llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_symbolizer_linux.cc

162 lines
4.9 KiB
C++

//===-- sanitizer_symbolizer_linux.cc -------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is shared between AddressSanitizer and ThreadSanitizer
// run-time libraries.
// Linux-specific implementation of symbolizer parts.
//===----------------------------------------------------------------------===//
#ifdef __linux__
#include "sanitizer_common.h"
#include "sanitizer_internal_defs.h"
#include "sanitizer_libc.h"
#include "sanitizer_placement_new.h"
#include "sanitizer_symbolizer.h"
#include <elf.h>
#include <errno.h>
#include <link.h>
#include <poll.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <unistd.h>
namespace __sanitizer {
bool StartSymbolizerSubprocess(const char *path_to_symbolizer,
int *input_fd, int *output_fd) {
int *infd = NULL;
int *outfd = NULL;
// The client program may close its stdin and/or stdout and/or stderr
// thus allowing socketpair to reuse file descriptors 0, 1 or 2.
// In this case the communication between the forked processes may be
// broken if either the parent or the child tries to close or duplicate
// these descriptors. The loop below produces two pairs of file
// descriptors, each greater than 2 (stderr).
int sock_pair[5][2];
for (int i = 0; i < 5; i++) {
if (pipe(sock_pair[i]) == -1) {
for (int j = 0; j < i; j++) {
internal_close(sock_pair[j][0]);
internal_close(sock_pair[j][1]);
}
Report("WARNING: Can't create a socket pair to start "
"external symbolizer (errno: %d)\n", errno);
return false;
} else if (sock_pair[i][0] > 2 && sock_pair[i][1] > 2) {
if (infd == NULL) {
infd = sock_pair[i];
} else {
outfd = sock_pair[i];
for (int j = 0; j < i; j++) {
if (sock_pair[j] == infd) continue;
internal_close(sock_pair[j][0]);
internal_close(sock_pair[j][1]);
}
break;
}
}
}
CHECK(infd);
CHECK(outfd);
int pid = fork();
if (pid == -1) {
// Fork() failed.
internal_close(infd[0]);
internal_close(infd[1]);
internal_close(outfd[0]);
internal_close(outfd[1]);
Report("WARNING: failed to fork external symbolizer "
" (errno: %d)\n", errno);
return false;
} else if (pid == 0) {
// Child subprocess.
internal_close(STDOUT_FILENO);
internal_close(STDIN_FILENO);
internal_dup2(outfd[0], STDIN_FILENO);
internal_dup2(infd[1], STDOUT_FILENO);
internal_close(outfd[0]);
internal_close(outfd[1]);
internal_close(infd[0]);
internal_close(infd[1]);
for (int fd = getdtablesize(); fd > 2; fd--)
internal_close(fd);
execl(path_to_symbolizer, path_to_symbolizer, (char*)0);
Exit(1);
}
// Continue execution in parent process.
internal_close(outfd[0]);
internal_close(infd[1]);
*input_fd = infd[0];
*output_fd = outfd[1];
return true;
}
#ifdef ANDROID
uptr GetListOfModules(LoadedModule *modules, uptr max_modules) {
UNIMPLEMENTED();
}
#else // ANDROID
typedef ElfW(Phdr) Elf_Phdr;
struct DlIteratePhdrData {
LoadedModule *modules;
uptr current_n;
uptr max_n;
};
static const uptr kMaxPathLength = 512;
static int dl_iterate_phdr_cb(dl_phdr_info *info, size_t size, void *arg) {
DlIteratePhdrData *data = (DlIteratePhdrData*)arg;
if (data->current_n == data->max_n)
return 0;
char *module_name = 0;
if (data->current_n == 0) {
// First module is the binary itself.
module_name = (char*)InternalAlloc(kMaxPathLength);
uptr module_name_len = readlink("/proc/self/exe",
module_name, kMaxPathLength);
CHECK_NE(module_name_len, (uptr)-1);
CHECK_LT(module_name_len, kMaxPathLength);
module_name[module_name_len] = '\0';
} else if (info->dlpi_name) {
module_name = internal_strdup(info->dlpi_name);
}
if (module_name == 0 || module_name[0] == '\0')
return 0;
void *mem = &data->modules[data->current_n];
LoadedModule *cur_module = new(mem) LoadedModule(module_name,
info->dlpi_addr);
data->current_n++;
for (int i = 0; i < info->dlpi_phnum; i++) {
const Elf_Phdr *phdr = &info->dlpi_phdr[i];
if (phdr->p_type == PT_LOAD) {
uptr cur_beg = info->dlpi_addr + phdr->p_vaddr;
uptr cur_end = cur_beg + phdr->p_memsz;
cur_module->addAddressRange(cur_beg, cur_end);
}
}
InternalFree(module_name);
return 0;
}
uptr GetListOfModules(LoadedModule *modules, uptr max_modules) {
CHECK(modules);
DlIteratePhdrData data = {modules, 0, max_modules};
dl_iterate_phdr(dl_iterate_phdr_cb, &data);
return data.current_n;
}
#endif // ANDROID
} // namespace __sanitizer
#endif // __linux__