forked from OSchip/llvm-project
901 lines
34 KiB
C++
901 lines
34 KiB
C++
//===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file transforms calls of the current function (self recursion) followed
|
|
// by a return instruction with a branch to the entry of the function, creating
|
|
// a loop. This pass also implements the following extensions to the basic
|
|
// algorithm:
|
|
//
|
|
// 1. Trivial instructions between the call and return do not prevent the
|
|
// transformation from taking place, though currently the analysis cannot
|
|
// support moving any really useful instructions (only dead ones).
|
|
// 2. This pass transforms functions that are prevented from being tail
|
|
// recursive by an associative and commutative expression to use an
|
|
// accumulator variable, thus compiling the typical naive factorial or
|
|
// 'fib' implementation into efficient code.
|
|
// 3. TRE is performed if the function returns void, if the return
|
|
// returns the result returned by the call, or if the function returns a
|
|
// run-time constant on all exits from the function. It is possible, though
|
|
// unlikely, that the return returns something else (like constant 0), and
|
|
// can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in
|
|
// the function return the exact same value.
|
|
// 4. If it can prove that callees do not access their caller stack frame,
|
|
// they are marked as eligible for tail call elimination (by the code
|
|
// generator).
|
|
//
|
|
// There are several improvements that could be made:
|
|
//
|
|
// 1. If the function has any alloca instructions, these instructions will be
|
|
// moved out of the entry block of the function, causing them to be
|
|
// evaluated each time through the tail recursion. Safely keeping allocas
|
|
// in the entry block requires analysis to proves that the tail-called
|
|
// function does not read or write the stack object.
|
|
// 2. Tail recursion is only performed if the call immediately precedes the
|
|
// return instruction. It's possible that there could be a jump between
|
|
// the call and the return.
|
|
// 3. There can be intervening operations between the call and the return that
|
|
// prevent the TRE from occurring. For example, there could be GEP's and
|
|
// stores to memory that will not be read or written by the call. This
|
|
// requires some substantial analysis (such as with DSA) to prove safe to
|
|
// move ahead of the call, but doing so could allow many more TREs to be
|
|
// performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
|
|
// 4. The algorithm we use to detect if callees access their caller stack
|
|
// frames is very primitive.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/TailRecursionElimination.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/Analysis/CaptureTracking.h"
|
|
#include "llvm/Analysis/DomTreeUpdater.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/InlineCost.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/Loads.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/Analysis/PostDominators.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "tailcallelim"
|
|
|
|
STATISTIC(NumEliminated, "Number of tail calls removed");
|
|
STATISTIC(NumRetDuped, "Number of return duplicated");
|
|
STATISTIC(NumAccumAdded, "Number of accumulators introduced");
|
|
|
|
/// Scan the specified function for alloca instructions.
|
|
/// If it contains any dynamic allocas, returns false.
|
|
static bool canTRE(Function &F) {
|
|
// FIXME: The code generator produces really bad code when an 'escaping
|
|
// alloca' is changed from being a static alloca to being a dynamic alloca.
|
|
// Until this is resolved, disable this transformation if that would ever
|
|
// happen. This bug is PR962.
|
|
return llvm::all_of(instructions(F), [](Instruction &I) {
|
|
auto *AI = dyn_cast<AllocaInst>(&I);
|
|
return !AI || AI->isStaticAlloca();
|
|
});
|
|
}
|
|
|
|
namespace {
|
|
struct AllocaDerivedValueTracker {
|
|
// Start at a root value and walk its use-def chain to mark calls that use the
|
|
// value or a derived value in AllocaUsers, and places where it may escape in
|
|
// EscapePoints.
|
|
void walk(Value *Root) {
|
|
SmallVector<Use *, 32> Worklist;
|
|
SmallPtrSet<Use *, 32> Visited;
|
|
|
|
auto AddUsesToWorklist = [&](Value *V) {
|
|
for (auto &U : V->uses()) {
|
|
if (!Visited.insert(&U).second)
|
|
continue;
|
|
Worklist.push_back(&U);
|
|
}
|
|
};
|
|
|
|
AddUsesToWorklist(Root);
|
|
|
|
while (!Worklist.empty()) {
|
|
Use *U = Worklist.pop_back_val();
|
|
Instruction *I = cast<Instruction>(U->getUser());
|
|
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Call:
|
|
case Instruction::Invoke: {
|
|
auto &CB = cast<CallBase>(*I);
|
|
// If the alloca-derived argument is passed byval it is not an escape
|
|
// point, or a use of an alloca. Calling with byval copies the contents
|
|
// of the alloca into argument registers or stack slots, which exist
|
|
// beyond the lifetime of the current frame.
|
|
if (CB.isArgOperand(U) && CB.isByValArgument(CB.getArgOperandNo(U)))
|
|
continue;
|
|
bool IsNocapture =
|
|
CB.isDataOperand(U) && CB.doesNotCapture(CB.getDataOperandNo(U));
|
|
callUsesLocalStack(CB, IsNocapture);
|
|
if (IsNocapture) {
|
|
// If the alloca-derived argument is passed in as nocapture, then it
|
|
// can't propagate to the call's return. That would be capturing.
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
case Instruction::Load: {
|
|
// The result of a load is not alloca-derived (unless an alloca has
|
|
// otherwise escaped, but this is a local analysis).
|
|
continue;
|
|
}
|
|
case Instruction::Store: {
|
|
if (U->getOperandNo() == 0)
|
|
EscapePoints.insert(I);
|
|
continue; // Stores have no users to analyze.
|
|
}
|
|
case Instruction::BitCast:
|
|
case Instruction::GetElementPtr:
|
|
case Instruction::PHI:
|
|
case Instruction::Select:
|
|
case Instruction::AddrSpaceCast:
|
|
break;
|
|
default:
|
|
EscapePoints.insert(I);
|
|
break;
|
|
}
|
|
|
|
AddUsesToWorklist(I);
|
|
}
|
|
}
|
|
|
|
void callUsesLocalStack(CallBase &CB, bool IsNocapture) {
|
|
// Add it to the list of alloca users.
|
|
AllocaUsers.insert(&CB);
|
|
|
|
// If it's nocapture then it can't capture this alloca.
|
|
if (IsNocapture)
|
|
return;
|
|
|
|
// If it can write to memory, it can leak the alloca value.
|
|
if (!CB.onlyReadsMemory())
|
|
EscapePoints.insert(&CB);
|
|
}
|
|
|
|
SmallPtrSet<Instruction *, 32> AllocaUsers;
|
|
SmallPtrSet<Instruction *, 32> EscapePoints;
|
|
};
|
|
}
|
|
|
|
static bool markTails(Function &F, bool &AllCallsAreTailCalls,
|
|
OptimizationRemarkEmitter *ORE) {
|
|
if (F.callsFunctionThatReturnsTwice())
|
|
return false;
|
|
AllCallsAreTailCalls = true;
|
|
|
|
// The local stack holds all alloca instructions and all byval arguments.
|
|
AllocaDerivedValueTracker Tracker;
|
|
for (Argument &Arg : F.args()) {
|
|
if (Arg.hasByValAttr())
|
|
Tracker.walk(&Arg);
|
|
}
|
|
for (auto &BB : F) {
|
|
for (auto &I : BB)
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
|
|
Tracker.walk(AI);
|
|
}
|
|
|
|
bool Modified = false;
|
|
|
|
// Track whether a block is reachable after an alloca has escaped. Blocks that
|
|
// contain the escaping instruction will be marked as being visited without an
|
|
// escaped alloca, since that is how the block began.
|
|
enum VisitType {
|
|
UNVISITED,
|
|
UNESCAPED,
|
|
ESCAPED
|
|
};
|
|
DenseMap<BasicBlock *, VisitType> Visited;
|
|
|
|
// We propagate the fact that an alloca has escaped from block to successor.
|
|
// Visit the blocks that are propagating the escapedness first. To do this, we
|
|
// maintain two worklists.
|
|
SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
|
|
|
|
// We may enter a block and visit it thinking that no alloca has escaped yet,
|
|
// then see an escape point and go back around a loop edge and come back to
|
|
// the same block twice. Because of this, we defer setting tail on calls when
|
|
// we first encounter them in a block. Every entry in this list does not
|
|
// statically use an alloca via use-def chain analysis, but may find an alloca
|
|
// through other means if the block turns out to be reachable after an escape
|
|
// point.
|
|
SmallVector<CallInst *, 32> DeferredTails;
|
|
|
|
BasicBlock *BB = &F.getEntryBlock();
|
|
VisitType Escaped = UNESCAPED;
|
|
do {
|
|
for (auto &I : *BB) {
|
|
if (Tracker.EscapePoints.count(&I))
|
|
Escaped = ESCAPED;
|
|
|
|
CallInst *CI = dyn_cast<CallInst>(&I);
|
|
// A PseudoProbeInst has the IntrInaccessibleMemOnly tag hence it is
|
|
// considered accessing memory and will be marked as a tail call if we
|
|
// don't bail out here.
|
|
if (!CI || CI->isTailCall() || isa<DbgInfoIntrinsic>(&I) ||
|
|
isa<PseudoProbeInst>(&I))
|
|
continue;
|
|
|
|
bool IsNoTail = CI->isNoTailCall() || CI->hasOperandBundles();
|
|
|
|
if (!IsNoTail && CI->doesNotAccessMemory()) {
|
|
// A call to a readnone function whose arguments are all things computed
|
|
// outside this function can be marked tail. Even if you stored the
|
|
// alloca address into a global, a readnone function can't load the
|
|
// global anyhow.
|
|
//
|
|
// Note that this runs whether we know an alloca has escaped or not. If
|
|
// it has, then we can't trust Tracker.AllocaUsers to be accurate.
|
|
bool SafeToTail = true;
|
|
for (auto &Arg : CI->arg_operands()) {
|
|
if (isa<Constant>(Arg.getUser()))
|
|
continue;
|
|
if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
|
|
if (!A->hasByValAttr())
|
|
continue;
|
|
SafeToTail = false;
|
|
break;
|
|
}
|
|
if (SafeToTail) {
|
|
using namespace ore;
|
|
ORE->emit([&]() {
|
|
return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI)
|
|
<< "marked as tail call candidate (readnone)";
|
|
});
|
|
CI->setTailCall();
|
|
Modified = true;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) {
|
|
DeferredTails.push_back(CI);
|
|
} else {
|
|
AllCallsAreTailCalls = false;
|
|
}
|
|
}
|
|
|
|
for (auto *SuccBB : successors(BB)) {
|
|
auto &State = Visited[SuccBB];
|
|
if (State < Escaped) {
|
|
State = Escaped;
|
|
if (State == ESCAPED)
|
|
WorklistEscaped.push_back(SuccBB);
|
|
else
|
|
WorklistUnescaped.push_back(SuccBB);
|
|
}
|
|
}
|
|
|
|
if (!WorklistEscaped.empty()) {
|
|
BB = WorklistEscaped.pop_back_val();
|
|
Escaped = ESCAPED;
|
|
} else {
|
|
BB = nullptr;
|
|
while (!WorklistUnescaped.empty()) {
|
|
auto *NextBB = WorklistUnescaped.pop_back_val();
|
|
if (Visited[NextBB] == UNESCAPED) {
|
|
BB = NextBB;
|
|
Escaped = UNESCAPED;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
} while (BB);
|
|
|
|
for (CallInst *CI : DeferredTails) {
|
|
if (Visited[CI->getParent()] != ESCAPED) {
|
|
// If the escape point was part way through the block, calls after the
|
|
// escape point wouldn't have been put into DeferredTails.
|
|
LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n");
|
|
CI->setTailCall();
|
|
Modified = true;
|
|
} else {
|
|
AllCallsAreTailCalls = false;
|
|
}
|
|
}
|
|
|
|
return Modified;
|
|
}
|
|
|
|
/// Return true if it is safe to move the specified
|
|
/// instruction from after the call to before the call, assuming that all
|
|
/// instructions between the call and this instruction are movable.
|
|
///
|
|
static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) {
|
|
// FIXME: We can move load/store/call/free instructions above the call if the
|
|
// call does not mod/ref the memory location being processed.
|
|
if (I->mayHaveSideEffects()) // This also handles volatile loads.
|
|
return false;
|
|
|
|
if (LoadInst *L = dyn_cast<LoadInst>(I)) {
|
|
// Loads may always be moved above calls without side effects.
|
|
if (CI->mayHaveSideEffects()) {
|
|
// Non-volatile loads may be moved above a call with side effects if it
|
|
// does not write to memory and the load provably won't trap.
|
|
// Writes to memory only matter if they may alias the pointer
|
|
// being loaded from.
|
|
const DataLayout &DL = L->getModule()->getDataLayout();
|
|
if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) ||
|
|
!isSafeToLoadUnconditionally(L->getPointerOperand(), L->getType(),
|
|
L->getAlign(), DL, L))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Otherwise, if this is a side-effect free instruction, check to make sure
|
|
// that it does not use the return value of the call. If it doesn't use the
|
|
// return value of the call, it must only use things that are defined before
|
|
// the call, or movable instructions between the call and the instruction
|
|
// itself.
|
|
return !is_contained(I->operands(), CI);
|
|
}
|
|
|
|
static bool canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) {
|
|
if (!I->isAssociative() || !I->isCommutative())
|
|
return false;
|
|
|
|
assert(I->getNumOperands() == 2 &&
|
|
"Associative/commutative operations should have 2 args!");
|
|
|
|
// Exactly one operand should be the result of the call instruction.
|
|
if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
|
|
(I->getOperand(0) != CI && I->getOperand(1) != CI))
|
|
return false;
|
|
|
|
// The only user of this instruction we allow is a single return instruction.
|
|
if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static Instruction *firstNonDbg(BasicBlock::iterator I) {
|
|
while (isa<DbgInfoIntrinsic>(I))
|
|
++I;
|
|
return &*I;
|
|
}
|
|
|
|
namespace {
|
|
class TailRecursionEliminator {
|
|
Function &F;
|
|
const TargetTransformInfo *TTI;
|
|
AliasAnalysis *AA;
|
|
OptimizationRemarkEmitter *ORE;
|
|
DomTreeUpdater &DTU;
|
|
|
|
// The below are shared state we want to have available when eliminating any
|
|
// calls in the function. There values should be populated by
|
|
// createTailRecurseLoopHeader the first time we find a call we can eliminate.
|
|
BasicBlock *HeaderBB = nullptr;
|
|
SmallVector<PHINode *, 8> ArgumentPHIs;
|
|
bool RemovableCallsMustBeMarkedTail = false;
|
|
|
|
// PHI node to store our return value.
|
|
PHINode *RetPN = nullptr;
|
|
|
|
// i1 PHI node to track if we have a valid return value stored in RetPN.
|
|
PHINode *RetKnownPN = nullptr;
|
|
|
|
// Vector of select instructions we insereted. These selects use RetKnownPN
|
|
// to either propagate RetPN or select a new return value.
|
|
SmallVector<SelectInst *, 8> RetSelects;
|
|
|
|
// The below are shared state needed when performing accumulator recursion.
|
|
// There values should be populated by insertAccumulator the first time we
|
|
// find an elimination that requires an accumulator.
|
|
|
|
// PHI node to store our current accumulated value.
|
|
PHINode *AccPN = nullptr;
|
|
|
|
// The instruction doing the accumulating.
|
|
Instruction *AccumulatorRecursionInstr = nullptr;
|
|
|
|
TailRecursionEliminator(Function &F, const TargetTransformInfo *TTI,
|
|
AliasAnalysis *AA, OptimizationRemarkEmitter *ORE,
|
|
DomTreeUpdater &DTU)
|
|
: F(F), TTI(TTI), AA(AA), ORE(ORE), DTU(DTU) {}
|
|
|
|
CallInst *findTRECandidate(BasicBlock *BB,
|
|
bool CannotTailCallElimCallsMarkedTail);
|
|
|
|
void createTailRecurseLoopHeader(CallInst *CI);
|
|
|
|
void insertAccumulator(Instruction *AccRecInstr);
|
|
|
|
bool eliminateCall(CallInst *CI);
|
|
|
|
void cleanupAndFinalize();
|
|
|
|
bool processBlock(BasicBlock &BB, bool CannotTailCallElimCallsMarkedTail);
|
|
|
|
public:
|
|
static bool eliminate(Function &F, const TargetTransformInfo *TTI,
|
|
AliasAnalysis *AA, OptimizationRemarkEmitter *ORE,
|
|
DomTreeUpdater &DTU);
|
|
};
|
|
} // namespace
|
|
|
|
CallInst *TailRecursionEliminator::findTRECandidate(
|
|
BasicBlock *BB, bool CannotTailCallElimCallsMarkedTail) {
|
|
Instruction *TI = BB->getTerminator();
|
|
|
|
if (&BB->front() == TI) // Make sure there is something before the terminator.
|
|
return nullptr;
|
|
|
|
// Scan backwards from the return, checking to see if there is a tail call in
|
|
// this block. If so, set CI to it.
|
|
CallInst *CI = nullptr;
|
|
BasicBlock::iterator BBI(TI);
|
|
while (true) {
|
|
CI = dyn_cast<CallInst>(BBI);
|
|
if (CI && CI->getCalledFunction() == &F)
|
|
break;
|
|
|
|
if (BBI == BB->begin())
|
|
return nullptr; // Didn't find a potential tail call.
|
|
--BBI;
|
|
}
|
|
|
|
// If this call is marked as a tail call, and if there are dynamic allocas in
|
|
// the function, we cannot perform this optimization.
|
|
if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
|
|
return nullptr;
|
|
|
|
// As a special case, detect code like this:
|
|
// double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
|
|
// and disable this xform in this case, because the code generator will
|
|
// lower the call to fabs into inline code.
|
|
if (BB == &F.getEntryBlock() &&
|
|
firstNonDbg(BB->front().getIterator()) == CI &&
|
|
firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() &&
|
|
!TTI->isLoweredToCall(CI->getCalledFunction())) {
|
|
// A single-block function with just a call and a return. Check that
|
|
// the arguments match.
|
|
auto I = CI->arg_begin(), E = CI->arg_end();
|
|
Function::arg_iterator FI = F.arg_begin(), FE = F.arg_end();
|
|
for (; I != E && FI != FE; ++I, ++FI)
|
|
if (*I != &*FI) break;
|
|
if (I == E && FI == FE)
|
|
return nullptr;
|
|
}
|
|
|
|
return CI;
|
|
}
|
|
|
|
void TailRecursionEliminator::createTailRecurseLoopHeader(CallInst *CI) {
|
|
HeaderBB = &F.getEntryBlock();
|
|
BasicBlock *NewEntry = BasicBlock::Create(F.getContext(), "", &F, HeaderBB);
|
|
NewEntry->takeName(HeaderBB);
|
|
HeaderBB->setName("tailrecurse");
|
|
BranchInst *BI = BranchInst::Create(HeaderBB, NewEntry);
|
|
BI->setDebugLoc(CI->getDebugLoc());
|
|
|
|
// If this function has self recursive calls in the tail position where some
|
|
// are marked tail and some are not, only transform one flavor or another.
|
|
// We have to choose whether we move allocas in the entry block to the new
|
|
// entry block or not, so we can't make a good choice for both. We make this
|
|
// decision here based on whether the first call we found to remove is
|
|
// marked tail.
|
|
// NOTE: We could do slightly better here in the case that the function has
|
|
// no entry block allocas.
|
|
RemovableCallsMustBeMarkedTail = CI->isTailCall();
|
|
|
|
// If this tail call is marked 'tail' and if there are any allocas in the
|
|
// entry block, move them up to the new entry block.
|
|
if (RemovableCallsMustBeMarkedTail)
|
|
// Move all fixed sized allocas from HeaderBB to NewEntry.
|
|
for (BasicBlock::iterator OEBI = HeaderBB->begin(), E = HeaderBB->end(),
|
|
NEBI = NewEntry->begin();
|
|
OEBI != E;)
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
|
|
if (isa<ConstantInt>(AI->getArraySize()))
|
|
AI->moveBefore(&*NEBI);
|
|
|
|
// Now that we have created a new block, which jumps to the entry
|
|
// block, insert a PHI node for each argument of the function.
|
|
// For now, we initialize each PHI to only have the real arguments
|
|
// which are passed in.
|
|
Instruction *InsertPos = &HeaderBB->front();
|
|
for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
|
|
PHINode *PN =
|
|
PHINode::Create(I->getType(), 2, I->getName() + ".tr", InsertPos);
|
|
I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
|
|
PN->addIncoming(&*I, NewEntry);
|
|
ArgumentPHIs.push_back(PN);
|
|
}
|
|
|
|
// If the function doen't return void, create the RetPN and RetKnownPN PHI
|
|
// nodes to track our return value. We initialize RetPN with undef and
|
|
// RetKnownPN with false since we can't know our return value at function
|
|
// entry.
|
|
Type *RetType = F.getReturnType();
|
|
if (!RetType->isVoidTy()) {
|
|
Type *BoolType = Type::getInt1Ty(F.getContext());
|
|
RetPN = PHINode::Create(RetType, 2, "ret.tr", InsertPos);
|
|
RetKnownPN = PHINode::Create(BoolType, 2, "ret.known.tr", InsertPos);
|
|
|
|
RetPN->addIncoming(UndefValue::get(RetType), NewEntry);
|
|
RetKnownPN->addIncoming(ConstantInt::getFalse(BoolType), NewEntry);
|
|
}
|
|
|
|
// The entry block was changed from HeaderBB to NewEntry.
|
|
// The forward DominatorTree needs to be recalculated when the EntryBB is
|
|
// changed. In this corner-case we recalculate the entire tree.
|
|
DTU.recalculate(*NewEntry->getParent());
|
|
}
|
|
|
|
void TailRecursionEliminator::insertAccumulator(Instruction *AccRecInstr) {
|
|
assert(!AccPN && "Trying to insert multiple accumulators");
|
|
|
|
AccumulatorRecursionInstr = AccRecInstr;
|
|
|
|
// Start by inserting a new PHI node for the accumulator.
|
|
pred_iterator PB = pred_begin(HeaderBB), PE = pred_end(HeaderBB);
|
|
AccPN = PHINode::Create(F.getReturnType(), std::distance(PB, PE) + 1,
|
|
"accumulator.tr", &HeaderBB->front());
|
|
|
|
// Loop over all of the predecessors of the tail recursion block. For the
|
|
// real entry into the function we seed the PHI with the identity constant for
|
|
// the accumulation operation. For any other existing branches to this block
|
|
// (due to other tail recursions eliminated) the accumulator is not modified.
|
|
// Because we haven't added the branch in the current block to HeaderBB yet,
|
|
// it will not show up as a predecessor.
|
|
for (pred_iterator PI = PB; PI != PE; ++PI) {
|
|
BasicBlock *P = *PI;
|
|
if (P == &F.getEntryBlock()) {
|
|
Constant *Identity = ConstantExpr::getBinOpIdentity(
|
|
AccRecInstr->getOpcode(), AccRecInstr->getType());
|
|
AccPN->addIncoming(Identity, P);
|
|
} else {
|
|
AccPN->addIncoming(AccPN, P);
|
|
}
|
|
}
|
|
|
|
++NumAccumAdded;
|
|
}
|
|
|
|
bool TailRecursionEliminator::eliminateCall(CallInst *CI) {
|
|
ReturnInst *Ret = cast<ReturnInst>(CI->getParent()->getTerminator());
|
|
|
|
// Ok, we found a potential tail call. We can currently only transform the
|
|
// tail call if all of the instructions between the call and the return are
|
|
// movable to above the call itself, leaving the call next to the return.
|
|
// Check that this is the case now.
|
|
Instruction *AccRecInstr = nullptr;
|
|
BasicBlock::iterator BBI(CI);
|
|
for (++BBI; &*BBI != Ret; ++BBI) {
|
|
if (canMoveAboveCall(&*BBI, CI, AA))
|
|
continue;
|
|
|
|
// If we can't move the instruction above the call, it might be because it
|
|
// is an associative and commutative operation that could be transformed
|
|
// using accumulator recursion elimination. Check to see if this is the
|
|
// case, and if so, remember which instruction accumulates for later.
|
|
if (AccPN || !canTransformAccumulatorRecursion(&*BBI, CI))
|
|
return false; // We cannot eliminate the tail recursion!
|
|
|
|
// Yes, this is accumulator recursion. Remember which instruction
|
|
// accumulates.
|
|
AccRecInstr = &*BBI;
|
|
}
|
|
|
|
BasicBlock *BB = Ret->getParent();
|
|
|
|
using namespace ore;
|
|
ORE->emit([&]() {
|
|
return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI)
|
|
<< "transforming tail recursion into loop";
|
|
});
|
|
|
|
// OK! We can transform this tail call. If this is the first one found,
|
|
// create the new entry block, allowing us to branch back to the old entry.
|
|
if (!HeaderBB)
|
|
createTailRecurseLoopHeader(CI);
|
|
|
|
if (RemovableCallsMustBeMarkedTail && !CI->isTailCall())
|
|
return false;
|
|
|
|
// Ok, now that we know we have a pseudo-entry block WITH all of the
|
|
// required PHI nodes, add entries into the PHI node for the actual
|
|
// parameters passed into the tail-recursive call.
|
|
for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
|
|
ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
|
|
|
|
if (AccRecInstr) {
|
|
insertAccumulator(AccRecInstr);
|
|
|
|
// Rewrite the accumulator recursion instruction so that it does not use
|
|
// the result of the call anymore, instead, use the PHI node we just
|
|
// inserted.
|
|
AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
|
|
}
|
|
|
|
// Update our return value tracking
|
|
if (RetPN) {
|
|
if (Ret->getReturnValue() == CI || AccRecInstr) {
|
|
// Defer selecting a return value
|
|
RetPN->addIncoming(RetPN, BB);
|
|
RetKnownPN->addIncoming(RetKnownPN, BB);
|
|
} else {
|
|
// We found a return value we want to use, insert a select instruction to
|
|
// select it if we don't already know what our return value will be and
|
|
// store the result in our return value PHI node.
|
|
SelectInst *SI = SelectInst::Create(
|
|
RetKnownPN, RetPN, Ret->getReturnValue(), "current.ret.tr", Ret);
|
|
RetSelects.push_back(SI);
|
|
|
|
RetPN->addIncoming(SI, BB);
|
|
RetKnownPN->addIncoming(ConstantInt::getTrue(RetKnownPN->getType()), BB);
|
|
}
|
|
|
|
if (AccPN)
|
|
AccPN->addIncoming(AccRecInstr ? AccRecInstr : AccPN, BB);
|
|
}
|
|
|
|
// Now that all of the PHI nodes are in place, remove the call and
|
|
// ret instructions, replacing them with an unconditional branch.
|
|
BranchInst *NewBI = BranchInst::Create(HeaderBB, Ret);
|
|
NewBI->setDebugLoc(CI->getDebugLoc());
|
|
|
|
BB->getInstList().erase(Ret); // Remove return.
|
|
BB->getInstList().erase(CI); // Remove call.
|
|
DTU.applyUpdates({{DominatorTree::Insert, BB, HeaderBB}});
|
|
++NumEliminated;
|
|
return true;
|
|
}
|
|
|
|
void TailRecursionEliminator::cleanupAndFinalize() {
|
|
// If we eliminated any tail recursions, it's possible that we inserted some
|
|
// silly PHI nodes which just merge an initial value (the incoming operand)
|
|
// with themselves. Check to see if we did and clean up our mess if so. This
|
|
// occurs when a function passes an argument straight through to its tail
|
|
// call.
|
|
for (PHINode *PN : ArgumentPHIs) {
|
|
// If the PHI Node is a dynamic constant, replace it with the value it is.
|
|
if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) {
|
|
PN->replaceAllUsesWith(PNV);
|
|
PN->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
if (RetPN) {
|
|
if (RetSelects.empty()) {
|
|
// If we didn't insert any select instructions, then we know we didn't
|
|
// store a return value and we can remove the PHI nodes we inserted.
|
|
RetPN->dropAllReferences();
|
|
RetPN->eraseFromParent();
|
|
|
|
RetKnownPN->dropAllReferences();
|
|
RetKnownPN->eraseFromParent();
|
|
|
|
if (AccPN) {
|
|
// We need to insert a copy of our accumulator instruction before any
|
|
// return in the function, and return its result instead.
|
|
Instruction *AccRecInstr = AccumulatorRecursionInstr;
|
|
for (BasicBlock &BB : F) {
|
|
ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator());
|
|
if (!RI)
|
|
continue;
|
|
|
|
Instruction *AccRecInstrNew = AccRecInstr->clone();
|
|
AccRecInstrNew->setName("accumulator.ret.tr");
|
|
AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN,
|
|
RI->getOperand(0));
|
|
AccRecInstrNew->insertBefore(RI);
|
|
RI->setOperand(0, AccRecInstrNew);
|
|
}
|
|
}
|
|
} else {
|
|
// We need to insert a select instruction before any return left in the
|
|
// function to select our stored return value if we have one.
|
|
for (BasicBlock &BB : F) {
|
|
ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator());
|
|
if (!RI)
|
|
continue;
|
|
|
|
SelectInst *SI = SelectInst::Create(
|
|
RetKnownPN, RetPN, RI->getOperand(0), "current.ret.tr", RI);
|
|
RetSelects.push_back(SI);
|
|
RI->setOperand(0, SI);
|
|
}
|
|
|
|
if (AccPN) {
|
|
// We need to insert a copy of our accumulator instruction before any
|
|
// of the selects we inserted, and select its result instead.
|
|
Instruction *AccRecInstr = AccumulatorRecursionInstr;
|
|
for (SelectInst *SI : RetSelects) {
|
|
Instruction *AccRecInstrNew = AccRecInstr->clone();
|
|
AccRecInstrNew->setName("accumulator.ret.tr");
|
|
AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN,
|
|
SI->getFalseValue());
|
|
AccRecInstrNew->insertBefore(SI);
|
|
SI->setFalseValue(AccRecInstrNew);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool TailRecursionEliminator::processBlock(
|
|
BasicBlock &BB, bool CannotTailCallElimCallsMarkedTail) {
|
|
Instruction *TI = BB.getTerminator();
|
|
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
|
|
if (BI->isConditional())
|
|
return false;
|
|
|
|
BasicBlock *Succ = BI->getSuccessor(0);
|
|
ReturnInst *Ret = dyn_cast<ReturnInst>(Succ->getFirstNonPHIOrDbg(true));
|
|
|
|
if (!Ret)
|
|
return false;
|
|
|
|
CallInst *CI = findTRECandidate(&BB, CannotTailCallElimCallsMarkedTail);
|
|
|
|
if (!CI)
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "FOLDING: " << *Succ
|
|
<< "INTO UNCOND BRANCH PRED: " << BB);
|
|
FoldReturnIntoUncondBranch(Ret, Succ, &BB, &DTU);
|
|
++NumRetDuped;
|
|
|
|
// If all predecessors of Succ have been eliminated by
|
|
// FoldReturnIntoUncondBranch, delete it. It is important to empty it,
|
|
// because the ret instruction in there is still using a value which
|
|
// eliminateCall will attempt to remove. This block can only contain
|
|
// instructions that can't have uses, therefore it is safe to remove.
|
|
if (pred_empty(Succ))
|
|
DTU.deleteBB(Succ);
|
|
|
|
eliminateCall(CI);
|
|
return true;
|
|
} else if (isa<ReturnInst>(TI)) {
|
|
CallInst *CI = findTRECandidate(&BB, CannotTailCallElimCallsMarkedTail);
|
|
|
|
if (CI)
|
|
return eliminateCall(CI);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool TailRecursionEliminator::eliminate(Function &F,
|
|
const TargetTransformInfo *TTI,
|
|
AliasAnalysis *AA,
|
|
OptimizationRemarkEmitter *ORE,
|
|
DomTreeUpdater &DTU) {
|
|
if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
|
|
return false;
|
|
|
|
bool MadeChange = false;
|
|
bool AllCallsAreTailCalls = false;
|
|
MadeChange |= markTails(F, AllCallsAreTailCalls, ORE);
|
|
if (!AllCallsAreTailCalls)
|
|
return MadeChange;
|
|
|
|
// If this function is a varargs function, we won't be able to PHI the args
|
|
// right, so don't even try to convert it...
|
|
if (F.getFunctionType()->isVarArg())
|
|
return MadeChange;
|
|
|
|
// If false, we cannot perform TRE on tail calls marked with the 'tail'
|
|
// attribute, because doing so would cause the stack size to increase (real
|
|
// TRE would deallocate variable sized allocas, TRE doesn't).
|
|
bool CanTRETailMarkedCall = canTRE(F);
|
|
|
|
// Change any tail recursive calls to loops.
|
|
TailRecursionEliminator TRE(F, TTI, AA, ORE, DTU);
|
|
|
|
for (BasicBlock &BB : F)
|
|
MadeChange |= TRE.processBlock(BB, !CanTRETailMarkedCall);
|
|
|
|
TRE.cleanupAndFinalize();
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
namespace {
|
|
struct TailCallElim : public FunctionPass {
|
|
static char ID; // Pass identification, replacement for typeid
|
|
TailCallElim() : FunctionPass(ID) {
|
|
initializeTailCallElimPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
|
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<PostDominatorTreeWrapperPass>();
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
if (skipFunction(F))
|
|
return false;
|
|
|
|
auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
|
|
auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
|
|
auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
|
|
auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
|
|
// There is no noticable performance difference here between Lazy and Eager
|
|
// UpdateStrategy based on some test results. It is feasible to switch the
|
|
// UpdateStrategy to Lazy if we find it profitable later.
|
|
DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
|
|
|
|
return TailRecursionEliminator::eliminate(
|
|
F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
|
|
&getAnalysis<AAResultsWrapperPass>().getAAResults(),
|
|
&getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), DTU);
|
|
}
|
|
};
|
|
}
|
|
|
|
char TailCallElim::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination",
|
|
false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
|
|
INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination",
|
|
false, false)
|
|
|
|
// Public interface to the TailCallElimination pass
|
|
FunctionPass *llvm::createTailCallEliminationPass() {
|
|
return new TailCallElim();
|
|
}
|
|
|
|
PreservedAnalyses TailCallElimPass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
|
|
TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
|
|
AliasAnalysis &AA = AM.getResult<AAManager>(F);
|
|
auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
|
|
auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
|
|
auto *PDT = AM.getCachedResult<PostDominatorTreeAnalysis>(F);
|
|
// There is no noticable performance difference here between Lazy and Eager
|
|
// UpdateStrategy based on some test results. It is feasible to switch the
|
|
// UpdateStrategy to Lazy if we find it profitable later.
|
|
DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
|
|
bool Changed = TailRecursionEliminator::eliminate(F, &TTI, &AA, &ORE, DTU);
|
|
|
|
if (!Changed)
|
|
return PreservedAnalyses::all();
|
|
PreservedAnalyses PA;
|
|
PA.preserve<GlobalsAA>();
|
|
PA.preserve<DominatorTreeAnalysis>();
|
|
PA.preserve<PostDominatorTreeAnalysis>();
|
|
return PA;
|
|
}
|