llvm-project/compiler-rt/lib/hwasan/hwasan_allocator.cc

444 lines
15 KiB
C++

//===-- hwasan_allocator.cc ------------------------- ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of HWAddressSanitizer.
//
// HWAddressSanitizer allocator.
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_atomic.h"
#include "sanitizer_common/sanitizer_errno.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "hwasan.h"
#include "hwasan_allocator.h"
#include "hwasan_mapping.h"
#include "hwasan_thread.h"
#include "hwasan_report.h"
#if HWASAN_WITH_INTERCEPTORS
DEFINE_REAL(void *, realloc, void *ptr, uptr size)
DEFINE_REAL(void, free, void *ptr)
#endif
namespace __hwasan {
static Allocator allocator;
static AllocatorCache fallback_allocator_cache;
static SpinMutex fallback_mutex;
static atomic_uint8_t hwasan_allocator_tagging_enabled;
static const tag_t kFallbackAllocTag = 0xBB;
static const tag_t kFallbackFreeTag = 0xBC;
enum RightAlignMode {
kRightAlignNever,
kRightAlignSometimes,
kRightAlignAlways
};
// These two variables are initialized from flags()->malloc_align_right
// in HwasanAllocatorInit and are never changed afterwards.
static RightAlignMode right_align_mode = kRightAlignNever;
static bool right_align_8 = false;
// Initialized in HwasanAllocatorInit, an never changed.
static ALIGNED(16) u8 tail_magic[kShadowAlignment];
bool HwasanChunkView::IsAllocated() const {
return metadata_ && metadata_->alloc_context_id && metadata_->requested_size;
}
// Aligns the 'addr' right to the granule boundary.
static uptr AlignRight(uptr addr, uptr requested_size) {
uptr tail_size = requested_size % kShadowAlignment;
if (!tail_size) return addr;
if (right_align_8)
return tail_size > 8 ? addr : addr + 8;
return addr + kShadowAlignment - tail_size;
}
uptr HwasanChunkView::Beg() const {
if (metadata_ && metadata_->right_aligned)
return AlignRight(block_, metadata_->requested_size);
return block_;
}
uptr HwasanChunkView::End() const {
return Beg() + UsedSize();
}
uptr HwasanChunkView::UsedSize() const {
return metadata_->requested_size;
}
u32 HwasanChunkView::GetAllocStackId() const {
return metadata_->alloc_context_id;
}
uptr HwasanChunkView::ActualSize() const {
return allocator.GetActuallyAllocatedSize(reinterpret_cast<void *>(block_));
}
bool HwasanChunkView::FromSmallHeap() const {
return allocator.FromPrimary(reinterpret_cast<void *>(block_));
}
void GetAllocatorStats(AllocatorStatCounters s) {
allocator.GetStats(s);
}
void HwasanAllocatorInit() {
atomic_store_relaxed(&hwasan_allocator_tagging_enabled,
!flags()->disable_allocator_tagging);
SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
allocator.Init(common_flags()->allocator_release_to_os_interval_ms);
switch (flags()->malloc_align_right) {
case 0: break;
case 1:
right_align_mode = kRightAlignSometimes;
right_align_8 = false;
break;
case 2:
right_align_mode = kRightAlignAlways;
right_align_8 = false;
break;
case 8:
right_align_mode = kRightAlignSometimes;
right_align_8 = true;
break;
case 9:
right_align_mode = kRightAlignAlways;
right_align_8 = true;
break;
default:
Report("ERROR: unsupported value of malloc_align_right flag: %d\n",
flags()->malloc_align_right);
Die();
}
for (uptr i = 0; i < kShadowAlignment; i++)
tail_magic[i] = GetCurrentThread()->GenerateRandomTag();
}
void AllocatorSwallowThreadLocalCache(AllocatorCache *cache) {
allocator.SwallowCache(cache);
}
static uptr TaggedSize(uptr size) {
if (!size) size = 1;
uptr new_size = RoundUpTo(size, kShadowAlignment);
CHECK_GE(new_size, size);
return new_size;
}
static void *HwasanAllocate(StackTrace *stack, uptr orig_size, uptr alignment,
bool zeroise) {
if (orig_size > kMaxAllowedMallocSize) {
if (AllocatorMayReturnNull()) {
Report("WARNING: HWAddressSanitizer failed to allocate 0x%zx bytes\n",
orig_size);
return nullptr;
}
ReportAllocationSizeTooBig(orig_size, kMaxAllowedMallocSize, stack);
}
alignment = Max(alignment, kShadowAlignment);
uptr size = TaggedSize(orig_size);
Thread *t = GetCurrentThread();
void *allocated;
if (t) {
allocated = allocator.Allocate(t->allocator_cache(), size, alignment);
} else {
SpinMutexLock l(&fallback_mutex);
AllocatorCache *cache = &fallback_allocator_cache;
allocated = allocator.Allocate(cache, size, alignment);
}
if (UNLIKELY(!allocated)) {
SetAllocatorOutOfMemory();
if (AllocatorMayReturnNull())
return nullptr;
ReportOutOfMemory(size, stack);
}
Metadata *meta =
reinterpret_cast<Metadata *>(allocator.GetMetaData(allocated));
meta->requested_size = static_cast<u32>(orig_size);
meta->alloc_context_id = StackDepotPut(*stack);
meta->right_aligned = false;
if (zeroise) {
internal_memset(allocated, 0, size);
} else if (flags()->max_malloc_fill_size > 0) {
uptr fill_size = Min(size, (uptr)flags()->max_malloc_fill_size);
internal_memset(allocated, flags()->malloc_fill_byte, fill_size);
}
if (!right_align_mode)
internal_memcpy(reinterpret_cast<u8 *>(allocated) + orig_size, tail_magic,
size - orig_size);
void *user_ptr = allocated;
if (flags()->tag_in_malloc &&
atomic_load_relaxed(&hwasan_allocator_tagging_enabled))
user_ptr = (void *)TagMemoryAligned(
(uptr)user_ptr, size, t ? t->GenerateRandomTag() : kFallbackAllocTag);
if ((orig_size % kShadowAlignment) && (alignment <= kShadowAlignment) &&
right_align_mode) {
uptr as_uptr = reinterpret_cast<uptr>(user_ptr);
if (right_align_mode == kRightAlignAlways ||
GetTagFromPointer(as_uptr) & 1) { // use a tag bit as a random bit.
user_ptr = reinterpret_cast<void *>(AlignRight(as_uptr, orig_size));
meta->right_aligned = 1;
}
}
HWASAN_MALLOC_HOOK(user_ptr, size);
return user_ptr;
}
static bool PointerAndMemoryTagsMatch(void *tagged_ptr) {
CHECK(tagged_ptr);
tag_t ptr_tag = GetTagFromPointer(reinterpret_cast<uptr>(tagged_ptr));
tag_t mem_tag = *reinterpret_cast<tag_t *>(
MemToShadow(reinterpret_cast<uptr>(UntagPtr(tagged_ptr))));
return ptr_tag == mem_tag;
}
static void HwasanDeallocate(StackTrace *stack, void *tagged_ptr) {
CHECK(tagged_ptr);
HWASAN_FREE_HOOK(tagged_ptr);
if (!PointerAndMemoryTagsMatch(tagged_ptr))
ReportInvalidFree(stack, reinterpret_cast<uptr>(tagged_ptr));
void *untagged_ptr = UntagPtr(tagged_ptr);
void *aligned_ptr = reinterpret_cast<void *>(
RoundDownTo(reinterpret_cast<uptr>(untagged_ptr), kShadowAlignment));
Metadata *meta =
reinterpret_cast<Metadata *>(allocator.GetMetaData(aligned_ptr));
uptr orig_size = meta->requested_size;
u32 free_context_id = StackDepotPut(*stack);
u32 alloc_context_id = meta->alloc_context_id;
// Check tail magic.
uptr tagged_size = TaggedSize(orig_size);
if (flags()->free_checks_tail_magic && !right_align_mode && orig_size) {
uptr tail_size = tagged_size - orig_size;
CHECK_LT(tail_size, kShadowAlignment);
void *tail_beg = reinterpret_cast<void *>(
reinterpret_cast<uptr>(aligned_ptr) + orig_size);
if (tail_size && internal_memcmp(tail_beg, tail_magic, tail_size))
ReportTailOverwritten(stack, reinterpret_cast<uptr>(tagged_ptr),
orig_size, tail_size, tail_magic);
}
meta->requested_size = 0;
meta->alloc_context_id = 0;
// This memory will not be reused by anyone else, so we are free to keep it
// poisoned.
Thread *t = GetCurrentThread();
if (flags()->max_free_fill_size > 0) {
uptr fill_size =
Min(TaggedSize(orig_size), (uptr)flags()->max_free_fill_size);
internal_memset(aligned_ptr, flags()->free_fill_byte, fill_size);
}
if (flags()->tag_in_free &&
atomic_load_relaxed(&hwasan_allocator_tagging_enabled))
TagMemoryAligned(reinterpret_cast<uptr>(aligned_ptr), TaggedSize(orig_size),
t ? t->GenerateRandomTag() : kFallbackFreeTag);
if (t) {
allocator.Deallocate(t->allocator_cache(), aligned_ptr);
if (auto *ha = t->heap_allocations())
ha->push({reinterpret_cast<uptr>(tagged_ptr), alloc_context_id,
free_context_id, static_cast<u32>(orig_size)});
} else {
SpinMutexLock l(&fallback_mutex);
AllocatorCache *cache = &fallback_allocator_cache;
allocator.Deallocate(cache, aligned_ptr);
}
}
static void *HwasanReallocate(StackTrace *stack, void *tagged_ptr_old,
uptr new_size, uptr alignment) {
if (!PointerAndMemoryTagsMatch(tagged_ptr_old))
ReportInvalidFree(stack, reinterpret_cast<uptr>(tagged_ptr_old));
void *tagged_ptr_new =
HwasanAllocate(stack, new_size, alignment, false /*zeroise*/);
if (tagged_ptr_old && tagged_ptr_new) {
void *untagged_ptr_old = UntagPtr(tagged_ptr_old);
Metadata *meta =
reinterpret_cast<Metadata *>(allocator.GetMetaData(untagged_ptr_old));
internal_memcpy(UntagPtr(tagged_ptr_new), untagged_ptr_old,
Min(new_size, static_cast<uptr>(meta->requested_size)));
HwasanDeallocate(stack, tagged_ptr_old);
}
return tagged_ptr_new;
}
static void *HwasanCalloc(StackTrace *stack, uptr nmemb, uptr size) {
if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
if (AllocatorMayReturnNull())
return nullptr;
ReportCallocOverflow(nmemb, size, stack);
}
return HwasanAllocate(stack, nmemb * size, sizeof(u64), true);
}
HwasanChunkView FindHeapChunkByAddress(uptr address) {
void *block = allocator.GetBlockBegin(reinterpret_cast<void*>(address));
if (!block)
return HwasanChunkView();
Metadata *metadata =
reinterpret_cast<Metadata*>(allocator.GetMetaData(block));
return HwasanChunkView(reinterpret_cast<uptr>(block), metadata);
}
static uptr AllocationSize(const void *tagged_ptr) {
const void *untagged_ptr = UntagPtr(tagged_ptr);
if (!untagged_ptr) return 0;
const void *beg = allocator.GetBlockBegin(untagged_ptr);
Metadata *b = (Metadata *)allocator.GetMetaData(untagged_ptr);
if (b->right_aligned) {
if (beg != reinterpret_cast<void *>(RoundDownTo(
reinterpret_cast<uptr>(untagged_ptr), kShadowAlignment)))
return 0;
} else {
if (beg != untagged_ptr) return 0;
}
return b->requested_size;
}
void *hwasan_malloc(uptr size, StackTrace *stack) {
return SetErrnoOnNull(HwasanAllocate(stack, size, sizeof(u64), false));
}
void *hwasan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
return SetErrnoOnNull(HwasanCalloc(stack, nmemb, size));
}
void *hwasan_realloc(void *ptr, uptr size, StackTrace *stack) {
if (!ptr)
return SetErrnoOnNull(HwasanAllocate(stack, size, sizeof(u64), false));
#if HWASAN_WITH_INTERCEPTORS
// A tag of 0 means that this is a system allocator allocation, so we must use
// the system allocator to realloc it.
if (!flags()->disable_allocator_tagging && GetTagFromPointer((uptr)ptr) == 0)
return REAL(realloc)(ptr, size);
#endif
if (size == 0) {
HwasanDeallocate(stack, ptr);
return nullptr;
}
return SetErrnoOnNull(HwasanReallocate(stack, ptr, size, sizeof(u64)));
}
void *hwasan_valloc(uptr size, StackTrace *stack) {
return SetErrnoOnNull(
HwasanAllocate(stack, size, GetPageSizeCached(), false));
}
void *hwasan_pvalloc(uptr size, StackTrace *stack) {
uptr PageSize = GetPageSizeCached();
if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
errno = errno_ENOMEM;
if (AllocatorMayReturnNull())
return nullptr;
ReportPvallocOverflow(size, stack);
}
// pvalloc(0) should allocate one page.
size = size ? RoundUpTo(size, PageSize) : PageSize;
return SetErrnoOnNull(HwasanAllocate(stack, size, PageSize, false));
}
void *hwasan_aligned_alloc(uptr alignment, uptr size, StackTrace *stack) {
if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
errno = errno_EINVAL;
if (AllocatorMayReturnNull())
return nullptr;
ReportInvalidAlignedAllocAlignment(size, alignment, stack);
}
return SetErrnoOnNull(HwasanAllocate(stack, size, alignment, false));
}
void *hwasan_memalign(uptr alignment, uptr size, StackTrace *stack) {
if (UNLIKELY(!IsPowerOfTwo(alignment))) {
errno = errno_EINVAL;
if (AllocatorMayReturnNull())
return nullptr;
ReportInvalidAllocationAlignment(alignment, stack);
}
return SetErrnoOnNull(HwasanAllocate(stack, size, alignment, false));
}
int hwasan_posix_memalign(void **memptr, uptr alignment, uptr size,
StackTrace *stack) {
if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
if (AllocatorMayReturnNull())
return errno_EINVAL;
ReportInvalidPosixMemalignAlignment(alignment, stack);
}
void *ptr = HwasanAllocate(stack, size, alignment, false);
if (UNLIKELY(!ptr))
// OOM error is already taken care of by HwasanAllocate.
return errno_ENOMEM;
CHECK(IsAligned((uptr)ptr, alignment));
*memptr = ptr;
return 0;
}
void hwasan_free(void *ptr, StackTrace *stack) {
#if HWASAN_WITH_INTERCEPTORS
// A tag of 0 means that this is a system allocator allocation, so we must use
// the system allocator to free it.
if (!flags()->disable_allocator_tagging && GetTagFromPointer((uptr)ptr) == 0)
return REAL(free)(ptr);
#endif
return HwasanDeallocate(stack, ptr);
}
} // namespace __hwasan
using namespace __hwasan;
void __hwasan_enable_allocator_tagging() {
atomic_store_relaxed(&hwasan_allocator_tagging_enabled, 1);
}
void __hwasan_disable_allocator_tagging() {
#if HWASAN_WITH_INTERCEPTORS
// Allocator tagging must be enabled for the system allocator fallback to work
// correctly. This means that we can't disable it at runtime if it was enabled
// at startup since that might result in our deallocations going to the system
// allocator. If tagging was disabled at startup we avoid this problem by
// disabling the fallback altogether.
CHECK(flags()->disable_allocator_tagging);
#endif
atomic_store_relaxed(&hwasan_allocator_tagging_enabled, 0);
}
uptr __sanitizer_get_current_allocated_bytes() {
uptr stats[AllocatorStatCount];
allocator.GetStats(stats);
return stats[AllocatorStatAllocated];
}
uptr __sanitizer_get_heap_size() {
uptr stats[AllocatorStatCount];
allocator.GetStats(stats);
return stats[AllocatorStatMapped];
}
uptr __sanitizer_get_free_bytes() { return 1; }
uptr __sanitizer_get_unmapped_bytes() { return 1; }
uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; }
uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); }