forked from OSchip/llvm-project
1720 lines
64 KiB
C++
1720 lines
64 KiB
C++
//===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// Finalize v8.1-m low-overhead loops by converting the associated pseudo
|
|
/// instructions into machine operations.
|
|
/// The expectation is that the loop contains three pseudo instructions:
|
|
/// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop
|
|
/// form should be in the preheader, whereas the while form should be in the
|
|
/// preheaders only predecessor.
|
|
/// - t2LoopDec - placed within in the loop body.
|
|
/// - t2LoopEnd - the loop latch terminator.
|
|
///
|
|
/// In addition to this, we also look for the presence of the VCTP instruction,
|
|
/// which determines whether we can generated the tail-predicated low-overhead
|
|
/// loop form.
|
|
///
|
|
/// Assumptions and Dependencies:
|
|
/// Low-overhead loops are constructed and executed using a setup instruction:
|
|
/// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP.
|
|
/// WLS(TP) and LE(TP) are branching instructions with a (large) limited range
|
|
/// but fixed polarity: WLS can only branch forwards and LE can only branch
|
|
/// backwards. These restrictions mean that this pass is dependent upon block
|
|
/// layout and block sizes, which is why it's the last pass to run. The same is
|
|
/// true for ConstantIslands, but this pass does not increase the size of the
|
|
/// basic blocks, nor does it change the CFG. Instructions are mainly removed
|
|
/// during the transform and pseudo instructions are replaced by real ones. In
|
|
/// some cases, when we have to revert to a 'normal' loop, we have to introduce
|
|
/// multiple instructions for a single pseudo (see RevertWhile and
|
|
/// RevertLoopEnd). To handle this situation, t2WhileLoopStartLR and t2LoopEnd
|
|
/// are defined to be as large as this maximum sequence of replacement
|
|
/// instructions.
|
|
///
|
|
/// A note on VPR.P0 (the lane mask):
|
|
/// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a
|
|
/// "VPT Active" context (which includes low-overhead loops and vpt blocks).
|
|
/// They will simply "and" the result of their calculation with the current
|
|
/// value of VPR.P0. You can think of it like this:
|
|
/// \verbatim
|
|
/// if VPT active: ; Between a DLSTP/LETP, or for predicated instrs
|
|
/// VPR.P0 &= Value
|
|
/// else
|
|
/// VPR.P0 = Value
|
|
/// \endverbatim
|
|
/// When we're inside the low-overhead loop (between DLSTP and LETP), we always
|
|
/// fall in the "VPT active" case, so we can consider that all VPR writes by
|
|
/// one of those instruction is actually a "and".
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ARM.h"
|
|
#include "ARMBaseInstrInfo.h"
|
|
#include "ARMBaseRegisterInfo.h"
|
|
#include "ARMBasicBlockInfo.h"
|
|
#include "ARMSubtarget.h"
|
|
#include "MVETailPredUtils.h"
|
|
#include "Thumb2InstrInfo.h"
|
|
#include "llvm/ADT/SetOperations.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/CodeGen/LivePhysRegs.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineLoopUtils.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/ReachingDefAnalysis.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "arm-low-overhead-loops"
|
|
#define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass"
|
|
|
|
static cl::opt<bool>
|
|
DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden,
|
|
cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"),
|
|
cl::init(false));
|
|
|
|
static bool isVectorPredicated(MachineInstr *MI) {
|
|
int PIdx = llvm::findFirstVPTPredOperandIdx(*MI);
|
|
return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR;
|
|
}
|
|
|
|
static bool isVectorPredicate(MachineInstr *MI) {
|
|
return MI->findRegisterDefOperandIdx(ARM::VPR) != -1;
|
|
}
|
|
|
|
static bool hasVPRUse(MachineInstr &MI) {
|
|
return MI.findRegisterUseOperandIdx(ARM::VPR) != -1;
|
|
}
|
|
|
|
static bool isDomainMVE(MachineInstr *MI) {
|
|
uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
|
|
return Domain == ARMII::DomainMVE;
|
|
}
|
|
|
|
static bool shouldInspect(MachineInstr &MI) {
|
|
return isDomainMVE(&MI) || isVectorPredicate(&MI) || hasVPRUse(MI);
|
|
}
|
|
|
|
static bool isDo(MachineInstr *MI) {
|
|
return MI->getOpcode() != ARM::t2WhileLoopStartLR;
|
|
}
|
|
|
|
namespace {
|
|
|
|
using InstSet = SmallPtrSetImpl<MachineInstr *>;
|
|
|
|
class PostOrderLoopTraversal {
|
|
MachineLoop &ML;
|
|
MachineLoopInfo &MLI;
|
|
SmallPtrSet<MachineBasicBlock*, 4> Visited;
|
|
SmallVector<MachineBasicBlock*, 4> Order;
|
|
|
|
public:
|
|
PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI)
|
|
: ML(ML), MLI(MLI) { }
|
|
|
|
const SmallVectorImpl<MachineBasicBlock*> &getOrder() const {
|
|
return Order;
|
|
}
|
|
|
|
// Visit all the blocks within the loop, as well as exit blocks and any
|
|
// blocks properly dominating the header.
|
|
void ProcessLoop() {
|
|
std::function<void(MachineBasicBlock*)> Search = [this, &Search]
|
|
(MachineBasicBlock *MBB) -> void {
|
|
if (Visited.count(MBB))
|
|
return;
|
|
|
|
Visited.insert(MBB);
|
|
for (auto *Succ : MBB->successors()) {
|
|
if (!ML.contains(Succ))
|
|
continue;
|
|
Search(Succ);
|
|
}
|
|
Order.push_back(MBB);
|
|
};
|
|
|
|
// Insert exit blocks.
|
|
SmallVector<MachineBasicBlock*, 2> ExitBlocks;
|
|
ML.getExitBlocks(ExitBlocks);
|
|
append_range(Order, ExitBlocks);
|
|
|
|
// Then add the loop body.
|
|
Search(ML.getHeader());
|
|
|
|
// Then try the preheader and its predecessors.
|
|
std::function<void(MachineBasicBlock*)> GetPredecessor =
|
|
[this, &GetPredecessor] (MachineBasicBlock *MBB) -> void {
|
|
Order.push_back(MBB);
|
|
if (MBB->pred_size() == 1)
|
|
GetPredecessor(*MBB->pred_begin());
|
|
};
|
|
|
|
if (auto *Preheader = ML.getLoopPreheader())
|
|
GetPredecessor(Preheader);
|
|
else if (auto *Preheader = MLI.findLoopPreheader(&ML, true))
|
|
GetPredecessor(Preheader);
|
|
}
|
|
};
|
|
|
|
struct PredicatedMI {
|
|
MachineInstr *MI = nullptr;
|
|
SetVector<MachineInstr*> Predicates;
|
|
|
|
public:
|
|
PredicatedMI(MachineInstr *I, SetVector<MachineInstr *> &Preds) : MI(I) {
|
|
assert(I && "Instruction must not be null!");
|
|
Predicates.insert(Preds.begin(), Preds.end());
|
|
}
|
|
};
|
|
|
|
// Represent the current state of the VPR and hold all instances which
|
|
// represent a VPT block, which is a list of instructions that begins with a
|
|
// VPT/VPST and has a maximum of four proceeding instructions. All
|
|
// instructions within the block are predicated upon the vpr and we allow
|
|
// instructions to define the vpr within in the block too.
|
|
class VPTState {
|
|
friend struct LowOverheadLoop;
|
|
|
|
SmallVector<MachineInstr *, 4> Insts;
|
|
|
|
static SmallVector<VPTState, 4> Blocks;
|
|
static SetVector<MachineInstr *> CurrentPredicates;
|
|
static std::map<MachineInstr *,
|
|
std::unique_ptr<PredicatedMI>> PredicatedInsts;
|
|
|
|
static void CreateVPTBlock(MachineInstr *MI) {
|
|
assert((CurrentPredicates.size() || MI->getParent()->isLiveIn(ARM::VPR))
|
|
&& "Can't begin VPT without predicate");
|
|
Blocks.emplace_back(MI);
|
|
// The execution of MI is predicated upon the current set of instructions
|
|
// that are AND'ed together to form the VPR predicate value. In the case
|
|
// that MI is a VPT, CurrentPredicates will also just be MI.
|
|
PredicatedInsts.emplace(
|
|
MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates));
|
|
}
|
|
|
|
static void reset() {
|
|
Blocks.clear();
|
|
PredicatedInsts.clear();
|
|
CurrentPredicates.clear();
|
|
}
|
|
|
|
static void addInst(MachineInstr *MI) {
|
|
Blocks.back().insert(MI);
|
|
PredicatedInsts.emplace(
|
|
MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates));
|
|
}
|
|
|
|
static void addPredicate(MachineInstr *MI) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI);
|
|
CurrentPredicates.insert(MI);
|
|
}
|
|
|
|
static void resetPredicate(MachineInstr *MI) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI);
|
|
CurrentPredicates.clear();
|
|
CurrentPredicates.insert(MI);
|
|
}
|
|
|
|
public:
|
|
// Have we found an instruction within the block which defines the vpr? If
|
|
// so, not all the instructions in the block will have the same predicate.
|
|
static bool hasUniformPredicate(VPTState &Block) {
|
|
return getDivergent(Block) == nullptr;
|
|
}
|
|
|
|
// If it exists, return the first internal instruction which modifies the
|
|
// VPR.
|
|
static MachineInstr *getDivergent(VPTState &Block) {
|
|
SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
|
|
for (unsigned i = 1; i < Insts.size(); ++i) {
|
|
MachineInstr *Next = Insts[i];
|
|
if (isVectorPredicate(Next))
|
|
return Next; // Found an instruction altering the vpr.
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// Return whether the given instruction is predicated upon a VCTP.
|
|
static bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) {
|
|
SetVector<MachineInstr *> &Predicates = PredicatedInsts[MI]->Predicates;
|
|
if (Exclusive && Predicates.size() != 1)
|
|
return false;
|
|
for (auto *PredMI : Predicates)
|
|
if (isVCTP(PredMI))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// Is the VPST, controlling the block entry, predicated upon a VCTP.
|
|
static bool isEntryPredicatedOnVCTP(VPTState &Block,
|
|
bool Exclusive = false) {
|
|
SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
|
|
return isPredicatedOnVCTP(Insts.front(), Exclusive);
|
|
}
|
|
|
|
// If this block begins with a VPT, we can check whether it's using
|
|
// at least one predicated input(s), as well as possible loop invariant
|
|
// which would result in it being implicitly predicated.
|
|
static bool hasImplicitlyValidVPT(VPTState &Block,
|
|
ReachingDefAnalysis &RDA) {
|
|
SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
|
|
MachineInstr *VPT = Insts.front();
|
|
assert(isVPTOpcode(VPT->getOpcode()) &&
|
|
"Expected VPT block to begin with VPT/VPST");
|
|
|
|
if (VPT->getOpcode() == ARM::MVE_VPST)
|
|
return false;
|
|
|
|
auto IsOperandPredicated = [&](MachineInstr *MI, unsigned Idx) {
|
|
MachineInstr *Op = RDA.getMIOperand(MI, MI->getOperand(Idx));
|
|
return Op && PredicatedInsts.count(Op) && isPredicatedOnVCTP(Op);
|
|
};
|
|
|
|
auto IsOperandInvariant = [&](MachineInstr *MI, unsigned Idx) {
|
|
MachineOperand &MO = MI->getOperand(Idx);
|
|
if (!MO.isReg() || !MO.getReg())
|
|
return true;
|
|
|
|
SmallPtrSet<MachineInstr *, 2> Defs;
|
|
RDA.getGlobalReachingDefs(MI, MO.getReg(), Defs);
|
|
if (Defs.empty())
|
|
return true;
|
|
|
|
for (auto *Def : Defs)
|
|
if (Def->getParent() == VPT->getParent())
|
|
return false;
|
|
return true;
|
|
};
|
|
|
|
// Check that at least one of the operands is directly predicated on a
|
|
// vctp and allow an invariant value too.
|
|
return (IsOperandPredicated(VPT, 1) || IsOperandPredicated(VPT, 2)) &&
|
|
(IsOperandPredicated(VPT, 1) || IsOperandInvariant(VPT, 1)) &&
|
|
(IsOperandPredicated(VPT, 2) || IsOperandInvariant(VPT, 2));
|
|
}
|
|
|
|
static bool isValid(ReachingDefAnalysis &RDA) {
|
|
// All predication within the loop should be based on vctp. If the block
|
|
// isn't predicated on entry, check whether the vctp is within the block
|
|
// and that all other instructions are then predicated on it.
|
|
for (auto &Block : Blocks) {
|
|
if (isEntryPredicatedOnVCTP(Block, false) ||
|
|
hasImplicitlyValidVPT(Block, RDA))
|
|
continue;
|
|
|
|
SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
|
|
// We don't know how to convert a block with just a VPT;VCTP into
|
|
// anything valid once we remove the VCTP. For now just bail out.
|
|
assert(isVPTOpcode(Insts.front()->getOpcode()) &&
|
|
"Expected VPT block to start with a VPST or VPT!");
|
|
if (Insts.size() == 2 && Insts.front()->getOpcode() != ARM::MVE_VPST &&
|
|
isVCTP(Insts.back()))
|
|
return false;
|
|
|
|
for (auto *MI : Insts) {
|
|
// Check that any internal VCTPs are 'Then' predicated.
|
|
if (isVCTP(MI) && getVPTInstrPredicate(*MI) != ARMVCC::Then)
|
|
return false;
|
|
// Skip other instructions that build up the predicate.
|
|
if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI))
|
|
continue;
|
|
// Check that any other instructions are predicated upon a vctp.
|
|
// TODO: We could infer when VPTs are implicitly predicated on the
|
|
// vctp (when the operands are predicated).
|
|
if (!isPredicatedOnVCTP(MI)) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
VPTState(MachineInstr *MI) { Insts.push_back(MI); }
|
|
|
|
void insert(MachineInstr *MI) {
|
|
Insts.push_back(MI);
|
|
// VPT/VPST + 4 predicated instructions.
|
|
assert(Insts.size() <= 5 && "Too many instructions in VPT block!");
|
|
}
|
|
|
|
bool containsVCTP() const {
|
|
for (auto *MI : Insts)
|
|
if (isVCTP(MI))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
unsigned size() const { return Insts.size(); }
|
|
SmallVectorImpl<MachineInstr *> &getInsts() { return Insts; }
|
|
};
|
|
|
|
struct LowOverheadLoop {
|
|
|
|
MachineLoop &ML;
|
|
MachineBasicBlock *Preheader = nullptr;
|
|
MachineLoopInfo &MLI;
|
|
ReachingDefAnalysis &RDA;
|
|
const TargetRegisterInfo &TRI;
|
|
const ARMBaseInstrInfo &TII;
|
|
MachineFunction *MF = nullptr;
|
|
MachineBasicBlock::iterator StartInsertPt;
|
|
MachineBasicBlock *StartInsertBB = nullptr;
|
|
MachineInstr *Start = nullptr;
|
|
MachineInstr *Dec = nullptr;
|
|
MachineInstr *End = nullptr;
|
|
MachineOperand TPNumElements;
|
|
SmallVector<MachineInstr*, 4> VCTPs;
|
|
SmallPtrSet<MachineInstr*, 4> ToRemove;
|
|
SmallPtrSet<MachineInstr*, 4> BlockMasksToRecompute;
|
|
bool Revert = false;
|
|
bool CannotTailPredicate = false;
|
|
|
|
LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI,
|
|
ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI,
|
|
const ARMBaseInstrInfo &TII)
|
|
: ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII),
|
|
TPNumElements(MachineOperand::CreateImm(0)) {
|
|
MF = ML.getHeader()->getParent();
|
|
if (auto *MBB = ML.getLoopPreheader())
|
|
Preheader = MBB;
|
|
else if (auto *MBB = MLI.findLoopPreheader(&ML, true))
|
|
Preheader = MBB;
|
|
VPTState::reset();
|
|
}
|
|
|
|
// If this is an MVE instruction, check that we know how to use tail
|
|
// predication with it. Record VPT blocks and return whether the
|
|
// instruction is valid for tail predication.
|
|
bool ValidateMVEInst(MachineInstr *MI);
|
|
|
|
void AnalyseMVEInst(MachineInstr *MI) {
|
|
CannotTailPredicate = !ValidateMVEInst(MI);
|
|
}
|
|
|
|
bool IsTailPredicationLegal() const {
|
|
// For now, let's keep things really simple and only support a single
|
|
// block for tail predication.
|
|
return !Revert && FoundAllComponents() && !VCTPs.empty() &&
|
|
!CannotTailPredicate && ML.getNumBlocks() == 1;
|
|
}
|
|
|
|
// Given that MI is a VCTP, check that is equivalent to any other VCTPs
|
|
// found.
|
|
bool AddVCTP(MachineInstr *MI);
|
|
|
|
// Check that the predication in the loop will be equivalent once we
|
|
// perform the conversion. Also ensure that we can provide the number
|
|
// of elements to the loop start instruction.
|
|
bool ValidateTailPredicate();
|
|
|
|
// Check that any values available outside of the loop will be the same
|
|
// after tail predication conversion.
|
|
bool ValidateLiveOuts();
|
|
|
|
// Is it safe to define LR with DLS/WLS?
|
|
// LR can be defined if it is the operand to start, because it's the same
|
|
// value, or if it's going to be equivalent to the operand to Start.
|
|
MachineInstr *isSafeToDefineLR();
|
|
|
|
// Check the branch targets are within range and we satisfy our
|
|
// restrictions.
|
|
void Validate(ARMBasicBlockUtils *BBUtils);
|
|
|
|
bool FoundAllComponents() const {
|
|
return Start && Dec && End;
|
|
}
|
|
|
|
SmallVectorImpl<VPTState> &getVPTBlocks() {
|
|
return VPTState::Blocks;
|
|
}
|
|
|
|
// Return the operand for the loop start instruction. This will be the loop
|
|
// iteration count, or the number of elements if we're tail predicating.
|
|
MachineOperand &getLoopStartOperand() {
|
|
if (IsTailPredicationLegal())
|
|
return TPNumElements;
|
|
return Start->getOperand(1);
|
|
}
|
|
|
|
unsigned getStartOpcode() const {
|
|
bool IsDo = isDo(Start);
|
|
if (!IsTailPredicationLegal())
|
|
return IsDo ? ARM::t2DLS : ARM::t2WLS;
|
|
|
|
return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo);
|
|
}
|
|
|
|
void dump() const {
|
|
if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start;
|
|
if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec;
|
|
if (End) dbgs() << "ARM Loops: Found Loop End: " << *End;
|
|
if (!VCTPs.empty()) {
|
|
dbgs() << "ARM Loops: Found VCTP(s):\n";
|
|
for (auto *MI : VCTPs)
|
|
dbgs() << " - " << *MI;
|
|
}
|
|
if (!FoundAllComponents())
|
|
dbgs() << "ARM Loops: Not a low-overhead loop.\n";
|
|
else if (!(Start && Dec && End))
|
|
dbgs() << "ARM Loops: Failed to find all loop components.\n";
|
|
}
|
|
};
|
|
|
|
class ARMLowOverheadLoops : public MachineFunctionPass {
|
|
MachineFunction *MF = nullptr;
|
|
MachineLoopInfo *MLI = nullptr;
|
|
ReachingDefAnalysis *RDA = nullptr;
|
|
const ARMBaseInstrInfo *TII = nullptr;
|
|
MachineRegisterInfo *MRI = nullptr;
|
|
const TargetRegisterInfo *TRI = nullptr;
|
|
std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr;
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
ARMLowOverheadLoops() : MachineFunctionPass(ID) { }
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<MachineLoopInfo>();
|
|
AU.addRequired<ReachingDefAnalysis>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
MachineFunctionProperties getRequiredProperties() const override {
|
|
return MachineFunctionProperties().set(
|
|
MachineFunctionProperties::Property::NoVRegs).set(
|
|
MachineFunctionProperties::Property::TracksLiveness);
|
|
}
|
|
|
|
StringRef getPassName() const override {
|
|
return ARM_LOW_OVERHEAD_LOOPS_NAME;
|
|
}
|
|
|
|
private:
|
|
bool ProcessLoop(MachineLoop *ML);
|
|
|
|
bool RevertNonLoops();
|
|
|
|
void RevertWhile(MachineInstr *MI) const;
|
|
void RevertDo(MachineInstr *MI) const;
|
|
|
|
bool RevertLoopDec(MachineInstr *MI) const;
|
|
|
|
void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const;
|
|
|
|
void RevertLoopEndDec(MachineInstr *MI) const;
|
|
|
|
void ConvertVPTBlocks(LowOverheadLoop &LoLoop);
|
|
|
|
MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop);
|
|
|
|
void Expand(LowOverheadLoop &LoLoop);
|
|
|
|
void IterationCountDCE(LowOverheadLoop &LoLoop);
|
|
};
|
|
}
|
|
|
|
char ARMLowOverheadLoops::ID = 0;
|
|
|
|
SmallVector<VPTState, 4> VPTState::Blocks;
|
|
SetVector<MachineInstr *> VPTState::CurrentPredicates;
|
|
std::map<MachineInstr *,
|
|
std::unique_ptr<PredicatedMI>> VPTState::PredicatedInsts;
|
|
|
|
INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME,
|
|
false, false)
|
|
|
|
static bool TryRemove(MachineInstr *MI, ReachingDefAnalysis &RDA,
|
|
InstSet &ToRemove, InstSet &Ignore) {
|
|
|
|
// Check that we can remove all of Killed without having to modify any IT
|
|
// blocks.
|
|
auto WontCorruptITs = [](InstSet &Killed, ReachingDefAnalysis &RDA) {
|
|
// Collect the dead code and the MBBs in which they reside.
|
|
SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks;
|
|
for (auto *Dead : Killed)
|
|
BasicBlocks.insert(Dead->getParent());
|
|
|
|
// Collect IT blocks in all affected basic blocks.
|
|
std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks;
|
|
for (auto *MBB : BasicBlocks) {
|
|
for (auto &IT : *MBB) {
|
|
if (IT.getOpcode() != ARM::t2IT)
|
|
continue;
|
|
RDA.getReachingLocalUses(&IT, MCRegister::from(ARM::ITSTATE),
|
|
ITBlocks[&IT]);
|
|
}
|
|
}
|
|
|
|
// If we're removing all of the instructions within an IT block, then
|
|
// also remove the IT instruction.
|
|
SmallPtrSet<MachineInstr *, 2> ModifiedITs;
|
|
SmallPtrSet<MachineInstr *, 2> RemoveITs;
|
|
for (auto *Dead : Killed) {
|
|
if (MachineOperand *MO = Dead->findRegisterUseOperand(ARM::ITSTATE)) {
|
|
MachineInstr *IT = RDA.getMIOperand(Dead, *MO);
|
|
RemoveITs.insert(IT);
|
|
auto &CurrentBlock = ITBlocks[IT];
|
|
CurrentBlock.erase(Dead);
|
|
if (CurrentBlock.empty())
|
|
ModifiedITs.erase(IT);
|
|
else
|
|
ModifiedITs.insert(IT);
|
|
}
|
|
}
|
|
if (!ModifiedITs.empty())
|
|
return false;
|
|
Killed.insert(RemoveITs.begin(), RemoveITs.end());
|
|
return true;
|
|
};
|
|
|
|
SmallPtrSet<MachineInstr *, 2> Uses;
|
|
if (!RDA.isSafeToRemove(MI, Uses, Ignore))
|
|
return false;
|
|
|
|
if (WontCorruptITs(Uses, RDA)) {
|
|
ToRemove.insert(Uses.begin(), Uses.end());
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Able to remove: " << *MI
|
|
<< " - can also remove:\n";
|
|
for (auto *Use : Uses)
|
|
dbgs() << " - " << *Use);
|
|
|
|
SmallPtrSet<MachineInstr*, 4> Killed;
|
|
RDA.collectKilledOperands(MI, Killed);
|
|
if (WontCorruptITs(Killed, RDA)) {
|
|
ToRemove.insert(Killed.begin(), Killed.end());
|
|
LLVM_DEBUG(for (auto *Dead : Killed)
|
|
dbgs() << " - " << *Dead);
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool LowOverheadLoop::ValidateTailPredicate() {
|
|
if (!IsTailPredicationLegal()) {
|
|
LLVM_DEBUG(if (VCTPs.empty())
|
|
dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n";
|
|
dbgs() << "ARM Loops: Tail-predication is not valid.\n");
|
|
return false;
|
|
}
|
|
|
|
assert(!VCTPs.empty() && "VCTP instruction expected but is not set");
|
|
assert(ML.getBlocks().size() == 1 &&
|
|
"Shouldn't be processing a loop with more than one block");
|
|
|
|
if (DisableTailPredication) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n");
|
|
return false;
|
|
}
|
|
|
|
if (!VPTState::isValid(RDA)) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Invalid VPT state.\n");
|
|
return false;
|
|
}
|
|
|
|
if (!ValidateLiveOuts()) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n");
|
|
return false;
|
|
}
|
|
|
|
// Check that creating a [W|D]LSTP, which will define LR with an element
|
|
// count instead of iteration count, won't affect any other instructions
|
|
// than the LoopStart and LoopDec.
|
|
// TODO: We should try to insert the [W|D]LSTP after any of the other uses.
|
|
Register StartReg = isDo(Start) ? Start->getOperand(1).getReg()
|
|
: Start->getOperand(0).getReg();
|
|
if (StartInsertPt == Start && StartReg == ARM::LR) {
|
|
if (auto *IterCount = RDA.getMIOperand(Start, isDo(Start) ? 1 : 0)) {
|
|
SmallPtrSet<MachineInstr *, 2> Uses;
|
|
RDA.getGlobalUses(IterCount, MCRegister::from(ARM::LR), Uses);
|
|
for (auto *Use : Uses) {
|
|
if (Use != Start && Use != Dec) {
|
|
LLVM_DEBUG(dbgs() << " ARM Loops: Found LR use: " << *Use);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// For tail predication, we need to provide the number of elements, instead
|
|
// of the iteration count, to the loop start instruction. The number of
|
|
// elements is provided to the vctp instruction, so we need to check that
|
|
// we can use this register at InsertPt.
|
|
MachineInstr *VCTP = VCTPs.back();
|
|
if (Start->getOpcode() == ARM::t2DoLoopStartTP) {
|
|
TPNumElements = Start->getOperand(2);
|
|
StartInsertPt = Start;
|
|
StartInsertBB = Start->getParent();
|
|
} else {
|
|
TPNumElements = VCTP->getOperand(1);
|
|
MCRegister NumElements = TPNumElements.getReg().asMCReg();
|
|
|
|
// If the register is defined within loop, then we can't perform TP.
|
|
// TODO: Check whether this is just a mov of a register that would be
|
|
// available.
|
|
if (RDA.hasLocalDefBefore(VCTP, NumElements)) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n");
|
|
return false;
|
|
}
|
|
|
|
// The element count register maybe defined after InsertPt, in which case we
|
|
// need to try to move either InsertPt or the def so that the [w|d]lstp can
|
|
// use the value.
|
|
|
|
if (StartInsertPt != StartInsertBB->end() &&
|
|
!RDA.isReachingDefLiveOut(&*StartInsertPt, NumElements)) {
|
|
if (auto *ElemDef =
|
|
RDA.getLocalLiveOutMIDef(StartInsertBB, NumElements)) {
|
|
if (RDA.isSafeToMoveForwards(ElemDef, &*StartInsertPt)) {
|
|
ElemDef->removeFromParent();
|
|
StartInsertBB->insert(StartInsertPt, ElemDef);
|
|
LLVM_DEBUG(dbgs()
|
|
<< "ARM Loops: Moved element count def: " << *ElemDef);
|
|
} else if (RDA.isSafeToMoveBackwards(&*StartInsertPt, ElemDef)) {
|
|
StartInsertPt->removeFromParent();
|
|
StartInsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef),
|
|
&*StartInsertPt);
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef);
|
|
} else {
|
|
// If we fail to move an instruction and the element count is provided
|
|
// by a mov, use the mov operand if it will have the same value at the
|
|
// insertion point
|
|
MachineOperand Operand = ElemDef->getOperand(1);
|
|
if (isMovRegOpcode(ElemDef->getOpcode()) &&
|
|
RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg().asMCReg()) ==
|
|
RDA.getUniqueReachingMIDef(&*StartInsertPt,
|
|
Operand.getReg().asMCReg())) {
|
|
TPNumElements = Operand;
|
|
NumElements = TPNumElements.getReg();
|
|
} else {
|
|
LLVM_DEBUG(dbgs()
|
|
<< "ARM Loops: Unable to move element count to loop "
|
|
<< "start instruction.\n");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Especially in the case of while loops, InsertBB may not be the
|
|
// preheader, so we need to check that the register isn't redefined
|
|
// before entering the loop.
|
|
auto CannotProvideElements = [this](MachineBasicBlock *MBB,
|
|
MCRegister NumElements) {
|
|
if (MBB->empty())
|
|
return false;
|
|
// NumElements is redefined in this block.
|
|
if (RDA.hasLocalDefBefore(&MBB->back(), NumElements))
|
|
return true;
|
|
|
|
// Don't continue searching up through multiple predecessors.
|
|
if (MBB->pred_size() > 1)
|
|
return true;
|
|
|
|
return false;
|
|
};
|
|
|
|
// Search backwards for a def, until we get to InsertBB.
|
|
MachineBasicBlock *MBB = Preheader;
|
|
while (MBB && MBB != StartInsertBB) {
|
|
if (CannotProvideElements(MBB, NumElements)) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n");
|
|
return false;
|
|
}
|
|
MBB = *MBB->pred_begin();
|
|
}
|
|
}
|
|
|
|
// Could inserting the [W|D]LSTP cause some unintended affects? In a perfect
|
|
// world the [w|d]lstp instruction would be last instruction in the preheader
|
|
// and so it would only affect instructions within the loop body. But due to
|
|
// scheduling, and/or the logic in this pass (above), the insertion point can
|
|
// be moved earlier. So if the Loop Start isn't the last instruction in the
|
|
// preheader, and if the initial element count is smaller than the vector
|
|
// width, the Loop Start instruction will immediately generate one or more
|
|
// false lane mask which can, incorrectly, affect the proceeding MVE
|
|
// instructions in the preheader.
|
|
if (std::any_of(StartInsertPt, StartInsertBB->end(), shouldInspect)) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Instruction blocks [W|D]LSTP\n");
|
|
return false;
|
|
}
|
|
|
|
// Check that the value change of the element count is what we expect and
|
|
// that the predication will be equivalent. For this we need:
|
|
// NumElements = NumElements - VectorWidth. The sub will be a sub immediate
|
|
// and we can also allow register copies within the chain too.
|
|
auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) {
|
|
return -getAddSubImmediate(*MI) == ExpectedVecWidth;
|
|
};
|
|
|
|
MachineBasicBlock *MBB = VCTP->getParent();
|
|
// Remove modifications to the element count since they have no purpose in a
|
|
// tail predicated loop. Explicitly refer to the vctp operand no matter which
|
|
// register NumElements has been assigned to, since that is what the
|
|
// modifications will be using
|
|
if (auto *Def = RDA.getUniqueReachingMIDef(
|
|
&MBB->back(), VCTP->getOperand(1).getReg().asMCReg())) {
|
|
SmallPtrSet<MachineInstr*, 2> ElementChain;
|
|
SmallPtrSet<MachineInstr*, 2> Ignore;
|
|
unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode());
|
|
|
|
Ignore.insert(VCTPs.begin(), VCTPs.end());
|
|
|
|
if (TryRemove(Def, RDA, ElementChain, Ignore)) {
|
|
bool FoundSub = false;
|
|
|
|
for (auto *MI : ElementChain) {
|
|
if (isMovRegOpcode(MI->getOpcode()))
|
|
continue;
|
|
|
|
if (isSubImmOpcode(MI->getOpcode())) {
|
|
if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element"
|
|
" count: " << *MI);
|
|
return false;
|
|
}
|
|
FoundSub = true;
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element"
|
|
" count: " << *MI);
|
|
return false;
|
|
}
|
|
}
|
|
ToRemove.insert(ElementChain.begin(), ElementChain.end());
|
|
}
|
|
}
|
|
|
|
// If we converted the LoopStart to a t2DoLoopStartTP, we can also remove any
|
|
// extra instructions in the preheader, which often includes a now unused MOV.
|
|
if (Start->getOpcode() == ARM::t2DoLoopStartTP && Preheader &&
|
|
!Preheader->empty() &&
|
|
!RDA.hasLocalDefBefore(VCTP, VCTP->getOperand(1).getReg())) {
|
|
if (auto *Def = RDA.getUniqueReachingMIDef(
|
|
&Preheader->back(), VCTP->getOperand(1).getReg().asMCReg())) {
|
|
SmallPtrSet<MachineInstr*, 2> Ignore;
|
|
Ignore.insert(VCTPs.begin(), VCTPs.end());
|
|
TryRemove(Def, RDA, ToRemove, Ignore);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool isRegInClass(const MachineOperand &MO,
|
|
const TargetRegisterClass *Class) {
|
|
return MO.isReg() && MO.getReg() && Class->contains(MO.getReg());
|
|
}
|
|
|
|
// MVE 'narrowing' operate on half a lane, reading from half and writing
|
|
// to half, which are referred to has the top and bottom half. The other
|
|
// half retains its previous value.
|
|
static bool retainsPreviousHalfElement(const MachineInstr &MI) {
|
|
const MCInstrDesc &MCID = MI.getDesc();
|
|
uint64_t Flags = MCID.TSFlags;
|
|
return (Flags & ARMII::RetainsPreviousHalfElement) != 0;
|
|
}
|
|
|
|
// Some MVE instructions read from the top/bottom halves of their operand(s)
|
|
// and generate a vector result with result elements that are double the
|
|
// width of the input.
|
|
static bool producesDoubleWidthResult(const MachineInstr &MI) {
|
|
const MCInstrDesc &MCID = MI.getDesc();
|
|
uint64_t Flags = MCID.TSFlags;
|
|
return (Flags & ARMII::DoubleWidthResult) != 0;
|
|
}
|
|
|
|
static bool isHorizontalReduction(const MachineInstr &MI) {
|
|
const MCInstrDesc &MCID = MI.getDesc();
|
|
uint64_t Flags = MCID.TSFlags;
|
|
return (Flags & ARMII::HorizontalReduction) != 0;
|
|
}
|
|
|
|
// Can this instruction generate a non-zero result when given only zeroed
|
|
// operands? This allows us to know that, given operands with false bytes
|
|
// zeroed by masked loads, that the result will also contain zeros in those
|
|
// bytes.
|
|
static bool canGenerateNonZeros(const MachineInstr &MI) {
|
|
|
|
// Check for instructions which can write into a larger element size,
|
|
// possibly writing into a previous zero'd lane.
|
|
if (producesDoubleWidthResult(MI))
|
|
return true;
|
|
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
break;
|
|
// FIXME: VNEG FP and -0? I think we'll need to handle this once we allow
|
|
// fp16 -> fp32 vector conversions.
|
|
// Instructions that perform a NOT will generate 1s from 0s.
|
|
case ARM::MVE_VMVN:
|
|
case ARM::MVE_VORN:
|
|
// Count leading zeros will do just that!
|
|
case ARM::MVE_VCLZs8:
|
|
case ARM::MVE_VCLZs16:
|
|
case ARM::MVE_VCLZs32:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Look at its register uses to see if it only can only receive zeros
|
|
// into its false lanes which would then produce zeros. Also check that
|
|
// the output register is also defined by an FalseLanesZero instruction
|
|
// so that if tail-predication happens, the lanes that aren't updated will
|
|
// still be zeros.
|
|
static bool producesFalseLanesZero(MachineInstr &MI,
|
|
const TargetRegisterClass *QPRs,
|
|
const ReachingDefAnalysis &RDA,
|
|
InstSet &FalseLanesZero) {
|
|
if (canGenerateNonZeros(MI))
|
|
return false;
|
|
|
|
bool isPredicated = isVectorPredicated(&MI);
|
|
// Predicated loads will write zeros to the falsely predicated bytes of the
|
|
// destination register.
|
|
if (MI.mayLoad())
|
|
return isPredicated;
|
|
|
|
auto IsZeroInit = [](MachineInstr *Def) {
|
|
return !isVectorPredicated(Def) &&
|
|
Def->getOpcode() == ARM::MVE_VMOVimmi32 &&
|
|
Def->getOperand(1).getImm() == 0;
|
|
};
|
|
|
|
bool AllowScalars = isHorizontalReduction(MI);
|
|
for (auto &MO : MI.operands()) {
|
|
if (!MO.isReg() || !MO.getReg())
|
|
continue;
|
|
if (!isRegInClass(MO, QPRs) && AllowScalars)
|
|
continue;
|
|
|
|
// Check that this instruction will produce zeros in its false lanes:
|
|
// - If it only consumes false lanes zero or constant 0 (vmov #0)
|
|
// - If it's predicated, it only matters that it's def register already has
|
|
// false lane zeros, so we can ignore the uses.
|
|
SmallPtrSet<MachineInstr *, 2> Defs;
|
|
RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs);
|
|
for (auto *Def : Defs) {
|
|
if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def))
|
|
continue;
|
|
if (MO.isUse() && isPredicated)
|
|
continue;
|
|
return false;
|
|
}
|
|
}
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI);
|
|
return true;
|
|
}
|
|
|
|
bool LowOverheadLoop::ValidateLiveOuts() {
|
|
// We want to find out if the tail-predicated version of this loop will
|
|
// produce the same values as the loop in its original form. For this to
|
|
// be true, the newly inserted implicit predication must not change the
|
|
// the (observable) results.
|
|
// We're doing this because many instructions in the loop will not be
|
|
// predicated and so the conversion from VPT predication to tail-predication
|
|
// can result in different values being produced; due to the tail-predication
|
|
// preventing many instructions from updating their falsely predicated
|
|
// lanes. This analysis assumes that all the instructions perform lane-wise
|
|
// operations and don't perform any exchanges.
|
|
// A masked load, whether through VPT or tail predication, will write zeros
|
|
// to any of the falsely predicated bytes. So, from the loads, we know that
|
|
// the false lanes are zeroed and here we're trying to track that those false
|
|
// lanes remain zero, or where they change, the differences are masked away
|
|
// by their user(s).
|
|
// All MVE stores have to be predicated, so we know that any predicate load
|
|
// operands, or stored results are equivalent already. Other explicitly
|
|
// predicated instructions will perform the same operation in the original
|
|
// loop and the tail-predicated form too. Because of this, we can insert
|
|
// loads, stores and other predicated instructions into our Predicated
|
|
// set and build from there.
|
|
const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID);
|
|
SetVector<MachineInstr *> FalseLanesUnknown;
|
|
SmallPtrSet<MachineInstr *, 4> FalseLanesZero;
|
|
SmallPtrSet<MachineInstr *, 4> Predicated;
|
|
MachineBasicBlock *Header = ML.getHeader();
|
|
|
|
for (auto &MI : *Header) {
|
|
if (!shouldInspect(MI))
|
|
continue;
|
|
|
|
if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode()))
|
|
continue;
|
|
|
|
bool isPredicated = isVectorPredicated(&MI);
|
|
bool retainsOrReduces =
|
|
retainsPreviousHalfElement(MI) || isHorizontalReduction(MI);
|
|
|
|
if (isPredicated)
|
|
Predicated.insert(&MI);
|
|
if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero))
|
|
FalseLanesZero.insert(&MI);
|
|
else if (MI.getNumDefs() == 0)
|
|
continue;
|
|
else if (!isPredicated && retainsOrReduces)
|
|
return false;
|
|
else if (!isPredicated)
|
|
FalseLanesUnknown.insert(&MI);
|
|
}
|
|
|
|
auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO,
|
|
SmallPtrSetImpl<MachineInstr *> &Predicated) {
|
|
SmallPtrSet<MachineInstr *, 2> Uses;
|
|
RDA.getGlobalUses(MI, MO.getReg().asMCReg(), Uses);
|
|
for (auto *Use : Uses) {
|
|
if (Use != MI && !Predicated.count(Use))
|
|
return false;
|
|
}
|
|
return true;
|
|
};
|
|
|
|
// Visit the unknowns in reverse so that we can start at the values being
|
|
// stored and then we can work towards the leaves, hopefully adding more
|
|
// instructions to Predicated. Successfully terminating the loop means that
|
|
// all the unknown values have to found to be masked by predicated user(s).
|
|
// For any unpredicated values, we store them in NonPredicated so that we
|
|
// can later check whether these form a reduction.
|
|
SmallPtrSet<MachineInstr*, 2> NonPredicated;
|
|
for (auto *MI : reverse(FalseLanesUnknown)) {
|
|
for (auto &MO : MI->operands()) {
|
|
if (!isRegInClass(MO, QPRs) || !MO.isDef())
|
|
continue;
|
|
if (!HasPredicatedUsers(MI, MO, Predicated)) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Found an unknown def of : "
|
|
<< TRI.getRegAsmName(MO.getReg()) << " at " << *MI);
|
|
NonPredicated.insert(MI);
|
|
break;
|
|
}
|
|
}
|
|
// Any unknown false lanes have been masked away by the user(s).
|
|
if (!NonPredicated.contains(MI))
|
|
Predicated.insert(MI);
|
|
}
|
|
|
|
SmallPtrSet<MachineInstr *, 2> LiveOutMIs;
|
|
SmallVector<MachineBasicBlock *, 2> ExitBlocks;
|
|
ML.getExitBlocks(ExitBlocks);
|
|
assert(ML.getNumBlocks() == 1 && "Expected single block loop!");
|
|
assert(ExitBlocks.size() == 1 && "Expected a single exit block");
|
|
MachineBasicBlock *ExitBB = ExitBlocks.front();
|
|
for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) {
|
|
// TODO: Instead of blocking predication, we could move the vctp to the exit
|
|
// block and calculate it's operand there in or the preheader.
|
|
if (RegMask.PhysReg == ARM::VPR)
|
|
return false;
|
|
// Check Q-regs that are live in the exit blocks. We don't collect scalars
|
|
// because they won't be affected by lane predication.
|
|
if (QPRs->contains(RegMask.PhysReg))
|
|
if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg))
|
|
LiveOutMIs.insert(MI);
|
|
}
|
|
|
|
// We've already validated that any VPT predication within the loop will be
|
|
// equivalent when we perform the predication transformation; so we know that
|
|
// any VPT predicated instruction is predicated upon VCTP. Any live-out
|
|
// instruction needs to be predicated, so check this here. The instructions
|
|
// in NonPredicated have been found to be a reduction that we can ensure its
|
|
// legality.
|
|
for (auto *MI : LiveOutMIs) {
|
|
if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Unable to handle live out: " << *MI);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void LowOverheadLoop::Validate(ARMBasicBlockUtils *BBUtils) {
|
|
if (Revert)
|
|
return;
|
|
|
|
// Check branch target ranges: WLS[TP] can only branch forwards and LE[TP]
|
|
// can only jump back.
|
|
auto ValidateRanges = [](MachineInstr *Start, MachineInstr *End,
|
|
ARMBasicBlockUtils *BBUtils, MachineLoop &ML) {
|
|
MachineBasicBlock *TgtBB = End->getOpcode() == ARM::t2LoopEnd
|
|
? End->getOperand(1).getMBB()
|
|
: End->getOperand(2).getMBB();
|
|
// TODO Maybe there's cases where the target doesn't have to be the header,
|
|
// but for now be safe and revert.
|
|
if (TgtBB != ML.getHeader()) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targeting header.\n");
|
|
return false;
|
|
}
|
|
|
|
// The WLS and LE instructions have 12-bits for the label offset. WLS
|
|
// requires a positive offset, while LE uses negative.
|
|
if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) ||
|
|
!BBUtils->isBBInRange(End, ML.getHeader(), 4094)) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n");
|
|
return false;
|
|
}
|
|
|
|
if (Start->getOpcode() == ARM::t2WhileLoopStartLR &&
|
|
(BBUtils->getOffsetOf(Start) >
|
|
BBUtils->getOffsetOf(Start->getOperand(2).getMBB()) ||
|
|
!BBUtils->isBBInRange(Start, Start->getOperand(2).getMBB(), 4094))) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n");
|
|
return false;
|
|
}
|
|
return true;
|
|
};
|
|
|
|
StartInsertPt = MachineBasicBlock::iterator(Start);
|
|
StartInsertBB = Start->getParent();
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Will insert LoopStart at "
|
|
<< *StartInsertPt);
|
|
|
|
Revert = !ValidateRanges(Start, End, BBUtils, ML);
|
|
CannotTailPredicate = !ValidateTailPredicate();
|
|
}
|
|
|
|
bool LowOverheadLoop::AddVCTP(MachineInstr *MI) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI);
|
|
if (VCTPs.empty()) {
|
|
VCTPs.push_back(MI);
|
|
return true;
|
|
}
|
|
|
|
// If we find another VCTP, check whether it uses the same value as the main VCTP.
|
|
// If it does, store it in the VCTPs set, else refuse it.
|
|
MachineInstr *Prev = VCTPs.back();
|
|
if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) ||
|
|
!RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg().asMCReg())) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching "
|
|
"definition from the main VCTP");
|
|
return false;
|
|
}
|
|
VCTPs.push_back(MI);
|
|
return true;
|
|
}
|
|
|
|
bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) {
|
|
if (CannotTailPredicate)
|
|
return false;
|
|
|
|
if (!shouldInspect(*MI))
|
|
return true;
|
|
|
|
if (MI->getOpcode() == ARM::MVE_VPSEL ||
|
|
MI->getOpcode() == ARM::MVE_VPNOT) {
|
|
// TODO: Allow VPSEL and VPNOT, we currently cannot because:
|
|
// 1) It will use the VPR as a predicate operand, but doesn't have to be
|
|
// instead a VPT block, which means we can assert while building up
|
|
// the VPT block because we don't find another VPT or VPST to being a new
|
|
// one.
|
|
// 2) VPSEL still requires a VPR operand even after tail predicating,
|
|
// which means we can't remove it unless there is another
|
|
// instruction, such as vcmp, that can provide the VPR def.
|
|
return false;
|
|
}
|
|
|
|
// Record all VCTPs and check that they're equivalent to one another.
|
|
if (isVCTP(MI) && !AddVCTP(MI))
|
|
return false;
|
|
|
|
// Inspect uses first so that any instructions that alter the VPR don't
|
|
// alter the predicate upon themselves.
|
|
const MCInstrDesc &MCID = MI->getDesc();
|
|
bool IsUse = false;
|
|
unsigned LastOpIdx = MI->getNumOperands() - 1;
|
|
for (auto &Op : enumerate(reverse(MCID.operands()))) {
|
|
const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index());
|
|
if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR)
|
|
continue;
|
|
|
|
if (ARM::isVpred(Op.value().OperandType)) {
|
|
VPTState::addInst(MI);
|
|
IsUse = true;
|
|
} else if (MI->getOpcode() != ARM::MVE_VPST) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// If we find an instruction that has been marked as not valid for tail
|
|
// predication, only allow the instruction if it's contained within a valid
|
|
// VPT block.
|
|
bool RequiresExplicitPredication =
|
|
(MCID.TSFlags & ARMII::ValidForTailPredication) == 0;
|
|
if (isDomainMVE(MI) && RequiresExplicitPredication) {
|
|
LLVM_DEBUG(if (!IsUse)
|
|
dbgs() << "ARM Loops: Can't tail predicate: " << *MI);
|
|
return IsUse;
|
|
}
|
|
|
|
// If the instruction is already explicitly predicated, then the conversion
|
|
// will be fine, but ensure that all store operations are predicated.
|
|
if (MI->mayStore())
|
|
return IsUse;
|
|
|
|
// If this instruction defines the VPR, update the predicate for the
|
|
// proceeding instructions.
|
|
if (isVectorPredicate(MI)) {
|
|
// Clear the existing predicate when we're not in VPT Active state,
|
|
// otherwise we add to it.
|
|
if (!isVectorPredicated(MI))
|
|
VPTState::resetPredicate(MI);
|
|
else
|
|
VPTState::addPredicate(MI);
|
|
}
|
|
|
|
// Finally once the predicate has been modified, we can start a new VPT
|
|
// block if necessary.
|
|
if (isVPTOpcode(MI->getOpcode()))
|
|
VPTState::CreateVPTBlock(MI);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) {
|
|
const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget());
|
|
if (!ST.hasLOB())
|
|
return false;
|
|
|
|
MF = &mf;
|
|
LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n");
|
|
|
|
MLI = &getAnalysis<MachineLoopInfo>();
|
|
RDA = &getAnalysis<ReachingDefAnalysis>();
|
|
MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness);
|
|
MRI = &MF->getRegInfo();
|
|
TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo());
|
|
TRI = ST.getRegisterInfo();
|
|
BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF));
|
|
BBUtils->computeAllBlockSizes();
|
|
BBUtils->adjustBBOffsetsAfter(&MF->front());
|
|
|
|
bool Changed = false;
|
|
for (auto ML : *MLI) {
|
|
if (ML->isOutermost())
|
|
Changed |= ProcessLoop(ML);
|
|
}
|
|
Changed |= RevertNonLoops();
|
|
return Changed;
|
|
}
|
|
|
|
bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) {
|
|
|
|
bool Changed = false;
|
|
|
|
// Process inner loops first.
|
|
for (auto I = ML->begin(), E = ML->end(); I != E; ++I)
|
|
Changed |= ProcessLoop(*I);
|
|
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n";
|
|
if (auto *Preheader = ML->getLoopPreheader())
|
|
dbgs() << " - " << Preheader->getName() << "\n";
|
|
else if (auto *Preheader = MLI->findLoopPreheader(ML))
|
|
dbgs() << " - " << Preheader->getName() << "\n";
|
|
else if (auto *Preheader = MLI->findLoopPreheader(ML, true))
|
|
dbgs() << " - " << Preheader->getName() << "\n";
|
|
for (auto *MBB : ML->getBlocks())
|
|
dbgs() << " - " << MBB->getName() << "\n";
|
|
);
|
|
|
|
// Search the given block for a loop start instruction. If one isn't found,
|
|
// and there's only one predecessor block, search that one too.
|
|
std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart =
|
|
[&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* {
|
|
for (auto &MI : *MBB) {
|
|
if (isLoopStart(MI))
|
|
return &MI;
|
|
}
|
|
if (MBB->pred_size() == 1)
|
|
return SearchForStart(*MBB->pred_begin());
|
|
return nullptr;
|
|
};
|
|
|
|
LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII);
|
|
// Search the preheader for the start intrinsic.
|
|
// FIXME: I don't see why we shouldn't be supporting multiple predecessors
|
|
// with potentially multiple set.loop.iterations, so we need to enable this.
|
|
if (LoLoop.Preheader)
|
|
LoLoop.Start = SearchForStart(LoLoop.Preheader);
|
|
else
|
|
return false;
|
|
|
|
// Find the low-overhead loop components and decide whether or not to fall
|
|
// back to a normal loop. Also look for a vctp instructions and decide
|
|
// whether we can convert that predicate using tail predication.
|
|
for (auto *MBB : reverse(ML->getBlocks())) {
|
|
for (auto &MI : *MBB) {
|
|
if (MI.isDebugValue())
|
|
continue;
|
|
else if (MI.getOpcode() == ARM::t2LoopDec)
|
|
LoLoop.Dec = &MI;
|
|
else if (MI.getOpcode() == ARM::t2LoopEnd)
|
|
LoLoop.End = &MI;
|
|
else if (MI.getOpcode() == ARM::t2LoopEndDec)
|
|
LoLoop.End = LoLoop.Dec = &MI;
|
|
else if (isLoopStart(MI))
|
|
LoLoop.Start = &MI;
|
|
else if (MI.getDesc().isCall()) {
|
|
// TODO: Though the call will require LE to execute again, does this
|
|
// mean we should revert? Always executing LE hopefully should be
|
|
// faster than performing a sub,cmp,br or even subs,br.
|
|
LoLoop.Revert = true;
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n");
|
|
} else {
|
|
// Record VPR defs and build up their corresponding vpt blocks.
|
|
// Check we know how to tail predicate any mve instructions.
|
|
LoLoop.AnalyseMVEInst(&MI);
|
|
}
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(LoLoop.dump());
|
|
if (!LoLoop.FoundAllComponents()) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n");
|
|
return false;
|
|
}
|
|
|
|
assert(LoLoop.Start->getOpcode() != ARM::t2WhileLoopStart &&
|
|
"Expected t2WhileLoopStart to be removed before regalloc!");
|
|
|
|
// Check that the only instruction using LoopDec is LoopEnd. This can only
|
|
// happen when the Dec and End are separate, not a single t2LoopEndDec.
|
|
// TODO: Check for copy chains that really have no effect.
|
|
if (LoLoop.Dec != LoLoop.End) {
|
|
SmallPtrSet<MachineInstr *, 2> Uses;
|
|
RDA->getReachingLocalUses(LoLoop.Dec, MCRegister::from(ARM::LR), Uses);
|
|
if (Uses.size() > 1 || !Uses.count(LoLoop.End)) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n");
|
|
LoLoop.Revert = true;
|
|
}
|
|
}
|
|
LoLoop.Validate(BBUtils.get());
|
|
Expand(LoLoop);
|
|
return true;
|
|
}
|
|
|
|
// WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a
|
|
// beq that branches to the exit branch.
|
|
// TODO: We could also try to generate a cbz if the value in LR is also in
|
|
// another low register.
|
|
void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI);
|
|
MachineBasicBlock *DestBB = MI->getOperand(2).getMBB();
|
|
unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
|
|
ARM::tBcc : ARM::t2Bcc;
|
|
|
|
RevertWhileLoopStartLR(MI, TII, BrOpc);
|
|
}
|
|
|
|
void ARMLowOverheadLoops::RevertDo(MachineInstr *MI) const {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to mov: " << *MI);
|
|
RevertDoLoopStart(MI, TII);
|
|
}
|
|
|
|
bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI);
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
SmallPtrSet<MachineInstr*, 1> Ignore;
|
|
for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) {
|
|
if (I->getOpcode() == ARM::t2LoopEnd) {
|
|
Ignore.insert(&*I);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS.
|
|
bool SetFlags =
|
|
RDA->isSafeToDefRegAt(MI, MCRegister::from(ARM::CPSR), Ignore);
|
|
|
|
llvm::RevertLoopDec(MI, TII, SetFlags);
|
|
return SetFlags;
|
|
}
|
|
|
|
// Generate a subs, or sub and cmp, and a branch instead of an LE.
|
|
void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI);
|
|
|
|
MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
|
|
unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
|
|
ARM::tBcc : ARM::t2Bcc;
|
|
|
|
llvm::RevertLoopEnd(MI, TII, BrOpc, SkipCmp);
|
|
}
|
|
|
|
// Generate a subs, or sub and cmp, and a branch instead of an LE.
|
|
void ARMLowOverheadLoops::RevertLoopEndDec(MachineInstr *MI) const {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to subs, br: " << *MI);
|
|
assert(MI->getOpcode() == ARM::t2LoopEndDec && "Expected a t2LoopEndDec!");
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::t2SUBri));
|
|
MIB.addDef(ARM::LR);
|
|
MIB.add(MI->getOperand(1));
|
|
MIB.addImm(1);
|
|
MIB.addImm(ARMCC::AL);
|
|
MIB.addReg(ARM::NoRegister);
|
|
MIB.addReg(ARM::CPSR);
|
|
MIB->getOperand(5).setIsDef(true);
|
|
|
|
MachineBasicBlock *DestBB = MI->getOperand(2).getMBB();
|
|
unsigned BrOpc =
|
|
BBUtils->isBBInRange(MI, DestBB, 254) ? ARM::tBcc : ARM::t2Bcc;
|
|
|
|
// Create bne
|
|
MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc));
|
|
MIB.add(MI->getOperand(2)); // branch target
|
|
MIB.addImm(ARMCC::NE); // condition code
|
|
MIB.addReg(ARM::CPSR);
|
|
|
|
MI->eraseFromParent();
|
|
}
|
|
|
|
// Perform dead code elimation on the loop iteration count setup expression.
|
|
// If we are tail-predicating, the number of elements to be processed is the
|
|
// operand of the VCTP instruction in the vector body, see getCount(), which is
|
|
// register $r3 in this example:
|
|
//
|
|
// $lr = big-itercount-expression
|
|
// ..
|
|
// $lr = t2DoLoopStart renamable $lr
|
|
// vector.body:
|
|
// ..
|
|
// $vpr = MVE_VCTP32 renamable $r3
|
|
// renamable $lr = t2LoopDec killed renamable $lr, 1
|
|
// t2LoopEnd renamable $lr, %vector.body
|
|
// tB %end
|
|
//
|
|
// What we would like achieve here is to replace the do-loop start pseudo
|
|
// instruction t2DoLoopStart with:
|
|
//
|
|
// $lr = MVE_DLSTP_32 killed renamable $r3
|
|
//
|
|
// Thus, $r3 which defines the number of elements, is written to $lr,
|
|
// and then we want to delete the whole chain that used to define $lr,
|
|
// see the comment below how this chain could look like.
|
|
//
|
|
void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) {
|
|
if (!LoLoop.IsTailPredicationLegal())
|
|
return;
|
|
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n");
|
|
|
|
MachineInstr *Def =
|
|
RDA->getMIOperand(LoLoop.Start, isDo(LoLoop.Start) ? 1 : 0);
|
|
if (!Def) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n");
|
|
return;
|
|
}
|
|
|
|
// Collect and remove the users of iteration count.
|
|
SmallPtrSet<MachineInstr*, 4> Killed = { LoLoop.Start, LoLoop.Dec,
|
|
LoLoop.End };
|
|
if (!TryRemove(Def, *RDA, LoLoop.ToRemove, Killed))
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n");
|
|
}
|
|
|
|
MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n");
|
|
// When using tail-predication, try to delete the dead code that was used to
|
|
// calculate the number of loop iterations.
|
|
IterationCountDCE(LoLoop);
|
|
|
|
MachineBasicBlock::iterator InsertPt = LoLoop.StartInsertPt;
|
|
MachineInstr *Start = LoLoop.Start;
|
|
MachineBasicBlock *MBB = LoLoop.StartInsertBB;
|
|
unsigned Opc = LoLoop.getStartOpcode();
|
|
MachineOperand &Count = LoLoop.getLoopStartOperand();
|
|
|
|
// A DLS lr, lr we needn't emit
|
|
MachineInstr* NewStart;
|
|
if (Opc == ARM::t2DLS && Count.isReg() && Count.getReg() == ARM::LR) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Didn't insert start: DLS lr, lr");
|
|
NewStart = nullptr;
|
|
} else {
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(*MBB, InsertPt, Start->getDebugLoc(), TII->get(Opc));
|
|
|
|
MIB.addDef(ARM::LR);
|
|
MIB.add(Count);
|
|
if (!isDo(Start))
|
|
MIB.add(Start->getOperand(2));
|
|
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB);
|
|
NewStart = &*MIB;
|
|
}
|
|
|
|
LoLoop.ToRemove.insert(Start);
|
|
return NewStart;
|
|
}
|
|
|
|
void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) {
|
|
auto RemovePredicate = [](MachineInstr *MI) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI);
|
|
if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) {
|
|
assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then &&
|
|
"Expected Then predicate!");
|
|
MI->getOperand(PIdx).setImm(ARMVCC::None);
|
|
MI->getOperand(PIdx+1).setReg(0);
|
|
} else
|
|
llvm_unreachable("trying to unpredicate a non-predicated instruction");
|
|
};
|
|
|
|
for (auto &Block : LoLoop.getVPTBlocks()) {
|
|
SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
|
|
|
|
auto ReplaceVCMPWithVPT = [&](MachineInstr *&TheVCMP, MachineInstr *At) {
|
|
assert(TheVCMP && "Replacing a removed or non-existent VCMP");
|
|
// Replace the VCMP with a VPT
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(*At->getParent(), At, At->getDebugLoc(),
|
|
TII->get(VCMPOpcodeToVPT(TheVCMP->getOpcode())));
|
|
MIB.addImm(ARMVCC::Then);
|
|
// Register one
|
|
MIB.add(TheVCMP->getOperand(1));
|
|
// Register two
|
|
MIB.add(TheVCMP->getOperand(2));
|
|
// The comparison code, e.g. ge, eq, lt
|
|
MIB.add(TheVCMP->getOperand(3));
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Combining with VCMP to VPT: " << *MIB);
|
|
LoLoop.BlockMasksToRecompute.insert(MIB.getInstr());
|
|
LoLoop.ToRemove.insert(TheVCMP);
|
|
TheVCMP = nullptr;
|
|
};
|
|
|
|
if (VPTState::isEntryPredicatedOnVCTP(Block, /*exclusive*/ true)) {
|
|
MachineInstr *VPST = Insts.front();
|
|
if (VPTState::hasUniformPredicate(Block)) {
|
|
// A vpt block starting with VPST, is only predicated upon vctp and has no
|
|
// internal vpr defs:
|
|
// - Remove vpst.
|
|
// - Unpredicate the remaining instructions.
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST);
|
|
for (unsigned i = 1; i < Insts.size(); ++i)
|
|
RemovePredicate(Insts[i]);
|
|
} else {
|
|
// The VPT block has a non-uniform predicate but it uses a vpst and its
|
|
// entry is guarded only by a vctp, which means we:
|
|
// - Need to remove the original vpst.
|
|
// - Then need to unpredicate any following instructions, until
|
|
// we come across the divergent vpr def.
|
|
// - Insert a new vpst to predicate the instruction(s) that following
|
|
// the divergent vpr def.
|
|
MachineInstr *Divergent = VPTState::getDivergent(Block);
|
|
auto DivergentNext = ++MachineBasicBlock::iterator(Divergent);
|
|
bool DivergentNextIsPredicated =
|
|
getVPTInstrPredicate(*DivergentNext) != ARMVCC::None;
|
|
|
|
for (auto I = ++MachineBasicBlock::iterator(VPST), E = DivergentNext;
|
|
I != E; ++I)
|
|
RemovePredicate(&*I);
|
|
|
|
// Check if the instruction defining vpr is a vcmp so it can be combined
|
|
// with the VPST This should be the divergent instruction
|
|
MachineInstr *VCMP =
|
|
VCMPOpcodeToVPT(Divergent->getOpcode()) != 0 ? Divergent : nullptr;
|
|
|
|
if (DivergentNextIsPredicated) {
|
|
// Insert a VPST at the divergent only if the next instruction
|
|
// would actually use it. A VCMP following a VPST can be
|
|
// merged into a VPT so do that instead if the VCMP exists.
|
|
if (!VCMP) {
|
|
// Create a VPST (with a null mask for now, we'll recompute it
|
|
// later)
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(*Divergent->getParent(), Divergent,
|
|
Divergent->getDebugLoc(), TII->get(ARM::MVE_VPST));
|
|
MIB.addImm(0);
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB);
|
|
LoLoop.BlockMasksToRecompute.insert(MIB.getInstr());
|
|
} else {
|
|
// No RDA checks are necessary here since the VPST would have been
|
|
// directly after the VCMP
|
|
ReplaceVCMPWithVPT(VCMP, VCMP);
|
|
}
|
|
}
|
|
}
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST);
|
|
LoLoop.ToRemove.insert(VPST);
|
|
} else if (Block.containsVCTP()) {
|
|
// The vctp will be removed, so either the entire block will be dead or
|
|
// the block mask of the vp(s)t will need to be recomputed.
|
|
MachineInstr *VPST = Insts.front();
|
|
if (Block.size() == 2) {
|
|
assert(VPST->getOpcode() == ARM::MVE_VPST &&
|
|
"Found a VPST in an otherwise empty vpt block");
|
|
LoLoop.ToRemove.insert(VPST);
|
|
} else
|
|
LoLoop.BlockMasksToRecompute.insert(VPST);
|
|
} else if (Insts.front()->getOpcode() == ARM::MVE_VPST) {
|
|
// If this block starts with a VPST then attempt to merge it with the
|
|
// preceeding un-merged VCMP into a VPT. This VCMP comes from a VPT
|
|
// block that no longer exists
|
|
MachineInstr *VPST = Insts.front();
|
|
auto Next = ++MachineBasicBlock::iterator(VPST);
|
|
assert(getVPTInstrPredicate(*Next) != ARMVCC::None &&
|
|
"The instruction after a VPST must be predicated");
|
|
(void)Next;
|
|
MachineInstr *VprDef = RDA->getUniqueReachingMIDef(VPST, ARM::VPR);
|
|
if (VprDef && VCMPOpcodeToVPT(VprDef->getOpcode()) &&
|
|
!LoLoop.ToRemove.contains(VprDef)) {
|
|
MachineInstr *VCMP = VprDef;
|
|
// The VCMP and VPST can only be merged if the VCMP's operands will have
|
|
// the same values at the VPST.
|
|
// If any of the instructions between the VCMP and VPST are predicated
|
|
// then a different code path is expected to have merged the VCMP and
|
|
// VPST already.
|
|
if (!std::any_of(++MachineBasicBlock::iterator(VCMP),
|
|
MachineBasicBlock::iterator(VPST), hasVPRUse) &&
|
|
RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(1).getReg()) &&
|
|
RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(2).getReg())) {
|
|
ReplaceVCMPWithVPT(VCMP, VPST);
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST);
|
|
LoLoop.ToRemove.insert(VPST);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end());
|
|
}
|
|
|
|
void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) {
|
|
|
|
// Combine the LoopDec and LoopEnd instructions into LE(TP).
|
|
auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) {
|
|
MachineInstr *End = LoLoop.End;
|
|
MachineBasicBlock *MBB = End->getParent();
|
|
unsigned Opc = LoLoop.IsTailPredicationLegal() ?
|
|
ARM::MVE_LETP : ARM::t2LEUpdate;
|
|
MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(),
|
|
TII->get(Opc));
|
|
MIB.addDef(ARM::LR);
|
|
unsigned Off = LoLoop.Dec == LoLoop.End ? 1 : 0;
|
|
MIB.add(End->getOperand(Off + 0));
|
|
MIB.add(End->getOperand(Off + 1));
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB);
|
|
LoLoop.ToRemove.insert(LoLoop.Dec);
|
|
LoLoop.ToRemove.insert(End);
|
|
return &*MIB;
|
|
};
|
|
|
|
// TODO: We should be able to automatically remove these branches before we
|
|
// get here - probably by teaching analyzeBranch about the pseudo
|
|
// instructions.
|
|
// If there is an unconditional branch, after I, that just branches to the
|
|
// next block, remove it.
|
|
auto RemoveDeadBranch = [](MachineInstr *I) {
|
|
MachineBasicBlock *BB = I->getParent();
|
|
MachineInstr *Terminator = &BB->instr_back();
|
|
if (Terminator->isUnconditionalBranch() && I != Terminator) {
|
|
MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB();
|
|
if (BB->isLayoutSuccessor(Succ)) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator);
|
|
Terminator->eraseFromParent();
|
|
}
|
|
}
|
|
};
|
|
|
|
if (LoLoop.Revert) {
|
|
if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStartLR)
|
|
RevertWhile(LoLoop.Start);
|
|
else
|
|
RevertDo(LoLoop.Start);
|
|
if (LoLoop.Dec == LoLoop.End)
|
|
RevertLoopEndDec(LoLoop.End);
|
|
else
|
|
RevertLoopEnd(LoLoop.End, RevertLoopDec(LoLoop.Dec));
|
|
} else {
|
|
LoLoop.Start = ExpandLoopStart(LoLoop);
|
|
if (LoLoop.Start)
|
|
RemoveDeadBranch(LoLoop.Start);
|
|
LoLoop.End = ExpandLoopEnd(LoLoop);
|
|
RemoveDeadBranch(LoLoop.End);
|
|
if (LoLoop.IsTailPredicationLegal())
|
|
ConvertVPTBlocks(LoLoop);
|
|
for (auto *I : LoLoop.ToRemove) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I);
|
|
I->eraseFromParent();
|
|
}
|
|
for (auto *I : LoLoop.BlockMasksToRecompute) {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I);
|
|
recomputeVPTBlockMask(*I);
|
|
LLVM_DEBUG(dbgs() << " ... done: " << *I);
|
|
}
|
|
}
|
|
|
|
PostOrderLoopTraversal DFS(LoLoop.ML, *MLI);
|
|
DFS.ProcessLoop();
|
|
const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder();
|
|
for (auto *MBB : PostOrder) {
|
|
recomputeLiveIns(*MBB);
|
|
// FIXME: For some reason, the live-in print order is non-deterministic for
|
|
// our tests and I can't out why... So just sort them.
|
|
MBB->sortUniqueLiveIns();
|
|
}
|
|
|
|
for (auto *MBB : reverse(PostOrder))
|
|
recomputeLivenessFlags(*MBB);
|
|
|
|
// We've moved, removed and inserted new instructions, so update RDA.
|
|
RDA->reset();
|
|
}
|
|
|
|
bool ARMLowOverheadLoops::RevertNonLoops() {
|
|
LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n");
|
|
bool Changed = false;
|
|
|
|
for (auto &MBB : *MF) {
|
|
SmallVector<MachineInstr*, 4> Starts;
|
|
SmallVector<MachineInstr*, 4> Decs;
|
|
SmallVector<MachineInstr*, 4> Ends;
|
|
SmallVector<MachineInstr *, 4> EndDecs;
|
|
|
|
for (auto &I : MBB) {
|
|
if (isLoopStart(I))
|
|
Starts.push_back(&I);
|
|
else if (I.getOpcode() == ARM::t2LoopDec)
|
|
Decs.push_back(&I);
|
|
else if (I.getOpcode() == ARM::t2LoopEnd)
|
|
Ends.push_back(&I);
|
|
else if (I.getOpcode() == ARM::t2LoopEndDec)
|
|
EndDecs.push_back(&I);
|
|
}
|
|
|
|
if (Starts.empty() && Decs.empty() && Ends.empty() && EndDecs.empty())
|
|
continue;
|
|
|
|
Changed = true;
|
|
|
|
for (auto *Start : Starts) {
|
|
if (Start->getOpcode() == ARM::t2WhileLoopStartLR)
|
|
RevertWhile(Start);
|
|
else
|
|
RevertDo(Start);
|
|
}
|
|
for (auto *Dec : Decs)
|
|
RevertLoopDec(Dec);
|
|
|
|
for (auto *End : Ends)
|
|
RevertLoopEnd(End);
|
|
for (auto *End : EndDecs)
|
|
RevertLoopEndDec(End);
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
FunctionPass *llvm::createARMLowOverheadLoopsPass() {
|
|
return new ARMLowOverheadLoops();
|
|
}
|