llvm-project/polly
Tobias Grosser 595ec0d0e3 ClooG: Make sure ambigous schedules do not introduce complicated code
Cloog continued to split the domains even after the scattering. This lead to
complicated code.

llvm-svn: 146033
2011-12-07 11:03:48 +00:00
..
autoconf configure: Add gmp_inc when checking for CLooG 2011-10-04 06:55:03 +00:00
cmake Add initial version of Polly 2011-04-29 06:27:02 +00:00
docs Add initial version of Polly 2011-04-29 06:27:02 +00:00
include JScop: Allow to update the context 2011-11-15 11:38:44 +00:00
lib ClooG: Make sure ambigous schedules do not introduce complicated code 2011-12-07 11:03:48 +00:00
test ClooG: Make sure ambigous schedules do not introduce complicated code 2011-12-07 11:03:48 +00:00
tools Add initial version of Polly 2011-04-29 06:27:02 +00:00
utils Update isl. 2011-12-06 10:48:32 +00:00
www www: Document how to run 'make polly-test' for autoconf build 2011-11-22 19:40:34 +00:00
CMakeLists.txt Buildsystem: Add -no-rtti 2011-06-30 19:50:04 +00:00
CREDITS.txt (Test commit for polly) 2011-07-16 13:30:03 +00:00
LICENSE.txt Add initial version of Polly 2011-04-29 06:27:02 +00:00
Makefile Add initial version of Polly 2011-04-29 06:27:02 +00:00
Makefile.common.in Add initial version of Polly 2011-04-29 06:27:02 +00:00
Makefile.config.in Buildsystem: Add -no-rtti 2011-06-30 19:50:04 +00:00
README Remove some empty lines 2011-10-04 06:56:36 +00:00
configure configure: Add gmp_inc when checking for CLooG 2011-10-04 06:55:03 +00:00

README

Polly - Polyhedral optimizations for LLVM

Polly uses a mathematical representation, the polyhedral model, to represent and
transform loops and other control flow structures. Using an abstract
representation it is possible to reason about transformations in a more general
way and to use highly optimized linear programming libraries to figure out the
optimal loop structure. These transformations can be used to do constant
propagation through arrays, remove dead loop iterations, optimize loops for
cache locality, optimize arrays, apply advanced automatic parallelization, drive
vectorization, or they can be used to do software pipelining.