llvm-project/compiler-rt/lib/scudo/scudo_utils.cpp

134 lines
3.6 KiB
C++

//===-- scudo_utils.cpp -----------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// Platform specific utility functions.
///
//===----------------------------------------------------------------------===//
#include "scudo_utils.h"
#include <errno.h>
#include <fcntl.h>
#include <stdarg.h>
#include <unistd.h>
#include <cstring>
// TODO(kostyak): remove __sanitizer *Printf uses in favor for our own less
// complicated string formatting code. The following is a
// temporary workaround to be able to use __sanitizer::VSNPrintf.
namespace __sanitizer {
extern int VSNPrintf(char *buff, int buff_length, const char *format,
va_list args);
} // namespace __sanitizer
namespace __scudo {
FORMAT(1, 2)
void dieWithMessage(const char *Format, ...) {
// Our messages are tiny, 128 characters is more than enough.
char Message[128];
va_list Args;
va_start(Args, Format);
__sanitizer::VSNPrintf(Message, sizeof(Message), Format, Args);
va_end(Args);
RawWrite(Message);
Die();
}
typedef struct {
u32 Eax;
u32 Ebx;
u32 Ecx;
u32 Edx;
} CPUIDInfo;
static void getCPUID(CPUIDInfo *info, u32 leaf, u32 subleaf)
{
asm volatile("cpuid"
: "=a" (info->Eax), "=b" (info->Ebx), "=c" (info->Ecx), "=d" (info->Edx)
: "a" (leaf), "c" (subleaf)
);
}
// Returns true is the CPU is a "GenuineIntel" or "AuthenticAMD"
static bool isSupportedCPU()
{
CPUIDInfo Info;
getCPUID(&Info, 0, 0);
if (memcmp(reinterpret_cast<char *>(&Info.Ebx), "Genu", 4) == 0 &&
memcmp(reinterpret_cast<char *>(&Info.Edx), "ineI", 4) == 0 &&
memcmp(reinterpret_cast<char *>(&Info.Ecx), "ntel", 4) == 0) {
return true;
}
if (memcmp(reinterpret_cast<char *>(&Info.Ebx), "Auth", 4) == 0 &&
memcmp(reinterpret_cast<char *>(&Info.Edx), "enti", 4) == 0 &&
memcmp(reinterpret_cast<char *>(&Info.Ecx), "cAMD", 4) == 0) {
return true;
}
return false;
}
bool testCPUFeature(CPUFeature feature)
{
static bool InfoInitialized = false;
static CPUIDInfo CPUInfo = {};
if (InfoInitialized == false) {
if (isSupportedCPU() == true)
getCPUID(&CPUInfo, 1, 0);
else
UNIMPLEMENTED();
InfoInitialized = true;
}
switch (feature) {
case SSE4_2:
return ((CPUInfo.Ecx >> 20) & 0x1) != 0;
default:
break;
}
return false;
}
// readRetry will attempt to read Count bytes from the Fd specified, and if
// interrupted will retry to read additional bytes to reach Count.
static ssize_t readRetry(int Fd, u8 *Buffer, size_t Count) {
ssize_t AmountRead = 0;
while (static_cast<size_t>(AmountRead) < Count) {
ssize_t Result = read(Fd, Buffer + AmountRead, Count - AmountRead);
if (Result > 0)
AmountRead += Result;
else if (!Result)
break;
else if (errno != EINTR) {
AmountRead = -1;
break;
}
}
return AmountRead;
}
// Default constructor for Xorshift128Plus seeds the state with /dev/urandom
Xorshift128Plus::Xorshift128Plus() {
int Fd = open("/dev/urandom", O_RDONLY);
bool Success = readRetry(Fd, reinterpret_cast<u8 *>(&State_0_),
sizeof(State_0_)) == sizeof(State_0_);
Success &= readRetry(Fd, reinterpret_cast<u8 *>(&State_1_),
sizeof(State_1_)) == sizeof(State_1_);
close(Fd);
if (!Success) {
dieWithMessage("ERROR: failed to read enough data from /dev/urandom.\n");
}
}
} // namespace __scudo