llvm-project/lldb/source/Symbol/ClangASTContext.cpp

6423 lines
251 KiB
C++

//===-- ClangASTContext.cpp -------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Symbol/ClangASTContext.h"
// C Includes
// C++ Includes
#include <string>
// Other libraries and framework includes
// Clang headers like to use NDEBUG inside of them to enable/disable debug
// releated features using "#ifndef NDEBUG" preprocessor blocks to do one thing
// or another. This is bad because it means that if clang was built in release
// mode, it assumes that you are building in release mode which is not always
// the case. You can end up with functions that are defined as empty in header
// files when NDEBUG is not defined, and this can cause link errors with the
// clang .a files that you have since you might be missing functions in the .a
// file. So we have to define NDEBUG when including clang headers to avoid any
// mismatches. This is covered by rdar://problem/8691220
#if !defined(NDEBUG) && !defined(LLVM_NDEBUG_OFF)
#define LLDB_DEFINED_NDEBUG_FOR_CLANG
#define NDEBUG
// Need to include assert.h so it is as clang would expect it to be (disabled)
#include <assert.h>
#endif
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTImporter.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/Type.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/FileSystemOptions.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/TargetOptions.h"
#include "clang/Frontend/FrontendOptions.h"
#include "clang/Frontend/LangStandard.h"
#ifdef LLDB_DEFINED_NDEBUG_FOR_CLANG
#undef NDEBUG
#undef LLDB_DEFINED_NDEBUG_FOR_CLANG
// Need to re-include assert.h so it is as _we_ would expect it to be (enabled)
#include <assert.h>
#endif
#include "lldb/Core/ArchSpec.h"
#include "lldb/Core/dwarf.h"
#include "lldb/Core/Flags.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/RegularExpression.h"
#include "lldb/Expression/ASTDumper.h"
#include "lldb/Symbol/ClangExternalASTSourceCommon.h"
#include "lldb/Symbol/VerifyDecl.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/ObjCLanguageRuntime.h"
#include <stdio.h>
using namespace lldb;
using namespace lldb_private;
using namespace llvm;
using namespace clang;
static bool
GetCompleteQualType (clang::ASTContext *ast, clang::QualType qual_type, bool allow_completion = true)
{
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::ConstantArray:
{
const clang::ArrayType *array_type = dyn_cast<clang::ArrayType>(qual_type.getTypePtr());
if (array_type)
return GetCompleteQualType (ast, array_type->getElementType(), allow_completion);
}
break;
case clang::Type::Record:
case clang::Type::Enum:
{
const clang::TagType *tag_type = dyn_cast<clang::TagType>(qual_type.getTypePtr());
if (tag_type)
{
clang::TagDecl *tag_decl = tag_type->getDecl();
if (tag_decl)
{
if (tag_decl->isCompleteDefinition())
return true;
if (!allow_completion)
return false;
if (tag_decl->hasExternalLexicalStorage())
{
if (ast)
{
ExternalASTSource *external_ast_source = ast->getExternalSource();
if (external_ast_source)
{
external_ast_source->CompleteType(tag_decl);
return !tag_type->isIncompleteType();
}
}
}
return false;
}
}
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
{
const clang::ObjCObjectType *objc_class_type = dyn_cast<clang::ObjCObjectType>(qual_type);
if (objc_class_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
// We currently can't complete objective C types through the newly added ASTContext
// because it only supports TagDecl objects right now...
if (class_interface_decl)
{
if (class_interface_decl->getDefinition())
return true;
if (!allow_completion)
return false;
if (class_interface_decl->hasExternalLexicalStorage())
{
if (ast)
{
ExternalASTSource *external_ast_source = ast->getExternalSource();
if (external_ast_source)
{
external_ast_source->CompleteType (class_interface_decl);
return !objc_class_type->isIncompleteType();
}
}
}
return false;
}
}
}
break;
case clang::Type::Typedef:
return GetCompleteQualType (ast, cast<TypedefType>(qual_type)->getDecl()->getUnderlyingType(), allow_completion);
case clang::Type::Elaborated:
return GetCompleteQualType (ast, cast<ElaboratedType>(qual_type)->getNamedType(), allow_completion);
default:
break;
}
return true;
}
static AccessSpecifier
ConvertAccessTypeToAccessSpecifier (AccessType access)
{
switch (access)
{
default: break;
case eAccessNone: return AS_none;
case eAccessPublic: return AS_public;
case eAccessPrivate: return AS_private;
case eAccessProtected: return AS_protected;
}
return AS_none;
}
static ObjCIvarDecl::AccessControl
ConvertAccessTypeToObjCIvarAccessControl (AccessType access)
{
switch (access)
{
default: break;
case eAccessNone: return ObjCIvarDecl::None;
case eAccessPublic: return ObjCIvarDecl::Public;
case eAccessPrivate: return ObjCIvarDecl::Private;
case eAccessProtected: return ObjCIvarDecl::Protected;
case eAccessPackage: return ObjCIvarDecl::Package;
}
return ObjCIvarDecl::None;
}
static void
ParseLangArgs
(
LangOptions &Opts,
InputKind IK
)
{
// FIXME: Cleanup per-file based stuff.
// Set some properties which depend soley on the input kind; it would be nice
// to move these to the language standard, and have the driver resolve the
// input kind + language standard.
if (IK == IK_Asm) {
Opts.AsmPreprocessor = 1;
} else if (IK == IK_ObjC ||
IK == IK_ObjCXX ||
IK == IK_PreprocessedObjC ||
IK == IK_PreprocessedObjCXX) {
Opts.ObjC1 = Opts.ObjC2 = 1;
}
LangStandard::Kind LangStd = LangStandard::lang_unspecified;
if (LangStd == LangStandard::lang_unspecified) {
// Based on the base language, pick one.
switch (IK) {
case IK_None:
case IK_AST:
case IK_LLVM_IR:
assert (!"Invalid input kind!");
case IK_OpenCL:
LangStd = LangStandard::lang_opencl;
break;
case IK_CUDA:
LangStd = LangStandard::lang_cuda;
break;
case IK_Asm:
case IK_C:
case IK_PreprocessedC:
case IK_ObjC:
case IK_PreprocessedObjC:
LangStd = LangStandard::lang_gnu99;
break;
case IK_CXX:
case IK_PreprocessedCXX:
case IK_ObjCXX:
case IK_PreprocessedObjCXX:
LangStd = LangStandard::lang_gnucxx98;
break;
}
}
const LangStandard &Std = LangStandard::getLangStandardForKind(LangStd);
Opts.BCPLComment = Std.hasBCPLComments();
Opts.C99 = Std.isC99();
Opts.CPlusPlus = Std.isCPlusPlus();
Opts.CPlusPlus0x = Std.isCPlusPlus0x();
Opts.Digraphs = Std.hasDigraphs();
Opts.GNUMode = Std.isGNUMode();
Opts.GNUInline = !Std.isC99();
Opts.HexFloats = Std.hasHexFloats();
Opts.ImplicitInt = Std.hasImplicitInt();
// OpenCL has some additional defaults.
if (LangStd == LangStandard::lang_opencl) {
Opts.OpenCL = 1;
Opts.AltiVec = 1;
Opts.CXXOperatorNames = 1;
Opts.LaxVectorConversions = 1;
}
// OpenCL and C++ both have bool, true, false keywords.
Opts.Bool = Opts.OpenCL || Opts.CPlusPlus;
// if (Opts.CPlusPlus)
// Opts.CXXOperatorNames = !Args.hasArg(OPT_fno_operator_names);
//
// if (Args.hasArg(OPT_fobjc_gc_only))
// Opts.setGCMode(LangOptions::GCOnly);
// else if (Args.hasArg(OPT_fobjc_gc))
// Opts.setGCMode(LangOptions::HybridGC);
//
// if (Args.hasArg(OPT_print_ivar_layout))
// Opts.ObjCGCBitmapPrint = 1;
//
// if (Args.hasArg(OPT_faltivec))
// Opts.AltiVec = 1;
//
// if (Args.hasArg(OPT_pthread))
// Opts.POSIXThreads = 1;
//
// llvm::StringRef Vis = getLastArgValue(Args, OPT_fvisibility,
// "default");
// if (Vis == "default")
Opts.setVisibilityMode(DefaultVisibility);
// else if (Vis == "hidden")
// Opts.setVisibilityMode(LangOptions::Hidden);
// else if (Vis == "protected")
// Opts.setVisibilityMode(LangOptions::Protected);
// else
// Diags.Report(diag::err_drv_invalid_value)
// << Args.getLastArg(OPT_fvisibility)->getAsString(Args) << Vis;
// Opts.OverflowChecking = Args.hasArg(OPT_ftrapv);
// Mimicing gcc's behavior, trigraphs are only enabled if -trigraphs
// is specified, or -std is set to a conforming mode.
Opts.Trigraphs = !Opts.GNUMode;
// if (Args.hasArg(OPT_trigraphs))
// Opts.Trigraphs = 1;
//
// Opts.DollarIdents = Args.hasFlag(OPT_fdollars_in_identifiers,
// OPT_fno_dollars_in_identifiers,
// !Opts.AsmPreprocessor);
// Opts.PascalStrings = Args.hasArg(OPT_fpascal_strings);
// Opts.Microsoft = Args.hasArg(OPT_fms_extensions);
// Opts.WritableStrings = Args.hasArg(OPT_fwritable_strings);
// if (Args.hasArg(OPT_fno_lax_vector_conversions))
// Opts.LaxVectorConversions = 0;
// Opts.Exceptions = Args.hasArg(OPT_fexceptions);
// Opts.RTTI = !Args.hasArg(OPT_fno_rtti);
// Opts.Blocks = Args.hasArg(OPT_fblocks);
// Opts.CharIsSigned = !Args.hasArg(OPT_fno_signed_char);
// Opts.ShortWChar = Args.hasArg(OPT_fshort_wchar);
// Opts.Freestanding = Args.hasArg(OPT_ffreestanding);
// Opts.NoBuiltin = Args.hasArg(OPT_fno_builtin) || Opts.Freestanding;
// Opts.AssumeSaneOperatorNew = !Args.hasArg(OPT_fno_assume_sane_operator_new);
// Opts.HeinousExtensions = Args.hasArg(OPT_fheinous_gnu_extensions);
// Opts.AccessControl = Args.hasArg(OPT_faccess_control);
// Opts.ElideConstructors = !Args.hasArg(OPT_fno_elide_constructors);
// Opts.MathErrno = !Args.hasArg(OPT_fno_math_errno);
// Opts.InstantiationDepth = getLastArgIntValue(Args, OPT_ftemplate_depth, 99,
// Diags);
// Opts.NeXTRuntime = !Args.hasArg(OPT_fgnu_runtime);
// Opts.ObjCConstantStringClass = getLastArgValue(Args,
// OPT_fconstant_string_class);
// Opts.ObjCNonFragileABI = Args.hasArg(OPT_fobjc_nonfragile_abi);
// Opts.CatchUndefined = Args.hasArg(OPT_fcatch_undefined_behavior);
// Opts.EmitAllDecls = Args.hasArg(OPT_femit_all_decls);
// Opts.PICLevel = getLastArgIntValue(Args, OPT_pic_level, 0, Diags);
// Opts.Static = Args.hasArg(OPT_static_define);
Opts.OptimizeSize = 0;
// FIXME: Eliminate this dependency.
// unsigned Opt =
// Args.hasArg(OPT_Os) ? 2 : getLastArgIntValue(Args, OPT_O, 0, Diags);
// Opts.Optimize = Opt != 0;
unsigned Opt = 0;
// This is the __NO_INLINE__ define, which just depends on things like the
// optimization level and -fno-inline, not actually whether the backend has
// inlining enabled.
//
// FIXME: This is affected by other options (-fno-inline).
Opts.NoInline = !Opt;
// unsigned SSP = getLastArgIntValue(Args, OPT_stack_protector, 0, Diags);
// switch (SSP) {
// default:
// Diags.Report(diag::err_drv_invalid_value)
// << Args.getLastArg(OPT_stack_protector)->getAsString(Args) << SSP;
// break;
// case 0: Opts.setStackProtectorMode(LangOptions::SSPOff); break;
// case 1: Opts.setStackProtectorMode(LangOptions::SSPOn); break;
// case 2: Opts.setStackProtectorMode(LangOptions::SSPReq); break;
// }
}
ClangASTContext::ClangASTContext (const char *target_triple) :
m_target_triple(),
m_ast_ap(),
m_language_options_ap(),
m_source_manager_ap(),
m_diagnostics_engine_ap(),
m_target_options_ap(),
m_target_info_ap(),
m_identifier_table_ap(),
m_selector_table_ap(),
m_builtins_ap(),
m_callback_tag_decl (NULL),
m_callback_objc_decl (NULL),
m_callback_baton (NULL)
{
if (target_triple && target_triple[0])
SetTargetTriple (target_triple);
}
//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
ClangASTContext::~ClangASTContext()
{
m_builtins_ap.reset();
m_selector_table_ap.reset();
m_identifier_table_ap.reset();
m_target_info_ap.reset();
m_target_options_ap.reset();
m_diagnostics_engine_ap.reset();
m_source_manager_ap.reset();
m_language_options_ap.reset();
m_ast_ap.reset();
}
void
ClangASTContext::Clear()
{
m_ast_ap.reset();
m_language_options_ap.reset();
m_source_manager_ap.reset();
m_diagnostics_engine_ap.reset();
m_target_options_ap.reset();
m_target_info_ap.reset();
m_identifier_table_ap.reset();
m_selector_table_ap.reset();
m_builtins_ap.reset();
}
const char *
ClangASTContext::GetTargetTriple ()
{
return m_target_triple.c_str();
}
void
ClangASTContext::SetTargetTriple (const char *target_triple)
{
Clear();
m_target_triple.assign(target_triple);
}
void
ClangASTContext::SetArchitecture (const ArchSpec &arch)
{
SetTargetTriple(arch.GetTriple().str().c_str());
}
bool
ClangASTContext::HasExternalSource ()
{
ASTContext *ast = getASTContext();
if (ast)
return ast->getExternalSource () != NULL;
return false;
}
void
ClangASTContext::SetExternalSource (llvm::OwningPtr<ExternalASTSource> &ast_source_ap)
{
ASTContext *ast = getASTContext();
if (ast)
{
ast->setExternalSource (ast_source_ap);
ast->getTranslationUnitDecl()->setHasExternalLexicalStorage(true);
//ast->getTranslationUnitDecl()->setHasExternalVisibleStorage(true);
}
}
void
ClangASTContext::RemoveExternalSource ()
{
ASTContext *ast = getASTContext();
if (ast)
{
llvm::OwningPtr<ExternalASTSource> empty_ast_source_ap;
ast->setExternalSource (empty_ast_source_ap);
ast->getTranslationUnitDecl()->setHasExternalLexicalStorage(false);
//ast->getTranslationUnitDecl()->setHasExternalVisibleStorage(false);
}
}
ASTContext *
ClangASTContext::getASTContext()
{
if (m_ast_ap.get() == NULL)
{
m_ast_ap.reset(new ASTContext (*getLanguageOptions(),
*getSourceManager(),
getTargetInfo(),
*getIdentifierTable(),
*getSelectorTable(),
*getBuiltinContext(),
0));
if ((m_callback_tag_decl || m_callback_objc_decl) && m_callback_baton)
{
m_ast_ap->getTranslationUnitDecl()->setHasExternalLexicalStorage();
//m_ast_ap->getTranslationUnitDecl()->setHasExternalVisibleStorage();
}
m_ast_ap->getDiagnostics().setClient(getDiagnosticConsumer(), false);
}
return m_ast_ap.get();
}
Builtin::Context *
ClangASTContext::getBuiltinContext()
{
if (m_builtins_ap.get() == NULL)
m_builtins_ap.reset (new Builtin::Context());
return m_builtins_ap.get();
}
IdentifierTable *
ClangASTContext::getIdentifierTable()
{
if (m_identifier_table_ap.get() == NULL)
m_identifier_table_ap.reset(new IdentifierTable (*ClangASTContext::getLanguageOptions(), NULL));
return m_identifier_table_ap.get();
}
LangOptions *
ClangASTContext::getLanguageOptions()
{
if (m_language_options_ap.get() == NULL)
{
m_language_options_ap.reset(new LangOptions());
ParseLangArgs(*m_language_options_ap, IK_ObjCXX);
// InitializeLangOptions(*m_language_options_ap, IK_ObjCXX);
}
return m_language_options_ap.get();
}
SelectorTable *
ClangASTContext::getSelectorTable()
{
if (m_selector_table_ap.get() == NULL)
m_selector_table_ap.reset (new SelectorTable());
return m_selector_table_ap.get();
}
clang::FileManager *
ClangASTContext::getFileManager()
{
if (m_file_manager_ap.get() == NULL)
{
clang::FileSystemOptions file_system_options;
m_file_manager_ap.reset(new clang::FileManager(file_system_options));
}
return m_file_manager_ap.get();
}
clang::SourceManager *
ClangASTContext::getSourceManager()
{
if (m_source_manager_ap.get() == NULL)
m_source_manager_ap.reset(new clang::SourceManager(*getDiagnosticsEngine(), *getFileManager()));
return m_source_manager_ap.get();
}
clang::DiagnosticsEngine *
ClangASTContext::getDiagnosticsEngine()
{
if (m_diagnostics_engine_ap.get() == NULL)
{
llvm::IntrusiveRefCntPtr<DiagnosticIDs> diag_id_sp(new DiagnosticIDs());
m_diagnostics_engine_ap.reset(new DiagnosticsEngine(diag_id_sp));
}
return m_diagnostics_engine_ap.get();
}
class NullDiagnosticConsumer : public DiagnosticConsumer
{
public:
NullDiagnosticConsumer ()
{
m_log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS);
}
void HandleDiagnostic (DiagnosticsEngine::Level DiagLevel, const Diagnostic &info)
{
if (m_log)
{
llvm::SmallVector<char, 32> diag_str(10);
info.FormatDiagnostic(diag_str);
diag_str.push_back('\0');
m_log->Printf("Compiler diagnostic: %s\n", diag_str.data());
}
}
DiagnosticConsumer *clone (DiagnosticsEngine &Diags) const
{
return new NullDiagnosticConsumer ();
}
private:
LogSP m_log;
};
DiagnosticConsumer *
ClangASTContext::getDiagnosticConsumer()
{
if (m_diagnostic_consumer_ap.get() == NULL)
m_diagnostic_consumer_ap.reset(new NullDiagnosticConsumer);
return m_diagnostic_consumer_ap.get();
}
TargetOptions *
ClangASTContext::getTargetOptions()
{
if (m_target_options_ap.get() == NULL && !m_target_triple.empty())
{
m_target_options_ap.reset (new TargetOptions());
if (m_target_options_ap.get())
m_target_options_ap->Triple = m_target_triple;
}
return m_target_options_ap.get();
}
TargetInfo *
ClangASTContext::getTargetInfo()
{
// target_triple should be something like "x86_64-apple-macosx"
if (m_target_info_ap.get() == NULL && !m_target_triple.empty())
m_target_info_ap.reset (TargetInfo::CreateTargetInfo(*getDiagnosticsEngine(), *getTargetOptions()));
return m_target_info_ap.get();
}
#pragma mark Basic Types
static inline bool
QualTypeMatchesBitSize(const uint64_t bit_size, ASTContext *ast, QualType qual_type)
{
uint64_t qual_type_bit_size = ast->getTypeSize(qual_type);
if (qual_type_bit_size == bit_size)
return true;
return false;
}
clang_type_t
ClangASTContext::GetBuiltinTypeForEncodingAndBitSize (Encoding encoding, uint32_t bit_size)
{
ASTContext *ast = getASTContext();
assert (ast != NULL);
return GetBuiltinTypeForEncodingAndBitSize (ast, encoding, bit_size);
}
clang_type_t
ClangASTContext::GetBuiltinTypeForEncodingAndBitSize (ASTContext *ast, Encoding encoding, uint32_t bit_size)
{
if (!ast)
return NULL;
switch (encoding)
{
case eEncodingInvalid:
if (QualTypeMatchesBitSize (bit_size, ast, ast->VoidPtrTy))
return ast->VoidPtrTy.getAsOpaquePtr();
break;
case eEncodingUint:
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedCharTy))
return ast->UnsignedCharTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedShortTy))
return ast->UnsignedShortTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedIntTy))
return ast->UnsignedIntTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedLongTy))
return ast->UnsignedLongTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedLongLongTy))
return ast->UnsignedLongLongTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedInt128Ty))
return ast->UnsignedInt128Ty.getAsOpaquePtr();
break;
case eEncodingSint:
if (QualTypeMatchesBitSize (bit_size, ast, ast->CharTy))
return ast->CharTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast, ast->ShortTy))
return ast->ShortTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast, ast->IntTy))
return ast->IntTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast, ast->LongTy))
return ast->LongTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast, ast->LongLongTy))
return ast->LongLongTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast, ast->Int128Ty))
return ast->Int128Ty.getAsOpaquePtr();
break;
case eEncodingIEEE754:
if (QualTypeMatchesBitSize (bit_size, ast, ast->FloatTy))
return ast->FloatTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast, ast->DoubleTy))
return ast->DoubleTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast, ast->LongDoubleTy))
return ast->LongDoubleTy.getAsOpaquePtr();
break;
case eEncodingVector:
// Sanity check that bit_size is a multiple of 8's.
if (bit_size && !(bit_size & 0x7u))
return ast->getExtVectorType (ast->UnsignedCharTy, bit_size/8).getAsOpaquePtr();
break;
default:
break;
}
return NULL;
}
clang_type_t
ClangASTContext::GetBuiltinTypeForDWARFEncodingAndBitSize (const char *type_name, uint32_t dw_ate, uint32_t bit_size)
{
ASTContext *ast = getASTContext();
#define streq(a,b) strcmp(a,b) == 0
assert (ast != NULL);
if (ast)
{
switch (dw_ate)
{
default:
break;
case DW_ATE_address:
if (QualTypeMatchesBitSize (bit_size, ast, ast->VoidPtrTy))
return ast->VoidPtrTy.getAsOpaquePtr();
break;
case DW_ATE_boolean:
if (QualTypeMatchesBitSize (bit_size, ast, ast->BoolTy))
return ast->BoolTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedCharTy))
return ast->UnsignedCharTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedShortTy))
return ast->UnsignedShortTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedIntTy))
return ast->UnsignedIntTy.getAsOpaquePtr();
break;
case DW_ATE_lo_user:
// This has been seen to mean DW_AT_complex_integer
if (type_name)
{
if (::strstr(type_name, "complex"))
{
clang_type_t complex_int_clang_type = GetBuiltinTypeForDWARFEncodingAndBitSize ("int", DW_ATE_signed, bit_size/2);
return ast->getComplexType (QualType::getFromOpaquePtr(complex_int_clang_type)).getAsOpaquePtr();
}
}
break;
case DW_ATE_complex_float:
if (QualTypeMatchesBitSize (bit_size, ast, ast->FloatComplexTy))
return ast->FloatComplexTy.getAsOpaquePtr();
else if (QualTypeMatchesBitSize (bit_size, ast, ast->DoubleComplexTy))
return ast->DoubleComplexTy.getAsOpaquePtr();
else if (QualTypeMatchesBitSize (bit_size, ast, ast->LongDoubleComplexTy))
return ast->LongDoubleComplexTy.getAsOpaquePtr();
else
{
clang_type_t complex_float_clang_type = GetBuiltinTypeForDWARFEncodingAndBitSize ("float", DW_ATE_float, bit_size/2);
return ast->getComplexType (QualType::getFromOpaquePtr(complex_float_clang_type)).getAsOpaquePtr();
}
break;
case DW_ATE_float:
if (QualTypeMatchesBitSize (bit_size, ast, ast->FloatTy))
return ast->FloatTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast, ast->DoubleTy))
return ast->DoubleTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast, ast->LongDoubleTy))
return ast->LongDoubleTy.getAsOpaquePtr();
break;
case DW_ATE_signed:
if (type_name)
{
if (streq(type_name, "wchar_t") &&
QualTypeMatchesBitSize (bit_size, ast, ast->WCharTy))
return ast->WCharTy.getAsOpaquePtr();
if (streq(type_name, "void") &&
QualTypeMatchesBitSize (bit_size, ast, ast->VoidTy))
return ast->VoidTy.getAsOpaquePtr();
if (strstr(type_name, "long long") &&
QualTypeMatchesBitSize (bit_size, ast, ast->LongLongTy))
return ast->LongLongTy.getAsOpaquePtr();
if (strstr(type_name, "long") &&
QualTypeMatchesBitSize (bit_size, ast, ast->LongTy))
return ast->LongTy.getAsOpaquePtr();
if (strstr(type_name, "short") &&
QualTypeMatchesBitSize (bit_size, ast, ast->ShortTy))
return ast->ShortTy.getAsOpaquePtr();
if (strstr(type_name, "char"))
{
if (QualTypeMatchesBitSize (bit_size, ast, ast->CharTy))
return ast->CharTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast, ast->SignedCharTy))
return ast->SignedCharTy.getAsOpaquePtr();
}
if (strstr(type_name, "int"))
{
if (QualTypeMatchesBitSize (bit_size, ast, ast->IntTy))
return ast->IntTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast, ast->Int128Ty))
return ast->Int128Ty.getAsOpaquePtr();
}
}
// We weren't able to match up a type name, just search by size
if (QualTypeMatchesBitSize (bit_size, ast, ast->CharTy))
return ast->CharTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast, ast->ShortTy))
return ast->ShortTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast, ast->IntTy))
return ast->IntTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast, ast->LongTy))
return ast->LongTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast, ast->LongLongTy))
return ast->LongLongTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast, ast->Int128Ty))
return ast->Int128Ty.getAsOpaquePtr();
break;
case DW_ATE_signed_char:
if (type_name)
{
if (streq(type_name, "signed char"))
{
if (QualTypeMatchesBitSize (bit_size, ast, ast->SignedCharTy))
return ast->SignedCharTy.getAsOpaquePtr();
}
}
if (QualTypeMatchesBitSize (bit_size, ast, ast->CharTy))
return ast->CharTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast, ast->SignedCharTy))
return ast->SignedCharTy.getAsOpaquePtr();
break;
case DW_ATE_unsigned:
if (type_name)
{
if (strstr(type_name, "long long"))
{
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedLongLongTy))
return ast->UnsignedLongLongTy.getAsOpaquePtr();
}
else if (strstr(type_name, "long"))
{
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedLongTy))
return ast->UnsignedLongTy.getAsOpaquePtr();
}
else if (strstr(type_name, "short"))
{
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedShortTy))
return ast->UnsignedShortTy.getAsOpaquePtr();
}
else if (strstr(type_name, "char"))
{
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedCharTy))
return ast->UnsignedCharTy.getAsOpaquePtr();
}
else if (strstr(type_name, "int"))
{
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedIntTy))
return ast->UnsignedIntTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedInt128Ty))
return ast->UnsignedInt128Ty.getAsOpaquePtr();
}
}
// We weren't able to match up a type name, just search by size
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedCharTy))
return ast->UnsignedCharTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedShortTy))
return ast->UnsignedShortTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedIntTy))
return ast->UnsignedIntTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedLongTy))
return ast->UnsignedLongTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedLongLongTy))
return ast->UnsignedLongLongTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedInt128Ty))
return ast->UnsignedInt128Ty.getAsOpaquePtr();
break;
case DW_ATE_unsigned_char:
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedCharTy))
return ast->UnsignedCharTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedShortTy))
return ast->UnsignedShortTy.getAsOpaquePtr();
break;
case DW_ATE_imaginary_float:
break;
case DW_ATE_UTF:
if (type_name)
{
if (streq(type_name, "char16_t"))
{
return ast->Char16Ty.getAsOpaquePtr();
}
else if (streq(type_name, "char32_t"))
{
return ast->Char32Ty.getAsOpaquePtr();
}
}
break;
}
}
// This assert should fire for anything that we don't catch above so we know
// to fix any issues we run into.
if (type_name)
{
Host::SystemLog (Host::eSystemLogError, "error: need to add support for DW_TAG_base_type '%s' encoded with DW_ATE = 0x%x, bit_size = %u\n", type_name, dw_ate, bit_size);
}
else
{
Host::SystemLog (Host::eSystemLogError, "error: need to add support for DW_TAG_base_type encoded with DW_ATE = 0x%x, bit_size = %u\n", dw_ate, bit_size);
}
return NULL;
}
clang_type_t
ClangASTContext::GetBuiltInType_void(ASTContext *ast)
{
return ast->VoidTy.getAsOpaquePtr();
}
clang_type_t
ClangASTContext::GetBuiltInType_bool()
{
return getASTContext()->BoolTy.getAsOpaquePtr();
}
clang_type_t
ClangASTContext::GetBuiltInType_objc_id()
{
return getASTContext()->getObjCIdType().getAsOpaquePtr();
}
clang_type_t
ClangASTContext::GetBuiltInType_objc_Class()
{
return getASTContext()->getObjCClassType().getAsOpaquePtr();
}
clang_type_t
ClangASTContext::GetBuiltInType_objc_selector()
{
return getASTContext()->getObjCSelType().getAsOpaquePtr();
}
clang_type_t
ClangASTContext::GetUnknownAnyType(clang::ASTContext *ast)
{
return ast->UnknownAnyTy.getAsOpaquePtr();
}
clang_type_t
ClangASTContext::GetCStringType (bool is_const)
{
QualType char_type(getASTContext()->CharTy);
if (is_const)
char_type.addConst();
return getASTContext()->getPointerType(char_type).getAsOpaquePtr();
}
clang_type_t
ClangASTContext::GetVoidType()
{
return GetVoidType(getASTContext());
}
clang_type_t
ClangASTContext::GetVoidType(ASTContext *ast)
{
return ast->VoidTy.getAsOpaquePtr();
}
clang_type_t
ClangASTContext::GetVoidPtrType (bool is_const)
{
return GetVoidPtrType(getASTContext(), is_const);
}
clang_type_t
ClangASTContext::GetVoidPtrType (ASTContext *ast, bool is_const)
{
QualType void_ptr_type(ast->VoidPtrTy);
if (is_const)
void_ptr_type.addConst();
return void_ptr_type.getAsOpaquePtr();
}
clang::DeclContext *
ClangASTContext::GetTranslationUnitDecl (clang::ASTContext *ast)
{
return ast->getTranslationUnitDecl();
}
clang_type_t
ClangASTContext::CopyType (ASTContext *dst_ast,
ASTContext *src_ast,
clang_type_t clang_type)
{
FileSystemOptions file_system_options;
FileManager file_manager (file_system_options);
ASTImporter importer(*dst_ast, file_manager,
*src_ast, file_manager,
false);
QualType src (QualType::getFromOpaquePtr(clang_type));
QualType dst (importer.Import(src));
return dst.getAsOpaquePtr();
}
clang::Decl *
ClangASTContext::CopyDecl (ASTContext *dst_ast,
ASTContext *src_ast,
clang::Decl *source_decl)
{
FileSystemOptions file_system_options;
FileManager file_manager (file_system_options);
ASTImporter importer(*dst_ast, file_manager,
*src_ast, file_manager,
false);
return importer.Import(source_decl);
}
bool
ClangASTContext::AreTypesSame (ASTContext *ast,
clang_type_t type1,
clang_type_t type2,
bool ignore_qualifiers)
{
if (type1 == type2)
return true;
QualType type1_qual = QualType::getFromOpaquePtr(type1);
QualType type2_qual = QualType::getFromOpaquePtr(type2);
if (ignore_qualifiers)
{
type1_qual = type1_qual.getUnqualifiedType();
type2_qual = type2_qual.getUnqualifiedType();
}
return ast->hasSameType (type1_qual,
type2_qual);
}
#pragma mark CVR modifiers
clang_type_t
ClangASTContext::AddConstModifier (clang_type_t clang_type)
{
if (clang_type)
{
QualType result(QualType::getFromOpaquePtr(clang_type));
result.addConst();
return result.getAsOpaquePtr();
}
return NULL;
}
clang_type_t
ClangASTContext::AddRestrictModifier (clang_type_t clang_type)
{
if (clang_type)
{
QualType result(QualType::getFromOpaquePtr(clang_type));
result.getQualifiers().setRestrict (true);
return result.getAsOpaquePtr();
}
return NULL;
}
clang_type_t
ClangASTContext::AddVolatileModifier (clang_type_t clang_type)
{
if (clang_type)
{
QualType result(QualType::getFromOpaquePtr(clang_type));
result.getQualifiers().setVolatile (true);
return result.getAsOpaquePtr();
}
return NULL;
}
clang_type_t
ClangASTContext::GetTypeForDecl (TagDecl *decl)
{
// No need to call the getASTContext() accessor (which can create the AST
// if it isn't created yet, because we can't have created a decl in this
// AST if our AST didn't already exist...
if (m_ast_ap.get())
return m_ast_ap->getTagDeclType(decl).getAsOpaquePtr();
return NULL;
}
clang_type_t
ClangASTContext::GetTypeForDecl (ObjCInterfaceDecl *decl)
{
// No need to call the getASTContext() accessor (which can create the AST
// if it isn't created yet, because we can't have created a decl in this
// AST if our AST didn't already exist...
if (m_ast_ap.get())
return m_ast_ap->getObjCInterfaceType(decl).getAsOpaquePtr();
return NULL;
}
#pragma mark Structure, Unions, Classes
clang_type_t
ClangASTContext::CreateRecordType (DeclContext *decl_ctx, AccessType access_type, const char *name, int kind, LanguageType language, uint64_t metadata)
{
ASTContext *ast = getASTContext();
assert (ast != NULL);
if (decl_ctx == NULL)
decl_ctx = ast->getTranslationUnitDecl();
if (language == eLanguageTypeObjC || language == eLanguageTypeObjC_plus_plus)
{
bool isForwardDecl = true;
bool isInternal = false;
return CreateObjCClass (name, decl_ctx, isForwardDecl, isInternal, metadata);
}
// NOTE: Eventually CXXRecordDecl will be merged back into RecordDecl and
// we will need to update this code. I was told to currently always use
// the CXXRecordDecl class since we often don't know from debug information
// if something is struct or a class, so we default to always use the more
// complete definition just in case.
CXXRecordDecl *decl = CXXRecordDecl::Create (*ast,
(TagDecl::TagKind)kind,
decl_ctx,
SourceLocation(),
SourceLocation(),
name && name[0] ? &ast->Idents.get(name) : NULL);
if (decl)
SetMetadata(ast, (uintptr_t)decl, metadata);
if (decl_ctx)
{
if (access_type != eAccessNone)
decl->setAccess (ConvertAccessTypeToAccessSpecifier (access_type));
decl_ctx->addDecl (decl);
}
return ast->getTagDeclType(decl).getAsOpaquePtr();
}
static TemplateParameterList *
CreateTemplateParameterList (ASTContext *ast,
const ClangASTContext::TemplateParameterInfos &template_param_infos,
llvm::SmallVector<NamedDecl *, 8> &template_param_decls)
{
const bool parameter_pack = false;
const bool is_typename = false;
const unsigned depth = 0;
const size_t num_template_params = template_param_infos.GetSize();
for (size_t i=0; i<num_template_params; ++i)
{
const char *name = template_param_infos.names[i];
if (template_param_infos.args[i].getAsIntegral())
{
template_param_decls.push_back (NonTypeTemplateParmDecl::Create (*ast,
ast->getTranslationUnitDecl(), // Is this the right decl context?, SourceLocation StartLoc,
SourceLocation(),
SourceLocation(),
depth,
i,
&ast->Idents.get(name),
template_param_infos.args[i].getIntegralType(),
parameter_pack,
NULL));
}
else
{
template_param_decls.push_back (TemplateTypeParmDecl::Create (*ast,
ast->getTranslationUnitDecl(), // Is this the right decl context?
SourceLocation(),
SourceLocation(),
depth,
i,
&ast->Idents.get(name),
is_typename,
parameter_pack));
}
}
TemplateParameterList *template_param_list = TemplateParameterList::Create (*ast,
SourceLocation(),
SourceLocation(),
&template_param_decls.front(),
template_param_decls.size(),
SourceLocation());
return template_param_list;
}
clang::FunctionTemplateDecl *
ClangASTContext::CreateFunctionTemplateDecl (clang::DeclContext *decl_ctx,
clang::FunctionDecl *func_decl,
const char *name,
const TemplateParameterInfos &template_param_infos)
{
// /// \brief Create a function template node.
ASTContext *ast = getASTContext();
llvm::SmallVector<NamedDecl *, 8> template_param_decls;
TemplateParameterList *template_param_list = CreateTemplateParameterList (ast,
template_param_infos,
template_param_decls);
FunctionTemplateDecl *func_tmpl_decl = FunctionTemplateDecl::Create (*ast,
decl_ctx,
func_decl->getLocation(),
func_decl->getDeclName(),
template_param_list,
func_decl);
for (size_t i=0, template_param_decl_count = template_param_decls.size();
i < template_param_decl_count;
++i)
{
// TODO: verify which decl context we should put template_param_decls into..
template_param_decls[i]->setDeclContext (func_decl);
}
return func_tmpl_decl;
}
void
ClangASTContext::CreateFunctionTemplateSpecializationInfo (FunctionDecl *func_decl,
clang::FunctionTemplateDecl *func_tmpl_decl,
const TemplateParameterInfos &infos)
{
TemplateArgumentList template_args (TemplateArgumentList::OnStack,
infos.args.data(),
infos.args.size());
func_decl->setFunctionTemplateSpecialization (func_tmpl_decl,
&template_args,
NULL);
}
ClassTemplateDecl *
ClangASTContext::CreateClassTemplateDecl (DeclContext *decl_ctx,
lldb::AccessType access_type,
const char *class_name,
int kind,
const TemplateParameterInfos &template_param_infos)
{
ASTContext *ast = getASTContext();
ClassTemplateDecl *class_template_decl = NULL;
if (decl_ctx == NULL)
decl_ctx = ast->getTranslationUnitDecl();
IdentifierInfo &identifier_info = ast->Idents.get(class_name);
DeclarationName decl_name (&identifier_info);
clang::DeclContext::lookup_result result = decl_ctx->lookup(decl_name);
for (clang::DeclContext::lookup_iterator pos = result.first, end = result.second; pos != end; ++pos)
{
class_template_decl = dyn_cast<clang::ClassTemplateDecl>(*pos);
if (class_template_decl)
return class_template_decl;
}
llvm::SmallVector<NamedDecl *, 8> template_param_decls;
TemplateParameterList *template_param_list = CreateTemplateParameterList (ast,
template_param_infos,
template_param_decls);
CXXRecordDecl *template_cxx_decl = CXXRecordDecl::Create (*ast,
(TagDecl::TagKind)kind,
decl_ctx, // What decl context do we use here? TU? The actual decl context?
SourceLocation(),
SourceLocation(),
&identifier_info);
for (size_t i=0, template_param_decl_count = template_param_decls.size();
i < template_param_decl_count;
++i)
{
template_param_decls[i]->setDeclContext (template_cxx_decl);
}
// With templated classes, we say that a class is templated with
// specializations, but that the bare class has no functions.
template_cxx_decl->startDefinition();
template_cxx_decl->completeDefinition();
class_template_decl = ClassTemplateDecl::Create (*ast,
decl_ctx, // What decl context do we use here? TU? The actual decl context?
SourceLocation(),
decl_name,
template_param_list,
template_cxx_decl,
NULL);
if (class_template_decl)
{
if (access_type != eAccessNone)
class_template_decl->setAccess (ConvertAccessTypeToAccessSpecifier (access_type));
//if (TagDecl *ctx_tag_decl = dyn_cast<TagDecl>(decl_ctx))
// CompleteTagDeclarationDefinition(GetTypeForDecl(ctx_tag_decl));
decl_ctx->addDecl (class_template_decl);
#ifdef LLDB_CONFIGURATION_DEBUG
VerifyDecl(class_template_decl);
#endif
}
return class_template_decl;
}
ClassTemplateSpecializationDecl *
ClangASTContext::CreateClassTemplateSpecializationDecl (DeclContext *decl_ctx,
ClassTemplateDecl *class_template_decl,
int kind,
const TemplateParameterInfos &template_param_infos)
{
ASTContext *ast = getASTContext();
ClassTemplateSpecializationDecl *class_template_specialization_decl = ClassTemplateSpecializationDecl::Create (*ast,
(TagDecl::TagKind)kind,
decl_ctx,
SourceLocation(),
SourceLocation(),
class_template_decl,
&template_param_infos.args.front(),
template_param_infos.args.size(),
NULL);
return class_template_specialization_decl;
}
lldb::clang_type_t
ClangASTContext::CreateClassTemplateSpecializationType (ClassTemplateSpecializationDecl *class_template_specialization_decl)
{
if (class_template_specialization_decl)
{
ASTContext *ast = getASTContext();
if (ast)
return ast->getTagDeclType(class_template_specialization_decl).getAsOpaquePtr();
}
return NULL;
}
bool
ClangASTContext::SetHasExternalStorage (clang_type_t clang_type, bool has_extern)
{
if (clang_type == NULL)
return false;
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
{
CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
if (cxx_record_decl)
{
cxx_record_decl->setHasExternalLexicalStorage (has_extern);
cxx_record_decl->setHasExternalVisibleStorage (has_extern);
return true;
}
}
break;
case clang::Type::Enum:
{
EnumDecl *enum_decl = cast<EnumType>(qual_type)->getDecl();
if (enum_decl)
{
enum_decl->setHasExternalLexicalStorage (has_extern);
enum_decl->setHasExternalVisibleStorage (has_extern);
return true;
}
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
{
const ObjCObjectType *objc_class_type = dyn_cast<ObjCObjectType>(qual_type.getTypePtr());
assert (objc_class_type);
if (objc_class_type)
{
ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl)
{
class_interface_decl->setHasExternalLexicalStorage (has_extern);
class_interface_decl->setHasExternalVisibleStorage (has_extern);
return true;
}
}
}
break;
case clang::Type::Typedef:
return ClangASTContext::SetHasExternalStorage (cast<TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr(), has_extern);
case clang::Type::Elaborated:
return ClangASTContext::SetHasExternalStorage (cast<ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr(), has_extern);
default:
break;
}
return false;
}
static bool
IsOperator (const char *name, OverloadedOperatorKind &op_kind)
{
if (name == NULL || name[0] == '\0')
return false;
#define OPERATOR_PREFIX "operator"
#define OPERATOR_PREFIX_LENGTH (sizeof (OPERATOR_PREFIX) - 1)
const char *post_op_name = NULL;
bool no_space = true;
if (::strncmp(name, OPERATOR_PREFIX, OPERATOR_PREFIX_LENGTH))
return false;
post_op_name = name + OPERATOR_PREFIX_LENGTH;
if (post_op_name[0] == ' ')
{
post_op_name++;
no_space = false;
}
#undef OPERATOR_PREFIX
#undef OPERATOR_PREFIX_LENGTH
// This is an operator, set the overloaded operator kind to invalid
// in case this is a conversion operator...
op_kind = NUM_OVERLOADED_OPERATORS;
switch (post_op_name[0])
{
default:
if (no_space)
return false;
break;
case 'n':
if (no_space)
return false;
if (strcmp (post_op_name, "new") == 0)
op_kind = OO_New;
else if (strcmp (post_op_name, "new[]") == 0)
op_kind = OO_Array_New;
break;
case 'd':
if (no_space)
return false;
if (strcmp (post_op_name, "delete") == 0)
op_kind = OO_Delete;
else if (strcmp (post_op_name, "delete[]") == 0)
op_kind = OO_Array_Delete;
break;
case '+':
if (post_op_name[1] == '\0')
op_kind = OO_Plus;
else if (post_op_name[2] == '\0')
{
if (post_op_name[1] == '=')
op_kind = OO_PlusEqual;
else if (post_op_name[1] == '+')
op_kind = OO_PlusPlus;
}
break;
case '-':
if (post_op_name[1] == '\0')
op_kind = OO_Minus;
else if (post_op_name[2] == '\0')
{
switch (post_op_name[1])
{
case '=': op_kind = OO_MinusEqual; break;
case '-': op_kind = OO_MinusMinus; break;
case '>': op_kind = OO_Arrow; break;
}
}
else if (post_op_name[3] == '\0')
{
if (post_op_name[2] == '*')
op_kind = OO_ArrowStar; break;
}
break;
case '*':
if (post_op_name[1] == '\0')
op_kind = OO_Star;
else if (post_op_name[1] == '=' && post_op_name[2] == '\0')
op_kind = OO_StarEqual;
break;
case '/':
if (post_op_name[1] == '\0')
op_kind = OO_Slash;
else if (post_op_name[1] == '=' && post_op_name[2] == '\0')
op_kind = OO_SlashEqual;
break;
case '%':
if (post_op_name[1] == '\0')
op_kind = OO_Percent;
else if (post_op_name[1] == '=' && post_op_name[2] == '\0')
op_kind = OO_PercentEqual;
break;
case '^':
if (post_op_name[1] == '\0')
op_kind = OO_Caret;
else if (post_op_name[1] == '=' && post_op_name[2] == '\0')
op_kind = OO_CaretEqual;
break;
case '&':
if (post_op_name[1] == '\0')
op_kind = OO_Amp;
else if (post_op_name[2] == '\0')
{
switch (post_op_name[1])
{
case '=': op_kind = OO_AmpEqual; break;
case '&': op_kind = OO_AmpAmp; break;
}
}
break;
case '|':
if (post_op_name[1] == '\0')
op_kind = OO_Pipe;
else if (post_op_name[2] == '\0')
{
switch (post_op_name[1])
{
case '=': op_kind = OO_PipeEqual; break;
case '|': op_kind = OO_PipePipe; break;
}
}
break;
case '~':
if (post_op_name[1] == '\0')
op_kind = OO_Tilde;
break;
case '!':
if (post_op_name[1] == '\0')
op_kind = OO_Exclaim;
else if (post_op_name[1] == '=' && post_op_name[2] == '\0')
op_kind = OO_ExclaimEqual;
break;
case '=':
if (post_op_name[1] == '\0')
op_kind = OO_Equal;
else if (post_op_name[1] == '=' && post_op_name[2] == '\0')
op_kind = OO_EqualEqual;
break;
case '<':
if (post_op_name[1] == '\0')
op_kind = OO_Less;
else if (post_op_name[2] == '\0')
{
switch (post_op_name[1])
{
case '<': op_kind = OO_LessLess; break;
case '=': op_kind = OO_LessEqual; break;
}
}
else if (post_op_name[3] == '\0')
{
if (post_op_name[2] == '=')
op_kind = OO_LessLessEqual;
}
break;
case '>':
if (post_op_name[1] == '\0')
op_kind = OO_Greater;
else if (post_op_name[2] == '\0')
{
switch (post_op_name[1])
{
case '>': op_kind = OO_GreaterGreater; break;
case '=': op_kind = OO_GreaterEqual; break;
}
}
else if (post_op_name[1] == '>' &&
post_op_name[2] == '=' &&
post_op_name[3] == '\0')
{
op_kind = OO_GreaterGreaterEqual;
}
break;
case ',':
if (post_op_name[1] == '\0')
op_kind = OO_Comma;
break;
case '(':
if (post_op_name[1] == ')' && post_op_name[2] == '\0')
op_kind = OO_Call;
break;
case '[':
if (post_op_name[1] == ']' && post_op_name[2] == '\0')
op_kind = OO_Subscript;
break;
}
return true;
}
static inline bool
check_op_param (uint32_t op_kind, bool unary, bool binary, uint32_t num_params)
{
// Special-case call since it can take any number of operands
if(op_kind == OO_Call)
return true;
// The parameter count doens't include "this"
if (num_params == 0)
return unary;
if (num_params == 1)
return binary;
else
return false;
}
bool
ClangASTContext::CheckOverloadedOperatorKindParameterCount (uint32_t op_kind, uint32_t num_params)
{
switch (op_kind)
{
default:
break;
// C++ standard allows any number of arguments to new/delete
case OO_New:
case OO_Array_New:
case OO_Delete:
case OO_Array_Delete:
return true;
}
#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) case OO_##Name: return check_op_param (op_kind, Unary, Binary, num_params);
switch (op_kind)
{
#include "clang/Basic/OperatorKinds.def"
default: break;
}
return false;
}
CXXMethodDecl *
ClangASTContext::AddMethodToCXXRecordType
(
ASTContext *ast,
clang_type_t record_opaque_type,
const char *name,
clang_type_t method_opaque_type,
lldb::AccessType access,
bool is_virtual,
bool is_static,
bool is_inline,
bool is_explicit,
bool is_attr_used,
bool is_artificial
)
{
if (!record_opaque_type || !method_opaque_type || !name)
return NULL;
assert(ast);
IdentifierTable *identifier_table = &ast->Idents;
assert(identifier_table);
QualType record_qual_type(QualType::getFromOpaquePtr(record_opaque_type));
CXXRecordDecl *cxx_record_decl = record_qual_type->getAsCXXRecordDecl();
if (cxx_record_decl == NULL)
return NULL;
QualType method_qual_type (QualType::getFromOpaquePtr (method_opaque_type));
CXXMethodDecl *cxx_method_decl = NULL;
DeclarationName decl_name (&identifier_table->get(name));
const clang::FunctionType *function_Type = dyn_cast<FunctionType>(method_qual_type.getTypePtr());
if (function_Type == NULL)
return NULL;
const FunctionProtoType *method_function_prototype (dyn_cast<FunctionProtoType>(function_Type));
if (!method_function_prototype)
return NULL;
unsigned int num_params = method_function_prototype->getNumArgs();
CXXDestructorDecl *cxx_dtor_decl(NULL);
CXXConstructorDecl *cxx_ctor_decl(NULL);
if (name[0] == '~')
{
cxx_dtor_decl = CXXDestructorDecl::Create (*ast,
cxx_record_decl,
SourceLocation(),
DeclarationNameInfo (ast->DeclarationNames.getCXXDestructorName (ast->getCanonicalType (record_qual_type)), SourceLocation()),
method_qual_type,
NULL,
is_inline,
is_artificial);
cxx_method_decl = cxx_dtor_decl;
}
else if (decl_name == cxx_record_decl->getDeclName())
{
cxx_ctor_decl = CXXConstructorDecl::Create (*ast,
cxx_record_decl,
SourceLocation(),
DeclarationNameInfo (ast->DeclarationNames.getCXXConstructorName (ast->getCanonicalType (record_qual_type)), SourceLocation()),
method_qual_type,
NULL, // TypeSourceInfo *
is_explicit,
is_inline,
is_artificial,
false /*is_constexpr*/);
cxx_method_decl = cxx_ctor_decl;
}
else
{
OverloadedOperatorKind op_kind = NUM_OVERLOADED_OPERATORS;
if (IsOperator (name, op_kind))
{
if (op_kind != NUM_OVERLOADED_OPERATORS)
{
// Check the number of operator parameters. Sometimes we have
// seen bad DWARF that doesn't correctly describe operators and
// if we try to create a methed and add it to the class, clang
// will assert and crash, so we need to make sure things are
// acceptable.
if (!ClangASTContext::CheckOverloadedOperatorKindParameterCount (op_kind, num_params))
return NULL;
cxx_method_decl = CXXMethodDecl::Create (*ast,
cxx_record_decl,
SourceLocation(),
DeclarationNameInfo (ast->DeclarationNames.getCXXOperatorName (op_kind), SourceLocation()),
method_qual_type,
NULL, // TypeSourceInfo *
is_static,
SC_None,
is_inline,
false /*is_constexpr*/,
SourceLocation());
}
else if (num_params == 0)
{
// Conversion operators don't take params...
cxx_method_decl = CXXConversionDecl::Create (*ast,
cxx_record_decl,
SourceLocation(),
DeclarationNameInfo (ast->DeclarationNames.getCXXConversionFunctionName (ast->getCanonicalType (function_Type->getResultType())), SourceLocation()),
method_qual_type,
NULL, // TypeSourceInfo *
is_inline,
is_explicit,
false /*is_constexpr*/,
SourceLocation());
}
}
if (cxx_method_decl == NULL)
{
cxx_method_decl = CXXMethodDecl::Create (*ast,
cxx_record_decl,
SourceLocation(),
DeclarationNameInfo (decl_name, SourceLocation()),
method_qual_type,
NULL, // TypeSourceInfo *
is_static,
SC_None,
is_inline,
false /*is_constexpr*/,
SourceLocation());
}
}
AccessSpecifier access_specifier = ConvertAccessTypeToAccessSpecifier (access);
cxx_method_decl->setAccess (access_specifier);
cxx_method_decl->setVirtualAsWritten (is_virtual);
if (is_attr_used)
cxx_method_decl->addAttr(::new (*ast) UsedAttr(SourceRange(), *ast));
// Populate the method decl with parameter decls
llvm::SmallVector<ParmVarDecl *, 12> params;
for (int param_index = 0;
param_index < num_params;
++param_index)
{
params.push_back (ParmVarDecl::Create (*ast,
cxx_method_decl,
SourceLocation(),
SourceLocation(),
NULL, // anonymous
method_function_prototype->getArgType(param_index),
NULL,
SC_None,
SC_None,
NULL));
}
cxx_method_decl->setParams (ArrayRef<ParmVarDecl*>(params));
cxx_record_decl->addDecl (cxx_method_decl);
// Sometimes the debug info will mention a constructor (default/copy/move),
// destructor, or assignment operator (copy/move) but there won't be any
// version of this in the code. So we check if the function was artificially
// generated and if it is trivial and this lets the compiler/backend know
// that it can inline the IR for these when it needs to and we can avoid a
// "missing function" error when running expressions.
if (is_artificial)
{
if (cxx_ctor_decl &&
((cxx_ctor_decl->isDefaultConstructor() && cxx_record_decl->hasTrivialDefaultConstructor ()) ||
(cxx_ctor_decl->isCopyConstructor() && cxx_record_decl->hasTrivialCopyConstructor ()) ||
(cxx_ctor_decl->isMoveConstructor() && cxx_record_decl->hasTrivialMoveConstructor ()) ))
{
cxx_ctor_decl->setDefaulted();
cxx_ctor_decl->setTrivial(true);
}
else if (cxx_dtor_decl)
{
if (cxx_record_decl->hasTrivialDestructor())
{
cxx_dtor_decl->setDefaulted();
cxx_dtor_decl->setTrivial(true);
}
}
else if ((cxx_method_decl->isCopyAssignmentOperator() && cxx_record_decl->hasTrivialCopyAssignment()) ||
(cxx_method_decl->isMoveAssignmentOperator() && cxx_record_decl->hasTrivialMoveAssignment()))
{
cxx_method_decl->setDefaulted();
cxx_method_decl->setTrivial(true);
}
}
#ifdef LLDB_CONFIGURATION_DEBUG
VerifyDecl(cxx_method_decl);
#endif
// printf ("decl->isPolymorphic() = %i\n", cxx_record_decl->isPolymorphic());
// printf ("decl->isAggregate() = %i\n", cxx_record_decl->isAggregate());
// printf ("decl->isPOD() = %i\n", cxx_record_decl->isPOD());
// printf ("decl->isEmpty() = %i\n", cxx_record_decl->isEmpty());
// printf ("decl->isAbstract() = %i\n", cxx_record_decl->isAbstract());
// printf ("decl->hasTrivialConstructor() = %i\n", cxx_record_decl->hasTrivialConstructor());
// printf ("decl->hasTrivialCopyConstructor() = %i\n", cxx_record_decl->hasTrivialCopyConstructor());
// printf ("decl->hasTrivialCopyAssignment() = %i\n", cxx_record_decl->hasTrivialCopyAssignment());
// printf ("decl->hasTrivialDestructor() = %i\n", cxx_record_decl->hasTrivialDestructor());
return cxx_method_decl;
}
clang::FieldDecl *
ClangASTContext::AddFieldToRecordType
(
ASTContext *ast,
clang_type_t record_clang_type,
const char *name,
clang_type_t field_type,
AccessType access,
uint32_t bitfield_bit_size
)
{
if (record_clang_type == NULL || field_type == NULL)
return NULL;
FieldDecl *field = NULL;
IdentifierTable *identifier_table = &ast->Idents;
assert (ast != NULL);
assert (identifier_table != NULL);
QualType record_qual_type(QualType::getFromOpaquePtr(record_clang_type));
const clang::Type *clang_type = record_qual_type.getTypePtr();
if (clang_type)
{
const RecordType *record_type = dyn_cast<RecordType>(clang_type);
if (record_type)
{
RecordDecl *record_decl = record_type->getDecl();
clang::Expr *bit_width = NULL;
if (bitfield_bit_size != 0)
{
APInt bitfield_bit_size_apint(ast->getTypeSize(ast->IntTy), bitfield_bit_size);
bit_width = new (*ast)IntegerLiteral (*ast, bitfield_bit_size_apint, ast->IntTy, SourceLocation());
}
field = FieldDecl::Create (*ast,
record_decl,
SourceLocation(),
SourceLocation(),
name ? &identifier_table->get(name) : NULL, // Identifier
QualType::getFromOpaquePtr(field_type), // Field type
NULL, // TInfo *
bit_width, // BitWidth
false, // Mutable
false); // HasInit
if (!name) {
// Determine whether this field corresponds to an anonymous
// struct or union.
if (const TagType *TagT = field->getType()->getAs<TagType>()) {
if (RecordDecl *Rec = dyn_cast<RecordDecl>(TagT->getDecl()))
if (!Rec->getDeclName()) {
Rec->setAnonymousStructOrUnion(true);
field->setImplicit();
}
}
}
field->setAccess (ConvertAccessTypeToAccessSpecifier (access));
if (field)
{
record_decl->addDecl(field);
#ifdef LLDB_CONFIGURATION_DEBUG
VerifyDecl(field);
#endif
}
}
else
{
const ObjCObjectType *objc_class_type = dyn_cast<ObjCObjectType>(clang_type);
if (objc_class_type)
{
bool is_synthesized = false;
field = ClangASTContext::AddObjCClassIVar (ast,
record_clang_type,
name,
field_type,
access,
bitfield_bit_size,
is_synthesized);
}
}
}
return field;
}
static clang::AccessSpecifier UnifyAccessSpecifiers (clang::AccessSpecifier lhs,
clang::AccessSpecifier rhs)
{
clang::AccessSpecifier ret = lhs;
// Make the access equal to the stricter of the field and the nested field's access
switch (ret)
{
case clang::AS_none:
break;
case clang::AS_private:
break;
case clang::AS_protected:
if (rhs == AS_private)
ret = AS_private;
break;
case clang::AS_public:
ret = rhs;
break;
}
return ret;
}
void
ClangASTContext::BuildIndirectFields (clang::ASTContext *ast,
lldb::clang_type_t record_clang_type)
{
QualType record_qual_type(QualType::getFromOpaquePtr(record_clang_type));
const RecordType *record_type = record_qual_type->getAs<RecordType>();
if (!record_type)
return;
RecordDecl *record_decl = record_type->getDecl();
if (!record_decl)
return;
typedef llvm::SmallVector <IndirectFieldDecl *, 1> IndirectFieldVector;
IndirectFieldVector indirect_fields;
for (RecordDecl::field_iterator fi = record_decl->field_begin(), fe = record_decl->field_end();
fi != fe;
++fi)
{
if (fi->isAnonymousStructOrUnion())
{
QualType field_qual_type = fi->getType();
const RecordType *field_record_type = field_qual_type->getAs<RecordType>();
if (!field_record_type)
continue;
RecordDecl *field_record_decl = field_record_type->getDecl();
if (!field_record_decl)
continue;
for (RecordDecl::decl_iterator di = field_record_decl->decls_begin(), de = field_record_decl->decls_end();
di != de;
++di)
{
if (FieldDecl *nested_field_decl = dyn_cast<FieldDecl>(*di))
{
NamedDecl **chain = new (*ast) NamedDecl*[2];
chain[0] = *fi;
chain[1] = nested_field_decl;
IndirectFieldDecl *indirect_field = IndirectFieldDecl::Create(*ast,
record_decl,
SourceLocation(),
nested_field_decl->getIdentifier(),
nested_field_decl->getType(),
chain,
2);
indirect_field->setAccess(UnifyAccessSpecifiers(fi->getAccess(),
nested_field_decl->getAccess()));
indirect_fields.push_back(indirect_field);
}
else if (IndirectFieldDecl *nested_indirect_field_decl = dyn_cast<IndirectFieldDecl>(*di))
{
int nested_chain_size = nested_indirect_field_decl->getChainingSize();
NamedDecl **chain = new (*ast) NamedDecl*[nested_chain_size + 1];
chain[0] = *fi;
int chain_index = 1;
for (IndirectFieldDecl::chain_iterator nci = nested_indirect_field_decl->chain_begin(),
nce = nested_indirect_field_decl->chain_end();
nci < nce;
++nci)
{
chain[chain_index] = *nci;
chain_index++;
}
IndirectFieldDecl *indirect_field = IndirectFieldDecl::Create(*ast,
record_decl,
SourceLocation(),
nested_indirect_field_decl->getIdentifier(),
nested_indirect_field_decl->getType(),
chain,
nested_chain_size + 1);
indirect_field->setAccess(UnifyAccessSpecifiers(fi->getAccess(),
nested_indirect_field_decl->getAccess()));
indirect_fields.push_back(indirect_field);
}
}
}
}
for (IndirectFieldVector::iterator ifi = indirect_fields.begin(), ife = indirect_fields.end();
ifi < ife;
++ifi)
{
record_decl->addDecl(*ifi);
}
}
bool
ClangASTContext::FieldIsBitfield (FieldDecl* field, uint32_t& bitfield_bit_size)
{
return FieldIsBitfield(getASTContext(), field, bitfield_bit_size);
}
bool
ClangASTContext::FieldIsBitfield
(
ASTContext *ast,
FieldDecl* field,
uint32_t& bitfield_bit_size
)
{
if (ast == NULL || field == NULL)
return false;
if (field->isBitField())
{
Expr* bit_width_expr = field->getBitWidth();
if (bit_width_expr)
{
llvm::APSInt bit_width_apsint;
if (bit_width_expr->isIntegerConstantExpr(bit_width_apsint, *ast))
{
bitfield_bit_size = bit_width_apsint.getLimitedValue(UINT32_MAX);
return true;
}
}
}
return false;
}
bool
ClangASTContext::RecordHasFields (const RecordDecl *record_decl)
{
if (record_decl == NULL)
return false;
if (!record_decl->field_empty())
return true;
// No fields, lets check this is a CXX record and check the base classes
const CXXRecordDecl *cxx_record_decl = dyn_cast<CXXRecordDecl>(record_decl);
if (cxx_record_decl)
{
CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end;
++base_class)
{
const CXXRecordDecl *base_class_decl = cast<CXXRecordDecl>(base_class->getType()->getAs<RecordType>()->getDecl());
if (RecordHasFields(base_class_decl))
return true;
}
}
return false;
}
void
ClangASTContext::SetDefaultAccessForRecordFields (clang_type_t clang_type, int default_accessibility, int *assigned_accessibilities, size_t num_assigned_accessibilities)
{
if (clang_type)
{
QualType qual_type(QualType::getFromOpaquePtr(clang_type));
const RecordType *record_type = dyn_cast<RecordType>(qual_type.getTypePtr());
if (record_type)
{
RecordDecl *record_decl = record_type->getDecl();
if (record_decl)
{
uint32_t field_idx;
RecordDecl::field_iterator field, field_end;
for (field = record_decl->field_begin(), field_end = record_decl->field_end(), field_idx = 0;
field != field_end;
++field, ++field_idx)
{
// If no accessibility was assigned, assign the correct one
if (field_idx < num_assigned_accessibilities && assigned_accessibilities[field_idx] == clang::AS_none)
field->setAccess ((AccessSpecifier)default_accessibility);
}
}
}
}
}
#pragma mark C++ Base Classes
CXXBaseSpecifier *
ClangASTContext::CreateBaseClassSpecifier (clang_type_t base_class_type, AccessType access, bool is_virtual, bool base_of_class)
{
if (base_class_type)
return new CXXBaseSpecifier (SourceRange(),
is_virtual,
base_of_class,
ConvertAccessTypeToAccessSpecifier (access),
getASTContext()->CreateTypeSourceInfo (QualType::getFromOpaquePtr(base_class_type)),
SourceLocation());
return NULL;
}
void
ClangASTContext::DeleteBaseClassSpecifiers (CXXBaseSpecifier **base_classes, unsigned num_base_classes)
{
for (unsigned i=0; i<num_base_classes; ++i)
{
delete base_classes[i];
base_classes[i] = NULL;
}
}
bool
ClangASTContext::SetBaseClassesForClassType (clang_type_t class_clang_type, CXXBaseSpecifier const * const *base_classes, unsigned num_base_classes)
{
if (class_clang_type)
{
CXXRecordDecl *cxx_record_decl = QualType::getFromOpaquePtr(class_clang_type)->getAsCXXRecordDecl();
if (cxx_record_decl)
{
cxx_record_decl->setBases(base_classes, num_base_classes);
return true;
}
}
return false;
}
#pragma mark Objective C Classes
clang_type_t
ClangASTContext::CreateObjCClass
(
const char *name,
DeclContext *decl_ctx,
bool isForwardDecl,
bool isInternal,
uint64_t metadata
)
{
ASTContext *ast = getASTContext();
assert (ast != NULL);
assert (name && name[0]);
if (decl_ctx == NULL)
decl_ctx = ast->getTranslationUnitDecl();
// NOTE: Eventually CXXRecordDecl will be merged back into RecordDecl and
// we will need to update this code. I was told to currently always use
// the CXXRecordDecl class since we often don't know from debug information
// if something is struct or a class, so we default to always use the more
// complete definition just in case.
ObjCInterfaceDecl *decl = ObjCInterfaceDecl::Create (*ast,
decl_ctx,
SourceLocation(),
&ast->Idents.get(name),
NULL,
SourceLocation(),
/*isForwardDecl,*/
isInternal);
if (decl)
SetMetadata(ast, (uintptr_t)decl, metadata);
return ast->getObjCInterfaceType(decl).getAsOpaquePtr();
}
bool
ClangASTContext::SetObjCSuperClass (clang_type_t class_opaque_type, clang_type_t super_opaque_type)
{
if (class_opaque_type && super_opaque_type)
{
QualType class_qual_type(QualType::getFromOpaquePtr(class_opaque_type));
QualType super_qual_type(QualType::getFromOpaquePtr(super_opaque_type));
const clang::Type *class_type = class_qual_type.getTypePtr();
const clang::Type *super_type = super_qual_type.getTypePtr();
if (class_type && super_type)
{
const ObjCObjectType *objc_class_type = dyn_cast<ObjCObjectType>(class_type);
const ObjCObjectType *objc_super_type = dyn_cast<ObjCObjectType>(super_type);
if (objc_class_type && objc_super_type)
{
ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
ObjCInterfaceDecl *super_interface_decl = objc_super_type->getInterface();
if (class_interface_decl && super_interface_decl)
{
class_interface_decl->setSuperClass(super_interface_decl);
return true;
}
}
}
}
return false;
}
FieldDecl *
ClangASTContext::AddObjCClassIVar
(
ASTContext *ast,
clang_type_t class_opaque_type,
const char *name,
clang_type_t ivar_opaque_type,
AccessType access,
uint32_t bitfield_bit_size,
bool is_synthesized
)
{
if (class_opaque_type == NULL || ivar_opaque_type == NULL)
return NULL;
ObjCIvarDecl *field = NULL;
IdentifierTable *identifier_table = &ast->Idents;
assert (ast != NULL);
assert (identifier_table != NULL);
QualType class_qual_type(QualType::getFromOpaquePtr(class_opaque_type));
const clang::Type *class_type = class_qual_type.getTypePtr();
if (class_type)
{
const ObjCObjectType *objc_class_type = dyn_cast<ObjCObjectType>(class_type);
if (objc_class_type)
{
ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl)
{
clang::Expr *bit_width = NULL;
if (bitfield_bit_size != 0)
{
APInt bitfield_bit_size_apint(ast->getTypeSize(ast->IntTy), bitfield_bit_size);
bit_width = new (*ast)IntegerLiteral (*ast, bitfield_bit_size_apint, ast->IntTy, SourceLocation());
}
field = ObjCIvarDecl::Create (*ast,
class_interface_decl,
SourceLocation(),
SourceLocation(),
&identifier_table->get(name), // Identifier
QualType::getFromOpaquePtr(ivar_opaque_type), // Field type
NULL, // TypeSourceInfo *
ConvertAccessTypeToObjCIvarAccessControl (access),
bit_width,
is_synthesized);
if (field)
{
class_interface_decl->addDecl(field);
#ifdef LLDB_CONFIGURATION_DEBUG
VerifyDecl(field);
#endif
return field;
}
}
}
}
return NULL;
}
bool
ClangASTContext::AddObjCClassProperty
(
ASTContext *ast,
clang_type_t class_opaque_type,
const char *property_name,
clang_type_t property_opaque_type,
ObjCIvarDecl *ivar_decl,
const char *property_setter_name,
const char *property_getter_name,
uint32_t property_attributes,
uint64_t metadata
)
{
if (class_opaque_type == NULL || property_name == NULL || property_name[0] == '\0')
return false;
IdentifierTable *identifier_table = &ast->Idents;
assert (ast != NULL);
assert (identifier_table != NULL);
QualType class_qual_type(QualType::getFromOpaquePtr(class_opaque_type));
const clang::Type *class_type = class_qual_type.getTypePtr();
if (class_type)
{
const ObjCObjectType *objc_class_type = dyn_cast<ObjCObjectType>(class_type);
if (objc_class_type)
{
ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
clang_type_t property_opaque_type_to_access = NULL;
if (property_opaque_type)
property_opaque_type_to_access = property_opaque_type;
else if (ivar_decl)
property_opaque_type_to_access = ivar_decl->getType().getAsOpaquePtr();
if (class_interface_decl && property_opaque_type_to_access)
{
clang::TypeSourceInfo *prop_type_source;
if (ivar_decl)
prop_type_source = ast->CreateTypeSourceInfo (ivar_decl->getType());
else
prop_type_source = ast->CreateTypeSourceInfo (QualType::getFromOpaquePtr(property_opaque_type));
ObjCPropertyDecl *property_decl = ObjCPropertyDecl::Create(*ast,
class_interface_decl,
SourceLocation(), // Source Location
&identifier_table->get(property_name),
SourceLocation(), //Source Location for AT
SourceLocation(), //Source location for (
prop_type_source
);
if (property_decl)
{
SetMetadata(ast, (uintptr_t)property_decl, metadata);
class_interface_decl->addDecl (property_decl);
Selector setter_sel, getter_sel;
if (property_setter_name != NULL)
{
std::string property_setter_no_colon(property_setter_name, strlen(property_setter_name) - 1);
clang::IdentifierInfo *setter_ident = &identifier_table->get(property_setter_no_colon.c_str());
setter_sel = ast->Selectors.getSelector(1, &setter_ident);
}
else if (!(property_attributes & DW_APPLE_PROPERTY_readonly))
{
std::string setter_sel_string("set");
setter_sel_string.push_back(::toupper(property_name[0]));
setter_sel_string.append(&property_name[1]);
clang::IdentifierInfo *setter_ident = &identifier_table->get(setter_sel_string.c_str());
setter_sel = ast->Selectors.getSelector(1, &setter_ident);
}
property_decl->setSetterName(setter_sel);
property_decl->setPropertyAttributes (clang::ObjCPropertyDecl::OBJC_PR_setter);
if (property_getter_name != NULL)
{
clang::IdentifierInfo *getter_ident = &identifier_table->get(property_getter_name);
getter_sel = ast->Selectors.getSelector(0, &getter_ident);
}
else
{
clang::IdentifierInfo *getter_ident = &identifier_table->get(property_name);
getter_sel = ast->Selectors.getSelector(0, &getter_ident);
}
property_decl->setGetterName(getter_sel);
property_decl->setPropertyAttributes (clang::ObjCPropertyDecl::OBJC_PR_getter);
if (ivar_decl)
property_decl->setPropertyIvarDecl (ivar_decl);
if (property_attributes & DW_APPLE_PROPERTY_readonly)
property_decl->setPropertyAttributes (clang::ObjCPropertyDecl::OBJC_PR_readonly);
if (property_attributes & DW_APPLE_PROPERTY_readwrite)
property_decl->setPropertyAttributes (clang::ObjCPropertyDecl::OBJC_PR_readwrite);
if (property_attributes & DW_APPLE_PROPERTY_assign)
property_decl->setPropertyAttributes (clang::ObjCPropertyDecl::OBJC_PR_assign);
if (property_attributes & DW_APPLE_PROPERTY_retain)
property_decl->setPropertyAttributes (clang::ObjCPropertyDecl::OBJC_PR_retain);
if (property_attributes & DW_APPLE_PROPERTY_copy)
property_decl->setPropertyAttributes (clang::ObjCPropertyDecl::OBJC_PR_copy);
if (property_attributes & DW_APPLE_PROPERTY_nonatomic)
property_decl->setPropertyAttributes (clang::ObjCPropertyDecl::OBJC_PR_nonatomic);
if (!getter_sel.isNull() && !class_interface_decl->lookupInstanceMethod(getter_sel))
{
QualType result_type = QualType::getFromOpaquePtr(property_opaque_type_to_access);
const bool isInstance = true;
const bool isVariadic = false;
const bool isSynthesized = false;
const bool isImplicitlyDeclared = true;
const bool isDefined = false;
const ObjCMethodDecl::ImplementationControl impControl = ObjCMethodDecl::None;
const bool HasRelatedResultType = false;
ObjCMethodDecl *getter = ObjCMethodDecl::Create(*ast,
SourceLocation(),
SourceLocation(),
getter_sel,
result_type,
NULL,
class_interface_decl,
isInstance,
isVariadic,
isSynthesized,
isImplicitlyDeclared,
isDefined,
impControl,
HasRelatedResultType);
if (getter)
SetMetadata(ast, (uintptr_t)getter, metadata);
getter->setMethodParams(*ast, ArrayRef<ParmVarDecl*>(), ArrayRef<SourceLocation>());
class_interface_decl->addDecl(getter);
}
if (!setter_sel.isNull() && !class_interface_decl->lookupInstanceMethod(setter_sel))
{
QualType result_type = ast->VoidTy;
const bool isInstance = true;
const bool isVariadic = false;
const bool isSynthesized = false;
const bool isImplicitlyDeclared = true;
const bool isDefined = false;
const ObjCMethodDecl::ImplementationControl impControl = ObjCMethodDecl::None;
const bool HasRelatedResultType = false;
ObjCMethodDecl *setter = ObjCMethodDecl::Create(*ast,
SourceLocation(),
SourceLocation(),
setter_sel,
result_type,
NULL,
class_interface_decl,
isInstance,
isVariadic,
isSynthesized,
isImplicitlyDeclared,
isDefined,
impControl,
HasRelatedResultType);
if (setter)
SetMetadata(ast, (uintptr_t)setter, metadata);
llvm::SmallVector<ParmVarDecl *, 1> params;
params.push_back (ParmVarDecl::Create (*ast,
setter,
SourceLocation(),
SourceLocation(),
NULL, // anonymous
QualType::getFromOpaquePtr(property_opaque_type_to_access),
NULL,
SC_Auto,
SC_Auto,
NULL));
setter->setMethodParams(*ast, ArrayRef<ParmVarDecl*>(params), ArrayRef<SourceLocation>());
class_interface_decl->addDecl(setter);
}
return true;
}
}
}
}
return false;
}
bool
ClangASTContext::ObjCTypeHasIVars (clang_type_t class_opaque_type, bool check_superclass)
{
QualType class_qual_type(QualType::getFromOpaquePtr(class_opaque_type));
const clang::Type *class_type = class_qual_type.getTypePtr();
if (class_type)
{
const ObjCObjectType *objc_class_type = dyn_cast<ObjCObjectType>(class_type);
if (objc_class_type)
return ObjCDeclHasIVars (objc_class_type->getInterface(), check_superclass);
}
return false;
}
bool
ClangASTContext::ObjCDeclHasIVars (ObjCInterfaceDecl *class_interface_decl, bool check_superclass)
{
while (class_interface_decl)
{
if (class_interface_decl->ivar_size() > 0)
return true;
if (check_superclass)
class_interface_decl = class_interface_decl->getSuperClass();
else
break;
}
return false;
}
ObjCMethodDecl *
ClangASTContext::AddMethodToObjCObjectType
(
ASTContext *ast,
clang_type_t class_opaque_type,
const char *name, // the full symbol name as seen in the symbol table ("-[NString stringWithCString:]")
clang_type_t method_opaque_type,
lldb::AccessType access
)
{
if (class_opaque_type == NULL || method_opaque_type == NULL)
return NULL;
IdentifierTable *identifier_table = &ast->Idents;
assert (ast != NULL);
assert (identifier_table != NULL);
QualType class_qual_type(QualType::getFromOpaquePtr(class_opaque_type));
const clang::Type *class_type = class_qual_type.getTypePtr();
if (class_type == NULL)
return NULL;
const ObjCObjectType *objc_class_type = dyn_cast<ObjCObjectType>(class_type);
if (objc_class_type == NULL)
return NULL;
ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl == NULL)
return NULL;
const char *selector_start = ::strchr (name, ' ');
if (selector_start == NULL)
return NULL;
selector_start++;
if (!(::isalpha (selector_start[0]) || selector_start[0] == '_'))
return NULL;
llvm::SmallVector<IdentifierInfo *, 12> selector_idents;
size_t len = 0;
const char *start;
//printf ("name = '%s'\n", name);
unsigned num_selectors_with_args = 0;
for (start = selector_start;
start && *start != '\0' && *start != ']';
start += len)
{
len = ::strcspn(start, ":]");
bool has_arg = (start[len] == ':');
if (has_arg)
++num_selectors_with_args;
selector_idents.push_back (&identifier_table->get (StringRef (start, len)));
if (has_arg)
len += 1;
}
if (selector_idents.size() == 0)
return 0;
clang::Selector method_selector = ast->Selectors.getSelector (num_selectors_with_args ? selector_idents.size() : 0,
selector_idents.data());
QualType method_qual_type (QualType::getFromOpaquePtr (method_opaque_type));
// Populate the method decl with parameter decls
const clang::Type *method_type(method_qual_type.getTypePtr());
if (method_type == NULL)
return NULL;
const FunctionProtoType *method_function_prototype (dyn_cast<FunctionProtoType>(method_type));
if (!method_function_prototype)
return NULL;
bool is_variadic = false;
bool is_synthesized = false;
bool is_defined = false;
ObjCMethodDecl::ImplementationControl imp_control = ObjCMethodDecl::None;
const unsigned num_args = method_function_prototype->getNumArgs();
ObjCMethodDecl *objc_method_decl = ObjCMethodDecl::Create (*ast,
SourceLocation(), // beginLoc,
SourceLocation(), // endLoc,
method_selector,
method_function_prototype->getResultType(),
NULL, // TypeSourceInfo *ResultTInfo,
GetDeclContextForType (class_opaque_type),
name[0] == '-',
is_variadic,
is_synthesized,
true, // is_implicitly_declared
is_defined,
imp_control,
false /*has_related_result_type*/);
if (objc_method_decl == NULL)
return NULL;
if (num_args > 0)
{
llvm::SmallVector<ParmVarDecl *, 12> params;
for (int param_index = 0; param_index < num_args; ++param_index)
{
params.push_back (ParmVarDecl::Create (*ast,
objc_method_decl,
SourceLocation(),
SourceLocation(),
NULL, // anonymous
method_function_prototype->getArgType(param_index),
NULL,
SC_Auto,
SC_Auto,
NULL));
}
objc_method_decl->setMethodParams(*ast, ArrayRef<ParmVarDecl*>(params), ArrayRef<SourceLocation>());
}
class_interface_decl->addDecl (objc_method_decl);
#ifdef LLDB_CONFIGURATION_DEBUG
VerifyDecl(objc_method_decl);
#endif
return objc_method_decl;
}
size_t
ClangASTContext::GetNumTemplateArguments (clang::ASTContext *ast, clang_type_t clang_type)
{
if (clang_type)
{
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
if (GetCompleteQualType (ast, qual_type))
{
const CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
if (cxx_record_decl)
{
const ClassTemplateSpecializationDecl *template_decl = dyn_cast<ClassTemplateSpecializationDecl>(cxx_record_decl);
if (template_decl)
return template_decl->getTemplateArgs().size();
}
}
break;
case clang::Type::Typedef:
return ClangASTContext::GetNumTemplateArguments (ast, cast<TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr());
default:
break;
}
}
return 0;
}
clang_type_t
ClangASTContext::GetTemplateArgument (clang::ASTContext *ast, clang_type_t clang_type, size_t arg_idx, lldb::TemplateArgumentKind &kind)
{
if (clang_type)
{
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
if (GetCompleteQualType (ast, qual_type))
{
const CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
if (cxx_record_decl)
{
const ClassTemplateSpecializationDecl *template_decl = dyn_cast<ClassTemplateSpecializationDecl>(cxx_record_decl);
if (template_decl && arg_idx < template_decl->getTemplateArgs().size())
{
const TemplateArgument &template_arg = template_decl->getTemplateArgs()[arg_idx];
switch (template_arg.getKind())
{
case clang::TemplateArgument::Null:
kind = eTemplateArgumentKindNull;
return NULL;
case clang::TemplateArgument::Type:
kind = eTemplateArgumentKindType;
return template_arg.getAsType().getAsOpaquePtr();
case clang::TemplateArgument::Declaration:
kind = eTemplateArgumentKindDeclaration;
return NULL;
case clang::TemplateArgument::Integral:
kind = eTemplateArgumentKindIntegral;
return template_arg.getIntegralType().getAsOpaquePtr();
case clang::TemplateArgument::Template:
kind = eTemplateArgumentKindTemplate;
return NULL;
case clang::TemplateArgument::TemplateExpansion:
kind = eTemplateArgumentKindTemplateExpansion;
return NULL;
case clang::TemplateArgument::Expression:
kind = eTemplateArgumentKindExpression;
return NULL;
case clang::TemplateArgument::Pack:
kind = eTemplateArgumentKindPack;
return NULL;
default:
assert (!"Unhandled TemplateArgument::ArgKind");
kind = eTemplateArgumentKindNull;
return NULL;
}
}
}
}
break;
case clang::Type::Typedef:
return ClangASTContext::GetTemplateArgument (ast, cast<TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr(), arg_idx, kind);
default:
break;
}
}
kind = eTemplateArgumentKindNull;
return NULL;
}
uint32_t
ClangASTContext::GetTypeInfo
(
clang_type_t clang_type,
clang::ASTContext *ast,
clang_type_t *pointee_or_element_clang_type
)
{
if (clang_type == NULL)
return 0;
if (pointee_or_element_clang_type)
*pointee_or_element_clang_type = NULL;
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Builtin:
switch (cast<clang::BuiltinType>(qual_type)->getKind())
{
case clang::BuiltinType::ObjCId:
case clang::BuiltinType::ObjCClass:
if (ast && pointee_or_element_clang_type)
*pointee_or_element_clang_type = ast->ObjCBuiltinClassTy.getAsOpaquePtr();
return eTypeIsBuiltIn | eTypeIsPointer | eTypeHasValue;
break;
case clang::BuiltinType::Bool:
case clang::BuiltinType::Char_U:
case clang::BuiltinType::UChar:
case clang::BuiltinType::WChar_U:
case clang::BuiltinType::Char16:
case clang::BuiltinType::Char32:
case clang::BuiltinType::UShort:
case clang::BuiltinType::UInt:
case clang::BuiltinType::ULong:
case clang::BuiltinType::ULongLong:
case clang::BuiltinType::UInt128:
case clang::BuiltinType::Char_S:
case clang::BuiltinType::SChar:
case clang::BuiltinType::WChar_S:
case clang::BuiltinType::Short:
case clang::BuiltinType::Int:
case clang::BuiltinType::Long:
case clang::BuiltinType::LongLong:
case clang::BuiltinType::Int128:
case clang::BuiltinType::Float:
case clang::BuiltinType::Double:
case clang::BuiltinType::LongDouble:
return eTypeIsBuiltIn | eTypeHasValue | eTypeIsScalar;
default:
break;
}
return eTypeIsBuiltIn | eTypeHasValue;
case clang::Type::BlockPointer:
if (pointee_or_element_clang_type)
*pointee_or_element_clang_type = qual_type->getPointeeType().getAsOpaquePtr();
return eTypeIsPointer | eTypeHasChildren | eTypeIsBlock;
case clang::Type::Complex: return eTypeIsBuiltIn | eTypeHasValue;
case clang::Type::ConstantArray:
case clang::Type::DependentSizedArray:
case clang::Type::IncompleteArray:
case clang::Type::VariableArray:
if (pointee_or_element_clang_type)
*pointee_or_element_clang_type = cast<ArrayType>(qual_type.getTypePtr())->getElementType().getAsOpaquePtr();
return eTypeHasChildren | eTypeIsArray;
case clang::Type::DependentName: return 0;
case clang::Type::DependentSizedExtVector: return eTypeHasChildren | eTypeIsVector;
case clang::Type::DependentTemplateSpecialization: return eTypeIsTemplate;
case clang::Type::Decltype: return 0;
case clang::Type::Enum:
if (pointee_or_element_clang_type)
*pointee_or_element_clang_type = cast<EnumType>(qual_type)->getDecl()->getIntegerType().getAsOpaquePtr();
return eTypeIsEnumeration | eTypeHasValue;
case clang::Type::Elaborated:
return ClangASTContext::GetTypeInfo (cast<ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr(),
ast,
pointee_or_element_clang_type);
case clang::Type::ExtVector: return eTypeHasChildren | eTypeIsVector;
case clang::Type::FunctionProto: return eTypeIsFuncPrototype | eTypeHasValue;
case clang::Type::FunctionNoProto: return eTypeIsFuncPrototype | eTypeHasValue;
case clang::Type::InjectedClassName: return 0;
case clang::Type::LValueReference:
case clang::Type::RValueReference:
if (pointee_or_element_clang_type)
*pointee_or_element_clang_type = cast<ReferenceType>(qual_type.getTypePtr())->getPointeeType().getAsOpaquePtr();
return eTypeHasChildren | eTypeIsReference | eTypeHasValue;
case clang::Type::MemberPointer: return eTypeIsPointer | eTypeIsMember | eTypeHasValue;
case clang::Type::ObjCObjectPointer:
if (pointee_or_element_clang_type)
*pointee_or_element_clang_type = qual_type->getPointeeType().getAsOpaquePtr();
return eTypeHasChildren | eTypeIsObjC | eTypeIsClass | eTypeIsPointer | eTypeHasValue;
case clang::Type::ObjCObject: return eTypeHasChildren | eTypeIsObjC | eTypeIsClass;
case clang::Type::ObjCInterface: return eTypeHasChildren | eTypeIsObjC | eTypeIsClass;
case clang::Type::Pointer:
if (pointee_or_element_clang_type)
*pointee_or_element_clang_type = qual_type->getPointeeType().getAsOpaquePtr();
return eTypeHasChildren | eTypeIsPointer | eTypeHasValue;
case clang::Type::Record:
if (qual_type->getAsCXXRecordDecl())
return eTypeHasChildren | eTypeIsClass | eTypeIsCPlusPlus;
else
return eTypeHasChildren | eTypeIsStructUnion;
break;
case clang::Type::SubstTemplateTypeParm: return eTypeIsTemplate;
case clang::Type::TemplateTypeParm: return eTypeIsTemplate;
case clang::Type::TemplateSpecialization: return eTypeIsTemplate;
case clang::Type::Typedef:
return eTypeIsTypedef | ClangASTContext::GetTypeInfo (cast<TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr(),
ast,
pointee_or_element_clang_type);
case clang::Type::TypeOfExpr: return 0;
case clang::Type::TypeOf: return 0;
case clang::Type::UnresolvedUsing: return 0;
case clang::Type::Vector: return eTypeHasChildren | eTypeIsVector;
default: return 0;
}
return 0;
}
#pragma mark Aggregate Types
bool
ClangASTContext::IsAggregateType (clang_type_t clang_type)
{
if (clang_type == NULL)
return false;
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::IncompleteArray:
case clang::Type::VariableArray:
case clang::Type::ConstantArray:
case clang::Type::ExtVector:
case clang::Type::Vector:
case clang::Type::Record:
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
return true;
case clang::Type::Elaborated:
return ClangASTContext::IsAggregateType (cast<ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr());
case clang::Type::Typedef:
return ClangASTContext::IsAggregateType (cast<TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr());
default:
break;
}
// The clang type does have a value
return false;
}
uint32_t
ClangASTContext::GetNumChildren (clang::ASTContext *ast, clang_type_t clang_type, bool omit_empty_base_classes)
{
if (clang_type == NULL)
return 0;
uint32_t num_children = 0;
QualType qual_type(QualType::getFromOpaquePtr(clang_type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Builtin:
switch (cast<clang::BuiltinType>(qual_type)->getKind())
{
case clang::BuiltinType::ObjCId: // child is Class
case clang::BuiltinType::ObjCClass: // child is Class
num_children = 1;
break;
default:
break;
}
break;
case clang::Type::Complex: return 0;
case clang::Type::Record:
if (GetCompleteQualType (ast, qual_type))
{
const RecordType *record_type = cast<RecordType>(qual_type.getTypePtr());
const RecordDecl *record_decl = record_type->getDecl();
assert(record_decl);
const CXXRecordDecl *cxx_record_decl = dyn_cast<CXXRecordDecl>(record_decl);
if (cxx_record_decl)
{
if (omit_empty_base_classes)
{
// Check each base classes to see if it or any of its
// base classes contain any fields. This can help
// limit the noise in variable views by not having to
// show base classes that contain no members.
CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end;
++base_class)
{
const CXXRecordDecl *base_class_decl = cast<CXXRecordDecl>(base_class->getType()->getAs<RecordType>()->getDecl());
// Skip empty base classes
if (RecordHasFields(base_class_decl) == false)
continue;
num_children++;
}
}
else
{
// Include all base classes
num_children += cxx_record_decl->getNumBases();
}
}
RecordDecl::field_iterator field, field_end;
for (field = record_decl->field_begin(), field_end = record_decl->field_end(); field != field_end; ++field)
++num_children;
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (GetCompleteQualType (ast, qual_type))
{
const ObjCObjectType *objc_class_type = dyn_cast<ObjCObjectType>(qual_type.getTypePtr());
assert (objc_class_type);
if (objc_class_type)
{
ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl)
{
ObjCInterfaceDecl *superclass_interface_decl = class_interface_decl->getSuperClass();
if (superclass_interface_decl)
{
if (omit_empty_base_classes)
{
if (ClangASTContext::ObjCDeclHasIVars (superclass_interface_decl, true))
++num_children;
}
else
++num_children;
}
num_children += class_interface_decl->ivar_size();
}
}
}
break;
case clang::Type::ObjCObjectPointer:
{
const ObjCObjectPointerType *pointer_type = cast<ObjCObjectPointerType>(qual_type.getTypePtr());
QualType pointee_type = pointer_type->getPointeeType();
uint32_t num_pointee_children = ClangASTContext::GetNumChildren (ast,
pointee_type.getAsOpaquePtr(),
omit_empty_base_classes);
// If this type points to a simple type, then it has 1 child
if (num_pointee_children == 0)
num_children = 1;
else
num_children = num_pointee_children;
}
break;
case clang::Type::ConstantArray:
num_children = cast<ConstantArrayType>(qual_type.getTypePtr())->getSize().getLimitedValue();
break;
case clang::Type::Pointer:
{
const PointerType *pointer_type = cast<PointerType>(qual_type.getTypePtr());
QualType pointee_type (pointer_type->getPointeeType());
uint32_t num_pointee_children = ClangASTContext::GetNumChildren (ast,
pointee_type.getAsOpaquePtr(),
omit_empty_base_classes);
if (num_pointee_children == 0)
{
// We have a pointer to a pointee type that claims it has no children.
// We will want to look at
num_children = ClangASTContext::GetNumPointeeChildren (pointee_type.getAsOpaquePtr());
}
else
num_children = num_pointee_children;
}
break;
case clang::Type::LValueReference:
case clang::Type::RValueReference:
{
const ReferenceType *reference_type = cast<ReferenceType>(qual_type.getTypePtr());
QualType pointee_type = reference_type->getPointeeType();
uint32_t num_pointee_children = ClangASTContext::GetNumChildren (ast,
pointee_type.getAsOpaquePtr(),
omit_empty_base_classes);
// If this type points to a simple type, then it has 1 child
if (num_pointee_children == 0)
num_children = 1;
else
num_children = num_pointee_children;
}
break;
case clang::Type::Typedef:
num_children = ClangASTContext::GetNumChildren (ast,
cast<TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr(),
omit_empty_base_classes);
break;
case clang::Type::Elaborated:
num_children = ClangASTContext::GetNumChildren (ast,
cast<ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr(),
omit_empty_base_classes);
break;
default:
break;
}
return num_children;
}
uint32_t
ClangASTContext::GetNumDirectBaseClasses (clang::ASTContext *ast, clang_type_t clang_type)
{
if (clang_type == NULL)
return 0;
uint32_t count = 0;
QualType qual_type(QualType::getFromOpaquePtr(clang_type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
if (GetCompleteQualType (ast, qual_type))
{
const CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
if (cxx_record_decl)
count = cxx_record_decl->getNumBases();
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (GetCompleteQualType (ast, qual_type))
{
const ObjCObjectType *objc_class_type = qual_type->getAsObjCQualifiedInterfaceType();
if (objc_class_type)
{
ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl && class_interface_decl->getSuperClass())
count = 1;
}
}
break;
case clang::Type::Typedef:
count = ClangASTContext::GetNumDirectBaseClasses (ast, cast<TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr());
break;
case clang::Type::Elaborated:
count = ClangASTContext::GetNumDirectBaseClasses (ast, cast<ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr());
break;
default:
break;
}
return count;
}
uint32_t
ClangASTContext::GetNumVirtualBaseClasses (clang::ASTContext *ast,
clang_type_t clang_type)
{
if (clang_type == NULL)
return 0;
uint32_t count = 0;
QualType qual_type(QualType::getFromOpaquePtr(clang_type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
if (GetCompleteQualType (ast, qual_type))
{
const CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
if (cxx_record_decl)
count = cxx_record_decl->getNumVBases();
}
break;
case clang::Type::Typedef:
count = ClangASTContext::GetNumVirtualBaseClasses (ast, cast<TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr());
break;
case clang::Type::Elaborated:
count = ClangASTContext::GetNumVirtualBaseClasses (ast, cast<ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr());
break;
default:
break;
}
return count;
}
uint32_t
ClangASTContext::GetNumFields (clang::ASTContext *ast, clang_type_t clang_type)
{
if (clang_type == NULL)
return 0;
uint32_t count = 0;
QualType qual_type(QualType::getFromOpaquePtr(clang_type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
if (GetCompleteQualType (ast, qual_type))
{
const RecordType *record_type = dyn_cast<RecordType>(qual_type.getTypePtr());
if (record_type)
{
RecordDecl *record_decl = record_type->getDecl();
if (record_decl)
{
uint32_t field_idx = 0;
RecordDecl::field_iterator field, field_end;
for (field = record_decl->field_begin(), field_end = record_decl->field_end(); field != field_end; ++field)
++field_idx;
count = field_idx;
}
}
}
break;
case clang::Type::Typedef:
count = ClangASTContext::GetNumFields (ast, cast<TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr());
break;
case clang::Type::Elaborated:
count = ClangASTContext::GetNumFields (ast, cast<ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr());
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (GetCompleteQualType (ast, qual_type))
{
const ObjCObjectType *objc_class_type = dyn_cast<ObjCObjectType>(qual_type.getTypePtr());
if (objc_class_type)
{
ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl)
count = class_interface_decl->ivar_size();
}
}
break;
default:
break;
}
return count;
}
clang_type_t
ClangASTContext::GetDirectBaseClassAtIndex (clang::ASTContext *ast,
clang_type_t clang_type,
uint32_t idx,
uint32_t *bit_offset_ptr)
{
if (clang_type == NULL)
return 0;
QualType qual_type(QualType::getFromOpaquePtr(clang_type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
if (GetCompleteQualType (ast, qual_type))
{
const CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
if (cxx_record_decl)
{
uint32_t curr_idx = 0;
CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end;
++base_class, ++curr_idx)
{
if (curr_idx == idx)
{
if (bit_offset_ptr)
{
const ASTRecordLayout &record_layout = ast->getASTRecordLayout(cxx_record_decl);
const CXXRecordDecl *base_class_decl = cast<CXXRecordDecl>(base_class->getType()->getAs<RecordType>()->getDecl());
// if (base_class->isVirtual())
// *bit_offset_ptr = record_layout.getVBaseClassOffset(base_class_decl).getQuantity() * 8;
// else
*bit_offset_ptr = record_layout.getBaseClassOffset(base_class_decl).getQuantity() * 8;
}
return base_class->getType().getAsOpaquePtr();
}
}
}
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (idx == 0 && GetCompleteQualType (ast, qual_type))
{
const ObjCObjectType *objc_class_type = qual_type->getAsObjCQualifiedInterfaceType();
if (objc_class_type)
{
ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl)
{
ObjCInterfaceDecl *superclass_interface_decl = class_interface_decl->getSuperClass();
if (superclass_interface_decl)
{
if (bit_offset_ptr)
*bit_offset_ptr = 0;
return ast->getObjCInterfaceType(superclass_interface_decl).getAsOpaquePtr();
}
}
}
}
break;
case clang::Type::Typedef:
return ClangASTContext::GetDirectBaseClassAtIndex (ast,
cast<TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr(),
idx,
bit_offset_ptr);
case clang::Type::Elaborated:
return ClangASTContext::GetDirectBaseClassAtIndex (ast,
cast<ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr(),
idx,
bit_offset_ptr);
default:
break;
}
return NULL;
}
clang_type_t
ClangASTContext::GetVirtualBaseClassAtIndex (clang::ASTContext *ast,
clang_type_t clang_type,
uint32_t idx,
uint32_t *bit_offset_ptr)
{
if (clang_type == NULL)
return 0;
QualType qual_type(QualType::getFromOpaquePtr(clang_type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
if (GetCompleteQualType (ast, qual_type))
{
const CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
if (cxx_record_decl)
{
uint32_t curr_idx = 0;
CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->vbases_begin(), base_class_end = cxx_record_decl->vbases_end();
base_class != base_class_end;
++base_class, ++curr_idx)
{
if (curr_idx == idx)
{
if (bit_offset_ptr)
{
const ASTRecordLayout &record_layout = ast->getASTRecordLayout(cxx_record_decl);
const CXXRecordDecl *base_class_decl = cast<CXXRecordDecl>(base_class->getType()->getAs<RecordType>()->getDecl());
*bit_offset_ptr = record_layout.getVBaseClassOffset(base_class_decl).getQuantity() * 8;
}
return base_class->getType().getAsOpaquePtr();
}
}
}
}
break;
case clang::Type::Typedef:
return ClangASTContext::GetVirtualBaseClassAtIndex (ast,
cast<TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr(),
idx,
bit_offset_ptr);
case clang::Type::Elaborated:
return ClangASTContext::GetVirtualBaseClassAtIndex (ast,
cast<ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr(),
idx,
bit_offset_ptr);
default:
break;
}
return NULL;
}
clang_type_t
ClangASTContext::GetFieldAtIndex (clang::ASTContext *ast,
clang_type_t clang_type,
uint32_t idx,
std::string& name,
uint64_t *bit_offset_ptr,
uint32_t *bitfield_bit_size_ptr,
bool *is_bitfield_ptr)
{
if (clang_type == NULL)
return 0;
QualType qual_type(QualType::getFromOpaquePtr(clang_type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
if (GetCompleteQualType (ast, qual_type))
{
const RecordType *record_type = cast<RecordType>(qual_type.getTypePtr());
const RecordDecl *record_decl = record_type->getDecl();
uint32_t field_idx = 0;
RecordDecl::field_iterator field, field_end;
for (field = record_decl->field_begin(), field_end = record_decl->field_end(); field != field_end; ++field, ++field_idx)
{
if (idx == field_idx)
{
// Print the member type if requested
// Print the member name and equal sign
name.assign(field->getNameAsString());
// Figure out the type byte size (field_type_info.first) and
// alignment (field_type_info.second) from the AST context.
if (bit_offset_ptr)
{
const ASTRecordLayout &record_layout = ast->getASTRecordLayout(record_decl);
*bit_offset_ptr = record_layout.getFieldOffset (field_idx);
}
const bool is_bitfield = field->isBitField();
if (bitfield_bit_size_ptr)
{
*bitfield_bit_size_ptr = 0;
if (is_bitfield && ast)
{
Expr *bitfield_bit_size_expr = field->getBitWidth();
llvm::APSInt bitfield_apsint;
if (bitfield_bit_size_expr && bitfield_bit_size_expr->EvaluateAsInt(bitfield_apsint, *ast))
{
*bitfield_bit_size_ptr = bitfield_apsint.getLimitedValue();
}
}
}
if (is_bitfield_ptr)
*is_bitfield_ptr = is_bitfield;
return field->getType().getAsOpaquePtr();
}
}
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (GetCompleteQualType (ast, qual_type))
{
const ObjCObjectType *objc_class_type = dyn_cast<ObjCObjectType>(qual_type.getTypePtr());
assert (objc_class_type);
if (objc_class_type)
{
ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl)
{
if (idx < (class_interface_decl->ivar_size()))
{
ObjCInterfaceDecl::ivar_iterator ivar_pos, ivar_end = class_interface_decl->ivar_end();
uint32_t ivar_idx = 0;
for (ivar_pos = class_interface_decl->ivar_begin(); ivar_pos != ivar_end; ++ivar_pos, ++ivar_idx)
{
if (ivar_idx == idx)
{
const ObjCIvarDecl* ivar_decl = *ivar_pos;
QualType ivar_qual_type(ivar_decl->getType());
name.assign(ivar_decl->getNameAsString());
if (bit_offset_ptr)
{
const ASTRecordLayout &interface_layout = ast->getASTObjCInterfaceLayout(class_interface_decl);
*bit_offset_ptr = interface_layout.getFieldOffset (ivar_idx);
}
const bool is_bitfield = ivar_pos->isBitField();
if (bitfield_bit_size_ptr)
{
*bitfield_bit_size_ptr = 0;
if (is_bitfield && ast)
{
Expr *bitfield_bit_size_expr = ivar_pos->getBitWidth();
llvm::APSInt bitfield_apsint;
if (bitfield_bit_size_expr && bitfield_bit_size_expr->EvaluateAsInt(bitfield_apsint, *ast))
{
*bitfield_bit_size_ptr = bitfield_apsint.getLimitedValue();
}
}
}
if (is_bitfield_ptr)
*is_bitfield_ptr = is_bitfield;
return ivar_qual_type.getAsOpaquePtr();
}
}
}
}
}
}
break;
case clang::Type::Typedef:
return ClangASTContext::GetFieldAtIndex (ast,
cast<TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr(),
idx,
name,
bit_offset_ptr,
bitfield_bit_size_ptr,
is_bitfield_ptr);
case clang::Type::Elaborated:
return ClangASTContext::GetFieldAtIndex (ast,
cast<ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr(),
idx,
name,
bit_offset_ptr,
bitfield_bit_size_ptr,
is_bitfield_ptr);
default:
break;
}
return NULL;
}
// If a pointer to a pointee type (the clang_type arg) says that it has no
// children, then we either need to trust it, or override it and return a
// different result. For example, an "int *" has one child that is an integer,
// but a function pointer doesn't have any children. Likewise if a Record type
// claims it has no children, then there really is nothing to show.
uint32_t
ClangASTContext::GetNumPointeeChildren (clang_type_t clang_type)
{
if (clang_type == NULL)
return 0;
QualType qual_type(QualType::getFromOpaquePtr(clang_type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Builtin:
switch (cast<clang::BuiltinType>(qual_type)->getKind())
{
case clang::BuiltinType::UnknownAny:
case clang::BuiltinType::Void:
case clang::BuiltinType::NullPtr:
return 0;
case clang::BuiltinType::Bool:
case clang::BuiltinType::Char_U:
case clang::BuiltinType::UChar:
case clang::BuiltinType::WChar_U:
case clang::BuiltinType::Char16:
case clang::BuiltinType::Char32:
case clang::BuiltinType::UShort:
case clang::BuiltinType::UInt:
case clang::BuiltinType::ULong:
case clang::BuiltinType::ULongLong:
case clang::BuiltinType::UInt128:
case clang::BuiltinType::Char_S:
case clang::BuiltinType::SChar:
case clang::BuiltinType::WChar_S:
case clang::BuiltinType::Short:
case clang::BuiltinType::Int:
case clang::BuiltinType::Long:
case clang::BuiltinType::LongLong:
case clang::BuiltinType::Int128:
case clang::BuiltinType::Float:
case clang::BuiltinType::Double:
case clang::BuiltinType::LongDouble:
case clang::BuiltinType::Dependent:
case clang::BuiltinType::Overload:
case clang::BuiltinType::ObjCId:
case clang::BuiltinType::ObjCClass:
case clang::BuiltinType::ObjCSel:
case clang::BuiltinType::BoundMember:
case clang::BuiltinType::Half:
case clang::BuiltinType::ARCUnbridgedCast:
case clang::BuiltinType::PseudoObject:
return 1;
}
break;
case clang::Type::Complex: return 1;
case clang::Type::Pointer: return 1;
case clang::Type::BlockPointer: return 0; // If block pointers don't have debug info, then no children for them
case clang::Type::LValueReference: return 1;
case clang::Type::RValueReference: return 1;
case clang::Type::MemberPointer: return 0;
case clang::Type::ConstantArray: return 0;
case clang::Type::IncompleteArray: return 0;
case clang::Type::VariableArray: return 0;
case clang::Type::DependentSizedArray: return 0;
case clang::Type::DependentSizedExtVector: return 0;
case clang::Type::Vector: return 0;
case clang::Type::ExtVector: return 0;
case clang::Type::FunctionProto: return 0; // When we function pointers, they have no children...
case clang::Type::FunctionNoProto: return 0; // When we function pointers, they have no children...
case clang::Type::UnresolvedUsing: return 0;
case clang::Type::Paren: return 0;
case clang::Type::Typedef: return ClangASTContext::GetNumPointeeChildren (cast<TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr());
case clang::Type::Elaborated: return ClangASTContext::GetNumPointeeChildren (cast<ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr());
case clang::Type::TypeOfExpr: return 0;
case clang::Type::TypeOf: return 0;
case clang::Type::Decltype: return 0;
case clang::Type::Record: return 0;
case clang::Type::Enum: return 1;
case clang::Type::TemplateTypeParm: return 1;
case clang::Type::SubstTemplateTypeParm: return 1;
case clang::Type::TemplateSpecialization: return 1;
case clang::Type::InjectedClassName: return 0;
case clang::Type::DependentName: return 1;
case clang::Type::DependentTemplateSpecialization: return 1;
case clang::Type::ObjCObject: return 0;
case clang::Type::ObjCInterface: return 0;
case clang::Type::ObjCObjectPointer: return 1;
default:
break;
}
return 0;
}
clang_type_t
ClangASTContext::GetChildClangTypeAtIndex
(
ExecutionContext *exe_ctx,
const char *parent_name,
clang_type_t parent_clang_type,
uint32_t idx,
bool transparent_pointers,
bool omit_empty_base_classes,
bool ignore_array_bounds,
std::string& child_name,
uint32_t &child_byte_size,
int32_t &child_byte_offset,
uint32_t &child_bitfield_bit_size,
uint32_t &child_bitfield_bit_offset,
bool &child_is_base_class,
bool &child_is_deref_of_parent
)
{
if (parent_clang_type)
return GetChildClangTypeAtIndex (exe_ctx,
getASTContext(),
parent_name,
parent_clang_type,
idx,
transparent_pointers,
omit_empty_base_classes,
ignore_array_bounds,
child_name,
child_byte_size,
child_byte_offset,
child_bitfield_bit_size,
child_bitfield_bit_offset,
child_is_base_class,
child_is_deref_of_parent);
return NULL;
}
clang_type_t
ClangASTContext::GetChildClangTypeAtIndex
(
ExecutionContext *exe_ctx,
ASTContext *ast,
const char *parent_name,
clang_type_t parent_clang_type,
uint32_t idx,
bool transparent_pointers,
bool omit_empty_base_classes,
bool ignore_array_bounds,
std::string& child_name,
uint32_t &child_byte_size,
int32_t &child_byte_offset,
uint32_t &child_bitfield_bit_size,
uint32_t &child_bitfield_bit_offset,
bool &child_is_base_class,
bool &child_is_deref_of_parent
)
{
if (parent_clang_type == NULL)
return NULL;
if (idx < ClangASTContext::GetNumChildren (ast, parent_clang_type, omit_empty_base_classes))
{
uint32_t bit_offset;
child_bitfield_bit_size = 0;
child_bitfield_bit_offset = 0;
child_is_base_class = false;
QualType parent_qual_type(QualType::getFromOpaquePtr(parent_clang_type));
const clang::Type::TypeClass parent_type_class = parent_qual_type->getTypeClass();
switch (parent_type_class)
{
case clang::Type::Builtin:
switch (cast<clang::BuiltinType>(parent_qual_type)->getKind())
{
case clang::BuiltinType::ObjCId:
case clang::BuiltinType::ObjCClass:
child_name = "isa";
child_byte_size = ast->getTypeSize(ast->ObjCBuiltinClassTy) / CHAR_BIT;
return ast->ObjCBuiltinClassTy.getAsOpaquePtr();
default:
break;
}
break;
case clang::Type::Record:
if (GetCompleteQualType (ast, parent_qual_type))
{
const RecordType *record_type = cast<RecordType>(parent_qual_type.getTypePtr());
const RecordDecl *record_decl = record_type->getDecl();
assert(record_decl);
const ASTRecordLayout &record_layout = ast->getASTRecordLayout(record_decl);
uint32_t child_idx = 0;
const CXXRecordDecl *cxx_record_decl = dyn_cast<CXXRecordDecl>(record_decl);
if (cxx_record_decl)
{
// We might have base classes to print out first
CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end;
++base_class)
{
const CXXRecordDecl *base_class_decl = NULL;
// Skip empty base classes
if (omit_empty_base_classes)
{
base_class_decl = cast<CXXRecordDecl>(base_class->getType()->getAs<RecordType>()->getDecl());
if (RecordHasFields(base_class_decl) == false)
continue;
}
if (idx == child_idx)
{
if (base_class_decl == NULL)
base_class_decl = cast<CXXRecordDecl>(base_class->getType()->getAs<RecordType>()->getDecl());
if (base_class->isVirtual())
bit_offset = record_layout.getVBaseClassOffset(base_class_decl).getQuantity() * 8;
else
bit_offset = record_layout.getBaseClassOffset(base_class_decl).getQuantity() * 8;
// Base classes should be a multiple of 8 bits in size
child_byte_offset = bit_offset/8;
child_name = ClangASTType::GetTypeNameForQualType(ast, base_class->getType());
uint64_t clang_type_info_bit_size = ast->getTypeSize(base_class->getType());
// Base classes bit sizes should be a multiple of 8 bits in size
assert (clang_type_info_bit_size % 8 == 0);
child_byte_size = clang_type_info_bit_size / 8;
child_is_base_class = true;
return base_class->getType().getAsOpaquePtr();
}
// We don't increment the child index in the for loop since we might
// be skipping empty base classes
++child_idx;
}
}
// Make sure index is in range...
uint32_t field_idx = 0;
RecordDecl::field_iterator field, field_end;
for (field = record_decl->field_begin(), field_end = record_decl->field_end(); field != field_end; ++field, ++field_idx, ++child_idx)
{
if (idx == child_idx)
{
// Print the member type if requested
// Print the member name and equal sign
child_name.assign(field->getNameAsString().c_str());
// Figure out the type byte size (field_type_info.first) and
// alignment (field_type_info.second) from the AST context.
std::pair<uint64_t, unsigned> field_type_info = ast->getTypeInfo(field->getType());
assert(field_idx < record_layout.getFieldCount());
child_byte_size = field_type_info.first / 8;
// Figure out the field offset within the current struct/union/class type
bit_offset = record_layout.getFieldOffset (field_idx);
child_byte_offset = bit_offset / 8;
if (ClangASTContext::FieldIsBitfield (ast, *field, child_bitfield_bit_size))
child_bitfield_bit_offset = bit_offset % 8;
return field->getType().getAsOpaquePtr();
}
}
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (GetCompleteQualType (ast, parent_qual_type))
{
const ObjCObjectType *objc_class_type = dyn_cast<ObjCObjectType>(parent_qual_type.getTypePtr());
assert (objc_class_type);
if (objc_class_type)
{
uint32_t child_idx = 0;
ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl)
{
const ASTRecordLayout &interface_layout = ast->getASTObjCInterfaceLayout(class_interface_decl);
ObjCInterfaceDecl *superclass_interface_decl = class_interface_decl->getSuperClass();
if (superclass_interface_decl)
{
if (omit_empty_base_classes)
{
if (ClangASTContext::GetNumChildren(ast, ast->getObjCInterfaceType(superclass_interface_decl).getAsOpaquePtr(), omit_empty_base_classes) > 0)
{
if (idx == 0)
{
QualType ivar_qual_type(ast->getObjCInterfaceType(superclass_interface_decl));
child_name.assign(superclass_interface_decl->getNameAsString().c_str());
std::pair<uint64_t, unsigned> ivar_type_info = ast->getTypeInfo(ivar_qual_type.getTypePtr());
child_byte_size = ivar_type_info.first / 8;
child_byte_offset = 0;
child_is_base_class = true;
return ivar_qual_type.getAsOpaquePtr();
}
++child_idx;
}
}
else
++child_idx;
}
const uint32_t superclass_idx = child_idx;
if (idx < (child_idx + class_interface_decl->ivar_size()))
{
ObjCInterfaceDecl::ivar_iterator ivar_pos, ivar_end = class_interface_decl->ivar_end();
for (ivar_pos = class_interface_decl->ivar_begin(); ivar_pos != ivar_end; ++ivar_pos)
{
if (child_idx == idx)
{
ObjCIvarDecl* ivar_decl = *ivar_pos;
QualType ivar_qual_type(ivar_decl->getType());
child_name.assign(ivar_decl->getNameAsString().c_str());
std::pair<uint64_t, unsigned> ivar_type_info = ast->getTypeInfo(ivar_qual_type.getTypePtr());
child_byte_size = ivar_type_info.first / 8;
// Figure out the field offset within the current struct/union/class type
// For ObjC objects, we can't trust the bit offset we get from the Clang AST, since
// that doesn't account for the space taken up by unbacked properties, or from
// the changing size of base classes that are newer than this class.
// So if we have a process around that we can ask about this object, do so.
child_byte_offset = LLDB_INVALID_IVAR_OFFSET;
Process *process = NULL;
if (exe_ctx)
process = exe_ctx->GetProcessPtr();
if (process)
{
ObjCLanguageRuntime *objc_runtime = process->GetObjCLanguageRuntime();
if (objc_runtime != NULL)
{
ClangASTType parent_ast_type (ast, parent_qual_type.getAsOpaquePtr());
child_byte_offset = objc_runtime->GetByteOffsetForIvar (parent_ast_type, ivar_decl->getNameAsString().c_str());
}
}
// Setting this to UINT32_MAX to make sure we don't compute it twice...
bit_offset = UINT32_MAX;
if (child_byte_offset == LLDB_INVALID_IVAR_OFFSET)
{
bit_offset = interface_layout.getFieldOffset (child_idx - superclass_idx);
child_byte_offset = bit_offset / 8;
}
// Note, the ObjC Ivar Byte offset is just that, it doesn't account for the bit offset
// of a bitfield within its containing object. So regardless of where we get the byte
// offset from, we still need to get the bit offset for bitfields from the layout.
if (ClangASTContext::FieldIsBitfield (ast, ivar_decl, child_bitfield_bit_size))
{
if (bit_offset == UINT32_MAX)
bit_offset = interface_layout.getFieldOffset (child_idx - superclass_idx);
child_bitfield_bit_offset = bit_offset % 8;
}
return ivar_qual_type.getAsOpaquePtr();
}
++child_idx;
}
}
}
}
}
break;
case clang::Type::ObjCObjectPointer:
{
const ObjCObjectPointerType *pointer_type = cast<ObjCObjectPointerType>(parent_qual_type.getTypePtr());
QualType pointee_type = pointer_type->getPointeeType();
if (transparent_pointers && ClangASTContext::IsAggregateType (pointee_type.getAsOpaquePtr()))
{
child_is_deref_of_parent = false;
bool tmp_child_is_deref_of_parent = false;
return GetChildClangTypeAtIndex (exe_ctx,
ast,
parent_name,
pointer_type->getPointeeType().getAsOpaquePtr(),
idx,
transparent_pointers,
omit_empty_base_classes,
ignore_array_bounds,
child_name,
child_byte_size,
child_byte_offset,
child_bitfield_bit_size,
child_bitfield_bit_offset,
child_is_base_class,
tmp_child_is_deref_of_parent);
}
else
{
child_is_deref_of_parent = true;
if (parent_name)
{
child_name.assign(1, '*');
child_name += parent_name;
}
// We have a pointer to an simple type
if (idx == 0 && GetCompleteQualType(ast, pointee_type))
{
std::pair<uint64_t, unsigned> clang_type_info = ast->getTypeInfo(pointee_type);
assert(clang_type_info.first % 8 == 0);
child_byte_size = clang_type_info.first / 8;
child_byte_offset = 0;
return pointee_type.getAsOpaquePtr();
}
}
}
break;
case clang::Type::ConstantArray:
{
const ConstantArrayType *array = cast<ConstantArrayType>(parent_qual_type.getTypePtr());
const uint64_t element_count = array->getSize().getLimitedValue();
if (ignore_array_bounds || idx < element_count)
{
if (GetCompleteQualType (ast, array->getElementType()))
{
std::pair<uint64_t, unsigned> field_type_info = ast->getTypeInfo(array->getElementType());
char element_name[64];
::snprintf (element_name, sizeof (element_name), "[%u]", idx);
child_name.assign(element_name);
assert(field_type_info.first % 8 == 0);
child_byte_size = field_type_info.first / 8;
child_byte_offset = (int32_t)idx * (int32_t)child_byte_size;
return array->getElementType().getAsOpaquePtr();
}
}
}
break;
case clang::Type::Pointer:
{
const PointerType *pointer_type = cast<PointerType>(parent_qual_type.getTypePtr());
QualType pointee_type = pointer_type->getPointeeType();
// Don't dereference "void *" pointers
if (pointee_type->isVoidType())
return NULL;
if (transparent_pointers && ClangASTContext::IsAggregateType (pointee_type.getAsOpaquePtr()))
{
child_is_deref_of_parent = false;
bool tmp_child_is_deref_of_parent = false;
return GetChildClangTypeAtIndex (exe_ctx,
ast,
parent_name,
pointer_type->getPointeeType().getAsOpaquePtr(),
idx,
transparent_pointers,
omit_empty_base_classes,
ignore_array_bounds,
child_name,
child_byte_size,
child_byte_offset,
child_bitfield_bit_size,
child_bitfield_bit_offset,
child_is_base_class,
tmp_child_is_deref_of_parent);
}
else
{
child_is_deref_of_parent = true;
if (parent_name)
{
child_name.assign(1, '*');
child_name += parent_name;
}
// We have a pointer to an simple type
if (idx == 0)
{
std::pair<uint64_t, unsigned> clang_type_info = ast->getTypeInfo(pointee_type);
assert(clang_type_info.first % 8 == 0);
child_byte_size = clang_type_info.first / 8;
child_byte_offset = 0;
return pointee_type.getAsOpaquePtr();
}
}
}
break;
case clang::Type::LValueReference:
case clang::Type::RValueReference:
{
const ReferenceType *reference_type = cast<ReferenceType>(parent_qual_type.getTypePtr());
QualType pointee_type(reference_type->getPointeeType());
clang_type_t pointee_clang_type = pointee_type.getAsOpaquePtr();
if (transparent_pointers && ClangASTContext::IsAggregateType (pointee_clang_type))
{
child_is_deref_of_parent = false;
bool tmp_child_is_deref_of_parent = false;
return GetChildClangTypeAtIndex (exe_ctx,
ast,
parent_name,
pointee_clang_type,
idx,
transparent_pointers,
omit_empty_base_classes,
ignore_array_bounds,
child_name,
child_byte_size,
child_byte_offset,
child_bitfield_bit_size,
child_bitfield_bit_offset,
child_is_base_class,
tmp_child_is_deref_of_parent);
}
else
{
if (parent_name)
{
child_name.assign(1, '&');
child_name += parent_name;
}
// We have a pointer to an simple type
if (idx == 0)
{
std::pair<uint64_t, unsigned> clang_type_info = ast->getTypeInfo(pointee_type);
assert(clang_type_info.first % 8 == 0);
child_byte_size = clang_type_info.first / 8;
child_byte_offset = 0;
return pointee_type.getAsOpaquePtr();
}
}
}
break;
case clang::Type::Typedef:
return GetChildClangTypeAtIndex (exe_ctx,
ast,
parent_name,
cast<TypedefType>(parent_qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr(),
idx,
transparent_pointers,
omit_empty_base_classes,
ignore_array_bounds,
child_name,
child_byte_size,
child_byte_offset,
child_bitfield_bit_size,
child_bitfield_bit_offset,
child_is_base_class,
child_is_deref_of_parent);
break;
case clang::Type::Elaborated:
return GetChildClangTypeAtIndex (exe_ctx,
ast,
parent_name,
cast<ElaboratedType>(parent_qual_type)->getNamedType().getAsOpaquePtr(),
idx,
transparent_pointers,
omit_empty_base_classes,
ignore_array_bounds,
child_name,
child_byte_size,
child_byte_offset,
child_bitfield_bit_size,
child_bitfield_bit_offset,
child_is_base_class,
child_is_deref_of_parent);
default:
break;
}
}
return NULL;
}
static inline bool
BaseSpecifierIsEmpty (const CXXBaseSpecifier *b)
{
return ClangASTContext::RecordHasFields(b->getType()->getAsCXXRecordDecl()) == false;
}
static uint32_t
GetNumBaseClasses (const CXXRecordDecl *cxx_record_decl, bool omit_empty_base_classes)
{
uint32_t num_bases = 0;
if (cxx_record_decl)
{
if (omit_empty_base_classes)
{
CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end;
++base_class)
{
// Skip empty base classes
if (omit_empty_base_classes)
{
if (BaseSpecifierIsEmpty (base_class))
continue;
}
++num_bases;
}
}
else
num_bases = cxx_record_decl->getNumBases();
}
return num_bases;
}
static uint32_t
GetIndexForRecordBase
(
const RecordDecl *record_decl,
const CXXBaseSpecifier *base_spec,
bool omit_empty_base_classes
)
{
uint32_t child_idx = 0;
const CXXRecordDecl *cxx_record_decl = dyn_cast<CXXRecordDecl>(record_decl);
// const char *super_name = record_decl->getNameAsCString();
// const char *base_name = base_spec->getType()->getAs<RecordType>()->getDecl()->getNameAsCString();
// printf ("GetIndexForRecordChild (%s, %s)\n", super_name, base_name);
//
if (cxx_record_decl)
{
CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end;
++base_class)
{
if (omit_empty_base_classes)
{
if (BaseSpecifierIsEmpty (base_class))
continue;
}
// printf ("GetIndexForRecordChild (%s, %s) base[%u] = %s\n", super_name, base_name,
// child_idx,
// base_class->getType()->getAs<RecordType>()->getDecl()->getNameAsCString());
//
//
if (base_class == base_spec)
return child_idx;
++child_idx;
}
}
return UINT32_MAX;
}
static uint32_t
GetIndexForRecordChild
(
const RecordDecl *record_decl,
NamedDecl *canonical_decl,
bool omit_empty_base_classes
)
{
uint32_t child_idx = GetNumBaseClasses (dyn_cast<CXXRecordDecl>(record_decl), omit_empty_base_classes);
// const CXXRecordDecl *cxx_record_decl = dyn_cast<CXXRecordDecl>(record_decl);
//
//// printf ("GetIndexForRecordChild (%s, %s)\n", record_decl->getNameAsCString(), canonical_decl->getNameAsCString());
// if (cxx_record_decl)
// {
// CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
// for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end();
// base_class != base_class_end;
// ++base_class)
// {
// if (omit_empty_base_classes)
// {
// if (BaseSpecifierIsEmpty (base_class))
// continue;
// }
//
//// printf ("GetIndexForRecordChild (%s, %s) base[%u] = %s\n",
//// record_decl->getNameAsCString(),
//// canonical_decl->getNameAsCString(),
//// child_idx,
//// base_class->getType()->getAs<RecordType>()->getDecl()->getNameAsCString());
//
//
// CXXRecordDecl *curr_base_class_decl = cast<CXXRecordDecl>(base_class->getType()->getAs<RecordType>()->getDecl());
// if (curr_base_class_decl == canonical_decl)
// {
// return child_idx;
// }
// ++child_idx;
// }
// }
//
// const uint32_t num_bases = child_idx;
RecordDecl::field_iterator field, field_end;
for (field = record_decl->field_begin(), field_end = record_decl->field_end();
field != field_end;
++field, ++child_idx)
{
// printf ("GetIndexForRecordChild (%s, %s) field[%u] = %s\n",
// record_decl->getNameAsCString(),
// canonical_decl->getNameAsCString(),
// child_idx - num_bases,
// field->getNameAsCString());
if (field->getCanonicalDecl() == canonical_decl)
return child_idx;
}
return UINT32_MAX;
}
// Look for a child member (doesn't include base classes, but it does include
// their members) in the type hierarchy. Returns an index path into "clang_type"
// on how to reach the appropriate member.
//
// class A
// {
// public:
// int m_a;
// int m_b;
// };
//
// class B
// {
// };
//
// class C :
// public B,
// public A
// {
// };
//
// If we have a clang type that describes "class C", and we wanted to looked
// "m_b" in it:
//
// With omit_empty_base_classes == false we would get an integer array back with:
// { 1, 1 }
// The first index 1 is the child index for "class A" within class C
// The second index 1 is the child index for "m_b" within class A
//
// With omit_empty_base_classes == true we would get an integer array back with:
// { 0, 1 }
// The first index 0 is the child index for "class A" within class C (since class B doesn't have any members it doesn't count)
// The second index 1 is the child index for "m_b" within class A
size_t
ClangASTContext::GetIndexOfChildMemberWithName
(
ASTContext *ast,
clang_type_t clang_type,
const char *name,
bool omit_empty_base_classes,
std::vector<uint32_t>& child_indexes
)
{
if (clang_type && name && name[0])
{
QualType qual_type(QualType::getFromOpaquePtr(clang_type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
if (GetCompleteQualType (ast, qual_type))
{
const RecordType *record_type = cast<RecordType>(qual_type.getTypePtr());
const RecordDecl *record_decl = record_type->getDecl();
assert(record_decl);
uint32_t child_idx = 0;
const CXXRecordDecl *cxx_record_decl = dyn_cast<CXXRecordDecl>(record_decl);
// Try and find a field that matches NAME
RecordDecl::field_iterator field, field_end;
StringRef name_sref(name);
for (field = record_decl->field_begin(), field_end = record_decl->field_end();
field != field_end;
++field, ++child_idx)
{
if (field->getName().equals (name_sref))
{
// We have to add on the number of base classes to this index!
child_indexes.push_back (child_idx + GetNumBaseClasses (cxx_record_decl, omit_empty_base_classes));
return child_indexes.size();
}
}
if (cxx_record_decl)
{
const RecordDecl *parent_record_decl = cxx_record_decl;
//printf ("parent = %s\n", parent_record_decl->getNameAsCString());
//const Decl *root_cdecl = cxx_record_decl->getCanonicalDecl();
// Didn't find things easily, lets let clang do its thang...
IdentifierInfo & ident_ref = ast->Idents.get(name_sref);
DeclarationName decl_name(&ident_ref);
CXXBasePaths paths;
if (cxx_record_decl->lookupInBases(CXXRecordDecl::FindOrdinaryMember,
decl_name.getAsOpaquePtr(),
paths))
{
CXXBasePaths::const_paths_iterator path, path_end = paths.end();
for (path = paths.begin(); path != path_end; ++path)
{
const size_t num_path_elements = path->size();
for (size_t e=0; e<num_path_elements; ++e)
{
CXXBasePathElement elem = (*path)[e];
child_idx = GetIndexForRecordBase (parent_record_decl, elem.Base, omit_empty_base_classes);
if (child_idx == UINT32_MAX)
{
child_indexes.clear();
return 0;
}
else
{
child_indexes.push_back (child_idx);
parent_record_decl = cast<RecordDecl>(elem.Base->getType()->getAs<RecordType>()->getDecl());
}
}
DeclContext::lookup_iterator named_decl_pos;
for (named_decl_pos = path->Decls.first;
named_decl_pos != path->Decls.second && parent_record_decl;
++named_decl_pos)
{
//printf ("path[%zu] = %s\n", child_indexes.size(), (*named_decl_pos)->getNameAsCString());
child_idx = GetIndexForRecordChild (parent_record_decl, *named_decl_pos, omit_empty_base_classes);
if (child_idx == UINT32_MAX)
{
child_indexes.clear();
return 0;
}
else
{
child_indexes.push_back (child_idx);
}
}
}
return child_indexes.size();
}
}
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (GetCompleteQualType (ast, qual_type))
{
StringRef name_sref(name);
const ObjCObjectType *objc_class_type = dyn_cast<ObjCObjectType>(qual_type.getTypePtr());
assert (objc_class_type);
if (objc_class_type)
{
uint32_t child_idx = 0;
ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl)
{
ObjCInterfaceDecl::ivar_iterator ivar_pos, ivar_end = class_interface_decl->ivar_end();
ObjCInterfaceDecl *superclass_interface_decl = class_interface_decl->getSuperClass();
for (ivar_pos = class_interface_decl->ivar_begin(); ivar_pos != ivar_end; ++ivar_pos, ++child_idx)
{
const ObjCIvarDecl* ivar_decl = *ivar_pos;
if (ivar_decl->getName().equals (name_sref))
{
if ((!omit_empty_base_classes && superclass_interface_decl) ||
( omit_empty_base_classes && ObjCDeclHasIVars (superclass_interface_decl, true)))
++child_idx;
child_indexes.push_back (child_idx);
return child_indexes.size();
}
}
if (superclass_interface_decl)
{
// The super class index is always zero for ObjC classes,
// so we push it onto the child indexes in case we find
// an ivar in our superclass...
child_indexes.push_back (0);
if (GetIndexOfChildMemberWithName (ast,
ast->getObjCInterfaceType(superclass_interface_decl).getAsOpaquePtr(),
name,
omit_empty_base_classes,
child_indexes))
{
// We did find an ivar in a superclass so just
// return the results!
return child_indexes.size();
}
// We didn't find an ivar matching "name" in our
// superclass, pop the superclass zero index that
// we pushed on above.
child_indexes.pop_back();
}
}
}
}
break;
case clang::Type::ObjCObjectPointer:
{
return GetIndexOfChildMemberWithName (ast,
cast<ObjCObjectPointerType>(qual_type.getTypePtr())->getPointeeType().getAsOpaquePtr(),
name,
omit_empty_base_classes,
child_indexes);
}
break;
case clang::Type::ConstantArray:
{
// const ConstantArrayType *array = cast<ConstantArrayType>(parent_qual_type.getTypePtr());
// const uint64_t element_count = array->getSize().getLimitedValue();
//
// if (idx < element_count)
// {
// std::pair<uint64_t, unsigned> field_type_info = ast->getTypeInfo(array->getElementType());
//
// char element_name[32];
// ::snprintf (element_name, sizeof (element_name), "%s[%u]", parent_name ? parent_name : "", idx);
//
// child_name.assign(element_name);
// assert(field_type_info.first % 8 == 0);
// child_byte_size = field_type_info.first / 8;
// child_byte_offset = idx * child_byte_size;
// return array->getElementType().getAsOpaquePtr();
// }
}
break;
// case clang::Type::MemberPointerType:
// {
// MemberPointerType *mem_ptr_type = cast<MemberPointerType>(qual_type.getTypePtr());
// QualType pointee_type = mem_ptr_type->getPointeeType();
//
// if (ClangASTContext::IsAggregateType (pointee_type.getAsOpaquePtr()))
// {
// return GetIndexOfChildWithName (ast,
// mem_ptr_type->getPointeeType().getAsOpaquePtr(),
// name);
// }
// }
// break;
//
case clang::Type::LValueReference:
case clang::Type::RValueReference:
{
const ReferenceType *reference_type = cast<ReferenceType>(qual_type.getTypePtr());
QualType pointee_type = reference_type->getPointeeType();
if (ClangASTContext::IsAggregateType (pointee_type.getAsOpaquePtr()))
{
return GetIndexOfChildMemberWithName (ast,
reference_type->getPointeeType().getAsOpaquePtr(),
name,
omit_empty_base_classes,
child_indexes);
}
}
break;
case clang::Type::Pointer:
{
const PointerType *pointer_type = cast<PointerType>(qual_type.getTypePtr());
QualType pointee_type = pointer_type->getPointeeType();
if (ClangASTContext::IsAggregateType (pointee_type.getAsOpaquePtr()))
{
return GetIndexOfChildMemberWithName (ast,
pointer_type->getPointeeType().getAsOpaquePtr(),
name,
omit_empty_base_classes,
child_indexes);
}
else
{
// if (parent_name)
// {
// child_name.assign(1, '*');
// child_name += parent_name;
// }
//
// // We have a pointer to an simple type
// if (idx == 0)
// {
// std::pair<uint64_t, unsigned> clang_type_info = ast->getTypeInfo(pointee_type);
// assert(clang_type_info.first % 8 == 0);
// child_byte_size = clang_type_info.first / 8;
// child_byte_offset = 0;
// return pointee_type.getAsOpaquePtr();
// }
}
}
break;
case clang::Type::Typedef:
return GetIndexOfChildMemberWithName (ast,
cast<TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr(),
name,
omit_empty_base_classes,
child_indexes);
default:
break;
}
}
return 0;
}
// Get the index of the child of "clang_type" whose name matches. This function
// doesn't descend into the children, but only looks one level deep and name
// matches can include base class names.
uint32_t
ClangASTContext::GetIndexOfChildWithName
(
ASTContext *ast,
clang_type_t clang_type,
const char *name,
bool omit_empty_base_classes
)
{
if (clang_type && name && name[0])
{
QualType qual_type(QualType::getFromOpaquePtr(clang_type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
if (GetCompleteQualType (ast, qual_type))
{
const RecordType *record_type = cast<RecordType>(qual_type.getTypePtr());
const RecordDecl *record_decl = record_type->getDecl();
assert(record_decl);
uint32_t child_idx = 0;
const CXXRecordDecl *cxx_record_decl = dyn_cast<CXXRecordDecl>(record_decl);
if (cxx_record_decl)
{
CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end;
++base_class)
{
// Skip empty base classes
CXXRecordDecl *base_class_decl = cast<CXXRecordDecl>(base_class->getType()->getAs<RecordType>()->getDecl());
if (omit_empty_base_classes && RecordHasFields(base_class_decl) == false)
continue;
std::string base_class_type_name (ClangASTType::GetTypeNameForQualType(ast, base_class->getType()));
if (base_class_type_name.compare (name) == 0)
return child_idx;
++child_idx;
}
}
// Try and find a field that matches NAME
RecordDecl::field_iterator field, field_end;
StringRef name_sref(name);
for (field = record_decl->field_begin(), field_end = record_decl->field_end();
field != field_end;
++field, ++child_idx)
{
if (field->getName().equals (name_sref))
return child_idx;
}
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (GetCompleteQualType (ast, qual_type))
{
StringRef name_sref(name);
const ObjCObjectType *objc_class_type = dyn_cast<ObjCObjectType>(qual_type.getTypePtr());
assert (objc_class_type);
if (objc_class_type)
{
uint32_t child_idx = 0;
ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl)
{
ObjCInterfaceDecl::ivar_iterator ivar_pos, ivar_end = class_interface_decl->ivar_end();
ObjCInterfaceDecl *superclass_interface_decl = class_interface_decl->getSuperClass();
for (ivar_pos = class_interface_decl->ivar_begin(); ivar_pos != ivar_end; ++ivar_pos)
{
const ObjCIvarDecl* ivar_decl = *ivar_pos;
if (ivar_decl->getName().equals (name_sref))
{
if ((!omit_empty_base_classes && superclass_interface_decl) ||
( omit_empty_base_classes && ObjCDeclHasIVars (superclass_interface_decl, true)))
++child_idx;
return child_idx;
}
}
if (superclass_interface_decl)
{
if (superclass_interface_decl->getName().equals (name_sref))
return 0;
}
}
}
}
break;
case clang::Type::ObjCObjectPointer:
{
return GetIndexOfChildWithName (ast,
cast<ObjCObjectPointerType>(qual_type.getTypePtr())->getPointeeType().getAsOpaquePtr(),
name,
omit_empty_base_classes);
}
break;
case clang::Type::ConstantArray:
{
// const ConstantArrayType *array = cast<ConstantArrayType>(parent_qual_type.getTypePtr());
// const uint64_t element_count = array->getSize().getLimitedValue();
//
// if (idx < element_count)
// {
// std::pair<uint64_t, unsigned> field_type_info = ast->getTypeInfo(array->getElementType());
//
// char element_name[32];
// ::snprintf (element_name, sizeof (element_name), "%s[%u]", parent_name ? parent_name : "", idx);
//
// child_name.assign(element_name);
// assert(field_type_info.first % 8 == 0);
// child_byte_size = field_type_info.first / 8;
// child_byte_offset = idx * child_byte_size;
// return array->getElementType().getAsOpaquePtr();
// }
}
break;
// case clang::Type::MemberPointerType:
// {
// MemberPointerType *mem_ptr_type = cast<MemberPointerType>(qual_type.getTypePtr());
// QualType pointee_type = mem_ptr_type->getPointeeType();
//
// if (ClangASTContext::IsAggregateType (pointee_type.getAsOpaquePtr()))
// {
// return GetIndexOfChildWithName (ast,
// mem_ptr_type->getPointeeType().getAsOpaquePtr(),
// name);
// }
// }
// break;
//
case clang::Type::LValueReference:
case clang::Type::RValueReference:
{
const ReferenceType *reference_type = cast<ReferenceType>(qual_type.getTypePtr());
QualType pointee_type = reference_type->getPointeeType();
if (ClangASTContext::IsAggregateType (pointee_type.getAsOpaquePtr()))
{
return GetIndexOfChildWithName (ast,
reference_type->getPointeeType().getAsOpaquePtr(),
name,
omit_empty_base_classes);
}
}
break;
case clang::Type::Pointer:
{
const PointerType *pointer_type = cast<PointerType>(qual_type.getTypePtr());
QualType pointee_type = pointer_type->getPointeeType();
if (ClangASTContext::IsAggregateType (pointee_type.getAsOpaquePtr()))
{
return GetIndexOfChildWithName (ast,
pointer_type->getPointeeType().getAsOpaquePtr(),
name,
omit_empty_base_classes);
}
else
{
// if (parent_name)
// {
// child_name.assign(1, '*');
// child_name += parent_name;
// }
//
// // We have a pointer to an simple type
// if (idx == 0)
// {
// std::pair<uint64_t, unsigned> clang_type_info = ast->getTypeInfo(pointee_type);
// assert(clang_type_info.first % 8 == 0);
// child_byte_size = clang_type_info.first / 8;
// child_byte_offset = 0;
// return pointee_type.getAsOpaquePtr();
// }
}
}
break;
case clang::Type::Typedef:
return GetIndexOfChildWithName (ast,
cast<TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr(),
name,
omit_empty_base_classes);
default:
break;
}
}
return UINT32_MAX;
}
#pragma mark TagType
bool
ClangASTContext::SetTagTypeKind (clang_type_t tag_clang_type, int kind)
{
if (tag_clang_type)
{
QualType tag_qual_type(QualType::getFromOpaquePtr(tag_clang_type));
const clang::Type *clang_type = tag_qual_type.getTypePtr();
if (clang_type)
{
const TagType *tag_type = dyn_cast<TagType>(clang_type);
if (tag_type)
{
TagDecl *tag_decl = dyn_cast<TagDecl>(tag_type->getDecl());
if (tag_decl)
{
tag_decl->setTagKind ((TagDecl::TagKind)kind);
return true;
}
}
}
}
return false;
}
#pragma mark DeclContext Functions
DeclContext *
ClangASTContext::GetDeclContextForType (clang_type_t clang_type)
{
if (clang_type == NULL)
return NULL;
QualType qual_type(QualType::getFromOpaquePtr(clang_type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::UnaryTransform: break;
case clang::Type::FunctionNoProto: break;
case clang::Type::FunctionProto: break;
case clang::Type::IncompleteArray: break;
case clang::Type::VariableArray: break;
case clang::Type::ConstantArray: break;
case clang::Type::DependentSizedArray: break;
case clang::Type::ExtVector: break;
case clang::Type::DependentSizedExtVector: break;
case clang::Type::Vector: break;
case clang::Type::Builtin: break;
case clang::Type::BlockPointer: break;
case clang::Type::Pointer: break;
case clang::Type::LValueReference: break;
case clang::Type::RValueReference: break;
case clang::Type::MemberPointer: break;
case clang::Type::Complex: break;
case clang::Type::ObjCObject: break;
case clang::Type::ObjCInterface: return cast<ObjCObjectType>(qual_type.getTypePtr())->getInterface();
case clang::Type::ObjCObjectPointer: return ClangASTContext::GetDeclContextForType (cast<ObjCObjectPointerType>(qual_type.getTypePtr())->getPointeeType().getAsOpaquePtr());
case clang::Type::Record: return cast<RecordType>(qual_type)->getDecl();
case clang::Type::Enum: return cast<EnumType>(qual_type)->getDecl();
case clang::Type::Typedef: return ClangASTContext::GetDeclContextForType (cast<TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr());
case clang::Type::Elaborated: return ClangASTContext::GetDeclContextForType (cast<ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr());
case clang::Type::TypeOfExpr: break;
case clang::Type::TypeOf: break;
case clang::Type::Decltype: break;
//case clang::Type::QualifiedName: break;
case clang::Type::TemplateSpecialization: break;
case clang::Type::DependentTemplateSpecialization: break;
case clang::Type::TemplateTypeParm: break;
case clang::Type::SubstTemplateTypeParm: break;
case clang::Type::SubstTemplateTypeParmPack:break;
case clang::Type::PackExpansion: break;
case clang::Type::UnresolvedUsing: break;
case clang::Type::Paren: break;
case clang::Type::Attributed: break;
case clang::Type::Auto: break;
case clang::Type::InjectedClassName: break;
case clang::Type::DependentName: break;
case clang::Type::Atomic: break;
}
// No DeclContext in this type...
return NULL;
}
#pragma mark Namespace Declarations
NamespaceDecl *
ClangASTContext::GetUniqueNamespaceDeclaration (const char *name, DeclContext *decl_ctx)
{
NamespaceDecl *namespace_decl = NULL;
ASTContext *ast = getASTContext();
TranslationUnitDecl *translation_unit_decl = ast->getTranslationUnitDecl ();
if (decl_ctx == NULL)
decl_ctx = translation_unit_decl;
if (name)
{
IdentifierInfo &identifier_info = ast->Idents.get(name);
DeclarationName decl_name (&identifier_info);
clang::DeclContext::lookup_result result = decl_ctx->lookup(decl_name);
for (clang::DeclContext::lookup_iterator pos = result.first, end = result.second; pos != end; ++pos)
{
namespace_decl = dyn_cast<clang::NamespaceDecl>(*pos);
if (namespace_decl)
return namespace_decl;
}
namespace_decl = NamespaceDecl::Create(*ast,
decl_ctx,
false,
SourceLocation(),
SourceLocation(),
&identifier_info,
NULL);
decl_ctx->addDecl (namespace_decl);
}
else
{
if (decl_ctx == translation_unit_decl)
{
namespace_decl = translation_unit_decl->getAnonymousNamespace();
if (namespace_decl)
return namespace_decl;
namespace_decl = NamespaceDecl::Create(*ast,
decl_ctx,
false,
SourceLocation(),
SourceLocation(),
NULL,
NULL);
translation_unit_decl->setAnonymousNamespace (namespace_decl);
translation_unit_decl->addDecl (namespace_decl);
assert (namespace_decl == translation_unit_decl->getAnonymousNamespace());
}
else
{
NamespaceDecl *parent_namespace_decl = cast<NamespaceDecl>(decl_ctx);
if (parent_namespace_decl)
{
namespace_decl = parent_namespace_decl->getAnonymousNamespace();
if (namespace_decl)
return namespace_decl;
namespace_decl = NamespaceDecl::Create(*ast,
decl_ctx,
false,
SourceLocation(),
SourceLocation(),
NULL,
NULL);
parent_namespace_decl->setAnonymousNamespace (namespace_decl);
parent_namespace_decl->addDecl (namespace_decl);
assert (namespace_decl == parent_namespace_decl->getAnonymousNamespace());
}
else
{
// BAD!!!
}
}
if (namespace_decl)
{
// If we make it here, we are creating the anonymous namespace decl
// for the first time, so we need to do the using directive magic
// like SEMA does
UsingDirectiveDecl* using_directive_decl = UsingDirectiveDecl::Create (*ast,
decl_ctx,
SourceLocation(),
SourceLocation(),
NestedNameSpecifierLoc(),
SourceLocation(),
namespace_decl,
decl_ctx);
using_directive_decl->setImplicit();
decl_ctx->addDecl(using_directive_decl);
}
}
#ifdef LLDB_CONFIGURATION_DEBUG
VerifyDecl(namespace_decl);
#endif
return namespace_decl;
}
#pragma mark Function Types
FunctionDecl *
ClangASTContext::CreateFunctionDeclaration (DeclContext *decl_ctx, const char *name, clang_type_t function_clang_type, int storage, bool is_inline)
{
FunctionDecl *func_decl = NULL;
ASTContext *ast = getASTContext();
if (decl_ctx == NULL)
decl_ctx = ast->getTranslationUnitDecl();
if (name && name[0])
{
func_decl = FunctionDecl::Create (*ast,
decl_ctx,
SourceLocation(),
SourceLocation(),
DeclarationName (&ast->Idents.get(name)),
QualType::getFromOpaquePtr(function_clang_type),
NULL,
(FunctionDecl::StorageClass)storage,
(FunctionDecl::StorageClass)storage,
is_inline);
}
else
{
func_decl = FunctionDecl::Create (*ast,
decl_ctx,
SourceLocation(),
SourceLocation(),
DeclarationName (),
QualType::getFromOpaquePtr(function_clang_type),
NULL,
(FunctionDecl::StorageClass)storage,
(FunctionDecl::StorageClass)storage,
is_inline);
}
if (func_decl)
decl_ctx->addDecl (func_decl);
#ifdef LLDB_CONFIGURATION_DEBUG
VerifyDecl(func_decl);
#endif
return func_decl;
}
clang_type_t
ClangASTContext::CreateFunctionType (ASTContext *ast,
clang_type_t result_type,
clang_type_t *args,
unsigned num_args,
bool is_variadic,
unsigned type_quals)
{
assert (ast != NULL);
std::vector<QualType> qual_type_args;
for (unsigned i=0; i<num_args; ++i)
qual_type_args.push_back (QualType::getFromOpaquePtr(args[i]));
// TODO: Detect calling convention in DWARF?
FunctionProtoType::ExtProtoInfo proto_info;
proto_info.Variadic = is_variadic;
proto_info.ExceptionSpecType = EST_None;
proto_info.TypeQuals = type_quals;
proto_info.RefQualifier = RQ_None;
proto_info.NumExceptions = 0;
proto_info.Exceptions = NULL;
return ast->getFunctionType (QualType::getFromOpaquePtr(result_type),
qual_type_args.empty() ? NULL : &qual_type_args.front(),
qual_type_args.size(),
proto_info).getAsOpaquePtr(); // NoReturn);
}
ParmVarDecl *
ClangASTContext::CreateParameterDeclaration (const char *name, clang_type_t param_type, int storage)
{
ASTContext *ast = getASTContext();
assert (ast != NULL);
return ParmVarDecl::Create(*ast,
ast->getTranslationUnitDecl(),
SourceLocation(),
SourceLocation(),
name && name[0] ? &ast->Idents.get(name) : NULL,
QualType::getFromOpaquePtr(param_type),
NULL,
(VarDecl::StorageClass)storage,
(VarDecl::StorageClass)storage,
0);
}
void
ClangASTContext::SetFunctionParameters (FunctionDecl *function_decl, ParmVarDecl **params, unsigned num_params)
{
if (function_decl)
function_decl->setParams (ArrayRef<ParmVarDecl*>(params, num_params));
}
#pragma mark Array Types
clang_type_t
ClangASTContext::CreateArrayType (clang_type_t element_type, size_t element_count, uint32_t bit_stride)
{
if (element_type)
{
ASTContext *ast = getASTContext();
assert (ast != NULL);
llvm::APInt ap_element_count (64, element_count);
return ast->getConstantArrayType(QualType::getFromOpaquePtr(element_type),
ap_element_count,
ArrayType::Normal,
0).getAsOpaquePtr(); // ElemQuals
}
return NULL;
}
#pragma mark TagDecl
bool
ClangASTContext::StartTagDeclarationDefinition (clang_type_t clang_type)
{
if (clang_type)
{
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
const clang::Type *t = qual_type.getTypePtr();
if (t)
{
const TagType *tag_type = dyn_cast<TagType>(t);
if (tag_type)
{
TagDecl *tag_decl = tag_type->getDecl();
if (tag_decl)
{
tag_decl->startDefinition();
return true;
}
}
const ObjCObjectType *object_type = dyn_cast<ObjCObjectType>(t);
if (object_type)
{
ObjCInterfaceDecl *interface_decl = object_type->getInterface();
if (interface_decl)
{
interface_decl->startDefinition();
return true;
}
}
}
}
return false;
}
bool
ClangASTContext::CompleteTagDeclarationDefinition (clang_type_t clang_type)
{
if (clang_type)
{
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
if (cxx_record_decl)
{
cxx_record_decl->completeDefinition();
return true;
}
const EnumType *enum_type = dyn_cast<EnumType>(qual_type.getTypePtr());
if (enum_type)
{
EnumDecl *enum_decl = enum_type->getDecl();
if (enum_decl)
{
/// TODO This really needs to be fixed.
unsigned NumPositiveBits = 1;
unsigned NumNegativeBits = 0;
ASTContext *ast = getASTContext();
QualType promotion_qual_type;
// If the enum integer type is less than an integer in bit width,
// then we must promote it to an integer size.
if (ast->getTypeSize(enum_decl->getIntegerType()) < ast->getTypeSize(ast->IntTy))
{
if (enum_decl->getIntegerType()->isSignedIntegerType())
promotion_qual_type = ast->IntTy;
else
promotion_qual_type = ast->UnsignedIntTy;
}
else
promotion_qual_type = enum_decl->getIntegerType();
enum_decl->completeDefinition(enum_decl->getIntegerType(), promotion_qual_type, NumPositiveBits, NumNegativeBits);
return true;
}
}
}
return false;
}
#pragma mark Enumeration Types
clang_type_t
ClangASTContext::CreateEnumerationType
(
const char *name,
DeclContext *decl_ctx,
const Declaration &decl,
clang_type_t integer_qual_type
)
{
// TODO: Do something intelligent with the Declaration object passed in
// like maybe filling in the SourceLocation with it...
ASTContext *ast = getASTContext();
assert (ast != NULL);
// TODO: ask about these...
// const bool IsScoped = false;
// const bool IsFixed = false;
EnumDecl *enum_decl = EnumDecl::Create (*ast,
decl_ctx,
SourceLocation(),
SourceLocation(),
name && name[0] ? &ast->Idents.get(name) : NULL,
NULL,
false, // IsScoped
false, // IsScopedUsingClassTag
false); // IsFixed
if (enum_decl)
{
// TODO: check if we should be setting the promotion type too?
enum_decl->setIntegerType(QualType::getFromOpaquePtr (integer_qual_type));
enum_decl->setAccess(AS_public); // TODO respect what's in the debug info
return ast->getTagDeclType(enum_decl).getAsOpaquePtr();
}
return NULL;
}
clang_type_t
ClangASTContext::GetEnumerationIntegerType (clang_type_t enum_clang_type)
{
QualType enum_qual_type (QualType::getFromOpaquePtr(enum_clang_type));
const clang::Type *clang_type = enum_qual_type.getTypePtr();
if (clang_type)
{
const EnumType *enum_type = dyn_cast<EnumType>(clang_type);
if (enum_type)
{
EnumDecl *enum_decl = enum_type->getDecl();
if (enum_decl)
return enum_decl->getIntegerType().getAsOpaquePtr();
}
}
return NULL;
}
bool
ClangASTContext::AddEnumerationValueToEnumerationType
(
clang_type_t enum_clang_type,
clang_type_t enumerator_clang_type,
const Declaration &decl,
const char *name,
int64_t enum_value,
uint32_t enum_value_bit_size
)
{
if (enum_clang_type && enumerator_clang_type && name)
{
// TODO: Do something intelligent with the Declaration object passed in
// like maybe filling in the SourceLocation with it...
ASTContext *ast = getASTContext();
IdentifierTable *identifier_table = getIdentifierTable();
assert (ast != NULL);
assert (identifier_table != NULL);
QualType enum_qual_type (QualType::getFromOpaquePtr(enum_clang_type));
const clang::Type *clang_type = enum_qual_type.getTypePtr();
if (clang_type)
{
const EnumType *enum_type = dyn_cast<EnumType>(clang_type);
if (enum_type)
{
llvm::APSInt enum_llvm_apsint(enum_value_bit_size, false);
enum_llvm_apsint = enum_value;
EnumConstantDecl *enumerator_decl =
EnumConstantDecl::Create (*ast,
enum_type->getDecl(),
SourceLocation(),
name ? &identifier_table->get(name) : NULL, // Identifier
QualType::getFromOpaquePtr(enumerator_clang_type),
NULL,
enum_llvm_apsint);
if (enumerator_decl)
{
enum_type->getDecl()->addDecl(enumerator_decl);
#ifdef LLDB_CONFIGURATION_DEBUG
VerifyDecl(enumerator_decl);
#endif
return true;
}
}
}
}
return false;
}
#pragma mark Pointers & References
clang_type_t
ClangASTContext::CreatePointerType (clang_type_t clang_type)
{
return CreatePointerType (getASTContext(), clang_type);
}
clang_type_t
ClangASTContext::CreatePointerType (clang::ASTContext *ast, clang_type_t clang_type)
{
if (ast && clang_type)
{
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
return ast->getObjCObjectPointerType(qual_type).getAsOpaquePtr();
default:
return ast->getPointerType(qual_type).getAsOpaquePtr();
}
}
return NULL;
}
clang_type_t
ClangASTContext::CreateLValueReferenceType (clang::ASTContext *ast,
clang_type_t clang_type)
{
if (clang_type)
return ast->getLValueReferenceType (QualType::getFromOpaquePtr(clang_type)).getAsOpaquePtr();
return NULL;
}
clang_type_t
ClangASTContext::CreateRValueReferenceType (clang::ASTContext *ast,
clang_type_t clang_type)
{
if (clang_type)
return ast->getRValueReferenceType (QualType::getFromOpaquePtr(clang_type)).getAsOpaquePtr();
return NULL;
}
clang_type_t
ClangASTContext::CreateMemberPointerType (clang_type_t clang_pointee_type, clang_type_t clang_class_type)
{
if (clang_pointee_type && clang_pointee_type)
return getASTContext()->getMemberPointerType(QualType::getFromOpaquePtr(clang_pointee_type),
QualType::getFromOpaquePtr(clang_class_type).getTypePtr()).getAsOpaquePtr();
return NULL;
}
uint32_t
ClangASTContext::GetPointerBitSize ()
{
ASTContext *ast = getASTContext();
return ast->getTypeSize(ast->VoidPtrTy);
}
bool
ClangASTContext::IsPossibleDynamicType (clang::ASTContext *ast,
clang_type_t clang_type,
clang_type_t *dynamic_pointee_type,
bool check_cplusplus,
bool check_objc)
{
QualType pointee_qual_type;
if (clang_type)
{
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
bool success = false;
switch (type_class)
{
case clang::Type::Builtin:
if (check_objc && cast<clang::BuiltinType>(qual_type)->getKind() == clang::BuiltinType::ObjCId)
{
if (dynamic_pointee_type)
*dynamic_pointee_type = clang_type;
return true;
}
break;
case clang::Type::ObjCObjectPointer:
if (check_objc)
{
if (dynamic_pointee_type)
*dynamic_pointee_type = cast<ObjCObjectPointerType>(qual_type)->getPointeeType().getAsOpaquePtr();
return true;
}
break;
case clang::Type::Pointer:
pointee_qual_type = cast<PointerType>(qual_type)->getPointeeType();
success = true;
break;
case clang::Type::LValueReference:
case clang::Type::RValueReference:
pointee_qual_type = cast<ReferenceType>(qual_type)->getPointeeType();
success = true;
break;
case clang::Type::Typedef:
return ClangASTContext::IsPossibleDynamicType (ast, cast<TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr(), dynamic_pointee_type);
case clang::Type::Elaborated:
return ClangASTContext::IsPossibleDynamicType (ast, cast<ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr(), dynamic_pointee_type);
default:
break;
}
if (success)
{
// Check to make sure what we are pointing too is a possible dynamic C++ type
// We currently accept any "void *" (in case we have a class that has been
// watered down to an opaque pointer) and virtual C++ classes.
const clang::Type::TypeClass pointee_type_class = pointee_qual_type->getTypeClass();
switch (pointee_type_class)
{
case clang::Type::Builtin:
switch (cast<clang::BuiltinType>(pointee_qual_type)->getKind())
{
case clang::BuiltinType::UnknownAny:
case clang::BuiltinType::Void:
if (dynamic_pointee_type)
*dynamic_pointee_type = pointee_qual_type.getAsOpaquePtr();
return true;
case clang::BuiltinType::NullPtr:
case clang::BuiltinType::Bool:
case clang::BuiltinType::Char_U:
case clang::BuiltinType::UChar:
case clang::BuiltinType::WChar_U:
case clang::BuiltinType::Char16:
case clang::BuiltinType::Char32:
case clang::BuiltinType::UShort:
case clang::BuiltinType::UInt:
case clang::BuiltinType::ULong:
case clang::BuiltinType::ULongLong:
case clang::BuiltinType::UInt128:
case clang::BuiltinType::Char_S:
case clang::BuiltinType::SChar:
case clang::BuiltinType::WChar_S:
case clang::BuiltinType::Short:
case clang::BuiltinType::Int:
case clang::BuiltinType::Long:
case clang::BuiltinType::LongLong:
case clang::BuiltinType::Int128:
case clang::BuiltinType::Float:
case clang::BuiltinType::Double:
case clang::BuiltinType::LongDouble:
case clang::BuiltinType::Dependent:
case clang::BuiltinType::Overload:
case clang::BuiltinType::ObjCId:
case clang::BuiltinType::ObjCClass:
case clang::BuiltinType::ObjCSel:
case clang::BuiltinType::BoundMember:
case clang::BuiltinType::Half:
case clang::BuiltinType::ARCUnbridgedCast:
case clang::BuiltinType::PseudoObject:
break;
}
break;
case clang::Type::Record:
if (check_cplusplus)
{
CXXRecordDecl *cxx_record_decl = pointee_qual_type->getAsCXXRecordDecl();
if (cxx_record_decl)
{
// Do NOT complete the type here like we used to do
// otherwise EVERY "class *" variable we have will try
// to fully complete itself and this will take a lot of
// time, memory and slow down debugging. If we have a complete
// type, then answer the question definitively, else we
// just say that a C++ class can possibly be dynamic...
if (cxx_record_decl->isCompleteDefinition())
{
success = cxx_record_decl->isDynamicClass();
}
else
{
// We failed to get the complete type, so we have to
// treat this as a void * which we might possibly be
// able to complete
success = true;
}
if (success)
{
if (dynamic_pointee_type)
*dynamic_pointee_type = pointee_qual_type.getAsOpaquePtr();
return true;
}
}
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (check_objc)
{
if (dynamic_pointee_type)
*dynamic_pointee_type = pointee_qual_type.getAsOpaquePtr();
return true;
}
break;
default:
break;
}
}
}
if (dynamic_pointee_type)
*dynamic_pointee_type = NULL;
return false;
}
bool
ClangASTContext::IsPossibleCPlusPlusDynamicType (clang::ASTContext *ast, clang_type_t clang_type, clang_type_t *dynamic_pointee_type)
{
return IsPossibleDynamicType (ast,
clang_type,
dynamic_pointee_type,
true, // Check for dynamic C++ types
false); // Check for dynamic ObjC types
}
bool
ClangASTContext::IsReferenceType (clang_type_t clang_type, clang_type_t *target_type)
{
if (clang_type == NULL)
return false;
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::LValueReference:
if (target_type)
*target_type = cast<LValueReferenceType>(qual_type)->desugar().getAsOpaquePtr();
return true;
case clang::Type::RValueReference:
if (target_type)
*target_type = cast<LValueReferenceType>(qual_type)->desugar().getAsOpaquePtr();
return true;
case clang::Type::Typedef:
return ClangASTContext::IsReferenceType (cast<TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr());
case clang::Type::Elaborated:
return ClangASTContext::IsReferenceType (cast<ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr());
default:
break;
}
return false;
}
bool
ClangASTContext::IsPointerOrReferenceType (clang_type_t clang_type, clang_type_t*target_type)
{
if (clang_type == NULL)
return false;
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Builtin:
switch (cast<clang::BuiltinType>(qual_type)->getKind())
{
default:
break;
case clang::BuiltinType::ObjCId:
case clang::BuiltinType::ObjCClass:
return true;
}
return false;
case clang::Type::ObjCObjectPointer:
if (target_type)
*target_type = cast<ObjCObjectPointerType>(qual_type)->getPointeeType().getAsOpaquePtr();
return true;
case clang::Type::BlockPointer:
if (target_type)
*target_type = cast<BlockPointerType>(qual_type)->getPointeeType().getAsOpaquePtr();
return true;
case clang::Type::Pointer:
if (target_type)
*target_type = cast<PointerType>(qual_type)->getPointeeType().getAsOpaquePtr();
return true;
case clang::Type::MemberPointer:
if (target_type)
*target_type = cast<MemberPointerType>(qual_type)->getPointeeType().getAsOpaquePtr();
return true;
case clang::Type::LValueReference:
if (target_type)
*target_type = cast<LValueReferenceType>(qual_type)->desugar().getAsOpaquePtr();
return true;
case clang::Type::RValueReference:
if (target_type)
*target_type = cast<LValueReferenceType>(qual_type)->desugar().getAsOpaquePtr();
return true;
case clang::Type::Typedef:
return ClangASTContext::IsPointerOrReferenceType (cast<TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr());
case clang::Type::Elaborated:
return ClangASTContext::IsPointerOrReferenceType (cast<ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr());
default:
break;
}
return false;
}
bool
ClangASTContext::IsIntegerType (clang_type_t clang_type, bool &is_signed)
{
if (!clang_type)
return false;
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
const BuiltinType *builtin_type = dyn_cast<BuiltinType>(qual_type->getCanonicalTypeInternal());
if (builtin_type)
{
if (builtin_type->isInteger())
{
is_signed = builtin_type->isSignedInteger();
return true;
}
}
return false;
}
bool
ClangASTContext::IsPointerType (clang_type_t clang_type, clang_type_t *target_type)
{
if (target_type)
*target_type = NULL;
if (clang_type)
{
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Builtin:
switch (cast<clang::BuiltinType>(qual_type)->getKind())
{
default:
break;
case clang::BuiltinType::ObjCId:
case clang::BuiltinType::ObjCClass:
return true;
}
return false;
case clang::Type::ObjCObjectPointer:
if (target_type)
*target_type = cast<ObjCObjectPointerType>(qual_type)->getPointeeType().getAsOpaquePtr();
return true;
case clang::Type::BlockPointer:
if (target_type)
*target_type = cast<BlockPointerType>(qual_type)->getPointeeType().getAsOpaquePtr();
return true;
case clang::Type::Pointer:
if (target_type)
*target_type = cast<PointerType>(qual_type)->getPointeeType().getAsOpaquePtr();
return true;
case clang::Type::MemberPointer:
if (target_type)
*target_type = cast<MemberPointerType>(qual_type)->getPointeeType().getAsOpaquePtr();
return true;
case clang::Type::Typedef:
return ClangASTContext::IsPointerType (cast<TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr(), target_type);
case clang::Type::Elaborated:
return ClangASTContext::IsPointerType (cast<ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr(), target_type);
default:
break;
}
}
return false;
}
bool
ClangASTContext::IsFloatingPointType (clang_type_t clang_type, uint32_t &count, bool &is_complex)
{
if (clang_type)
{
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
if (const BuiltinType *BT = dyn_cast<BuiltinType>(qual_type->getCanonicalTypeInternal()))
{
clang::BuiltinType::Kind kind = BT->getKind();
if (kind >= BuiltinType::Float && kind <= BuiltinType::LongDouble)
{
count = 1;
is_complex = false;
return true;
}
}
else if (const ComplexType *CT = dyn_cast<ComplexType>(qual_type->getCanonicalTypeInternal()))
{
if (IsFloatingPointType(CT->getElementType().getAsOpaquePtr(), count, is_complex))
{
count = 2;
is_complex = true;
return true;
}
}
else if (const VectorType *VT = dyn_cast<VectorType>(qual_type->getCanonicalTypeInternal()))
{
if (IsFloatingPointType(VT->getElementType().getAsOpaquePtr(), count, is_complex))
{
count = VT->getNumElements();
is_complex = false;
return true;
}
}
}
return false;
}
bool
ClangASTContext::IsScalarType (lldb::clang_type_t clang_type)
{
bool is_signed;
if (ClangASTContext::IsIntegerType(clang_type, is_signed))
return true;
uint32_t count;
bool is_complex;
return ClangASTContext::IsFloatingPointType(clang_type, count, is_complex) && !is_complex;
}
bool
ClangASTContext::IsPointerToScalarType (lldb::clang_type_t clang_type)
{
if (!IsPointerType(clang_type))
return false;
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
lldb::clang_type_t pointee_type = qual_type.getTypePtr()->getPointeeType().getAsOpaquePtr();
return IsScalarType(pointee_type);
}
bool
ClangASTContext::IsArrayOfScalarType (lldb::clang_type_t clang_type)
{
clang_type = GetAsArrayType(clang_type);
if (clang_type == 0)
return false;
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
lldb::clang_type_t item_type = cast<ArrayType>(qual_type.getTypePtr())->getElementType().getAsOpaquePtr();
return IsScalarType(item_type);
}
bool
ClangASTContext::GetCXXClassName (clang_type_t clang_type, std::string &class_name)
{
if (clang_type)
{
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
if (cxx_record_decl)
{
class_name.assign (cxx_record_decl->getIdentifier()->getNameStart());
return true;
}
}
class_name.clear();
return false;
}
bool
ClangASTContext::IsCXXClassType (clang_type_t clang_type)
{
if (clang_type)
{
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
if (qual_type->getAsCXXRecordDecl() != NULL)
return true;
}
return false;
}
bool
ClangASTContext::IsBeingDefined (lldb::clang_type_t clang_type)
{
if (clang_type)
{
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
const clang::TagType *tag_type = dyn_cast<clang::TagType>(qual_type);
if (tag_type)
return tag_type->isBeingDefined();
}
return false;
}
bool
ClangASTContext::IsObjCClassType (clang_type_t clang_type)
{
if (clang_type)
{
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
if (qual_type->isObjCObjectOrInterfaceType())
return true;
}
return false;
}
bool
ClangASTContext::IsObjCObjectPointerType (lldb::clang_type_t clang_type, clang_type_t *class_type)
{
if (clang_type)
{
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
if (qual_type->isObjCObjectPointerType())
{
if (class_type)
{
*class_type = NULL;
if (!qual_type->isObjCClassType() &&
!qual_type->isObjCIdType())
{
const ObjCObjectPointerType *obj_pointer_type = dyn_cast<ObjCObjectPointerType>(qual_type);
if (!obj_pointer_type)
*class_type = NULL;
else
*class_type = QualType(obj_pointer_type->getInterfaceType(), 0).getAsOpaquePtr();
}
}
return true;
}
}
return false;
}
bool
ClangASTContext::GetObjCClassName (lldb::clang_type_t clang_type,
std::string &class_name)
{
if (!clang_type)
return false;
const ObjCObjectType *object_type = dyn_cast<ObjCObjectType>(QualType::getFromOpaquePtr(clang_type));
if (!object_type)
return false;
const ObjCInterfaceDecl *interface = object_type->getInterface();
if (!interface)
return false;
class_name = interface->getNameAsString();
return true;
}
bool
ClangASTContext::IsCharType (clang_type_t clang_type)
{
if (clang_type)
return QualType::getFromOpaquePtr(clang_type)->isCharType();
return false;
}
bool
ClangASTContext::IsCStringType (clang_type_t clang_type, uint32_t &length)
{
clang_type_t pointee_or_element_clang_type = NULL;
Flags type_flags (ClangASTContext::GetTypeInfo (clang_type, NULL, &pointee_or_element_clang_type));
if (pointee_or_element_clang_type == NULL)
return false;
if (type_flags.AnySet (eTypeIsArray | eTypeIsPointer))
{
QualType pointee_or_element_qual_type (QualType::getFromOpaquePtr (pointee_or_element_clang_type));
if (pointee_or_element_qual_type.getUnqualifiedType()->isCharType())
{
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
if (type_flags.Test (eTypeIsArray))
{
// We know the size of the array and it could be a C string
// since it is an array of characters
length = cast<ConstantArrayType>(qual_type.getTypePtr())->getSize().getLimitedValue();
return true;
}
else
{
length = 0;
return true;
}
}
}
return false;
}
bool
ClangASTContext::IsFunctionPointerType (clang_type_t clang_type)
{
if (clang_type)
{
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
if (qual_type->isFunctionPointerType())
return true;
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
default:
break;
case clang::Type::Typedef:
return ClangASTContext::IsFunctionPointerType (cast<TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr());
case clang::Type::Elaborated:
return ClangASTContext::IsFunctionPointerType (cast<ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr());
case clang::Type::LValueReference:
case clang::Type::RValueReference:
{
const ReferenceType *reference_type = cast<ReferenceType>(qual_type.getTypePtr());
if (reference_type)
return ClangASTContext::IsFunctionPointerType (reference_type->getPointeeType().getAsOpaquePtr());
}
break;
}
}
return false;
}
size_t
ClangASTContext::GetArraySize (clang_type_t clang_type)
{
if (clang_type)
{
QualType qual_type(QualType::getFromOpaquePtr(clang_type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::ConstantArray:
{
const ConstantArrayType *array = cast<ConstantArrayType>(QualType::getFromOpaquePtr(clang_type).getTypePtr());
if (array)
return array->getSize().getLimitedValue();
}
break;
case clang::Type::Typedef:
return ClangASTContext::GetArraySize(cast<TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr());
case clang::Type::Elaborated:
return ClangASTContext::GetArraySize(cast<ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr());
default:
break;
}
}
return 0;
}
clang_type_t
ClangASTContext::GetAsArrayType (clang_type_t clang_type, clang_type_t*member_type, uint64_t *size)
{
if (!clang_type)
return 0;
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
default:
break;
case clang::Type::ConstantArray:
if (member_type)
*member_type = cast<ConstantArrayType>(qual_type)->getElementType().getAsOpaquePtr();
if (size)
*size = cast<ConstantArrayType>(qual_type)->getSize().getLimitedValue(ULLONG_MAX);
return clang_type;
case clang::Type::IncompleteArray:
if (member_type)
*member_type = cast<IncompleteArrayType>(qual_type)->getElementType().getAsOpaquePtr();
if (size)
*size = 0;
return clang_type;
case clang::Type::VariableArray:
if (member_type)
*member_type = cast<VariableArrayType>(qual_type)->getElementType().getAsOpaquePtr();
if (size)
*size = 0;
return clang_type;
case clang::Type::DependentSizedArray:
if (member_type)
*member_type = cast<DependentSizedArrayType>(qual_type)->getElementType().getAsOpaquePtr();
if (size)
*size = 0;
return clang_type;
case clang::Type::Typedef:
return ClangASTContext::GetAsArrayType (cast<TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr(),
member_type,
size);
case clang::Type::Elaborated:
return ClangASTContext::GetAsArrayType (cast<ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr(),
member_type,
size);
}
return 0;
}
#pragma mark Typedefs
clang_type_t
ClangASTContext::CreateTypedefType (const char *name, clang_type_t clang_type, DeclContext *decl_ctx)
{
if (clang_type)
{
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
ASTContext *ast = getASTContext();
IdentifierTable *identifier_table = getIdentifierTable();
assert (ast != NULL);
assert (identifier_table != NULL);
if (decl_ctx == NULL)
decl_ctx = ast->getTranslationUnitDecl();
TypedefDecl *decl = TypedefDecl::Create (*ast,
decl_ctx,
SourceLocation(),
SourceLocation(),
name ? &identifier_table->get(name) : NULL, // Identifier
ast->CreateTypeSourceInfo(qual_type));
//decl_ctx->addDecl (decl);
decl->setAccess(AS_public); // TODO respect proper access specifier
// Get a uniqued QualType for the typedef decl type
return ast->getTypedefType (decl).getAsOpaquePtr();
}
return NULL;
}
// Disable this for now since I can't seem to get a nicely formatted float
// out of the APFloat class without just getting the float, double or quad
// and then using a formatted print on it which defeats the purpose. We ideally
// would like to get perfect string values for any kind of float semantics
// so we can support remote targets. The code below also requires a patch to
// llvm::APInt.
//bool
//ClangASTContext::ConvertFloatValueToString (ASTContext *ast, clang_type_t clang_type, const uint8_t* bytes, size_t byte_size, int apint_byte_order, std::string &float_str)
//{
// uint32_t count = 0;
// bool is_complex = false;
// if (ClangASTContext::IsFloatingPointType (clang_type, count, is_complex))
// {
// unsigned num_bytes_per_float = byte_size / count;
// unsigned num_bits_per_float = num_bytes_per_float * 8;
//
// float_str.clear();
// uint32_t i;
// for (i=0; i<count; i++)
// {
// APInt ap_int(num_bits_per_float, bytes + i * num_bytes_per_float, (APInt::ByteOrder)apint_byte_order);
// bool is_ieee = false;
// APFloat ap_float(ap_int, is_ieee);
// char s[1024];
// unsigned int hex_digits = 0;
// bool upper_case = false;
//
// if (ap_float.convertToHexString(s, hex_digits, upper_case, APFloat::rmNearestTiesToEven) > 0)
// {
// if (i > 0)
// float_str.append(", ");
// float_str.append(s);
// if (i == 1 && is_complex)
// float_str.append(1, 'i');
// }
// }
// return !float_str.empty();
// }
// return false;
//}
size_t
ClangASTContext::ConvertStringToFloatValue (ASTContext *ast, clang_type_t clang_type, const char *s, uint8_t *dst, size_t dst_size)
{
if (clang_type)
{
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
uint32_t count = 0;
bool is_complex = false;
if (ClangASTContext::IsFloatingPointType (clang_type, count, is_complex))
{
// TODO: handle complex and vector types
if (count != 1)
return false;
StringRef s_sref(s);
APFloat ap_float(ast->getFloatTypeSemantics(qual_type), s_sref);
const uint64_t bit_size = ast->getTypeSize (qual_type);
const uint64_t byte_size = bit_size / 8;
if (dst_size >= byte_size)
{
if (bit_size == sizeof(float)*8)
{
float float32 = ap_float.convertToFloat();
::memcpy (dst, &float32, byte_size);
return byte_size;
}
else if (bit_size >= 64)
{
llvm::APInt ap_int(ap_float.bitcastToAPInt());
::memcpy (dst, ap_int.getRawData(), byte_size);
return byte_size;
}
}
}
}
return 0;
}
unsigned
ClangASTContext::GetTypeQualifiers(clang_type_t clang_type)
{
assert (clang_type);
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
return qual_type.getQualifiers().getCVRQualifiers();
}
bool
ClangASTContext::GetCompleteType (clang::ASTContext *ast, lldb::clang_type_t clang_type)
{
if (clang_type == NULL)
return false;
return GetCompleteQualType (ast, clang::QualType::getFromOpaquePtr(clang_type));
}
bool
ClangASTContext::GetCompleteType (clang_type_t clang_type)
{
return ClangASTContext::GetCompleteType (getASTContext(), clang_type);
}
bool
ClangASTContext::IsCompleteType (clang::ASTContext *ast, lldb::clang_type_t clang_type)
{
if (clang_type == NULL)
return false;
return GetCompleteQualType (ast, clang::QualType::getFromOpaquePtr(clang_type), false); // just check but don't let it actually complete
}
bool
ClangASTContext::IsCompleteType (clang_type_t clang_type)
{
return ClangASTContext::IsCompleteType (getASTContext(), clang_type);
}
bool
ClangASTContext::GetCompleteDecl (clang::ASTContext *ast,
clang::Decl *decl)
{
if (!decl)
return false;
ExternalASTSource *ast_source = ast->getExternalSource();
if (!ast_source)
return false;
if (clang::TagDecl *tag_decl = llvm::dyn_cast<clang::TagDecl>(decl))
{
if (tag_decl->isCompleteDefinition())
return true;
if (!tag_decl->hasExternalLexicalStorage())
return false;
ast_source->CompleteType(tag_decl);
return !tag_decl->getTypeForDecl()->isIncompleteType();
}
else if (clang::ObjCInterfaceDecl *objc_interface_decl = llvm::dyn_cast<clang::ObjCInterfaceDecl>(decl))
{
if (objc_interface_decl->getDefinition())
return true;
if (!objc_interface_decl->hasExternalLexicalStorage())
return false;
ast_source->CompleteType(objc_interface_decl);
return !objc_interface_decl->getTypeForDecl()->isIncompleteType();
}
else
{
return false;
}
}
void
ClangASTContext::SetMetadata (clang::ASTContext *ast,
uintptr_t object,
uint64_t metadata)
{
ClangExternalASTSourceCommon *external_source =
static_cast<ClangExternalASTSourceCommon*>(ast->getExternalSource());
if (external_source)
external_source->SetMetadata(object, metadata);
}
uint64_t
ClangASTContext::GetMetadata (clang::ASTContext *ast,
uintptr_t object)
{
ClangExternalASTSourceCommon *external_source =
static_cast<ClangExternalASTSourceCommon*>(ast->getExternalSource());
if (external_source && external_source->HasMetadata(object))
return external_source->GetMetadata(object);
else
return 0;
}
clang::DeclContext *
ClangASTContext::GetAsDeclContext (clang::CXXMethodDecl *cxx_method_decl)
{
return llvm::dyn_cast<clang::DeclContext>(cxx_method_decl);
}
clang::DeclContext *
ClangASTContext::GetAsDeclContext (clang::ObjCMethodDecl *objc_method_decl)
{
return llvm::dyn_cast<clang::DeclContext>(objc_method_decl);
}
bool
ClangASTContext::GetClassMethodInfoForDeclContext (clang::DeclContext *decl_ctx,
lldb::LanguageType &language,
bool &is_instance_method,
ConstString &language_object_name)
{
language_object_name.Clear();
language = eLanguageTypeUnknown;
is_instance_method = false;
if (decl_ctx)
{
if (clang::CXXMethodDecl *method_decl = llvm::dyn_cast<clang::CXXMethodDecl>(decl_ctx))
{
if (method_decl->isStatic())
{
is_instance_method = false;
}
else
{
language_object_name.SetCString("this");
is_instance_method = true;
}
language = eLanguageTypeC_plus_plus;
return true;
}
else if (clang::ObjCMethodDecl *method_decl = llvm::dyn_cast<clang::ObjCMethodDecl>(decl_ctx))
{
// Both static and instance methods have a "self" object in objective C
language_object_name.SetCString("self");
if (method_decl->isInstanceMethod())
{
is_instance_method = true;
}
else
{
is_instance_method = false;
}
language = eLanguageTypeObjC;
return true;
}
}
return false;
}