case MODRM_SPLITRM:
|
|
if (modFromModRM(modRM) == 0x3)
|
|
return modRMTable[dec->instructionIDs + 1];
|
|
return modRMTable[dec->instructionIDs];
|
|
case MODRM_SPLITREG:
|
|
if (modFromModRM(modRM) == 0x3)
|
|
return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3) + 8];
|
|
return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
|
|
case MODRM_SPLITMISC:
|
|
if (modFromModRM(modRM) == 0x3)
|
|
return modRMTable[dec->instructionIDs + (modRM & 0x3f) + 8];
|
|
return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
|
|
case MODRM_FULL:
|
|
return modRMTable[dec->instructionIDs + modRM];
|
|
}
|
|
}
|
|
|
|
static bool peek(struct InternalInstruction *insn, uint8_t &byte) {
|
|
uint64_t offset = insn->readerCursor - insn->startLocation;
|
|
if (offset >= insn->bytes.size())
|
|
return true;
|
|
byte = insn->bytes[offset];
|
|
return false;
|
|
}
|
|
|
|
template <typename T> static bool consume(InternalInstruction *insn, T &ptr) {
|
|
auto r = insn->bytes;
|
|
uint64_t offset = insn->readerCursor - insn->startLocation;
|
|
if (offset + sizeof(T) > r.size())
|
|
return true;
|
|
T ret = 0;
|
|
for (unsigned i = 0; i < sizeof(T); ++i)
|
|
ret |= (uint64_t)r[offset + i] << (i * 8);
|
|
ptr = ret;
|
|
insn->readerCursor += sizeof(T);
|
|
return false;
|
|
}
|
|
|
|
static bool isREX(struct InternalInstruction *insn, uint8_t prefix) {
|
|
return insn->mode == MODE_64BIT && prefix >= 0x40 && prefix <= 0x4f;
|
|
}
|
|
|
|
// Consumes all of an instruction's prefix bytes, and marks the
|
|
// instruction as having them. Also sets the instruction's default operand,
|
|
// address, and other relevant data sizes to report operands correctly.
|
|
//
|
|
// insn must not be empty.
|
|
static int readPrefixes(struct InternalInstruction *insn) {
|
|
bool isPrefix = true;
|
|
uint8_t byte = 0;
|
|
uint8_t nextByte;
|
|
|
|
LLVM_DEBUG(dbgs() << "readPrefixes()");
|
|
|
|
while (isPrefix) {
|
|
// If we fail reading prefixes, just stop here and let the opcode reader
|
|
// deal with it.
|
|
if (consume(insn, byte))
|
|
break;
|
|
|
|
// If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
|
|
// break and let it be disassembled as a normal "instruction".
|
|
if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0) // LOCK
|
|
break;
|
|
|
|
if ((byte == 0xf2 || byte == 0xf3) && !peek(insn, nextByte)) {
|
|
// If the byte is 0xf2 or 0xf3, and any of the following conditions are
|
|
// met:
|
|
// - it is followed by a LOCK (0xf0) prefix
|
|
// - it is followed by an xchg instruction
|
|
// then it should be disassembled as a xacquire/xrelease not repne/rep.
|
|
if (((nextByte == 0xf0) ||
|
|
((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) {
|
|
insn->xAcquireRelease = true;
|
|
if (!(byte == 0xf3 && nextByte == 0x90)) // PAUSE instruction support
|
|
break;
|
|
}
|
|
// Also if the byte is 0xf3, and the following condition is met:
|
|
// - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
|
|
// "mov mem, imm" (opcode 0xc6/0xc7) instructions.
|
|
// then it should be disassembled as an xrelease not rep.
|
|
if (byte == 0xf3 && (nextByte == 0x88 || nextByte == 0x89 ||
|
|
nextByte == 0xc6 || nextByte == 0xc7)) {
|
|
insn->xAcquireRelease = true;
|
|
break;
|
|
}
|
|
if (isREX(insn, nextByte)) {
|
|
uint8_t nnextByte;
|
|
// Go to REX prefix after the current one
|
|
if (consume(insn, nnextByte))
|
|
return -1;
|
|
// We should be able to read next byte after REX prefix
|
|
if (peek(insn, nnextByte))
|
|
return -1;
|
|
--insn->readerCursor;
|
|
}
|
|
}
|
|
|
|
switch (byte) {
|
|
case 0xf0: // LOCK
|
|
insn->hasLockPrefix = true;
|
|
break;
|
|
case 0xf2: // REPNE/REPNZ
|
|
case 0xf3: { // REP or REPE/REPZ
|
|
uint8_t nextByte;
|
|
if (peek(insn, nextByte))
|
|
break;
|
|
// TODO:
|
|
// 1. There could be several 0x66
|
|
// 2. if (nextByte == 0x66) and nextNextByte != 0x0f then
|
|
// it's not mandatory prefix
|
|
// 3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need
|
|
// 0x0f exactly after it to be mandatory prefix
|
|
if (isREX(insn, nextByte) || nextByte == 0x0f || nextByte == 0x66)
|
|
// The last of 0xf2 /0xf3 is mandatory prefix
|
|
insn->mandatoryPrefix = byte;
|
|
insn->repeatPrefix = byte;
|
|
break;
|
|
}
|
|
case 0x2e: // CS segment override -OR- Branch not taken
|
|
insn->segmentOverride = SEG_OVERRIDE_CS;
|
|
break;
|
|
case 0x36: // SS segment override -OR- Branch taken
|
|
insn->segmentOverride = SEG_OVERRIDE_SS;
|
|
break;
|
|
case 0x3e: // DS segment override
|
|
insn->segmentOverride = SEG_OVERRIDE_DS;
|
|
break;
|
|
case 0x26: // ES segment override
|
|
insn->segmentOverride = SEG_OVERRIDE_ES;
|
|
break;
|
|
case 0x64: // FS segment override
|
|
insn->segmentOverride = SEG_OVERRIDE_FS;
|
|
break;
|
|
case 0x65: // GS segment override
|
|
insn->segmentOverride = SEG_OVERRIDE_GS;
|
|
break;
|
|
case 0x66: { // Operand-size override {
|
|
uint8_t nextByte;
|
|
insn->hasOpSize = true;
|
|
if (peek(insn, nextByte))
|
|
break;
|
|
// 0x66 can't overwrite existing mandatory prefix and should be ignored
|
|
if (!insn->mandatoryPrefix && (nextByte == 0x0f || isREX(insn, nextByte)))
|
|
insn->mandatoryPrefix = byte;
|
|
break;
|
|
}
|
|
case 0x67: // Address-size override
|
|
insn->hasAdSize = true;
|
|
break;
|
|
default: // Not a prefix byte
|
|
isPrefix = false;
|
|
break;
|
|
}
|
|
|
|
if (isPrefix)
|
|
LLVM_DEBUG(dbgs() << format("Found prefix 0x%hhx", byte));
|
|
}
|
|
|
|
insn->vectorExtensionType = TYPE_NO_VEX_XOP;
|
|
|
|
if (byte == 0x62) {
|
|
uint8_t byte1, byte2;
|
|
if (consume(insn, byte1)) {
|
|
LLVM_DEBUG(dbgs() << "Couldn't read second byte of EVEX prefix");
|
|
return -1;
|
|
}
|
|
|
|
if (peek(insn, byte2)) {
|
|
LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
|
|
return -1;
|
|
}
|
|
|
|
if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) &&
|
|
((~byte1 & 0xc) == 0xc) && ((byte2 & 0x4) == 0x4)) {
|
|
insn->vectorExtensionType = TYPE_EVEX;
|
|
} else {
|
|
--insn->readerCursor; // unconsume byte1
|
|
--insn->readerCursor; // unconsume byte
|
|
}
|
|
|
|
if (insn->vectorExtensionType == TYPE_EVEX) {
|
|
insn->vectorExtensionPrefix[0] = byte;
|
|
insn->vectorExtensionPrefix[1] = byte1;
|
|
if (consume(insn, insn->vectorExtensionPrefix[2])) {
|
|
LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
|
|
return -1;
|
|
}
|
|
if (consume(insn, insn->vectorExtensionPrefix[3])) {
|
|
LLVM_DEBUG(dbgs() << "Couldn't read fourth byte of EVEX prefix");
|
|
return -1;
|
|
}
|
|
|
|
// We simulate the REX prefix for simplicity's sake
|
|
if (insn->mode == MODE_64BIT) {
|
|
insn->rexPrefix = 0x40 |
|
|
(wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3) |
|
|
(rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2) |
|
|
(xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1) |
|
|
(bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
|
|
}
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << format(
|
|
"Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
|
|
insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
|
|
insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]));
|
|
}
|
|
} else if (byte == 0xc4) {
|
|
uint8_t byte1;
|
|
if (peek(insn, byte1)) {
|
|
LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
|
|
return -1;
|
|
}
|
|
|
|
if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
|
|
insn->vectorExtensionType = TYPE_VEX_3B;
|
|
else
|
|
--insn->readerCursor;
|
|
|
|
if (insn->vectorExtensionType == TYPE_VEX_3B) {
|
|
insn->vectorExtensionPrefix[0] = byte;
|
|
consume(insn, insn->vectorExtensionPrefix[1]);
|
|
consume(insn, insn->vectorExtensionPrefix[2]);
|
|
|
|
// We simulate the REX prefix for simplicity's sake
|
|
|
|
if (insn->mode == MODE_64BIT)
|
|
insn->rexPrefix = 0x40 |
|
|
(wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3) |
|
|
(rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2) |
|
|
(xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1) |
|
|
(bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);
|
|
|
|
LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
|
|
insn->vectorExtensionPrefix[0],
|
|
insn->vectorExtensionPrefix[1],
|
|
insn->vectorExtensionPrefix[2]));
|
|
}
|
|
} else if (byte == 0xc5) {
|
|
uint8_t byte1;
|
|
if (peek(insn, byte1)) {
|
|
LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
|
|
return -1;
|
|
}
|
|
|
|
if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
|
|
insn->vectorExtensionType = TYPE_VEX_2B;
|
|
else
|
|
--insn->readerCursor;
|
|
|
|
if (insn->vectorExtensionType == TYPE_VEX_2B) {
|
|
insn->vectorExtensionPrefix[0] = byte;
|
|
consume(insn, insn->vectorExtensionPrefix[1]);
|
|
|
|
if (insn->mode == MODE_64BIT)
|
|
insn->rexPrefix =
|
|
0x40 | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);
|
|
|
|
switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
|
|
default:
|
|
break;
|
|
case VEX_PREFIX_66:
|
|
insn->hasOpSize = true;
|
|
break;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx",
|
|
insn->vectorExtensionPrefix[0],
|
|
insn->vectorExtensionPrefix[1]));
|
|
}
|
|
} else if (byte == 0x8f) {
|
|
uint8_t byte1;
|
|
if (peek(insn, byte1)) {
|
|
LLVM_DEBUG(dbgs() << "Couldn't read second byte of XOP");
|
|
return -1;
|
|
}
|
|
|
|
if ((byte1 & 0x38) != 0x0) // 0 in these 3 bits is a POP instruction.
|
|
insn->vectorExtensionType = TYPE_XOP;
|
|
else
|
|
--insn->readerCursor;
|
|
|
|
if (insn->vectorExtensionType == TYPE_XOP) {
|
|
insn->vectorExtensionPrefix[0] = byte;
|
|
consume(insn, insn->vectorExtensionPrefix[1]);
|
|
consume(insn, insn->vectorExtensionPrefix[2]);
|
|
|
|
// We simulate the REX prefix for simplicity's sake
|
|
|
|
if (insn->mode == MODE_64BIT)
|
|
insn->rexPrefix = 0x40 |
|
|
(wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3) |
|
|
(rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2) |
|
|
(xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1) |
|
|
(bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);
|
|
|
|
switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
|
|
default:
|
|
break;
|
|
case VEX_PREFIX_66:
|
|
insn->hasOpSize = true;
|
|
break;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << format("Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
|
|
insn->vectorExtensionPrefix[0],
|
|
insn->vectorExtensionPrefix[1],
|
|
insn->vectorExtensionPrefix[2]));
|
|
}
|
|
} else if (isREX(insn, byte)) {
|
|
if (peek(insn, nextByte))
|
|
return -1;
|
|
insn->rexPrefix = byte;
|
|
LLVM_DEBUG(dbgs() << format("Found REX prefix 0x%hhx", byte));
|
|
} else
|
|
--insn->readerCursor;
|
|
|
|
if (insn->mode == MODE_16BIT) {
|
|
insn->registerSize = (insn->hasOpSize ? 4 : 2);
|
|
insn->addressSize = (insn->hasAdSize ? 4 : 2);
|
|
insn->displacementSize = (insn->hasAdSize ? 4 : 2);
|
|
insn->immediateSize = (insn->hasOpSize ? 4 : 2);
|
|
} else if (insn->mode == MODE_32BIT) {
|
|
insn->registerSize = (insn->hasOpSize ? 2 : 4);
|
|
insn->addressSize = (insn->hasAdSize ? 2 : 4);
|
|
insn->displacementSize = (insn->hasAdSize ? 2 : 4);
|
|
insn->immediateSize = (insn->hasOpSize ? 2 : 4);
|
|
} else if (insn->mode == MODE_64BIT) {
|
|
if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
|
|
insn->registerSize = 8;
|
|
insn->addressSize = (insn->hasAdSize ? 4 : 8);
|
|
insn->displacementSize = 4;
|
|
insn->immediateSize = 4;
|
|
insn->hasOpSize = false;
|
|
} else {
|
|
insn->registerSize = (insn->hasOpSize ? 2 : 4);
|
|
insn->addressSize = (insn->hasAdSize ? 4 : 8);
|
|
insn->displacementSize = (insn->hasOpSize ? 2 : 4);
|
|
insn->immediateSize = (insn->hasOpSize ? 2 : 4);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// Consumes the SIB byte to determine addressing information.
|
|
static int readSIB(struct InternalInstruction *insn) {
|
|
SIBBase sibBaseBase = SIB_BASE_NONE;
|
|
uint8_t index, base;
|
|
|
|
LLVM_DEBUG(dbgs() << "readSIB()");
|
|
switch (insn->addressSize) {
|
|
case 2:
|
|
default:
|
|
llvm_unreachable("SIB-based addressing doesn't work in 16-bit mode");
|
|
case 4:
|
|
insn->sibIndexBase = SIB_INDEX_EAX;
|
|
sibBaseBase = SIB_BASE_EAX;
|
|
break;
|
|
case 8:
|
|
insn->sibIndexBase = SIB_INDEX_RAX;
|
|
sibBaseBase = SIB_BASE_RAX;
|
|
break;
|
|
}
|
|
|
|
if (consume(insn, insn->sib))
|
|
return -1;
|
|
|
|
index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
|
|
|
|
if (index == 0x4) {
|
|
insn->sibIndex = SIB_INDEX_NONE;
|
|
} else {
|
|
insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index);
|
|
}
|
|
|
|
insn->sibScale = 1 << scaleFromSIB(insn->sib);
|
|
|
|
base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
|
|
|
|
switch (base) {
|
|
case 0x5:
|
|
case 0xd:
|
|
switch (modFromModRM(insn->modRM)) {
|
|
case 0x0:
|
|
insn->eaDisplacement = EA_DISP_32;
|
|
insn->sibBase = SIB_BASE_NONE;
|
|
break;
|
|
case 0x1:
|
|
insn->eaDisplacement = EA_DISP_8;
|
|
insn->sibBase = (SIBBase)(sibBaseBase + base);
|
|
break;
|
|
case 0x2:
|
|
insn->eaDisplacement = EA_DISP_32;
|
|
insn->sibBase = (SIBBase)(sibBaseBase + base);
|
|
break;
|
|
default:
|
|
llvm_unreachable("Cannot have Mod = 0b11 and a SIB byte");
|
|
}
|
|
break;
|
|
default:
|
|
insn->sibBase = (SIBBase)(sibBaseBase + base);
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int readDisplacement(struct InternalInstruction *insn) {
|
|
int8_t d8;
|
|
int16_t d16;
|
|
int32_t d32;
|
|
LLVM_DEBUG(dbgs() << "readDisplacement()");
|
|
|
|
insn->displacementOffset = insn->readerCursor - insn->startLocation;
|
|
switch (insn->eaDisplacement) {
|
|
case EA_DISP_NONE:
|
|
break;
|
|
case EA_DISP_8:
|
|
if (consume(insn, d8))
|
|
return -1;
|
|
insn->displacement = d8;
|
|
break;
|
|
case EA_DISP_16:
|
|
if (consume(insn, d16))
|
|
return -1;
|
|
insn->displacement = d16;
|
|
break;
|
|
case EA_DISP_32:
|
|
if (consume(insn, d32))
|
|
return -1;
|
|
insn->displacement = d32;
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// Consumes all addressing information (ModR/M byte, SIB byte, and displacement.
|
|
static int readModRM(struct InternalInstruction *insn) {
|
|
uint8_t mod, rm, reg, evexrm;
|
|
LLVM_DEBUG(dbgs() << "readModRM()");
|
|
|
|
if (insn->consumedModRM)
|
|
return 0;
|
|
|
|
if (consume(insn, insn->modRM))
|
|
return -1;
|
|
insn->consumedModRM = true;
|
|
|
|
mod = modFromModRM(insn->modRM);
|
|
rm = rmFromModRM(insn->modRM);
|
|
reg = regFromModRM(insn->modRM);
|
|
|
|
// This goes by insn->registerSize to pick the correct register, which messes
|
|
// up if we're using (say) XMM or 8-bit register operands. That gets fixed in
|
|
// fixupReg().
|
|
switch (insn->registerSize) {
|
|
case 2:
|
|
insn->regBase = MODRM_REG_AX;
|
|
insn->eaRegBase = EA_REG_AX;
|
|
break;
|
|
case 4:
|
|
insn->regBase = MODRM_REG_EAX;
|
|
insn->eaRegBase = EA_REG_EAX;
|
|
break;
|
|
case 8:
|
|
insn->regBase = MODRM_REG_RAX;
|
|
insn->eaRegBase = EA_REG_RAX;
|
|
break;
|
|
}
|
|
|
|
reg |= rFromREX(insn->rexPrefix) << 3;
|
|
rm |= bFromREX(insn->rexPrefix) << 3;
|
|
|
|
evexrm = 0;
|
|
if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT) {
|
|
reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
|
|
evexrm = xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
|
|
}
|
|
|
|
insn->reg = (Reg)(insn->regBase + reg);
|
|
|
|
switch (insn->addressSize) {
|
|
case 2: {
|
|
EABase eaBaseBase = EA_BASE_BX_SI;
|
|
|
|
switch (mod) {
|
|
case 0x0:
|
|
if (rm == 0x6) {
|
|
insn->eaBase = EA_BASE_NONE;
|
|
insn->eaDisplacement = EA_DISP_16;
|
|
if (readDisplacement(insn))
|
|
return -1;
|
|
} else {
|
|
insn->eaBase = (EABase)(eaBaseBase + rm);
|
|
insn->eaDisplacement = EA_DISP_NONE;
|
|
}
|
|
break;
|
|
case 0x1:
|
|
insn->eaBase = (EABase)(eaBaseBase + rm);
|
|
insn->eaDisplacement = EA_DISP_8;
|
|
insn->displacementSize = 1;
|
|
if (readDisplacement(insn))
|
|
return -1;
|
|
break;
|
|
case 0x2:
|
|
insn->eaBase = (EABase)(eaBaseBase + rm);
|
|
insn->eaDisplacement = EA_DISP_16;
|
|
if (readDisplacement(insn))
|
|
return -1;
|
|
break;
|
|
case 0x3:
|
|
insn->eaBase = (EABase)(insn->eaRegBase + rm);
|
|
if (readDisplacement(insn))
|
|
return -1;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case 4:
|
|
case 8: {
|
|
EABase eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
|
|
|
|
switch (mod) {
|
|
case 0x0:
|
|
insn->eaDisplacement = EA_DISP_NONE; // readSIB may override this
|
|
// In determining whether RIP-relative mode is used (rm=5),
|
|
// or whether a SIB byte is present (rm=4),
|
|
// the extension bits (REX.b and EVEX.x) are ignored.
|
|
switch (rm & 7) {
|
|
case 0x4: // SIB byte is present
|
|
insn->eaBase = (insn->addressSize == 4 ? EA_BASE_sib : EA_BASE_sib64);
|
|
if (readSIB(insn) || readDisplacement(insn))
|
|
return -1;
|
|
break;
|
|
case 0x5: // RIP-relative
|
|
insn->eaBase = EA_BASE_NONE;
|
|
insn->eaDisplacement = EA_DISP_32;
|
|
if (readDisplacement(insn))
|
|
return -1;
|
|
break;
|
|
default:
|
|
insn->eaBase = (EABase)(eaBaseBase + rm);
|
|
break;
|
|
}
|
|
break;
|
|
case 0x1:
|
|
insn->displacementSize = 1;
|
|
LLVM_FALLTHROUGH;
|
|
case 0x2:
|
|
insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
|
|
switch (rm & 7) {
|
|
case 0x4: // SIB byte is present
|
|
insn->eaBase = EA_BASE_sib;
|
|
if (readSIB(insn) || readDisplacement(insn))
|
|
return -1;
|
|
break;
|
|
default:
|
|
insn->eaBase = (EABase)(eaBaseBase + rm);
|
|
if (readDisplacement(insn))
|
|
return -1;
|
|
break;
|
|
}
|
|
break;
|
|
case 0x3:
|
|
insn->eaDisplacement = EA_DISP_NONE;
|
|
insn->eaBase = (EABase)(insn->eaRegBase + rm + evexrm);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
} // switch (insn->addressSize)
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define GENERIC_FIXUP_FUNC(name, base, prefix, mask) \
|
|
static uint16_t name(struct InternalInstruction *insn, OperandType type, \
|
|
uint8_t index, uint8_t *valid) { \
|
|
*valid = 1; \
|
|
switch (type) { \
|
|
default: \
|
|
debug("Unhandled register type"); \
|
|
*valid = 0; \
|
|
return 0; \
|
|
case TYPE_Rv: \
|
|
return base + index; \
|
|
case TYPE_R8: \
|
|
index &= mask; \
|
|
if (index > 0xf) \
|
|
*valid = 0; \
|
|
if (insn->rexPrefix && index >= 4 && index <= 7) { \
|
|
return prefix##_SPL + (index - 4); \
|
|
} else { \
|
|
return prefix##_AL + index; \
|
|
} \
|
|
case TYPE_R16: \
|
|
index &= mask; \
|
|
if (index > 0xf) \
|
|
*valid = 0; \
|
|
return prefix##_AX + index; \
|
|
case TYPE_R32: \
|
|
index &= mask; \
|
|
if (index > 0xf) \
|
|
*valid = 0; \
|
|
return prefix##_EAX + index; \
|
|
case TYPE_R64: \
|
|
index &= mask; \
|
|
if (index > 0xf) \
|
|
*valid = 0; \
|
|
return prefix##_RAX + index; \
|
|
case TYPE_ZMM: \
|
|
return prefix##_ZMM0 + index; \
|
|
case TYPE_YMM: \
|
|
return prefix##_YMM0 + index; \
|
|
case TYPE_XMM: \
|
|
return prefix##_XMM0 + index; \
|
|
case TYPE_TMM: \
|
|
if (index > 7) \
|
|
*valid = 0; \
|
|
return prefix##_TMM0 + index; \
|
|
case TYPE_VK: \
|
|
index &= 0xf; \
|
|
if (index > 7) \
|
|
*valid = 0; \
|
|
return prefix##_K0 + index; \
|
|
case TYPE_VK_PAIR: \
|
|
if (index > 7) \
|
|
*valid = 0; \
|
|
return prefix##_K0_K1 + (index / 2); \
|
|
case TYPE_MM64: \
|
|
return prefix##_MM0 + (index & 0x7); \
|
|
case TYPE_SEGMENTREG: \
|
|
if ((index & 7) > 5) \
|
|
*valid = 0; \
|
|
return prefix##_ES + (index & 7); \
|
|
case TYPE_DEBUGREG: \
|
|
return prefix##_DR0 + index; \
|
|
case TYPE_CONTROLREG: \
|
|
return prefix##_CR0 + index; \
|
|
case TYPE_BNDR: \
|
|
if (index > 3) \
|
|
*valid = 0; \
|
|
return prefix##_BND0 + index; \
|
|
case TYPE_MVSIBX: \
|
|
return prefix##_XMM0 + index; \
|
|
case TYPE_MVSIBY: \
|
|
return prefix##_YMM0 + index; \
|
|
case TYPE_MVSIBZ: \
|
|
return prefix##_ZMM0 + index; \
|
|
} \
|
|
}
|
|
|
|
// Consult an operand type to determine the meaning of the reg or R/M field. If
|
|
// the operand is an XMM operand, for example, an operand would be XMM0 instead
|
|
// of AX, which readModRM() would otherwise misinterpret it as.
|
|
//
|
|
// @param insn - The instruction containing the operand.
|
|
// @param type - The operand type.
|
|
// @param index - The existing value of the field as reported by readModRM().
|
|
// @param valid - The address of a uint8_t. The target is set to 1 if the
|
|
// field is valid for the register class; 0 if not.
|
|
// @return - The proper value.
|
|
GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG, 0x1f)
|
|
GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG, 0xf)
|
|
|
|
// Consult an operand specifier to determine which of the fixup*Value functions
|
|
// to use in correcting readModRM()'ss interpretation.
|
|
//
|
|
// @param insn - See fixup*Value().
|
|
// @param op - The operand specifier.
|
|
// @return - 0 if fixup was successful; -1 if the register returned was
|
|
// invalid for its class.
|
|
static int fixupReg(struct InternalInstruction *insn,
|
|
const struct OperandSpecifier *op) {
|
|
uint8_t valid;
|
|
LLVM_DEBUG(dbgs() << "fixupReg()");
|
|
|
|
switch ((OperandEncoding)op->encoding) {
|
|
default:
|
|
debug("Expected a REG or R/M encoding in fixupReg");
|
|
return -1;
|
|
case ENCODING_VVVV:
|
|
insn->vvvv =
|
|
(Reg)fixupRegValue(insn, (OperandType)op->type, insn->vvvv, &valid);
|
|
if (!valid)
|
|
return -1;
|
|
break;
|
|
case ENCODING_REG:
|
|
insn->reg = (Reg)fixupRegValue(insn, (OperandType)op->type,
|
|
insn->reg - insn->regBase, &valid);
|
|
if (!valid)
|
|
return -1;
|
|
break;
|
|
case ENCODING_SIB:
|
|
CASE_ENCODING_RM:
|
|
if (insn->eaBase >= insn->eaRegBase) {
|
|
insn->eaBase = (EABase)fixupRMValue(
|
|
insn, (OperandType)op->type, insn->eaBase - insn->eaRegBase, &valid);
|
|
if (!valid)
|
|
return -1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// Read the opcode (except the ModR/M byte in the case of extended or escape
|
|
// opcodes).
|
|
static bool readOpcode(struct InternalInstruction *insn) {
|
|
uint8_t current;
|
|
LLVM_DEBUG(dbgs() << "readOpcode()");
|
|
|
|
insn->opcodeType = ONEBYTE;
|
|
if (insn->vectorExtensionType == TYPE_EVEX) {
|
|
switch (mmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
|
|
default:
|
|
LLVM_DEBUG(
|
|
dbgs() << format("Unhandled mm field for instruction (0x%hhx)",
|
|
mmFromEVEX2of4(insn->vectorExtensionPrefix[1])));
|
|
return true;
|
|
case VEX_LOB_0F:
|
|
insn->opcodeType = TWOBYTE;
|
|
return consume(insn, insn->opcode);
|
|
case VEX_LOB_0F38:
|
|
insn->opcodeType = THREEBYTE_38;
|
|
return consume(insn, insn->opcode);
|
|
case VEX_LOB_0F3A:
|
|
insn->opcodeType = THREEBYTE_3A;
|
|
return consume(insn, insn->opcode);
|
|
}
|
|
} else if (insn->vectorExtensionType == TYPE_VEX_3B) {
|
|
switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
|
|
default:
|
|
LLVM_DEBUG(
|
|
dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
|
|
mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
|
|
return true;
|
|
case VEX_LOB_0F:
|
|
insn->opcodeType = TWOBYTE;
|
|
return consume(insn, insn->opcode);
|
|
case VEX_LOB_0F38:
|
|
insn->opcodeType = THREEBYTE_38;
|
|
return consume(insn, insn->opcode);
|
|
case VEX_LOB_0F3A:
|
|
insn->opcodeType = THREEBYTE_3A;
|
|
return consume(insn, insn->opcode);
|
|
}
|
|
} else if (insn->vectorExtensionType == TYPE_VEX_2B) {
|
|
insn->opcodeType = TWOBYTE;
|
|
return consume(insn, insn->opcode);
|
|
} else if (insn->vectorExtensionType == TYPE_XOP) {
|
|
switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
|
|
default:
|
|
LLVM_DEBUG(
|
|
dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
|
|
mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
|
|
return true;
|
|
case XOP_MAP_SELECT_8:
|
|
insn->opcodeType = XOP8_MAP;
|
|
return consume(insn, insn->opcode);
|
|
case XOP_MAP_SELECT_9:
|
|
insn->opcodeType = XOP9_MAP;
|
|
return consume(insn, insn->opcode);
|
|
case XOP_MAP_SELECT_A:
|
|
insn->opcodeType = XOPA_MAP;
|
|
return consume(insn, insn->opcode);
|
|
}
|
|
}
|
|
|
|
if (consume(insn, current))
|
|
return true;
|
|
|
|
if (current == 0x0f) {
|
|
LLVM_DEBUG(
|
|
dbgs() << format("Found a two-byte escape prefix (0x%hhx)", current));
|
|
if (consume(insn, current))
|
|
return true;
|
|
|
|
if (current == 0x38) {
|
|
LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
|
|
current));
|
|
if (consume(insn, current))
|
|
return true;
|
|
|
|
insn->opcodeType = THREEBYTE_38;
|
|
} else if (current == 0x3a) {
|
|
LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
|
|
current));
|
|
if (consume(insn, current))
|
|
return true;
|
|
|
|
insn->opcodeType = THREEBYTE_3A;
|
|
} else if (current == 0x0f) {
|
|
LLVM_DEBUG(
|
|
dbgs() << format("Found a 3dnow escape prefix (0x%hhx)", current));
|
|
|
|
// Consume operands before the opcode to comply with the 3DNow encoding
|
|
if (readModRM(insn))
|
|
return true;
|
|
|
|
if (consume(insn, current))
|
|
return true;
|
|
|
|
insn->opcodeType = THREEDNOW_MAP;
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "Didn't find a three-byte escape prefix");
|
|
insn->opcodeType = TWOBYTE;
|
|
}
|
|
} else if (insn->mandatoryPrefix)
|
|
// The opcode with mandatory prefix must start with opcode escape.
|
|
// If not it's legacy repeat prefix
|
|
insn->mandatoryPrefix = 0;
|
|
|
|
// At this point we have consumed the full opcode.
|
|
// Anything we consume from here on must be unconsumed.
|
|
insn->opcode = current;
|
|
|
|
return false;
|
|
}
|
|
|
|
// Determine whether equiv is the 16-bit equivalent of orig (32-bit or 64-bit).
|
|
static bool is16BitEquivalent(const char *orig, const char *equiv) {
|
|
for (int i = 0;; i++) {
|
|
if (orig[i] == '\0' && equiv[i] == '\0')
|
|
return true;
|
|
if (orig[i] == '\0' || equiv[i] == '\0')
|
|
return false;
|
|
if (orig[i] != equiv[i]) {
|
|
if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
|
|
continue;
|
|
if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
|
|
continue;
|
|
if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
|
|
continue;
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Determine whether this instruction is a 64-bit instruction.
|
|
static bool is64Bit(const char *name) {
|
|
for (int i = 0;; ++i) {
|
|
if (name[i] == '\0')
|
|
return false;
|
|
if (name[i] == '6' && name[i + 1] == '4')
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Determine the ID of an instruction, consuming the ModR/M byte as appropriate
|
|
// for extended and escape opcodes, and using a supplied attribute mask.
|
|
static int getInstructionIDWithAttrMask(uint16_t *instructionID,
|
|
struct InternalInstruction *insn,
|
|
uint16_t attrMask) {
|
|
auto insnCtx = InstructionContext(x86DisassemblerContexts[attrMask]);
|
|
const ContextDecision *decision;
|
|
switch (insn->opcodeType) {
|
|
case ONEBYTE:
|
|
decision = &ONEBYTE_SYM;
|
|
break;
|
|
case TWOBYTE:
|
|
decision = &TWOBYTE_SYM;
|
|
break;
|
|
case THREEBYTE_38:
|
|
decision = &THREEBYTE38_SYM;
|
|
break;
|
|
case THREEBYTE_3A:
|
|
decision = &THREEBYTE3A_SYM;
|
|
break;
|
|
case XOP8_MAP:
|
|
decision = &XOP8_MAP_SYM;
|
|
break;
|
|
case XOP9_MAP:
|
|
decision = &XOP9_MAP_SYM;
|
|
break;
|
|
case XOPA_MAP:
|
|
decision = &XOPA_MAP_SYM;
|
|
break;
|
|
case THREEDNOW_MAP:
|
|
decision = &THREEDNOW_MAP_SYM;
|
|
break;
|
|
}
|
|
|
|
if (decision->opcodeDecisions[insnCtx]
|
|
.modRMDecisions[insn->opcode]
|
|
.modrm_type != MODRM_ONEENTRY) {
|
|
if (readModRM(insn))
|
|
return -1;
|
|
*instructionID =
|
|
decode(insn->opcodeType, insnCtx, insn->opcode, insn->modRM);
|
|
} else {
|
|
*instructionID = decode(insn->opcodeType, insnCtx, insn->opcode, 0);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// Determine the ID of an instruction, consuming the ModR/M byte as appropriate
|
|
// for extended and escape opcodes. Determines the attributes and context for
|
|
// the instruction before doing so.
|
|
static int getInstructionID(struct InternalInstruction *insn,
|
|
const MCInstrInfo *mii) {
|
|
uint16_t attrMask;
|
|
uint16_t instructionID;
|
|
|
|
LLVM_DEBUG(dbgs() << "getID()");
|
|
|
|
attrMask = ATTR_NONE;
|
|
|
|
if (insn->mode == MODE_64BIT)
|
|
attrMask |= ATTR_64BIT;
|
|
|
|
if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
|
|
attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;
|
|
|
|
if (insn->vectorExtensionType == TYPE_EVEX) {
|
|
switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
|
|
case VEX_PREFIX_66:
|
|
attrMask |= ATTR_OPSIZE;
|
|
break;
|
|
case VEX_PREFIX_F3:
|
|
attrMask |= ATTR_XS;
|
|
break;
|
|
case VEX_PREFIX_F2:
|
|
attrMask |= ATTR_XD;
|
|
break;
|
|
}
|
|
|
|
if (zFromEVEX4of4(insn->vectorExtensionPrefix[3]))
|
|
attrMask |= ATTR_EVEXKZ;
|
|
if (bFromEVEX4of4(insn->vectorExtensionPrefix[3]))
|
|
attrMask |= ATTR_EVEXB;
|
|
if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]))
|
|
attrMask |= ATTR_EVEXK;
|
|
if (lFromEVEX4of4(insn->vectorExtensionPrefix[3]))
|
|
attrMask |= ATTR_VEXL;
|
|
if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
|
|
attrMask |= ATTR_EVEXL2;
|
|
} else if (insn->vectorExtensionType == TYPE_VEX_3B) {
|
|
switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
|
|
case VEX_PREFIX_66:
|
|
attrMask |= ATTR_OPSIZE;
|
|
break;
|
|
case VEX_PREFIX_F3:
|
|
attrMask |= ATTR_XS;
|
|
break;
|
|
case VEX_PREFIX_F2:
|
|
attrMask |= ATTR_XD;
|
|
break;
|
|
}
|
|
|
|
if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
|
|
attrMask |= ATTR_VEXL;
|
|
} else if (insn->vectorExtensionType == TYPE_VEX_2B) {
|
|
switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
|
|
case VEX_PREFIX_66:
|
|
attrMask |= ATTR_OPSIZE;
|
|
break;
|
|
case VEX_PREFIX_F3:
|
|
attrMask |= ATTR_XS;
|
|
break;
|
|
case VEX_PREFIX_F2:
|
|
attrMask |= ATTR_XD;
|
|
break;
|
|
}
|
|
|
|
if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
|
|
attrMask |= ATTR_VEXL;
|
|
} else if (insn->vectorExtensionType == TYPE_XOP) {
|
|
switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
|
|
case VEX_PREFIX_66:
|
|
attrMask |= ATTR_OPSIZE;
|
|
break;
|
|
case VEX_PREFIX_F3:
|
|
attrMask |= ATTR_XS;
|
|
break;
|
|
case VEX_PREFIX_F2:
|
|
attrMask |= ATTR_XD;
|
|
break;
|
|
}
|
|
|
|
if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
|
|
attrMask |= ATTR_VEXL;
|
|
} else {
|
|
return -1;
|
|
}
|
|
} else if (!insn->mandatoryPrefix) {
|
|
// If we don't have mandatory prefix we should use legacy prefixes here
|
|
if (insn->hasOpSize && (insn->mode != MODE_16BIT))
|
|
attrMask |= ATTR_OPSIZE;
|
|
if (insn->hasAdSize)
|
|
attrMask |= ATTR_ADSIZE;
|
|
if (insn->opcodeType == ONEBYTE) {
|
|
if (insn->repeatPrefix == 0xf3 && (insn->opcode == 0x90))
|
|
// Special support for PAUSE
|
|
attrMask |= ATTR_XS;
|
|
} else {
|
|
if (insn->repeatPrefix == 0xf2)
|
|
attrMask |= ATTR_XD;
|
|
else if (insn->repeatPrefix == 0xf3)
|
|
attrMask |= ATTR_XS;
|
|
}
|
|
} else {
|
|
switch (insn->mandatoryPrefix) {
|
|
case 0xf2:
|
|
attrMask |= ATTR_XD;
|
|
break;
|
|
case 0xf3:
|
|
attrMask |= ATTR_XS;
|
|
break;
|
|
case 0x66:
|
|
if (insn->mode != MODE_16BIT)
|
|
attrMask |= ATTR_OPSIZE;
|
|
break;
|
|
case 0x67:
|
|
attrMask |= ATTR_ADSIZE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (insn->rexPrefix & 0x08) {
|
|
attrMask |= ATTR_REXW;
|
|
attrMask &= ~ATTR_ADSIZE;
|
|
}
|
|
|
|
if (insn->mode == MODE_16BIT) {
|
|
// JCXZ/JECXZ need special handling for 16-bit mode because the meaning
|
|
// of the AdSize prefix is inverted w.r.t. 32-bit mode.
|
|
if (insn->opcodeType == ONEBYTE && insn->opcode == 0xE3)
|
|
attrMask ^= ATTR_ADSIZE;
|
|
// If we're in 16-bit mode and this is one of the relative jumps and opsize
|
|
// prefix isn't present, we need to force the opsize attribute since the
|
|
// prefix is inverted relative to 32-bit mode.
|
|
if (!insn->hasOpSize && insn->opcodeType == ONEBYTE &&
|
|
(insn->opcode == 0xE8 || insn->opcode == 0xE9))
|
|
attrMask |= ATTR_OPSIZE;
|
|
|
|
if (!insn->hasOpSize && insn->opcodeType == TWOBYTE &&
|
|
insn->opcode >= 0x80 && insn->opcode <= 0x8F)
|
|
attrMask |= ATTR_OPSIZE;
|
|
}
|
|
|
|
|
|
if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
|
|
return -1;
|
|
|
|
// The following clauses compensate for limitations of the tables.
|
|
|
|
if (insn->mode != MODE_64BIT &&
|
|
insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
|
|
// The tables can't distinquish between cases where the W-bit is used to
|
|
// select register size and cases where its a required part of the opcode.
|
|
if ((insn->vectorExtensionType == TYPE_EVEX &&
|
|
wFromEVEX3of4(insn->vectorExtensionPrefix[2])) ||
|
|
(insn->vectorExtensionType == TYPE_VEX_3B &&
|
|
wFromVEX3of3(insn->vectorExtensionPrefix[2])) ||
|
|
(insn->vectorExtensionType == TYPE_XOP &&
|
|
wFromXOP3of3(insn->vectorExtensionPrefix[2]))) {
|
|
|
|
uint16_t instructionIDWithREXW;
|
|
if (getInstructionIDWithAttrMask(&instructionIDWithREXW, insn,
|
|
attrMask | ATTR_REXW)) {
|
|
insn->instructionID = instructionID;
|
|
insn->spec = &INSTRUCTIONS_SYM[instructionID];
|
|
return 0;
|
|
}
|
|
|
|
auto SpecName = mii->getName(instructionIDWithREXW);
|
|
// If not a 64-bit instruction. Switch the opcode.
|
|
if (!is64Bit(SpecName.data())) {
|
|
insn->instructionID = instructionIDWithREXW;
|
|
insn->spec = &INSTRUCTIONS_SYM[instructionIDWithREXW];
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Absolute moves, umonitor, and movdir64b need special handling.
|
|
// -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are
|
|
// inverted w.r.t.
|
|
// -For 32-bit mode we need to ensure the ADSIZE prefix is observed in
|
|
// any position.
|
|
if ((insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) ||
|
|
(insn->opcodeType == TWOBYTE && (insn->opcode == 0xAE)) ||
|
|
(insn->opcodeType == THREEBYTE_38 && insn->opcode == 0xF8)) {
|
|
// Make sure we observed the prefixes in any position.
|
|
if (insn->hasAdSize)
|
|
attrMask |= ATTR_ADSIZE;
|
|
if (insn->hasOpSize)
|
|
attrMask |= ATTR_OPSIZE;
|
|
|
|
// In 16-bit, invert the attributes.
|
|
if (insn->mode == MODE_16BIT) {
|
|
attrMask ^= ATTR_ADSIZE;
|
|
|
|
// The OpSize attribute is only valid with the absolute moves.
|
|
if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0))
|
|
attrMask ^= ATTR_OPSIZE;
|
|
}
|
|
|
|
if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
|
|
return -1;
|
|
|
|
insn->instructionID = instructionID;
|
|
insn->spec = &INSTRUCTIONS_SYM[instructionID];
|
|
return 0;
|
|
}
|
|
|
|
if ((insn->mode == MODE_16BIT || insn->hasOpSize) &&
|
|
!(attrMask & ATTR_OPSIZE)) {
|
|
// The instruction tables make no distinction between instructions that
|
|
// allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
|
|
// particular spot (i.e., many MMX operations). In general we're
|
|
// conservative, but in the specific case where OpSize is present but not in
|
|
// the right place we check if there's a 16-bit operation.
|
|
const struct InstructionSpecifier *spec;
|
|
uint16_t instructionIDWithOpsize;
|
|
llvm::StringRef specName, specWithOpSizeName;
|
|
|
|
spec = &INSTRUCTIONS_SYM[instructionID];
|
|
|
|
if (getInstructionIDWithAttrMask(&instructionIDWithOpsize, insn,
|
|
attrMask | ATTR_OPSIZE)) {
|
|
// ModRM required with OpSize but not present. Give up and return the
|
|
// version without OpSize set.
|
|
insn->instructionID = instructionID;
|
|
insn->spec = spec;
|
|
return 0;
|
|
}
|
|
|
|
specName = mii->getName(instructionID);
|
|
specWithOpSizeName = mii->getName(instructionIDWithOpsize);
|
|
|
|
if (is16BitEquivalent(specName.data(), specWithOpSizeName.data()) &&
|
|
(insn->mode == MODE_16BIT) ^ insn->hasOpSize) {
|
|
insn->instructionID = instructionIDWithOpsize;
|
|
insn->spec = &INSTRUCTIONS_SYM[instructionIDWithOpsize];
|
|
} else {
|
|
insn->instructionID = instructionID;
|
|
insn->spec = spec;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
|
|
insn->rexPrefix & 0x01) {
|
|
// NOOP shouldn't decode as NOOP if REX.b is set. Instead it should decode
|
|
// as XCHG %r8, %eax.
|
|
const struct InstructionSpecifier *spec;
|
|
uint16_t instructionIDWithNewOpcode;
|
|
const struct InstructionSpecifier *specWithNewOpcode;
|
|
|
|
spec = &INSTRUCTIONS_SYM[instructionID];
|
|
|
|
// Borrow opcode from one of the other XCHGar opcodes
|
|
insn->opcode = 0x91;
|
|
|
|
if (getInstructionIDWithAttrMask(&instructionIDWithNewOpcode, insn,
|
|
attrMask)) {
|
|
insn->opcode = 0x90;
|
|
|
|
insn->instructionID = instructionID;
|
|
insn->spec = spec;
|
|
return 0;
|
|
}
|
|
|
|
specWithNewOpcode = &INSTRUCTIONS_SYM[instructionIDWithNewOpcode];
|
|
|
|
// Change back
|
|
insn->opcode = 0x90;
|
|
|
|
insn->instructionID = instructionIDWithNewOpcode;
|
|
insn->spec = specWithNewOpcode;
|
|
|
|
return 0;
|
|
}
|
|
|
|
insn->instructionID = instructionID;
|
|
insn->spec = &INSTRUCTIONS_SYM[insn->instructionID];
|
|
|
|
return 0;
|
|
}
|
|
|
|
// Read an operand from the opcode field of an instruction and interprets it
|
|
// appropriately given the operand width. Handles AddRegFrm instructions.
|
|
//
|
|
// @param insn - the instruction whose opcode field is to be read.
|
|
// @param size - The width (in bytes) of the register being specified.
|
|
// 1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
|
|
// RAX.
|
|
// @return - 0 on success; nonzero otherwise.
|
|
static int readOpcodeRegister(struct InternalInstruction *insn, uint8_t size) {
|
|
LLVM_DEBUG(dbgs() << "readOpcodeRegister()");
|
|
|
|
if (size == 0)
|
|
size = insn->registerSize;
|
|
|
|
switch (size) {
|
|
case 1:
|
|
insn->opcodeRegister = (Reg)(
|
|
MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
|
|
if (insn->rexPrefix && insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
|
|
insn->opcodeRegister < MODRM_REG_AL + 0x8) {
|
|
insn->opcodeRegister =
|
|
(Reg)(MODRM_REG_SPL + (insn->opcodeRegister - MODRM_REG_AL - 4));
|
|
}
|
|
|
|
break;
|
|
case 2:
|
|
insn->opcodeRegister = (Reg)(
|
|
MODRM_REG_AX + ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
|
|
break;
|
|
case 4:
|
|
insn->opcodeRegister =
|
|
(Reg)(MODRM_REG_EAX +
|
|
((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
|
|
break;
|
|
case 8:
|
|
insn->opcodeRegister =
|
|
(Reg)(MODRM_REG_RAX +
|
|
((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// Consume an immediate operand from an instruction, given the desired operand
|
|
// size.
|
|
//
|
|
// @param insn - The instruction whose operand is to be read.
|
|
// @param size - The width (in bytes) of the operand.
|
|
// @return - 0 if the immediate was successfully consumed; nonzero
|
|
// otherwise.
|
|
static int readImmediate(struct InternalInstruction *insn, uint8_t size) {
|
|
uint8_t imm8;
|
|
uint16_t imm16;
|
|
uint32_t imm32;
|
|
uint64_t imm64;
|
|
|
|
LLVM_DEBUG(dbgs() << "readImmediate()");
|
|
|
|
assert(insn->numImmediatesConsumed < 2 && "Already consumed two immediates");
|
|
|
|
insn->immediateSize = size;
|
|
insn->immediateOffset = insn->readerCursor - insn->startLocation;
|
|
|
|
switch (size) {
|
|
case 1:
|
|
if (consume(insn, imm8))
|
|
return -1;
|
|
insn->immediates[insn->numImmediatesConsumed] = imm8;
|
|
break;
|
|
case 2:
|
|
if (consume(insn, imm16))
|
|
return -1;
|
|
insn->immediates[insn->numImmediatesConsumed] = imm16;
|
|
break;
|
|
case 4:
|
|
if (consume(insn, imm32))
|
|
return -1;
|
|
insn->immediates[insn->numImmediatesConsumed] = imm32;
|
|
break;
|
|
case 8:
|
|
if (consume(insn, imm64))
|
|
return -1;
|
|
insn->immediates[insn->numImmediatesConsumed] = imm64;
|
|
break;
|
|
default:
|
|
llvm_unreachable("invalid size");
|
|
}
|
|
|
|
insn->numImmediatesConsumed++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
// Consume vvvv from an instruction if it has a VEX prefix.
|
|
static int readVVVV(struct InternalInstruction *insn) {
|
|
LLVM_DEBUG(dbgs() << "readVVVV()");
|
|
|
|
int vvvv;
|
|
if (insn->vectorExtensionType == TYPE_EVEX)
|
|
vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 |
|
|
vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2]));
|
|
else if (insn->vectorExtensionType == TYPE_VEX_3B)
|
|
vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
|
|
else if (insn->vectorExtensionType == TYPE_VEX_2B)
|
|
vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
|
|
else if (insn->vectorExtensionType == TYPE_XOP)
|
|
vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
|
|
else
|
|
return -1;
|
|
|
|
if (insn->mode != MODE_64BIT)
|
|
vvvv &= 0xf; // Can only clear bit 4. Bit 3 must be cleared later.
|
|
|
|
insn->vvvv = static_cast<Reg>(vvvv);
|
|
return 0;
|
|
}
|
|
|
|
// Read an mask register from the opcode field of an instruction.
|
|
//
|
|
// @param insn - The instruction whose opcode field is to be read.
|
|
// @return - 0 on success; nonzero otherwise.
|
|
static int readMaskRegister(struct InternalInstruction *insn) {
|
|
LLVM_DEBUG(dbgs() << "readMaskRegister()");
|
|
|
|
if (insn->vectorExtensionType != TYPE_EVEX)
|
|
return -1;
|
|
|
|
insn->writemask =
|
|
static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]));
|
|
return 0;
|
|
}
|
|
|
|
// Consults the specifier for an instruction and consumes all
|
|
// operands for that instruction, interpreting them as it goes.
|
|
static int readOperands(struct InternalInstruction *insn) {
|
|
int hasVVVV, needVVVV;
|
|
int sawRegImm = 0;
|
|
|
|
LLVM_DEBUG(dbgs() << "readOperands()");
|
|
|
|
// If non-zero vvvv specified, make sure one of the operands uses it.
|
|
hasVVVV = !readVVVV(insn);
|
|
needVVVV = hasVVVV && (insn->vvvv != 0);
|
|
|
|
for (const auto &Op : x86OperandSets[insn->spec->operands]) {
|
|
switch (Op.encoding) {
|
|
case ENCODING_NONE:
|
|
case ENCODING_SI:
|
|
case ENCODING_DI:
|
|
break;
|
|
CASE_ENCODING_VSIB:
|
|
// VSIB can use the V2 bit so check only the other bits.
|
|
if (needVVVV)
|
|
needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0);
|
|
if (readModRM(insn))
|
|
return -1;
|
|
|
|
// Reject if SIB wasn't used.
|
|
if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
|
|
return -1;
|
|
|
|
// If sibIndex was set to SIB_INDEX_NONE, index offset is 4.
|
|
if (insn->sibIndex == SIB_INDEX_NONE)
|
|
insn->sibIndex = (SIBIndex)(insn->sibIndexBase + 4);
|
|
|
|
// If EVEX.v2 is set this is one of the 16-31 registers.
|
|
if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT &&
|
|
v2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
|
|
insn->sibIndex = (SIBIndex)(insn->sibIndex + 16);
|
|
|
|
// Adjust the index register to the correct size.
|
|
switch ((OperandType)Op.type) {
|
|
default:
|
|
debug("Unhandled VSIB index type");
|
|
return -1;
|
|
case TYPE_MVSIBX:
|
|
insn->sibIndex =
|
|
(SIBIndex)(SIB_INDEX_XMM0 + (insn->sibIndex - insn->sibIndexBase));
|
|
break;
|
|
case TYPE_MVSIBY:
|
|
insn->sibIndex =
|
|
(SIBIndex)(SIB_INDEX_YMM0 + (insn->sibIndex - insn->sibIndexBase));
|
|
break;
|
|
case TYPE_MVSIBZ:
|
|
insn->sibIndex =
|
|
(SIBIndex)(SIB_INDEX_ZMM0 + (insn->sibIndex - insn->sibIndexBase));
|
|
break;
|
|
}
|
|
|
|
// Apply the AVX512 compressed displacement scaling factor.
|
|
if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
|
|
insn->displacement *= 1 << (Op.encoding - ENCODING_VSIB);
|
|
break;
|
|
case ENCODING_SIB:
|
|
// Reject if SIB wasn't used.
|
|
if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
|
|
return -1;
|
|
if (readModRM(insn))
|
|
return -1;
|
|
if (fixupReg(insn, &Op))
|
|
return -1;
|
|
break;
|
|
case ENCODING_REG:
|
|
CASE_ENCODING_RM:
|
|
if (readModRM(insn))
|
|
return -1;
|
|
if (fixupReg(insn, &Op))
|
|
return -1;
|
|
// Apply the AVX512 compressed displacement scaling factor.
|
|
if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
|
|
insn->displacement *= 1 << (Op.encoding - ENCODING_RM);
|
|
break;
|
|
case ENCODING_IB:
|
|
if (sawRegImm) {
|
|
// Saw a register immediate so don't read again and instead split the
|
|
// previous immediate. FIXME: This is a hack.
|
|
insn->immediates[insn->numImmediatesConsumed] =
|
|
insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
|
|
++insn->numImmediatesConsumed;
|
|
break;
|
|
}
|
|
if (readImmediate(insn, 1))
|
|
return -1;
|
|
if (Op.type == TYPE_XMM || Op.type == TYPE_YMM)
|
|
sawRegImm = 1;
|
|
break;
|
|
case ENCODING_IW:
|
|
if (readImmediate(insn, 2))
|
|
return -1;
|
|
break;
|
|
case ENCODING_ID:
|
|
if (readImmediate(insn, 4))
|
|
return -1;
|
|
break;
|
|
case ENCODING_IO:
|
|
if (readImmediate(insn, 8))
|
|
return -1;
|
|
break;
|
|
case ENCODING_Iv:
|
|
if (readImmediate(insn, insn->immediateSize))
|
|
return -1;
|
|
break;
|
|
case ENCODING_Ia:
|
|
if (readImmediate(insn, insn->addressSize))
|
|
return -1;
|
|
break;
|
|
case ENCODING_IRC:
|
|
insn->RC = (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 1) |
|
|
lFromEVEX4of4(insn->vectorExtensionPrefix[3]);
|
|
break;
|
|
case ENCODING_RB:
|
|
if (readOpcodeRegister(insn, 1))
|
|
return -1;
|
|
break;
|
|
case ENCODING_RW:
|
|
if (readOpcodeRegister(insn, 2))
|
|
return -1;
|
|
break;
|
|
case ENCODING_RD:
|
|
if (readOpcodeRegister(insn, 4))
|
|
return -1;
|
|
break;
|
|
case ENCODING_RO:
|
|
if (readOpcodeRegister(insn, 8))
|
|
return -1;
|
|
break;
|
|
case ENCODING_Rv:
|
|
if (readOpcodeRegister(insn, 0))
|
|
return -1;
|
|
break;
|
|
case ENCODING_CC:
|
|
insn->immediates[1] = insn->opcode & 0xf;
|
|
break;
|
|
case ENCODING_FP:
|
|
break;
|
|
case ENCODING_VVVV:
|
|
needVVVV = 0; // Mark that we have found a VVVV operand.
|
|
if (!hasVVVV)
|
|
return -1;
|
|
if (insn->mode != MODE_64BIT)
|
|
insn->vvvv = static_cast<Reg>(insn->vvvv & 0x7);
|
|
if (fixupReg(insn, &Op))
|
|
return -1;
|
|
break;
|
|
case ENCODING_WRITEMASK:
|
|
if (readMaskRegister(insn))
|
|
return -1;
|
|
break;
|
|
case ENCODING_DUP:
|
|
break;
|
|
default:
|
|
LLVM_DEBUG(dbgs() << "Encountered an operand with an unknown encoding.");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
// If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail
|
|
if (needVVVV)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
namespace llvm {
|
|
|
|
// Fill-ins to make the compiler happy. These constants are never actually
|
|
// assigned; they are just filler to make an automatically-generated switch
|
|
// statement work.
|
|
namespace X86 {
|
|
enum {
|
|
BX_SI = 500,
|
|
BX_DI = 501,
|
|
BP_SI = 502,
|
|
BP_DI = 503,
|
|
sib = 504,
|
|
sib64 = 505
|
|
};
|
|
} // namespace X86
|
|
|
|
} // namespace llvm
|
|
|
|
static bool translateInstruction(MCInst &target,
|
|
InternalInstruction &source,
|
|
const MCDisassembler *Dis);
|
|
|
|
namespace {
|
|
|
|
/// Generic disassembler for all X86 platforms. All each platform class should
|
|
/// have to do is subclass the constructor, and provide a different
|
|
/// disassemblerMode value.
|
|
class X86GenericDisassembler : public MCDisassembler {
|
|
std::unique_ptr<const MCInstrInfo> MII;
|
|
public:
|
|
X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
|
|
std::unique_ptr<const MCInstrInfo> MII);
|
|
public:
|
|
DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
|
|
ArrayRef<uint8_t> Bytes, uint64_t Address,
|
|
raw_ostream &cStream) const override;
|
|
|
|
private:
|
|
DisassemblerMode fMode;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
X86GenericDisassembler::X86GenericDisassembler(
|
|
const MCSubtargetInfo &STI,
|
|
MCContext &Ctx,
|
|
std::unique_ptr<const MCInstrInfo> MII)
|
|
: MCDisassembler(STI, Ctx), MII(std::move(MII)) {
|
|
const FeatureBitset &FB = STI.getFeatureBits();
|
|
if (FB[X86::Mode16Bit]) {
|
|
fMode = MODE_16BIT;
|
|
return;
|
|
} else if (FB[X86::Mode32Bit]) {
|
|
fMode = MODE_32BIT;
|
|
return;
|
|
} else if (FB[X86::Mode64Bit]) {
|
|
fMode = MODE_64BIT;
|
|
return;
|
|
}
|
|
|
|
llvm_unreachable("Invalid CPU mode");
|
|
}
|
|
|
|
MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction(
|
|
MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address,
|
|
raw_ostream &CStream) const {
|
|
CommentStream = &CStream;
|
|
|
|
InternalInstruction Insn;
|
|
memset(&Insn, 0, sizeof(InternalInstruction));
|
|
Insn.bytes = Bytes;
|
|
Insn.startLocation = Address;
|
|
Insn.readerCursor = Address;
|
|
Insn.mode = fMode;
|
|
|
|
if (Bytes.empty() || readPrefixes(&Insn) || readOpcode(&Insn) ||
|
|
getInstructionID(&Insn, MII.get()) || Insn.instructionID == 0 ||
|
|
readOperands(&Insn)) {
|
|
Size = Insn.readerCursor - Address;
|
|
return Fail;
|
|
}
|
|
|
|
Insn.operands = x86OperandSets[Insn.spec->operands];
|
|
Insn.length = Insn.readerCursor - Insn.startLocation;
|
|
Size = Insn.length;
|
|
if (Size > 15)
|
|
LLVM_DEBUG(dbgs() << "Instruction exceeds 15-byte limit");
|
|
|
|
bool Ret = translateInstruction(Instr, Insn, this);
|
|
if (!Ret) {
|
|
unsigned Flags = X86::IP_NO_PREFIX;
|
|
if (Insn.hasAdSize)
|
|
Flags |= X86::IP_HAS_AD_SIZE;
|
|
if (!Insn.mandatoryPrefix) {
|
|
if (Insn.hasOpSize)
|
|
Flags |= X86::IP_HAS_OP_SIZE;
|
|
if (Insn.repeatPrefix == 0xf2)
|
|
Flags |= X86::IP_HAS_REPEAT_NE;
|
|
else if (Insn.repeatPrefix == 0xf3 &&
|
|
// It should not be 'pause' f3 90
|
|
Insn.opcode != 0x90)
|
|
Flags |= X86::IP_HAS_REPEAT;
|
|
if (Insn.hasLockPrefix)
|
|
Flags |= X86::IP_HAS_LOCK;
|
|
}
|
|
Instr.setFlags(Flags);
|
|
}
|
|
return (!Ret) ? Success : Fail;
|
|
}
|
|
|
|
//
|
|
// Private code that translates from struct InternalInstructions to MCInsts.
|
|
//
|
|
|
|
/// translateRegister - Translates an internal register to the appropriate LLVM
|
|
/// register, and appends it as an operand to an MCInst.
|
|
///
|
|
/// @param mcInst - The MCInst to append to.
|
|
/// @param reg - The Reg to append.
|
|
static void translateRegister(MCInst &mcInst, Reg reg) {
|
|
#define ENTRY(x) X86::x,
|
|
static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS};
|
|
#undef ENTRY
|
|
|
|
MCPhysReg llvmRegnum = llvmRegnums[reg];
|
|
mcInst.addOperand(MCOperand::createReg(llvmRegnum));
|
|
}
|
|
|
|
/// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the
|
|
/// immediate Value in the MCInst.
|
|
///
|
|
/// @param Value - The immediate Value, has had any PC adjustment made by
|
|
/// the caller.
|
|
/// @param isBranch - If the instruction is a branch instruction
|
|
/// @param Address - The starting address of the instruction
|
|
/// @param Offset - The byte offset to this immediate in the instruction
|
|
/// @param Width - The byte width of this immediate in the instruction
|
|
///
|
|
/// If the getOpInfo() function was set when setupForSymbolicDisassembly() was
|
|
/// called then that function is called to get any symbolic information for the
|
|
/// immediate in the instruction using the Address, Offset and Width. If that
|
|
/// returns non-zero then the symbolic information it returns is used to create
|
|
/// an MCExpr and that is added as an operand to the MCInst. If getOpInfo()
|
|
/// returns zero and isBranch is true then a symbol look up for immediate Value
|
|
/// is done and if a symbol is found an MCExpr is created with that, else
|
|
/// an MCExpr with the immediate Value is created. This function returns true
|
|
/// if it adds an operand to the MCInst and false otherwise.
|
|
static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch,
|
|
uint64_t Address, uint64_t Offset,
|
|
uint64_t Width, MCInst &MI,
|
|
const MCDisassembler *Dis) {
|
|
return Dis->tryAddingSymbolicOperand(MI, Value, Address, isBranch,
|
|
Offset, Width);
|
|
}
|
|
|
|
/// tryAddingPcLoadReferenceComment - trys to add a comment as to what is being
|
|
/// referenced by a load instruction with the base register that is the rip.
|
|
/// These can often be addresses in a literal pool. The Address of the
|
|
/// instruction and its immediate Value are used to determine the address
|
|
/// being referenced in the literal pool entry. The SymbolLookUp call back will
|
|
/// return a pointer to a literal 'C' string if the referenced address is an
|
|
/// address into a section with 'C' string literals.
|
|
static void tryAddingPcLoadReferenceComment(uint64_t Address, uint64_t Value,
|
|
const void *Decoder) {
|
|
const MCDisassembler *Dis = static_cast<const MCDisassembler*>(Decoder);
|
|
Dis->tryAddingPcLoadReferenceComment(Value, Address);
|
|
}
|
|
|
|
static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
|
|
0, // SEG_OVERRIDE_NONE
|
|
X86::CS,
|
|
X86::SS,
|
|
X86::DS,
|
|
X86::ES,
|
|
X86::FS,
|
|
X86::GS
|
|
};
|
|
|
|
/// translateSrcIndex - Appends a source index operand to an MCInst.
|
|
///
|
|
/// @param mcInst - The MCInst to append to.
|
|
/// @param insn - The internal instruction.
|
|
static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) {
|
|
unsigned baseRegNo;
|
|
|
|
if (insn.mode == MODE_64BIT)
|
|
baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI;
|
|
else if (insn.mode == MODE_32BIT)
|
|
baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI;
|
|
else {
|
|
assert(insn.mode == MODE_16BIT);
|
|
baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI;
|
|
}
|
|
MCOperand baseReg = MCOperand::createReg(baseRegNo);
|
|
mcInst.addOperand(baseReg);
|
|
|
|
MCOperand segmentReg;
|
|
segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
|
|
mcInst.addOperand(segmentReg);
|
|
return false;
|
|
}
|
|
|
|
/// translateDstIndex - Appends a destination index operand to an MCInst.
|
|
///
|
|
/// @param mcInst - The MCInst to append to.
|
|
/// @param insn - The internal instruction.
|
|
|
|
static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) {
|
|
unsigned baseRegNo;
|
|
|
|
if (insn.mode == MODE_64BIT)
|
|
baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI;
|
|
else if (insn.mode == MODE_32BIT)
|
|
baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI;
|
|
else {
|
|
assert(insn.mode == MODE_16BIT);
|
|
baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI;
|
|
}
|
|
MCOperand baseReg = MCOperand::createReg(baseRegNo);
|
|
mcInst.addOperand(baseReg);
|
|
return false;
|
|
}
|
|
|
|
/// translateImmediate - Appends an immediate operand to an MCInst.
|
|
///
|
|
/// @param mcInst - The MCInst to append to.
|
|
/// @param immediate - The immediate value to append.
|
|
/// @param operand - The operand, as stored in the descriptor table.
|
|
/// @param insn - The internal instruction.
|
|
static void translateImmediate(MCInst &mcInst, uint64_t immediate,
|
|
const OperandSpecifier &operand,
|
|
InternalInstruction &insn,
|
|
const MCDisassembler *Dis) {
|
|
// Sign-extend the immediate if necessary.
|
|
|
|
OperandType type = (OperandType)operand.type;
|
|
|
|
bool isBranch = false;
|
|
uint64_t pcrel = 0;
|
|
if (type == TYPE_REL) {
|
|
isBranch = true;
|
|
pcrel = insn.startLocation +
|
|
insn.immediateOffset + insn.immediateSize;
|
|
switch (operand.encoding) {
|
|
default:
|
|
break;
|
|
case ENCODING_Iv:
|
|
switch (insn.displacementSize) {
|
|
default:
|
|
break;
|
|
case 1:
|
|
if(immediate & 0x80)
|
|
immediate |= ~(0xffull);
|
|
break;
|
|
case 2:
|
|
if(immediate & 0x8000)
|
|
immediate |= ~(0xffffull);
|
|
break;
|
|
case 4:
|
|
if(immediate & 0x80000000)
|
|
immediate |= ~(0xffffffffull);
|
|
break;
|
|
case 8:
|
|
break;
|
|
}
|
|
break;
|
|
case ENCODING_IB:
|
|
if(immediate & 0x80)
|
|
immediate |= ~(0xffull);
|
|
break;
|
|
case ENCODING_IW:
|
|
if(immediate & 0x8000)
|
|
immediate |= ~(0xffffull);
|
|
break;
|
|
case ENCODING_ID:
|
|
if(immediate & 0x80000000)
|
|
immediate |= ~(0xffffffffull);
|
|
break;
|
|
}
|
|
}
|
|
// By default sign-extend all X86 immediates based on their encoding.
|
|
else if (type == TYPE_IMM) {
|
|
switch (operand.encoding) {
|
|
default:
|
|
break;
|
|
case ENCODING_IB:
|
|
if(immediate & 0x80)
|
|
immediate |= ~(0xffull);
|
|
break;
|
|
case ENCODING_IW:
|
|
if(immediate & 0x8000)
|
|
immediate |= ~(0xffffull);
|
|
break;
|
|
case ENCODING_ID:
|
|
if(immediate & 0x80000000)
|
|
immediate |= ~(0xffffffffull);
|
|
break;
|
|
case ENCODING_IO:
|
|
break;
|
|
}
|
|
}
|
|
|
|
switch (type) {
|
|
case TYPE_XMM:
|
|
mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4)));
|
|
return;
|
|
case TYPE_YMM:
|
|
mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4)));
|
|
return;
|
|
case TYPE_ZMM:
|
|
mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4)));
|
|
return;
|
|
default:
|
|
// operand is 64 bits wide. Do nothing.
|
|
break;
|
|
}
|
|
|
|
if(!tryAddingSymbolicOperand(immediate + pcrel, isBranch, insn.startLocation,
|
|
insn.immediateOffset, insn.immediateSize,
|
|
mcInst, Dis))
|
|
mcInst.addOperand(MCOperand::createImm(immediate));
|
|
|
|
if (type == TYPE_MOFFS) {
|
|
MCOperand segmentReg;
|
|
segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
|
|
mcInst.addOperand(segmentReg);
|
|
}
|
|
}
|
|
|
|
/// translateRMRegister - Translates a register stored in the R/M field of the
|
|
/// ModR/M byte to its LLVM equivalent and appends it to an MCInst.
|
|
/// @param mcInst - The MCInst to append to.
|
|
/// @param insn - The internal instruction to extract the R/M field
|
|
/// from.
|
|
/// @return - 0 on success; -1 otherwise
|
|
static bool translateRMRegister(MCInst &mcInst,
|
|
InternalInstruction &insn) {
|
|
if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
|
|
debug("A R/M register operand may not have a SIB byte");
|
|
return true;
|
|
}
|
|
|
|
switch (insn.eaBase) {
|
|
default:
|
|
debug("Unexpected EA base register");
|
|
return true;
|
|
case EA_BASE_NONE:
|
|
debug("EA_BASE_NONE for ModR/M base");
|
|
return true;
|
|
#define ENTRY(x) case EA_BASE_##x:
|
|
ALL_EA_BASES
|
|
#undef ENTRY
|
|
debug("A R/M register operand may not have a base; "
|
|
"the operand must be a register.");
|
|
return true;
|
|
#define ENTRY(x) \
|
|
case EA_REG_##x: \
|
|
mcInst.addOperand(MCOperand::createReg(X86::x)); break;
|
|
ALL_REGS
|
|
#undef ENTRY
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// translateRMMemory - Translates a memory operand stored in the Mod and R/M
|
|
/// fields of an internal instruction (and possibly its SIB byte) to a memory
|
|
/// operand in LLVM's format, and appends it to an MCInst.
|
|
///
|
|
/// @param mcInst - The MCInst to append to.
|
|
/// @param insn - The instruction to extract Mod, R/M, and SIB fields
|
|
/// from.
|
|
/// @param ForceSIB - The instruction must use SIB.
|
|
/// @return - 0 on success; nonzero otherwise
|
|
static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
|
|
const MCDisassembler *Dis,
|
|
bool ForceSIB = false) {
|
|
// Addresses in an MCInst are represented as five operands:
|
|
// 1. basereg (register) The R/M base, or (if there is a SIB) the
|
|
// SIB base
|
|
// 2. scaleamount (immediate) 1, or (if there is a SIB) the specified
|
|
// scale amount
|
|
// 3. indexreg (register) x86_registerNONE, or (if there is a SIB)
|
|
// the index (which is multiplied by the
|
|
// scale amount)
|
|
// 4. displacement (immediate) 0, or the displacement if there is one
|
|
// 5. segmentreg (register) x86_registerNONE for now, but could be set
|
|
// if we have segment overrides
|
|
|
|
MCOperand baseReg;
|
|
MCOperand scaleAmount;
|
|
MCOperand indexReg;
|
|
MCOperand displacement;
|
|
MCOperand segmentReg;
|
|
uint64_t pcrel = 0;
|
|
|
|
if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
|
|
if (insn.sibBase != SIB_BASE_NONE) {
|
|
switch (insn.sibBase) {
|
|
default:
|
|
debug("Unexpected sibBase");
|
|
return true;
|
|
#define ENTRY(x) \
|
|
case SIB_BASE_##x: \
|
|
baseReg = MCOperand::createReg(X86::x); break;
|
|
ALL_SIB_BASES
|
|
#undef ENTRY
|
|
}
|
|
} else {
|
|
baseReg = MCOperand::createReg(X86::NoRegister);
|
|
}
|
|
|
|
if (insn.sibIndex != SIB_INDEX_NONE) {
|
|
switch (insn.sibIndex) {
|
|
default:
|
|
debug("Unexpected sibIndex");
|
|
return true;
|
|
#define ENTRY(x) \
|
|
case SIB_INDEX_##x: \
|
|
indexReg = MCOperand::createReg(X86::x); break;
|
|
EA_BASES_32BIT
|
|
EA_BASES_64BIT
|
|
REGS_XMM
|
|
REGS_YMM
|
|
REGS_ZMM
|
|
#undef ENTRY
|
|
}
|
|
} else {
|
|
// Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present,
|
|
// but no index is used and modrm alone should have been enough.
|
|
// -No base register in 32-bit mode. In 64-bit mode this is used to
|
|
// avoid rip-relative addressing.
|
|
// -Any base register used other than ESP/RSP/R12D/R12. Using these as a
|
|
// base always requires a SIB byte.
|
|
// -A scale other than 1 is used.
|
|
if (!ForceSIB &&
|
|
(insn.sibScale != 1 ||
|
|
(insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) ||
|
|
(insn.sibBase != SIB_BASE_NONE &&
|
|
insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP &&
|
|
insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12))) {
|
|
indexReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIZ :
|
|
X86::RIZ);
|
|
} else
|
|
indexReg = MCOperand::createReg(X86::NoRegister);
|
|
}
|
|
|
|
scaleAmount = MCOperand::createImm(insn.sibScale);
|
|
} else {
|
|
switch (insn.eaBase) {
|
|
case EA_BASE_NONE:
|
|
if (insn.eaDisplacement == EA_DISP_NONE) {
|
|
debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
|
|
return true;
|
|
}
|
|
if (insn.mode == MODE_64BIT){
|
|
pcrel = insn.startLocation +
|
|
insn.displacementOffset + insn.displacementSize;
|
|
tryAddingPcLoadReferenceComment(insn.startLocation +
|
|
insn.displacementOffset,
|
|
insn.displacement + pcrel, Dis);
|
|
// Section 2.2.1.6
|
|
baseReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIP :
|
|
X86::RIP);
|
|
}
|
|
else
|
|
baseReg = MCOperand::createReg(X86::NoRegister);
|
|
|
|
indexReg = MCOperand::createReg(X86::NoRegister);
|
|
break;
|
|
case EA_BASE_BX_SI:
|
|
baseReg = MCOperand::createReg(X86::BX);
|
|
indexReg = MCOperand::createReg(X86::SI);
|
|
break;
|
|
case EA_BASE_BX_DI:
|
|
baseReg = MCOperand::createReg(X86::BX);
|
|
indexReg = MCOperand::createReg(X86::DI);
|
|
break;
|
|
case EA_BASE_BP_SI:
|
|
baseReg = MCOperand::createReg(X86::BP);
|
|
indexReg = MCOperand::createReg(X86::SI);
|
|
break;
|
|
case EA_BASE_BP_DI:
|
|
baseReg = MCOperand::createReg(X86::BP);
|
|
indexReg = MCOperand::createReg(X86::DI);
|
|
break;
|
|
default:
|
|
indexReg = MCOperand::createReg(X86::NoRegister);
|
|
switch (insn.eaBase) {
|
|
default:
|
|
debug("Unexpected eaBase");
|
|
return true;
|
|
// Here, we will use the fill-ins defined above. However,
|
|
// BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
|
|
// sib and sib64 were handled in the top-level if, so they're only
|
|
// placeholders to keep the compiler happy.
|
|
#define ENTRY(x) \
|
|
case EA_BASE_##x: \
|
|
baseReg = MCOperand::createReg(X86::x); break;
|
|
ALL_EA_BASES
|
|
#undef ENTRY
|
|
#define ENTRY(x) case EA_REG_##x:
|
|
ALL_REGS
|
|
#undef ENTRY
|
|
debug("A R/M memory operand may not be a register; "
|
|
"the base field must be a base.");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
scaleAmount = MCOperand::createImm(1);
|
|
}
|
|
|
|
displacement = MCOperand::createImm(insn.displacement);
|
|
|
|
segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
|
|
|
|
mcInst.addOperand(baseReg);
|
|
mcInst.addOperand(scaleAmount);
|
|
mcInst.addOperand(indexReg);
|
|
if(!tryAddingSymbolicOperand(insn.displacement + pcrel, false,
|
|
insn.startLocation, insn.displacementOffset,
|
|
insn.displacementSize, mcInst, Dis))
|
|
mcInst.addOperand(displacement);
|
|
mcInst.addOperand(segmentReg);
|
|
return false;
|
|
}
|
|
|
|
/// translateRM - Translates an operand stored in the R/M (and possibly SIB)
|
|
/// byte of an instruction to LLVM form, and appends it to an MCInst.
|
|
///
|
|
/// @param mcInst - The MCInst to append to.
|
|
/// @param operand - The operand, as stored in the descriptor table.
|
|
/// @param insn - The instruction to extract Mod, R/M, and SIB fields
|
|
/// from.
|
|
/// @return - 0 on success; nonzero otherwise
|
|
static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
|
|
InternalInstruction &insn, const MCDisassembler *Dis) {
|
|
switch (operand.type) {
|
|
default:
|
|
debug("Unexpected type for a R/M operand");
|
|
return true;
|
|
case TYPE_R8:
|
|
case TYPE_R16:
|
|
case TYPE_R32:
|
|
case TYPE_R64:
|
|
case TYPE_Rv:
|
|
case TYPE_MM64:
|
|
case TYPE_XMM:
|
|
case TYPE_YMM:
|
|
case TYPE_ZMM:
|
|
case TYPE_TMM:
|
|
case TYPE_VK_PAIR:
|
|
case TYPE_VK:
|
|
case TYPE_DEBUGREG:
|
|
case TYPE_CONTROLREG:
|
|
case TYPE_BNDR:
|
|
return translateRMRegister(mcInst, insn);
|
|
case TYPE_M:
|
|
case TYPE_MVSIBX:
|
|
case TYPE_MVSIBY:
|
|
case TYPE_MVSIBZ:
|
|
return translateRMMemory(mcInst, insn, Dis);
|
|
case TYPE_MSIB:
|
|
return translateRMMemory(mcInst, insn, Dis, true);
|
|
}
|
|
}
|
|
|
|
/// translateFPRegister - Translates a stack position on the FPU stack to its
|
|
/// LLVM form, and appends it to an MCInst.
|
|
///
|
|
/// @param mcInst - The MCInst to append to.
|
|
/// @param stackPos - The stack position to translate.
|
|
static void translateFPRegister(MCInst &mcInst,
|
|
uint8_t stackPos) {
|
|
mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos));
|
|
}
|
|
|
|
/// translateMaskRegister - Translates a 3-bit mask register number to
|
|
/// LLVM form, and appends it to an MCInst.
|
|
///
|
|
/// @param mcInst - The MCInst to append to.
|
|
/// @param maskRegNum - Number of mask register from 0 to 7.
|
|
/// @return - false on success; true otherwise.
|
|
static bool translateMaskRegister(MCInst &mcInst,
|
|
uint8_t maskRegNum) {
|
|
if (maskRegNum >= 8) {
|
|
debug("Invalid mask register number");
|
|
return true;
|
|
}
|
|
|
|
mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum));
|
|
return false;
|
|
}
|
|
|
|
/// translateOperand - Translates an operand stored in an internal instruction
|
|
/// to LLVM's format and appends it to an MCInst.
|
|
///
|
|
/// @param mcInst - The MCInst to append to.
|
|
/// @param operand - The operand, as stored in the descriptor table.
|
|
/// @param insn - The internal instruction.
|
|
/// @return - false on success; true otherwise.
|
|
static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
|
|
InternalInstruction &insn,
|
|
const MCDisassembler *Dis) {
|
|
switch (operand.encoding) {
|
|
default:
|
|
debug("Unhandled operand encoding during translation");
|
|
return true;
|
|
case ENCODING_REG:
|
|
translateRegister(mcInst, insn.reg);
|
|
return false;
|
|
case ENCODING_WRITEMASK:
|
|
return translateMaskRegister(mcInst, insn.writemask);
|
|
case ENCODING_SIB:
|
|
CASE_ENCODING_RM:
|
|
CASE_ENCODING_VSIB:
|
|
return translateRM(mcInst, operand, insn, Dis);
|
|
case ENCODING_IB:
|
|
case ENCODING_IW:
|
|
case ENCODING_ID:
|
|
case ENCODING_IO:
|
|
case ENCODING_Iv:
|
|
case ENCODING_Ia:
|
|
translateImmediate(mcInst,
|
|
insn.immediates[insn.numImmediatesTranslated++],
|
|
operand,
|
|
insn,
|
|
Dis);
|
|
return false;
|
|
case ENCODING_IRC:
|
|
mcInst.addOperand(MCOperand::createImm(insn.RC));
|
|
return false;
|
|
case ENCODING_SI:
|
|
return translateSrcIndex(mcInst, insn);
|
|
case ENCODING_DI:
|
|
return translateDstIndex(mcInst, insn);
|
|
case ENCODING_RB:
|
|
case ENCODING_RW:
|
|
case ENCODING_RD:
|
|
case ENCODING_RO:
|
|
case ENCODING_Rv:
|
|
translateRegister(mcInst, insn.opcodeRegister);
|
|
return false;
|
|
case ENCODING_CC:
|
|
mcInst.addOperand(MCOperand::createImm(insn.immediates[1]));
|
|
return false;
|
|
case ENCODING_FP:
|
|
translateFPRegister(mcInst, insn.modRM & 7);
|
|
return false;
|
|
case ENCODING_VVVV:
|
|
translateRegister(mcInst, insn.vvvv);
|
|
return false;
|
|
case ENCODING_DUP:
|
|
return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0],
|
|
insn, Dis);
|
|
}
|
|
}
|
|
|
|
/// translateInstruction - Translates an internal instruction and all its
|
|
/// operands to an MCInst.
|
|
///
|
|
/// @param mcInst - The MCInst to populate with the instruction's data.
|
|
/// @param insn - The internal instruction.
|
|
/// @return - false on success; true otherwise.
|
|
static bool translateInstruction(MCInst &mcInst,
|
|
InternalInstruction &insn,
|
|
const MCDisassembler *Dis) {
|
|
if (!insn.spec) {
|
|
debug("Instruction has no specification");
|
|
return true;
|
|
}
|
|
|
|
mcInst.clear();
|
|
mcInst.setOpcode(insn.instructionID);
|
|
// If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
|
|
// prefix bytes should be disassembled as xrelease and xacquire then set the
|
|
// opcode to those instead of the rep and repne opcodes.
|
|
if (insn.xAcquireRelease) {
|
|
if(mcInst.getOpcode() == X86::REP_PREFIX)
|
|
mcInst.setOpcode(X86::XRELEASE_PREFIX);
|
|
else if(mcInst.getOpcode() == X86::REPNE_PREFIX)
|
|
mcInst.setOpcode(X86::XACQUIRE_PREFIX);
|
|
}
|
|
|
|
insn.numImmediatesTranslated = 0;
|
|
|
|
for (const auto &Op : insn.operands) {
|
|
if (Op.encoding != ENCODING_NONE) {
|
|
if (translateOperand(mcInst, Op, insn, Dis)) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static MCDisassembler *createX86Disassembler(const Target &T,
|
|
const MCSubtargetInfo &STI,
|
|
MCContext &Ctx) {
|
|
std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo());
|
|
return new X86GenericDisassembler(STI, Ctx, std::move(MII));
|
|
}
|
|
|
|
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Disassembler() {
|
|
// Register the disassembler.
|
|
TargetRegistry::RegisterMCDisassembler(getTheX86_32Target(),
|
|
createX86Disassembler);
|
|
TargetRegistry::RegisterMCDisassembler(getTheX86_64Target(),
|
|
createX86Disassembler);
|
|
}
|