llvm-project/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp

2931 lines
100 KiB
C++

//===----- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements bottom-up and top-down register pressure reduction list
// schedulers, using standard algorithms. The basic approach uses a priority
// queue of available nodes to schedule. One at a time, nodes are taken from
// the priority queue (thus in priority order), checked for legality to
// schedule, and emitted if legal.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "pre-RA-sched"
#include "ScheduleDAGSDNodes.h"
#include "llvm/InlineAsm.h"
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <climits>
using namespace llvm;
STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
STATISTIC(NumUnfolds, "Number of nodes unfolded");
STATISTIC(NumDups, "Number of duplicated nodes");
STATISTIC(NumPRCopies, "Number of physical register copies");
static RegisterScheduler
burrListDAGScheduler("list-burr",
"Bottom-up register reduction list scheduling",
createBURRListDAGScheduler);
static RegisterScheduler
tdrListrDAGScheduler("list-tdrr",
"Top-down register reduction list scheduling",
createTDRRListDAGScheduler);
static RegisterScheduler
sourceListDAGScheduler("source",
"Similar to list-burr but schedules in source "
"order when possible",
createSourceListDAGScheduler);
static RegisterScheduler
hybridListDAGScheduler("list-hybrid",
"Bottom-up register pressure aware list scheduling "
"which tries to balance latency and register pressure",
createHybridListDAGScheduler);
static RegisterScheduler
ILPListDAGScheduler("list-ilp",
"Bottom-up register pressure aware list scheduling "
"which tries to balance ILP and register pressure",
createILPListDAGScheduler);
static cl::opt<bool> DisableSchedCycles(
"disable-sched-cycles", cl::Hidden, cl::init(false),
cl::desc("Disable cycle-level precision during preRA scheduling"));
// Temporary sched=list-ilp flags until the heuristics are robust.
// Some options are also available under sched=list-hybrid.
static cl::opt<bool> DisableSchedRegPressure(
"disable-sched-reg-pressure", cl::Hidden, cl::init(false),
cl::desc("Disable regpressure priority in sched=list-ilp"));
static cl::opt<bool> DisableSchedLiveUses(
"disable-sched-live-uses", cl::Hidden, cl::init(true),
cl::desc("Disable live use priority in sched=list-ilp"));
static cl::opt<bool> DisableSchedVRegCycle(
"disable-sched-vrcycle", cl::Hidden, cl::init(false),
cl::desc("Disable virtual register cycle interference checks"));
static cl::opt<bool> DisableSchedPhysRegJoin(
"disable-sched-physreg-join", cl::Hidden, cl::init(false),
cl::desc("Disable physreg def-use affinity"));
static cl::opt<bool> DisableSchedStalls(
"disable-sched-stalls", cl::Hidden, cl::init(true),
cl::desc("Disable no-stall priority in sched=list-ilp"));
static cl::opt<bool> DisableSchedCriticalPath(
"disable-sched-critical-path", cl::Hidden, cl::init(false),
cl::desc("Disable critical path priority in sched=list-ilp"));
static cl::opt<bool> DisableSchedHeight(
"disable-sched-height", cl::Hidden, cl::init(false),
cl::desc("Disable scheduled-height priority in sched=list-ilp"));
static cl::opt<int> MaxReorderWindow(
"max-sched-reorder", cl::Hidden, cl::init(6),
cl::desc("Number of instructions to allow ahead of the critical path "
"in sched=list-ilp"));
static cl::opt<unsigned> AvgIPC(
"sched-avg-ipc", cl::Hidden, cl::init(1),
cl::desc("Average inst/cycle whan no target itinerary exists."));
#ifndef NDEBUG
namespace {
// For sched=list-ilp, Count the number of times each factor comes into play.
enum { FactPressureDiff, FactRegUses, FactStall, FactHeight, FactDepth,
FactStatic, FactOther, NumFactors };
}
static const char *FactorName[NumFactors] =
{"PressureDiff", "RegUses", "Stall", "Height", "Depth","Static", "Other"};
static int FactorCount[NumFactors];
#endif //!NDEBUG
namespace {
//===----------------------------------------------------------------------===//
/// ScheduleDAGRRList - The actual register reduction list scheduler
/// implementation. This supports both top-down and bottom-up scheduling.
///
class ScheduleDAGRRList : public ScheduleDAGSDNodes {
private:
/// isBottomUp - This is true if the scheduling problem is bottom-up, false if
/// it is top-down.
bool isBottomUp;
/// NeedLatency - True if the scheduler will make use of latency information.
///
bool NeedLatency;
/// AvailableQueue - The priority queue to use for the available SUnits.
SchedulingPriorityQueue *AvailableQueue;
/// PendingQueue - This contains all of the instructions whose operands have
/// been issued, but their results are not ready yet (due to the latency of
/// the operation). Once the operands becomes available, the instruction is
/// added to the AvailableQueue.
std::vector<SUnit*> PendingQueue;
/// HazardRec - The hazard recognizer to use.
ScheduleHazardRecognizer *HazardRec;
/// CurCycle - The current scheduler state corresponds to this cycle.
unsigned CurCycle;
/// MinAvailableCycle - Cycle of the soonest available instruction.
unsigned MinAvailableCycle;
/// IssueCount - Count instructions issued in this cycle
/// Currently valid only for bottom-up scheduling.
unsigned IssueCount;
/// LiveRegDefs - A set of physical registers and their definition
/// that are "live". These nodes must be scheduled before any other nodes that
/// modifies the registers can be scheduled.
unsigned NumLiveRegs;
std::vector<SUnit*> LiveRegDefs;
std::vector<SUnit*> LiveRegGens;
/// Topo - A topological ordering for SUnits which permits fast IsReachable
/// and similar queries.
ScheduleDAGTopologicalSort Topo;
public:
ScheduleDAGRRList(MachineFunction &mf, bool needlatency,
SchedulingPriorityQueue *availqueue,
CodeGenOpt::Level OptLevel)
: ScheduleDAGSDNodes(mf), isBottomUp(availqueue->isBottomUp()),
NeedLatency(needlatency), AvailableQueue(availqueue), CurCycle(0),
Topo(SUnits) {
const TargetMachine &tm = mf.getTarget();
if (DisableSchedCycles || !NeedLatency)
HazardRec = new ScheduleHazardRecognizer();
else
HazardRec = tm.getInstrInfo()->CreateTargetHazardRecognizer(&tm, this);
}
~ScheduleDAGRRList() {
delete HazardRec;
delete AvailableQueue;
}
void Schedule();
ScheduleHazardRecognizer *getHazardRec() { return HazardRec; }
/// IsReachable - Checks if SU is reachable from TargetSU.
bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
return Topo.IsReachable(SU, TargetSU);
}
/// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
/// create a cycle.
bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
return Topo.WillCreateCycle(SU, TargetSU);
}
/// AddPred - adds a predecessor edge to SUnit SU.
/// This returns true if this is a new predecessor.
/// Updates the topological ordering if required.
void AddPred(SUnit *SU, const SDep &D) {
Topo.AddPred(SU, D.getSUnit());
SU->addPred(D);
}
/// RemovePred - removes a predecessor edge from SUnit SU.
/// This returns true if an edge was removed.
/// Updates the topological ordering if required.
void RemovePred(SUnit *SU, const SDep &D) {
Topo.RemovePred(SU, D.getSUnit());
SU->removePred(D);
}
private:
bool isReady(SUnit *SU) {
return DisableSchedCycles || !AvailableQueue->hasReadyFilter() ||
AvailableQueue->isReady(SU);
}
void ReleasePred(SUnit *SU, const SDep *PredEdge);
void ReleasePredecessors(SUnit *SU);
void ReleaseSucc(SUnit *SU, const SDep *SuccEdge);
void ReleaseSuccessors(SUnit *SU);
void ReleasePending();
void AdvanceToCycle(unsigned NextCycle);
void AdvancePastStalls(SUnit *SU);
void EmitNode(SUnit *SU);
void ScheduleNodeBottomUp(SUnit*);
void CapturePred(SDep *PredEdge);
void UnscheduleNodeBottomUp(SUnit*);
void RestoreHazardCheckerBottomUp();
void BacktrackBottomUp(SUnit*, SUnit*);
SUnit *CopyAndMoveSuccessors(SUnit*);
void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
const TargetRegisterClass*,
const TargetRegisterClass*,
SmallVector<SUnit*, 2>&);
bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
SUnit *PickNodeToScheduleBottomUp();
void ListScheduleBottomUp();
void ScheduleNodeTopDown(SUnit*);
void ListScheduleTopDown();
/// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
/// Updates the topological ordering if required.
SUnit *CreateNewSUnit(SDNode *N) {
unsigned NumSUnits = SUnits.size();
SUnit *NewNode = NewSUnit(N);
// Update the topological ordering.
if (NewNode->NodeNum >= NumSUnits)
Topo.InitDAGTopologicalSorting();
return NewNode;
}
/// CreateClone - Creates a new SUnit from an existing one.
/// Updates the topological ordering if required.
SUnit *CreateClone(SUnit *N) {
unsigned NumSUnits = SUnits.size();
SUnit *NewNode = Clone(N);
// Update the topological ordering.
if (NewNode->NodeNum >= NumSUnits)
Topo.InitDAGTopologicalSorting();
return NewNode;
}
/// ForceUnitLatencies - Register-pressure-reducing scheduling doesn't
/// need actual latency information but the hybrid scheduler does.
bool ForceUnitLatencies() const {
return !NeedLatency;
}
};
} // end anonymous namespace
/// Schedule - Schedule the DAG using list scheduling.
void ScheduleDAGRRList::Schedule() {
DEBUG(dbgs()
<< "********** List Scheduling BB#" << BB->getNumber()
<< " '" << BB->getName() << "' **********\n");
#ifndef NDEBUG
for (int i = 0; i < NumFactors; ++i) {
FactorCount[i] = 0;
}
#endif //!NDEBUG
CurCycle = 0;
IssueCount = 0;
MinAvailableCycle = DisableSchedCycles ? 0 : UINT_MAX;
NumLiveRegs = 0;
LiveRegDefs.resize(TRI->getNumRegs(), NULL);
LiveRegGens.resize(TRI->getNumRegs(), NULL);
// Build the scheduling graph.
BuildSchedGraph(NULL);
DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
SUnits[su].dumpAll(this));
Topo.InitDAGTopologicalSorting();
AvailableQueue->initNodes(SUnits);
HazardRec->Reset();
// Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
if (isBottomUp)
ListScheduleBottomUp();
else
ListScheduleTopDown();
#ifndef NDEBUG
for (int i = 0; i < NumFactors; ++i) {
DEBUG(dbgs() << FactorName[i] << "\t" << FactorCount[i] << "\n");
}
#endif // !NDEBUG
AvailableQueue->releaseState();
}
//===----------------------------------------------------------------------===//
// Bottom-Up Scheduling
//===----------------------------------------------------------------------===//
/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
SUnit *PredSU = PredEdge->getSUnit();
#ifndef NDEBUG
if (PredSU->NumSuccsLeft == 0) {
dbgs() << "*** Scheduling failed! ***\n";
PredSU->dump(this);
dbgs() << " has been released too many times!\n";
llvm_unreachable(0);
}
#endif
--PredSU->NumSuccsLeft;
if (!ForceUnitLatencies()) {
// Updating predecessor's height. This is now the cycle when the
// predecessor can be scheduled without causing a pipeline stall.
PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge->getLatency());
}
// If all the node's successors are scheduled, this node is ready
// to be scheduled. Ignore the special EntrySU node.
if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
PredSU->isAvailable = true;
unsigned Height = PredSU->getHeight();
if (Height < MinAvailableCycle)
MinAvailableCycle = Height;
if (isReady(PredSU)) {
AvailableQueue->push(PredSU);
}
// CapturePred and others may have left the node in the pending queue, avoid
// adding it twice.
else if (!PredSU->isPending) {
PredSU->isPending = true;
PendingQueue.push_back(PredSU);
}
}
}
/// Call ReleasePred for each predecessor, then update register live def/gen.
/// Always update LiveRegDefs for a register dependence even if the current SU
/// also defines the register. This effectively create one large live range
/// across a sequence of two-address node. This is important because the
/// entire chain must be scheduled together. Example:
///
/// flags = (3) add
/// flags = (2) addc flags
/// flags = (1) addc flags
///
/// results in
///
/// LiveRegDefs[flags] = 3
/// LiveRegGens[flags] = 1
///
/// If (2) addc is unscheduled, then (1) addc must also be unscheduled to avoid
/// interference on flags.
void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU) {
// Bottom up: release predecessors
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
ReleasePred(SU, &*I);
if (I->isAssignedRegDep()) {
// This is a physical register dependency and it's impossible or
// expensive to copy the register. Make sure nothing that can
// clobber the register is scheduled between the predecessor and
// this node.
SUnit *RegDef = LiveRegDefs[I->getReg()]; (void)RegDef;
assert((!RegDef || RegDef == SU || RegDef == I->getSUnit()) &&
"interference on register dependence");
LiveRegDefs[I->getReg()] = I->getSUnit();
if (!LiveRegGens[I->getReg()]) {
++NumLiveRegs;
LiveRegGens[I->getReg()] = SU;
}
}
}
}
/// Check to see if any of the pending instructions are ready to issue. If
/// so, add them to the available queue.
void ScheduleDAGRRList::ReleasePending() {
if (DisableSchedCycles) {
assert(PendingQueue.empty() && "pending instrs not allowed in this mode");
return;
}
// If the available queue is empty, it is safe to reset MinAvailableCycle.
if (AvailableQueue->empty())
MinAvailableCycle = UINT_MAX;
// Check to see if any of the pending instructions are ready to issue. If
// so, add them to the available queue.
for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
unsigned ReadyCycle =
isBottomUp ? PendingQueue[i]->getHeight() : PendingQueue[i]->getDepth();
if (ReadyCycle < MinAvailableCycle)
MinAvailableCycle = ReadyCycle;
if (PendingQueue[i]->isAvailable) {
if (!isReady(PendingQueue[i]))
continue;
AvailableQueue->push(PendingQueue[i]);
}
PendingQueue[i]->isPending = false;
PendingQueue[i] = PendingQueue.back();
PendingQueue.pop_back();
--i; --e;
}
}
/// Move the scheduler state forward by the specified number of Cycles.
void ScheduleDAGRRList::AdvanceToCycle(unsigned NextCycle) {
if (NextCycle <= CurCycle)
return;
IssueCount = 0;
AvailableQueue->setCurCycle(NextCycle);
if (!HazardRec->isEnabled()) {
// Bypass lots of virtual calls in case of long latency.
CurCycle = NextCycle;
}
else {
for (; CurCycle != NextCycle; ++CurCycle) {
if (isBottomUp)
HazardRec->RecedeCycle();
else
HazardRec->AdvanceCycle();
}
}
// FIXME: Instead of visiting the pending Q each time, set a dirty flag on the
// available Q to release pending nodes at least once before popping.
ReleasePending();
}
/// Move the scheduler state forward until the specified node's dependents are
/// ready and can be scheduled with no resource conflicts.
void ScheduleDAGRRList::AdvancePastStalls(SUnit *SU) {
if (DisableSchedCycles)
return;
// FIXME: Nodes such as CopyFromReg probably should not advance the current
// cycle. Otherwise, we can wrongly mask real stalls. If the non-machine node
// has predecessors the cycle will be advanced when they are scheduled.
// But given the crude nature of modeling latency though such nodes, we
// currently need to treat these nodes like real instructions.
// if (!SU->getNode() || !SU->getNode()->isMachineOpcode()) return;
unsigned ReadyCycle = isBottomUp ? SU->getHeight() : SU->getDepth();
// Bump CurCycle to account for latency. We assume the latency of other
// available instructions may be hidden by the stall (not a full pipe stall).
// This updates the hazard recognizer's cycle before reserving resources for
// this instruction.
AdvanceToCycle(ReadyCycle);
// Calls are scheduled in their preceding cycle, so don't conflict with
// hazards from instructions after the call. EmitNode will reset the
// scoreboard state before emitting the call.
if (isBottomUp && SU->isCall)
return;
// FIXME: For resource conflicts in very long non-pipelined stages, we
// should probably skip ahead here to avoid useless scoreboard checks.
int Stalls = 0;
while (true) {
ScheduleHazardRecognizer::HazardType HT =
HazardRec->getHazardType(SU, isBottomUp ? -Stalls : Stalls);
if (HT == ScheduleHazardRecognizer::NoHazard)
break;
++Stalls;
}
AdvanceToCycle(CurCycle + Stalls);
}
/// Record this SUnit in the HazardRecognizer.
/// Does not update CurCycle.
void ScheduleDAGRRList::EmitNode(SUnit *SU) {
if (!HazardRec->isEnabled())
return;
// Check for phys reg copy.
if (!SU->getNode())
return;
switch (SU->getNode()->getOpcode()) {
default:
assert(SU->getNode()->isMachineOpcode() &&
"This target-independent node should not be scheduled.");
break;
case ISD::MERGE_VALUES:
case ISD::TokenFactor:
case ISD::CopyToReg:
case ISD::CopyFromReg:
case ISD::EH_LABEL:
// Noops don't affect the scoreboard state. Copies are likely to be
// removed.
return;
case ISD::INLINEASM:
// For inline asm, clear the pipeline state.
HazardRec->Reset();
return;
}
if (isBottomUp && SU->isCall) {
// Calls are scheduled with their preceding instructions. For bottom-up
// scheduling, clear the pipeline state before emitting.
HazardRec->Reset();
}
HazardRec->EmitInstruction(SU);
if (!isBottomUp && SU->isCall) {
HazardRec->Reset();
}
}
static void resetVRegCycle(SUnit *SU);
/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
/// count of its predecessors. If a predecessor pending count is zero, add it to
/// the Available queue.
void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU) {
DEBUG(dbgs() << "\n*** Scheduling [" << CurCycle << "]: ");
DEBUG(SU->dump(this));
#ifndef NDEBUG
if (CurCycle < SU->getHeight())
DEBUG(dbgs() << " Height [" << SU->getHeight()
<< "] pipeline stall!\n");
#endif
// FIXME: Do not modify node height. It may interfere with
// backtracking. Instead add a "ready cycle" to SUnit. Before scheduling the
// node its ready cycle can aid heuristics, and after scheduling it can
// indicate the scheduled cycle.
SU->setHeightToAtLeast(CurCycle);
// Reserve resources for the scheduled intruction.
EmitNode(SU);
Sequence.push_back(SU);
AvailableQueue->ScheduledNode(SU);
// If HazardRec is disabled, and each inst counts as one cycle, then
// advance CurCycle before ReleasePredecessors to avoid useless pushes to
// PendingQueue for schedulers that implement HasReadyFilter.
if (!HazardRec->isEnabled() && AvgIPC < 2)
AdvanceToCycle(CurCycle + 1);
// Update liveness of predecessors before successors to avoid treating a
// two-address node as a live range def.
ReleasePredecessors(SU);
// Release all the implicit physical register defs that are live.
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
// LiveRegDegs[I->getReg()] != SU when SU is a two-address node.
if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] == SU) {
assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
--NumLiveRegs;
LiveRegDefs[I->getReg()] = NULL;
LiveRegGens[I->getReg()] = NULL;
}
}
resetVRegCycle(SU);
SU->isScheduled = true;
// Conditions under which the scheduler should eagerly advance the cycle:
// (1) No available instructions
// (2) All pipelines full, so available instructions must have hazards.
//
// If HazardRec is disabled, the cycle was pre-advanced before calling
// ReleasePredecessors. In that case, IssueCount should remain 0.
//
// Check AvailableQueue after ReleasePredecessors in case of zero latency.
if (HazardRec->isEnabled() || AvgIPC > 1) {
if (SU->getNode() && SU->getNode()->isMachineOpcode())
++IssueCount;
if ((HazardRec->isEnabled() && HazardRec->atIssueLimit())
|| (!HazardRec->isEnabled() && IssueCount == AvgIPC))
AdvanceToCycle(CurCycle + 1);
}
}
/// CapturePred - This does the opposite of ReleasePred. Since SU is being
/// unscheduled, incrcease the succ left count of its predecessors. Remove
/// them from AvailableQueue if necessary.
void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
SUnit *PredSU = PredEdge->getSUnit();
if (PredSU->isAvailable) {
PredSU->isAvailable = false;
if (!PredSU->isPending)
AvailableQueue->remove(PredSU);
}
assert(PredSU->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
++PredSU->NumSuccsLeft;
}
/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
/// its predecessor states to reflect the change.
void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
DEBUG(dbgs() << "*** Unscheduling [" << SU->getHeight() << "]: ");
DEBUG(SU->dump(this));
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
CapturePred(&*I);
if (I->isAssignedRegDep() && SU == LiveRegGens[I->getReg()]){
assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
assert(LiveRegDefs[I->getReg()] == I->getSUnit() &&
"Physical register dependency violated?");
--NumLiveRegs;
LiveRegDefs[I->getReg()] = NULL;
LiveRegGens[I->getReg()] = NULL;
}
}
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
if (I->isAssignedRegDep()) {
// This becomes the nearest def. Note that an earlier def may still be
// pending if this is a two-address node.
LiveRegDefs[I->getReg()] = SU;
if (!LiveRegDefs[I->getReg()]) {
++NumLiveRegs;
}
if (LiveRegGens[I->getReg()] == NULL ||
I->getSUnit()->getHeight() < LiveRegGens[I->getReg()]->getHeight())
LiveRegGens[I->getReg()] = I->getSUnit();
}
}
if (SU->getHeight() < MinAvailableCycle)
MinAvailableCycle = SU->getHeight();
SU->setHeightDirty();
SU->isScheduled = false;
SU->isAvailable = true;
if (!DisableSchedCycles && AvailableQueue->hasReadyFilter()) {
// Don't make available until backtracking is complete.
SU->isPending = true;
PendingQueue.push_back(SU);
}
else {
AvailableQueue->push(SU);
}
AvailableQueue->UnscheduledNode(SU);
}
/// After backtracking, the hazard checker needs to be restored to a state
/// corresponding the the current cycle.
void ScheduleDAGRRList::RestoreHazardCheckerBottomUp() {
HazardRec->Reset();
unsigned LookAhead = std::min((unsigned)Sequence.size(),
HazardRec->getMaxLookAhead());
if (LookAhead == 0)
return;
std::vector<SUnit*>::const_iterator I = (Sequence.end() - LookAhead);
unsigned HazardCycle = (*I)->getHeight();
for (std::vector<SUnit*>::const_iterator E = Sequence.end(); I != E; ++I) {
SUnit *SU = *I;
for (; SU->getHeight() > HazardCycle; ++HazardCycle) {
HazardRec->RecedeCycle();
}
EmitNode(SU);
}
}
/// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
/// BTCycle in order to schedule a specific node.
void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, SUnit *BtSU) {
SUnit *OldSU = Sequence.back();
while (true) {
Sequence.pop_back();
if (SU->isSucc(OldSU))
// Don't try to remove SU from AvailableQueue.
SU->isAvailable = false;
// FIXME: use ready cycle instead of height
CurCycle = OldSU->getHeight();
UnscheduleNodeBottomUp(OldSU);
AvailableQueue->setCurCycle(CurCycle);
if (OldSU == BtSU)
break;
OldSU = Sequence.back();
}
assert(!SU->isSucc(OldSU) && "Something is wrong!");
RestoreHazardCheckerBottomUp();
ReleasePending();
++NumBacktracks;
}
static bool isOperandOf(const SUnit *SU, SDNode *N) {
for (const SDNode *SUNode = SU->getNode(); SUNode;
SUNode = SUNode->getGluedNode()) {
if (SUNode->isOperandOf(N))
return true;
}
return false;
}
/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
/// successors to the newly created node.
SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
SDNode *N = SU->getNode();
if (!N)
return NULL;
if (SU->getNode()->getGluedNode())
return NULL;
SUnit *NewSU;
bool TryUnfold = false;
for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
EVT VT = N->getValueType(i);
if (VT == MVT::Glue)
return NULL;
else if (VT == MVT::Other)
TryUnfold = true;
}
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
const SDValue &Op = N->getOperand(i);
EVT VT = Op.getNode()->getValueType(Op.getResNo());
if (VT == MVT::Glue)
return NULL;
}
if (TryUnfold) {
SmallVector<SDNode*, 2> NewNodes;
if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
return NULL;
DEBUG(dbgs() << "Unfolding SU #" << SU->NodeNum << "\n");
assert(NewNodes.size() == 2 && "Expected a load folding node!");
N = NewNodes[1];
SDNode *LoadNode = NewNodes[0];
unsigned NumVals = N->getNumValues();
unsigned OldNumVals = SU->getNode()->getNumValues();
for (unsigned i = 0; i != NumVals; ++i)
DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
SDValue(LoadNode, 1));
// LoadNode may already exist. This can happen when there is another
// load from the same location and producing the same type of value
// but it has different alignment or volatileness.
bool isNewLoad = true;
SUnit *LoadSU;
if (LoadNode->getNodeId() != -1) {
LoadSU = &SUnits[LoadNode->getNodeId()];
isNewLoad = false;
} else {
LoadSU = CreateNewSUnit(LoadNode);
LoadNode->setNodeId(LoadSU->NodeNum);
InitNumRegDefsLeft(LoadSU);
ComputeLatency(LoadSU);
}
SUnit *NewSU = CreateNewSUnit(N);
assert(N->getNodeId() == -1 && "Node already inserted!");
N->setNodeId(NewSU->NodeNum);
const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
NewSU->isTwoAddress = true;
break;
}
}
if (TID.isCommutable())
NewSU->isCommutable = true;
InitNumRegDefsLeft(NewSU);
ComputeLatency(NewSU);
// Record all the edges to and from the old SU, by category.
SmallVector<SDep, 4> ChainPreds;
SmallVector<SDep, 4> ChainSuccs;
SmallVector<SDep, 4> LoadPreds;
SmallVector<SDep, 4> NodePreds;
SmallVector<SDep, 4> NodeSuccs;
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
if (I->isCtrl())
ChainPreds.push_back(*I);
else if (isOperandOf(I->getSUnit(), LoadNode))
LoadPreds.push_back(*I);
else
NodePreds.push_back(*I);
}
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
if (I->isCtrl())
ChainSuccs.push_back(*I);
else
NodeSuccs.push_back(*I);
}
// Now assign edges to the newly-created nodes.
for (unsigned i = 0, e = ChainPreds.size(); i != e; ++i) {
const SDep &Pred = ChainPreds[i];
RemovePred(SU, Pred);
if (isNewLoad)
AddPred(LoadSU, Pred);
}
for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
const SDep &Pred = LoadPreds[i];
RemovePred(SU, Pred);
if (isNewLoad)
AddPred(LoadSU, Pred);
}
for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
const SDep &Pred = NodePreds[i];
RemovePred(SU, Pred);
AddPred(NewSU, Pred);
}
for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
SDep D = NodeSuccs[i];
SUnit *SuccDep = D.getSUnit();
D.setSUnit(SU);
RemovePred(SuccDep, D);
D.setSUnit(NewSU);
AddPred(SuccDep, D);
// Balance register pressure.
if (AvailableQueue->tracksRegPressure() && SuccDep->isScheduled
&& !D.isCtrl() && NewSU->NumRegDefsLeft > 0)
--NewSU->NumRegDefsLeft;
}
for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
SDep D = ChainSuccs[i];
SUnit *SuccDep = D.getSUnit();
D.setSUnit(SU);
RemovePred(SuccDep, D);
if (isNewLoad) {
D.setSUnit(LoadSU);
AddPred(SuccDep, D);
}
}
// Add a data dependency to reflect that NewSU reads the value defined
// by LoadSU.
AddPred(NewSU, SDep(LoadSU, SDep::Data, LoadSU->Latency));
if (isNewLoad)
AvailableQueue->addNode(LoadSU);
AvailableQueue->addNode(NewSU);
++NumUnfolds;
if (NewSU->NumSuccsLeft == 0) {
NewSU->isAvailable = true;
return NewSU;
}
SU = NewSU;
}
DEBUG(dbgs() << " Duplicating SU #" << SU->NodeNum << "\n");
NewSU = CreateClone(SU);
// New SUnit has the exact same predecessors.
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I)
if (!I->isArtificial())
AddPred(NewSU, *I);
// Only copy scheduled successors. Cut them from old node's successor
// list and move them over.
SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
if (I->isArtificial())
continue;
SUnit *SuccSU = I->getSUnit();
if (SuccSU->isScheduled) {
SDep D = *I;
D.setSUnit(NewSU);
AddPred(SuccSU, D);
D.setSUnit(SU);
DelDeps.push_back(std::make_pair(SuccSU, D));
}
}
for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
RemovePred(DelDeps[i].first, DelDeps[i].second);
AvailableQueue->updateNode(SU);
AvailableQueue->addNode(NewSU);
++NumDups;
return NewSU;
}
/// InsertCopiesAndMoveSuccs - Insert register copies and move all
/// scheduled successors of the given SUnit to the last copy.
void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
const TargetRegisterClass *DestRC,
const TargetRegisterClass *SrcRC,
SmallVector<SUnit*, 2> &Copies) {
SUnit *CopyFromSU = CreateNewSUnit(NULL);
CopyFromSU->CopySrcRC = SrcRC;
CopyFromSU->CopyDstRC = DestRC;
SUnit *CopyToSU = CreateNewSUnit(NULL);
CopyToSU->CopySrcRC = DestRC;
CopyToSU->CopyDstRC = SrcRC;
// Only copy scheduled successors. Cut them from old node's successor
// list and move them over.
SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
if (I->isArtificial())
continue;
SUnit *SuccSU = I->getSUnit();
if (SuccSU->isScheduled) {
SDep D = *I;
D.setSUnit(CopyToSU);
AddPred(SuccSU, D);
DelDeps.push_back(std::make_pair(SuccSU, *I));
}
else {
// Avoid scheduling the def-side copy before other successors. Otherwise
// we could introduce another physreg interference on the copy and
// continue inserting copies indefinitely.
SDep D(CopyFromSU, SDep::Order, /*Latency=*/0,
/*Reg=*/0, /*isNormalMemory=*/false,
/*isMustAlias=*/false, /*isArtificial=*/true);
AddPred(SuccSU, D);
}
}
for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
RemovePred(DelDeps[i].first, DelDeps[i].second);
AddPred(CopyFromSU, SDep(SU, SDep::Data, SU->Latency, Reg));
AddPred(CopyToSU, SDep(CopyFromSU, SDep::Data, CopyFromSU->Latency, 0));
AvailableQueue->updateNode(SU);
AvailableQueue->addNode(CopyFromSU);
AvailableQueue->addNode(CopyToSU);
Copies.push_back(CopyFromSU);
Copies.push_back(CopyToSU);
++NumPRCopies;
}
/// getPhysicalRegisterVT - Returns the ValueType of the physical register
/// definition of the specified node.
/// FIXME: Move to SelectionDAG?
static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
const TargetInstrInfo *TII) {
const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
unsigned NumRes = TID.getNumDefs();
for (const unsigned *ImpDef = TID.getImplicitDefs(); *ImpDef; ++ImpDef) {
if (Reg == *ImpDef)
break;
++NumRes;
}
return N->getValueType(NumRes);
}
/// CheckForLiveRegDef - Return true and update live register vector if the
/// specified register def of the specified SUnit clobbers any "live" registers.
static void CheckForLiveRegDef(SUnit *SU, unsigned Reg,
std::vector<SUnit*> &LiveRegDefs,
SmallSet<unsigned, 4> &RegAdded,
SmallVector<unsigned, 4> &LRegs,
const TargetRegisterInfo *TRI) {
for (const unsigned *AliasI = TRI->getOverlaps(Reg); *AliasI; ++AliasI) {
// Check if Ref is live.
if (!LiveRegDefs[Reg]) continue;
// Allow multiple uses of the same def.
if (LiveRegDefs[Reg] == SU) continue;
// Add Reg to the set of interfering live regs.
if (RegAdded.insert(Reg))
LRegs.push_back(Reg);
}
}
/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
/// scheduling of the given node to satisfy live physical register dependencies.
/// If the specific node is the last one that's available to schedule, do
/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
bool ScheduleDAGRRList::
DelayForLiveRegsBottomUp(SUnit *SU, SmallVector<unsigned, 4> &LRegs) {
if (NumLiveRegs == 0)
return false;
SmallSet<unsigned, 4> RegAdded;
// If this node would clobber any "live" register, then it's not ready.
//
// If SU is the currently live definition of the same register that it uses,
// then we are free to schedule it.
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] != SU)
CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs,
RegAdded, LRegs, TRI);
}
for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
if (Node->getOpcode() == ISD::INLINEASM) {
// Inline asm can clobber physical defs.
unsigned NumOps = Node->getNumOperands();
if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
--NumOps; // Ignore the glue operand.
for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
unsigned Flags =
cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
++i; // Skip the ID value.
if (InlineAsm::isRegDefKind(Flags) ||
InlineAsm::isRegDefEarlyClobberKind(Flags)) {
// Check for def of register or earlyclobber register.
for (; NumVals; --NumVals, ++i) {
unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
if (TargetRegisterInfo::isPhysicalRegister(Reg))
CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
}
} else
i += NumVals;
}
continue;
}
if (!Node->isMachineOpcode())
continue;
const TargetInstrDesc &TID = TII->get(Node->getMachineOpcode());
if (!TID.ImplicitDefs)
continue;
for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg)
CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
}
return !LRegs.empty();
}
/// Return a node that can be scheduled in this cycle. Requirements:
/// (1) Ready: latency has been satisfied
/// (2) No Hazards: resources are available
/// (3) No Interferences: may unschedule to break register interferences.
SUnit *ScheduleDAGRRList::PickNodeToScheduleBottomUp() {
SmallVector<SUnit*, 4> Interferences;
DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
SUnit *CurSU = AvailableQueue->pop();
while (CurSU) {
SmallVector<unsigned, 4> LRegs;
if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
break;
LRegsMap.insert(std::make_pair(CurSU, LRegs));
CurSU->isPending = true; // This SU is not in AvailableQueue right now.
Interferences.push_back(CurSU);
CurSU = AvailableQueue->pop();
}
if (CurSU) {
// Add the nodes that aren't ready back onto the available list.
for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
Interferences[i]->isPending = false;
assert(Interferences[i]->isAvailable && "must still be available");
AvailableQueue->push(Interferences[i]);
}
return CurSU;
}
// All candidates are delayed due to live physical reg dependencies.
// Try backtracking, code duplication, or inserting cross class copies
// to resolve it.
for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
SUnit *TrySU = Interferences[i];
SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
// Try unscheduling up to the point where it's safe to schedule
// this node.
SUnit *BtSU = NULL;
unsigned LiveCycle = UINT_MAX;
for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
unsigned Reg = LRegs[j];
if (LiveRegGens[Reg]->getHeight() < LiveCycle) {
BtSU = LiveRegGens[Reg];
LiveCycle = BtSU->getHeight();
}
}
if (!WillCreateCycle(TrySU, BtSU)) {
BacktrackBottomUp(TrySU, BtSU);
// Force the current node to be scheduled before the node that
// requires the physical reg dep.
if (BtSU->isAvailable) {
BtSU->isAvailable = false;
if (!BtSU->isPending)
AvailableQueue->remove(BtSU);
}
AddPred(TrySU, SDep(BtSU, SDep::Order, /*Latency=*/1,
/*Reg=*/0, /*isNormalMemory=*/false,
/*isMustAlias=*/false, /*isArtificial=*/true));
// If one or more successors has been unscheduled, then the current
// node is no longer avaialable. Schedule a successor that's now
// available instead.
if (!TrySU->isAvailable) {
CurSU = AvailableQueue->pop();
}
else {
CurSU = TrySU;
TrySU->isPending = false;
Interferences.erase(Interferences.begin()+i);
}
break;
}
}
if (!CurSU) {
// Can't backtrack. If it's too expensive to copy the value, then try
// duplicate the nodes that produces these "too expensive to copy"
// values to break the dependency. In case even that doesn't work,
// insert cross class copies.
// If it's not too expensive, i.e. cost != -1, issue copies.
SUnit *TrySU = Interferences[0];
SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
assert(LRegs.size() == 1 && "Can't handle this yet!");
unsigned Reg = LRegs[0];
SUnit *LRDef = LiveRegDefs[Reg];
EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
const TargetRegisterClass *RC =
TRI->getMinimalPhysRegClass(Reg, VT);
const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
// If cross copy register class is the same as RC, then it must be possible
// copy the value directly. Do not try duplicate the def.
// If cross copy register class is not the same as RC, then it's possible to
// copy the value but it require cross register class copies and it is
// expensive.
// If cross copy register class is null, then it's not possible to copy
// the value at all.
SUnit *NewDef = 0;
if (DestRC != RC) {
NewDef = CopyAndMoveSuccessors(LRDef);
if (!DestRC && !NewDef)
report_fatal_error("Can't handle live physical register dependency!");
}
if (!NewDef) {
// Issue copies, these can be expensive cross register class copies.
SmallVector<SUnit*, 2> Copies;
InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
DEBUG(dbgs() << " Adding an edge from SU #" << TrySU->NodeNum
<< " to SU #" << Copies.front()->NodeNum << "\n");
AddPred(TrySU, SDep(Copies.front(), SDep::Order, /*Latency=*/1,
/*Reg=*/0, /*isNormalMemory=*/false,
/*isMustAlias=*/false,
/*isArtificial=*/true));
NewDef = Copies.back();
}
DEBUG(dbgs() << " Adding an edge from SU #" << NewDef->NodeNum
<< " to SU #" << TrySU->NodeNum << "\n");
LiveRegDefs[Reg] = NewDef;
AddPred(NewDef, SDep(TrySU, SDep::Order, /*Latency=*/1,
/*Reg=*/0, /*isNormalMemory=*/false,
/*isMustAlias=*/false,
/*isArtificial=*/true));
TrySU->isAvailable = false;
CurSU = NewDef;
}
assert(CurSU && "Unable to resolve live physical register dependencies!");
// Add the nodes that aren't ready back onto the available list.
for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
Interferences[i]->isPending = false;
// May no longer be available due to backtracking.
if (Interferences[i]->isAvailable) {
AvailableQueue->push(Interferences[i]);
}
}
return CurSU;
}
/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
/// schedulers.
void ScheduleDAGRRList::ListScheduleBottomUp() {
// Release any predecessors of the special Exit node.
ReleasePredecessors(&ExitSU);
// Add root to Available queue.
if (!SUnits.empty()) {
SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
RootSU->isAvailable = true;
AvailableQueue->push(RootSU);
}
// While Available queue is not empty, grab the node with the highest
// priority. If it is not ready put it back. Schedule the node.
Sequence.reserve(SUnits.size());
while (!AvailableQueue->empty()) {
DEBUG(dbgs() << "\nExamining Available:\n";
AvailableQueue->dump(this));
// Pick the best node to schedule taking all constraints into
// consideration.
SUnit *SU = PickNodeToScheduleBottomUp();
AdvancePastStalls(SU);
ScheduleNodeBottomUp(SU);
while (AvailableQueue->empty() && !PendingQueue.empty()) {
// Advance the cycle to free resources. Skip ahead to the next ready SU.
assert(MinAvailableCycle < UINT_MAX && "MinAvailableCycle uninitialized");
AdvanceToCycle(std::max(CurCycle + 1, MinAvailableCycle));
}
}
// Reverse the order if it is bottom up.
std::reverse(Sequence.begin(), Sequence.end());
#ifndef NDEBUG
VerifySchedule(isBottomUp);
#endif
}
//===----------------------------------------------------------------------===//
// Top-Down Scheduling
//===----------------------------------------------------------------------===//
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
void ScheduleDAGRRList::ReleaseSucc(SUnit *SU, const SDep *SuccEdge) {
SUnit *SuccSU = SuccEdge->getSUnit();
#ifndef NDEBUG
if (SuccSU->NumPredsLeft == 0) {
dbgs() << "*** Scheduling failed! ***\n";
SuccSU->dump(this);
dbgs() << " has been released too many times!\n";
llvm_unreachable(0);
}
#endif
--SuccSU->NumPredsLeft;
// If all the node's predecessors are scheduled, this node is ready
// to be scheduled. Ignore the special ExitSU node.
if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) {
SuccSU->isAvailable = true;
AvailableQueue->push(SuccSU);
}
}
void ScheduleDAGRRList::ReleaseSuccessors(SUnit *SU) {
// Top down: release successors
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
assert(!I->isAssignedRegDep() &&
"The list-tdrr scheduler doesn't yet support physreg dependencies!");
ReleaseSucc(SU, &*I);
}
}
/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
/// count of its successors. If a successor pending count is zero, add it to
/// the Available queue.
void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU) {
DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
DEBUG(SU->dump(this));
assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
SU->setDepthToAtLeast(CurCycle);
Sequence.push_back(SU);
ReleaseSuccessors(SU);
SU->isScheduled = true;
AvailableQueue->ScheduledNode(SU);
}
/// ListScheduleTopDown - The main loop of list scheduling for top-down
/// schedulers.
void ScheduleDAGRRList::ListScheduleTopDown() {
AvailableQueue->setCurCycle(CurCycle);
// Release any successors of the special Entry node.
ReleaseSuccessors(&EntrySU);
// All leaves to Available queue.
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
// It is available if it has no predecessors.
if (SUnits[i].Preds.empty()) {
AvailableQueue->push(&SUnits[i]);
SUnits[i].isAvailable = true;
}
}
// While Available queue is not empty, grab the node with the highest
// priority. If it is not ready put it back. Schedule the node.
Sequence.reserve(SUnits.size());
while (!AvailableQueue->empty()) {
SUnit *CurSU = AvailableQueue->pop();
if (CurSU)
ScheduleNodeTopDown(CurSU);
++CurCycle;
AvailableQueue->setCurCycle(CurCycle);
}
#ifndef NDEBUG
VerifySchedule(isBottomUp);
#endif
}
//===----------------------------------------------------------------------===//
// RegReductionPriorityQueue Definition
//===----------------------------------------------------------------------===//
//
// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
// to reduce register pressure.
//
namespace {
class RegReductionPQBase;
struct queue_sort : public std::binary_function<SUnit*, SUnit*, bool> {
bool isReady(SUnit* SU, unsigned CurCycle) const { return true; }
};
/// bu_ls_rr_sort - Priority function for bottom up register pressure
// reduction scheduler.
struct bu_ls_rr_sort : public queue_sort {
enum {
IsBottomUp = true,
HasReadyFilter = false
};
RegReductionPQBase *SPQ;
bu_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
bool operator()(SUnit* left, SUnit* right) const;
};
// td_ls_rr_sort - Priority function for top down register pressure reduction
// scheduler.
struct td_ls_rr_sort : public queue_sort {
enum {
IsBottomUp = false,
HasReadyFilter = false
};
RegReductionPQBase *SPQ;
td_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
bool operator()(const SUnit* left, const SUnit* right) const;
};
// src_ls_rr_sort - Priority function for source order scheduler.
struct src_ls_rr_sort : public queue_sort {
enum {
IsBottomUp = true,
HasReadyFilter = false
};
RegReductionPQBase *SPQ;
src_ls_rr_sort(RegReductionPQBase *spq)
: SPQ(spq) {}
src_ls_rr_sort(const src_ls_rr_sort &RHS)
: SPQ(RHS.SPQ) {}
bool operator()(SUnit* left, SUnit* right) const;
};
// hybrid_ls_rr_sort - Priority function for hybrid scheduler.
struct hybrid_ls_rr_sort : public queue_sort {
enum {
IsBottomUp = true,
HasReadyFilter = false
};
RegReductionPQBase *SPQ;
hybrid_ls_rr_sort(RegReductionPQBase *spq)
: SPQ(spq) {}
hybrid_ls_rr_sort(const hybrid_ls_rr_sort &RHS)
: SPQ(RHS.SPQ) {}
bool isReady(SUnit *SU, unsigned CurCycle) const;
bool operator()(SUnit* left, SUnit* right) const;
};
// ilp_ls_rr_sort - Priority function for ILP (instruction level parallelism)
// scheduler.
struct ilp_ls_rr_sort : public queue_sort {
enum {
IsBottomUp = true,
HasReadyFilter = false
};
RegReductionPQBase *SPQ;
ilp_ls_rr_sort(RegReductionPQBase *spq)
: SPQ(spq) {}
ilp_ls_rr_sort(const ilp_ls_rr_sort &RHS)
: SPQ(RHS.SPQ) {}
bool isReady(SUnit *SU, unsigned CurCycle) const;
bool operator()(SUnit* left, SUnit* right) const;
};
class RegReductionPQBase : public SchedulingPriorityQueue {
protected:
std::vector<SUnit*> Queue;
unsigned CurQueueId;
bool TracksRegPressure;
// SUnits - The SUnits for the current graph.
std::vector<SUnit> *SUnits;
MachineFunction &MF;
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
const TargetLowering *TLI;
ScheduleDAGRRList *scheduleDAG;
// SethiUllmanNumbers - The SethiUllman number for each node.
std::vector<unsigned> SethiUllmanNumbers;
/// RegPressure - Tracking current reg pressure per register class.
///
std::vector<unsigned> RegPressure;
/// RegLimit - Tracking the number of allocatable registers per register
/// class.
std::vector<unsigned> RegLimit;
public:
RegReductionPQBase(MachineFunction &mf,
bool hasReadyFilter,
bool tracksrp,
const TargetInstrInfo *tii,
const TargetRegisterInfo *tri,
const TargetLowering *tli)
: SchedulingPriorityQueue(hasReadyFilter),
CurQueueId(0), TracksRegPressure(tracksrp),
MF(mf), TII(tii), TRI(tri), TLI(tli), scheduleDAG(NULL) {
if (TracksRegPressure) {
unsigned NumRC = TRI->getNumRegClasses();
RegLimit.resize(NumRC);
RegPressure.resize(NumRC);
std::fill(RegLimit.begin(), RegLimit.end(), 0);
std::fill(RegPressure.begin(), RegPressure.end(), 0);
for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
E = TRI->regclass_end(); I != E; ++I)
RegLimit[(*I)->getID()] = tri->getRegPressureLimit(*I, MF);
}
}
void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
scheduleDAG = scheduleDag;
}
ScheduleHazardRecognizer* getHazardRec() {
return scheduleDAG->getHazardRec();
}
void initNodes(std::vector<SUnit> &sunits);
void addNode(const SUnit *SU);
void updateNode(const SUnit *SU);
void releaseState() {
SUnits = 0;
SethiUllmanNumbers.clear();
std::fill(RegPressure.begin(), RegPressure.end(), 0);
}
unsigned getNodePriority(const SUnit *SU) const;
unsigned getNodeOrdering(const SUnit *SU) const {
if (!SU->getNode()) return 0;
return scheduleDAG->DAG->GetOrdering(SU->getNode());
}
bool empty() const { return Queue.empty(); }
void push(SUnit *U) {
assert(!U->NodeQueueId && "Node in the queue already");
U->NodeQueueId = ++CurQueueId;
Queue.push_back(U);
}
void remove(SUnit *SU) {
assert(!Queue.empty() && "Queue is empty!");
assert(SU->NodeQueueId != 0 && "Not in queue!");
std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(),
SU);
if (I != prior(Queue.end()))
std::swap(*I, Queue.back());
Queue.pop_back();
SU->NodeQueueId = 0;
}
bool tracksRegPressure() const { return TracksRegPressure; }
void dumpRegPressure() const;
bool HighRegPressure(const SUnit *SU) const;
bool MayReduceRegPressure(SUnit *SU) const;
int RegPressureDiff(SUnit *SU, unsigned &LiveUses) const;
void ScheduledNode(SUnit *SU);
void UnscheduledNode(SUnit *SU);
protected:
bool canClobber(const SUnit *SU, const SUnit *Op);
void AddPseudoTwoAddrDeps();
void PrescheduleNodesWithMultipleUses();
void CalculateSethiUllmanNumbers();
};
template<class SF>
class RegReductionPriorityQueue : public RegReductionPQBase {
static SUnit *popFromQueue(std::vector<SUnit*> &Q, SF &Picker) {
std::vector<SUnit *>::iterator Best = Q.begin();
for (std::vector<SUnit *>::iterator I = llvm::next(Q.begin()),
E = Q.end(); I != E; ++I)
if (Picker(*Best, *I))
Best = I;
SUnit *V = *Best;
if (Best != prior(Q.end()))
std::swap(*Best, Q.back());
Q.pop_back();
return V;
}
SF Picker;
public:
RegReductionPriorityQueue(MachineFunction &mf,
bool tracksrp,
const TargetInstrInfo *tii,
const TargetRegisterInfo *tri,
const TargetLowering *tli)
: RegReductionPQBase(mf, SF::HasReadyFilter, tracksrp, tii, tri, tli),
Picker(this) {}
bool isBottomUp() const { return SF::IsBottomUp; }
bool isReady(SUnit *U) const {
return Picker.HasReadyFilter && Picker.isReady(U, getCurCycle());
}
SUnit *pop() {
if (Queue.empty()) return NULL;
SUnit *V = popFromQueue(Queue, Picker);
V->NodeQueueId = 0;
return V;
}
void dump(ScheduleDAG *DAG) const {
// Emulate pop() without clobbering NodeQueueIds.
std::vector<SUnit*> DumpQueue = Queue;
SF DumpPicker = Picker;
while (!DumpQueue.empty()) {
SUnit *SU = popFromQueue(DumpQueue, DumpPicker);
if (isBottomUp())
dbgs() << "Height " << SU->getHeight() << ": ";
else
dbgs() << "Depth " << SU->getDepth() << ": ";
SU->dump(DAG);
}
}
};
typedef RegReductionPriorityQueue<bu_ls_rr_sort>
BURegReductionPriorityQueue;
typedef RegReductionPriorityQueue<td_ls_rr_sort>
TDRegReductionPriorityQueue;
typedef RegReductionPriorityQueue<src_ls_rr_sort>
SrcRegReductionPriorityQueue;
typedef RegReductionPriorityQueue<hybrid_ls_rr_sort>
HybridBURRPriorityQueue;
typedef RegReductionPriorityQueue<ilp_ls_rr_sort>
ILPBURRPriorityQueue;
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Static Node Priority for Register Pressure Reduction
//===----------------------------------------------------------------------===//
// Check for special nodes that bypass scheduling heuristics.
// Currently this pushes TokenFactor nodes down, but may be used for other
// pseudo-ops as well.
//
// Return -1 to schedule right above left, 1 for left above right.
// Return 0 if no bias exists.
static int checkSpecialNodes(const SUnit *left, const SUnit *right) {
bool LSchedLow = left->isScheduleLow;
bool RSchedLow = right->isScheduleLow;
if (LSchedLow != RSchedLow)
return LSchedLow < RSchedLow ? 1 : -1;
return 0;
}
/// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
/// Smaller number is the higher priority.
static unsigned
CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
if (SethiUllmanNumber != 0)
return SethiUllmanNumber;
unsigned Extra = 0;
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
if (I->isCtrl()) continue; // ignore chain preds
SUnit *PredSU = I->getSUnit();
unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU, SUNumbers);
if (PredSethiUllman > SethiUllmanNumber) {
SethiUllmanNumber = PredSethiUllman;
Extra = 0;
} else if (PredSethiUllman == SethiUllmanNumber)
++Extra;
}
SethiUllmanNumber += Extra;
if (SethiUllmanNumber == 0)
SethiUllmanNumber = 1;
return SethiUllmanNumber;
}
/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
/// scheduling units.
void RegReductionPQBase::CalculateSethiUllmanNumbers() {
SethiUllmanNumbers.assign(SUnits->size(), 0);
for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
CalcNodeSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
}
void RegReductionPQBase::addNode(const SUnit *SU) {
unsigned SUSize = SethiUllmanNumbers.size();
if (SUnits->size() > SUSize)
SethiUllmanNumbers.resize(SUSize*2, 0);
CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
}
void RegReductionPQBase::updateNode(const SUnit *SU) {
SethiUllmanNumbers[SU->NodeNum] = 0;
CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
}
// Lower priority means schedule further down. For bottom-up scheduling, lower
// priority SUs are scheduled before higher priority SUs.
unsigned RegReductionPQBase::getNodePriority(const SUnit *SU) const {
assert(SU->NodeNum < SethiUllmanNumbers.size());
unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
// CopyToReg should be close to its uses to facilitate coalescing and
// avoid spilling.
return 0;
if (Opc == TargetOpcode::EXTRACT_SUBREG ||
Opc == TargetOpcode::SUBREG_TO_REG ||
Opc == TargetOpcode::INSERT_SUBREG)
// EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
// close to their uses to facilitate coalescing.
return 0;
if (SU->NumSuccs == 0 && SU->NumPreds != 0)
// If SU does not have a register use, i.e. it doesn't produce a value
// that would be consumed (e.g. store), then it terminates a chain of
// computation. Give it a large SethiUllman number so it will be
// scheduled right before its predecessors that it doesn't lengthen
// their live ranges.
return 0xffff;
if (SU->NumPreds == 0 && SU->NumSuccs != 0)
// If SU does not have a register def, schedule it close to its uses
// because it does not lengthen any live ranges.
return 0;
#if 1
return SethiUllmanNumbers[SU->NodeNum];
#else
unsigned Priority = SethiUllmanNumbers[SU->NodeNum];
if (SU->isCallOp) {
// FIXME: This assumes all of the defs are used as call operands.
int NP = (int)Priority - SU->getNode()->getNumValues();
return (NP > 0) ? NP : 0;
}
return Priority;
#endif
}
//===----------------------------------------------------------------------===//
// Register Pressure Tracking
//===----------------------------------------------------------------------===//
void RegReductionPQBase::dumpRegPressure() const {
for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
E = TRI->regclass_end(); I != E; ++I) {
const TargetRegisterClass *RC = *I;
unsigned Id = RC->getID();
unsigned RP = RegPressure[Id];
if (!RP) continue;
DEBUG(dbgs() << RC->getName() << ": " << RP << " / " << RegLimit[Id]
<< '\n');
}
}
bool RegReductionPQBase::HighRegPressure(const SUnit *SU) const {
if (!TLI)
return false;
for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
I != E; ++I) {
if (I->isCtrl())
continue;
SUnit *PredSU = I->getSUnit();
// NumRegDefsLeft is zero when enough uses of this node have been scheduled
// to cover the number of registers defined (they are all live).
if (PredSU->NumRegDefsLeft == 0) {
continue;
}
for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
RegDefPos.IsValid(); RegDefPos.Advance()) {
EVT VT = RegDefPos.GetValue();
unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
unsigned Cost = TLI->getRepRegClassCostFor(VT);
if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
return true;
}
}
return false;
}
bool RegReductionPQBase::MayReduceRegPressure(SUnit *SU) const {
const SDNode *N = SU->getNode();
if (!N->isMachineOpcode() || !SU->NumSuccs)
return false;
unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
for (unsigned i = 0; i != NumDefs; ++i) {
EVT VT = N->getValueType(i);
if (!N->hasAnyUseOfValue(i))
continue;
unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
if (RegPressure[RCId] >= RegLimit[RCId])
return true;
}
return false;
}
// Compute the register pressure contribution by this instruction by count up
// for uses that are not live and down for defs. Only count register classes
// that are already under high pressure. As a side effect, compute the number of
// uses of registers that are already live.
//
// FIXME: This encompasses the logic in HighRegPressure and MayReduceRegPressure
// so could probably be factored.
int RegReductionPQBase::RegPressureDiff(SUnit *SU, unsigned &LiveUses) const {
LiveUses = 0;
int PDiff = 0;
for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
I != E; ++I) {
if (I->isCtrl())
continue;
SUnit *PredSU = I->getSUnit();
// NumRegDefsLeft is zero when enough uses of this node have been scheduled
// to cover the number of registers defined (they are all live).
if (PredSU->NumRegDefsLeft == 0) {
if (PredSU->getNode()->isMachineOpcode())
++LiveUses;
continue;
}
for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
RegDefPos.IsValid(); RegDefPos.Advance()) {
EVT VT = RegDefPos.GetValue();
unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
if (RegPressure[RCId] >= RegLimit[RCId])
++PDiff;
}
}
const SDNode *N = SU->getNode();
if (!N || !N->isMachineOpcode() || !SU->NumSuccs)
return PDiff;
unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
for (unsigned i = 0; i != NumDefs; ++i) {
EVT VT = N->getValueType(i);
if (!N->hasAnyUseOfValue(i))
continue;
unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
if (RegPressure[RCId] >= RegLimit[RCId])
--PDiff;
}
return PDiff;
}
void RegReductionPQBase::ScheduledNode(SUnit *SU) {
if (!TracksRegPressure)
return;
if (!SU->getNode())
return;
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
if (I->isCtrl())
continue;
SUnit *PredSU = I->getSUnit();
// NumRegDefsLeft is zero when enough uses of this node have been scheduled
// to cover the number of registers defined (they are all live).
if (PredSU->NumRegDefsLeft == 0) {
continue;
}
// FIXME: The ScheduleDAG currently loses information about which of a
// node's values is consumed by each dependence. Consequently, if the node
// defines multiple register classes, we don't know which to pressurize
// here. Instead the following loop consumes the register defs in an
// arbitrary order. At least it handles the common case of clustered loads
// to the same class. For precise liveness, each SDep needs to indicate the
// result number. But that tightly couples the ScheduleDAG with the
// SelectionDAG making updates tricky. A simpler hack would be to attach a
// value type or register class to SDep.
//
// The most important aspect of register tracking is balancing the increase
// here with the reduction further below. Note that this SU may use multiple
// defs in PredSU. The can't be determined here, but we've already
// compensated by reducing NumRegDefsLeft in PredSU during
// ScheduleDAGSDNodes::AddSchedEdges.
--PredSU->NumRegDefsLeft;
unsigned SkipRegDefs = PredSU->NumRegDefsLeft;
for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
if (SkipRegDefs)
continue;
EVT VT = RegDefPos.GetValue();
unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
break;
}
}
// We should have this assert, but there may be dead SDNodes that never
// materialize as SUnits, so they don't appear to generate liveness.
//assert(SU->NumRegDefsLeft == 0 && "not all regdefs have scheduled uses");
int SkipRegDefs = (int)SU->NumRegDefsLeft;
for (ScheduleDAGSDNodes::RegDefIter RegDefPos(SU, scheduleDAG);
RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
if (SkipRegDefs > 0)
continue;
EVT VT = RegDefPos.GetValue();
unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT)) {
// Register pressure tracking is imprecise. This can happen. But we try
// hard not to let it happen because it likely results in poor scheduling.
DEBUG(dbgs() << " SU(" << SU->NodeNum << ") has too many regdefs\n");
RegPressure[RCId] = 0;
}
else {
RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
}
}
dumpRegPressure();
}
void RegReductionPQBase::UnscheduledNode(SUnit *SU) {
if (!TracksRegPressure)
return;
const SDNode *N = SU->getNode();
if (!N) return;
if (!N->isMachineOpcode()) {
if (N->getOpcode() != ISD::CopyToReg)
return;
} else {
unsigned Opc = N->getMachineOpcode();
if (Opc == TargetOpcode::EXTRACT_SUBREG ||
Opc == TargetOpcode::INSERT_SUBREG ||
Opc == TargetOpcode::SUBREG_TO_REG ||
Opc == TargetOpcode::REG_SEQUENCE ||
Opc == TargetOpcode::IMPLICIT_DEF)
return;
}
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
if (I->isCtrl())
continue;
SUnit *PredSU = I->getSUnit();
// NumSuccsLeft counts all deps. Don't compare it with NumSuccs which only
// counts data deps.
if (PredSU->NumSuccsLeft != PredSU->Succs.size())
continue;
const SDNode *PN = PredSU->getNode();
if (!PN->isMachineOpcode()) {
if (PN->getOpcode() == ISD::CopyFromReg) {
EVT VT = PN->getValueType(0);
unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
}
continue;
}
unsigned POpc = PN->getMachineOpcode();
if (POpc == TargetOpcode::IMPLICIT_DEF)
continue;
if (POpc == TargetOpcode::EXTRACT_SUBREG) {
EVT VT = PN->getOperand(0).getValueType();
unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
continue;
} else if (POpc == TargetOpcode::INSERT_SUBREG ||
POpc == TargetOpcode::SUBREG_TO_REG) {
EVT VT = PN->getValueType(0);
unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
continue;
}
unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
for (unsigned i = 0; i != NumDefs; ++i) {
EVT VT = PN->getValueType(i);
if (!PN->hasAnyUseOfValue(i))
continue;
unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT))
// Register pressure tracking is imprecise. This can happen.
RegPressure[RCId] = 0;
else
RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
}
}
// Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses()
// may transfer data dependencies to CopyToReg.
if (SU->NumSuccs && N->isMachineOpcode()) {
unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
EVT VT = N->getValueType(i);
if (VT == MVT::Glue || VT == MVT::Other)
continue;
if (!N->hasAnyUseOfValue(i))
continue;
unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
}
}
dumpRegPressure();
}
//===----------------------------------------------------------------------===//
// Dynamic Node Priority for Register Pressure Reduction
//===----------------------------------------------------------------------===//
/// closestSucc - Returns the scheduled cycle of the successor which is
/// closest to the current cycle.
static unsigned closestSucc(const SUnit *SU) {
unsigned MaxHeight = 0;
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
if (I->isCtrl()) continue; // ignore chain succs
unsigned Height = I->getSUnit()->getHeight();
// If there are bunch of CopyToRegs stacked up, they should be considered
// to be at the same position.
if (I->getSUnit()->getNode() &&
I->getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
Height = closestSucc(I->getSUnit())+1;
if (Height > MaxHeight)
MaxHeight = Height;
}
return MaxHeight;
}
/// calcMaxScratches - Returns an cost estimate of the worse case requirement
/// for scratch registers, i.e. number of data dependencies.
static unsigned calcMaxScratches(const SUnit *SU) {
unsigned Scratches = 0;
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
if (I->isCtrl()) continue; // ignore chain preds
Scratches++;
}
return Scratches;
}
/// hasOnlyLiveInOpers - Return true if SU has only value predecessors that are
/// CopyFromReg from a virtual register.
static bool hasOnlyLiveInOpers(const SUnit *SU) {
bool RetVal = false;
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
if (I->isCtrl()) continue;
const SUnit *PredSU = I->getSUnit();
if (PredSU->getNode() &&
PredSU->getNode()->getOpcode() == ISD::CopyFromReg) {
unsigned Reg =
cast<RegisterSDNode>(PredSU->getNode()->getOperand(1))->getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
RetVal = true;
continue;
}
}
return false;
}
return RetVal;
}
/// hasOnlyLiveOutUses - Return true if SU has only value successors that are
/// CopyToReg to a virtual register. This SU def is probably a liveout and
/// it has no other use. It should be scheduled closer to the terminator.
static bool hasOnlyLiveOutUses(const SUnit *SU) {
bool RetVal = false;
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
if (I->isCtrl()) continue;
const SUnit *SuccSU = I->getSUnit();
if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg) {
unsigned Reg =
cast<RegisterSDNode>(SuccSU->getNode()->getOperand(1))->getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
RetVal = true;
continue;
}
}
return false;
}
return RetVal;
}
// Set isVRegCycle for a node with only live in opers and live out uses. Also
// set isVRegCycle for its CopyFromReg operands.
//
// This is only relevant for single-block loops, in which case the VRegCycle
// node is likely an induction variable in which the operand and target virtual
// registers should be coalesced (e.g. pre/post increment values). Setting the
// isVRegCycle flag helps the scheduler prioritize other uses of the same
// CopyFromReg so that this node becomes the virtual register "kill". This
// avoids interference between the values live in and out of the block and
// eliminates a copy inside the loop.
static void initVRegCycle(SUnit *SU) {
if (DisableSchedVRegCycle)
return;
if (!hasOnlyLiveInOpers(SU) || !hasOnlyLiveOutUses(SU))
return;
DEBUG(dbgs() << "VRegCycle: SU(" << SU->NodeNum << ")\n");
SU->isVRegCycle = true;
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
if (I->isCtrl()) continue;
I->getSUnit()->isVRegCycle = true;
}
}
// After scheduling the definition of a VRegCycle, clear the isVRegCycle flag of
// CopyFromReg operands. We should no longer penalize other uses of this VReg.
static void resetVRegCycle(SUnit *SU) {
if (!SU->isVRegCycle)
return;
for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
I != E; ++I) {
if (I->isCtrl()) continue; // ignore chain preds
SUnit *PredSU = I->getSUnit();
if (PredSU->isVRegCycle) {
assert(PredSU->getNode()->getOpcode() == ISD::CopyFromReg &&
"VRegCycle def must be CopyFromReg");
I->getSUnit()->isVRegCycle = 0;
}
}
}
// Return true if this SUnit uses a CopyFromReg node marked as a VRegCycle. This
// means a node that defines the VRegCycle has not been scheduled yet.
static bool hasVRegCycleUse(const SUnit *SU) {
// If this SU also defines the VReg, don't hoist it as a "use".
if (SU->isVRegCycle)
return false;
for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
I != E; ++I) {
if (I->isCtrl()) continue; // ignore chain preds
if (I->getSUnit()->isVRegCycle &&
I->getSUnit()->getNode()->getOpcode() == ISD::CopyFromReg) {
DEBUG(dbgs() << " VReg cycle use: SU (" << SU->NodeNum << ")\n");
return true;
}
}
return false;
}
// Check for either a dependence (latency) or resource (hazard) stall.
//
// Note: The ScheduleHazardRecognizer interface requires a non-const SU.
static bool BUHasStall(SUnit *SU, int Height, RegReductionPQBase *SPQ) {
if ((int)SPQ->getCurCycle() < Height) return true;
if (SPQ->getHazardRec()->getHazardType(SU, 0)
!= ScheduleHazardRecognizer::NoHazard)
return true;
return false;
}
// Return -1 if left has higher priority, 1 if right has higher priority.
// Return 0 if latency-based priority is equivalent.
static int BUCompareLatency(SUnit *left, SUnit *right, bool checkPref,
RegReductionPQBase *SPQ) {
// Scheduling an instruction that uses a VReg whose postincrement has not yet
// been scheduled will induce a copy. Model this as an extra cycle of latency.
int LPenalty = hasVRegCycleUse(left) ? 1 : 0;
int RPenalty = hasVRegCycleUse(right) ? 1 : 0;
int LHeight = (int)left->getHeight() + LPenalty;
int RHeight = (int)right->getHeight() + RPenalty;
bool LStall = (!checkPref || left->SchedulingPref == Sched::Latency) &&
BUHasStall(left, LHeight, SPQ);
bool RStall = (!checkPref || right->SchedulingPref == Sched::Latency) &&
BUHasStall(right, RHeight, SPQ);
// If scheduling one of the node will cause a pipeline stall, delay it.
// If scheduling either one of the node will cause a pipeline stall, sort
// them according to their height.
if (LStall) {
if (!RStall) {
DEBUG(++FactorCount[FactStall]);
return 1;
}
if (LHeight != RHeight) {
DEBUG(++FactorCount[FactStall]);
return LHeight > RHeight ? 1 : -1;
}
} else if (RStall) {
DEBUG(++FactorCount[FactStall]);
return -1;
}
// If either node is scheduling for latency, sort them by height/depth
// and latency.
if (!checkPref || (left->SchedulingPref == Sched::Latency ||
right->SchedulingPref == Sched::Latency)) {
if (DisableSchedCycles) {
if (LHeight != RHeight) {
DEBUG(++FactorCount[FactHeight]);
return LHeight > RHeight ? 1 : -1;
}
}
else {
// If neither instruction stalls (!LStall && !RStall) then
// its height is already covered so only its depth matters. We also reach
// this if both stall but have the same height.
int LDepth = left->getDepth() - LPenalty;
int RDepth = right->getDepth() - RPenalty;
if (LDepth != RDepth) {
DEBUG(++FactorCount[FactDepth]);
DEBUG(dbgs() << " Comparing latency of SU (" << left->NodeNum
<< ") depth " << LDepth << " vs SU (" << right->NodeNum
<< ") depth " << RDepth << "\n");
return LDepth < RDepth ? 1 : -1;
}
}
if (left->Latency != right->Latency) {
DEBUG(++FactorCount[FactOther]);
return left->Latency > right->Latency ? 1 : -1;
}
}
return 0;
}
static bool BURRSort(SUnit *left, SUnit *right, RegReductionPQBase *SPQ) {
// Schedule physical register definitions close to their use. This is
// motivated by microarchitectures that can fuse cmp+jump macro-ops. But as
// long as shortening physreg live ranges is generally good, we can defer
// creating a subtarget hook.
if (!DisableSchedPhysRegJoin) {
bool LHasPhysReg = left->hasPhysRegDefs;
bool RHasPhysReg = right->hasPhysRegDefs;
if (LHasPhysReg != RHasPhysReg) {
DEBUG(++FactorCount[FactRegUses]);
#ifndef NDEBUG
const char *PhysRegMsg[] = {" has no physreg", " defines a physreg"};
#endif
DEBUG(dbgs() << " SU (" << left->NodeNum << ") "
<< PhysRegMsg[LHasPhysReg] << " SU(" << right->NodeNum << ") "
<< PhysRegMsg[RHasPhysReg] << "\n");
return LHasPhysReg < RHasPhysReg;
}
}
// Prioritize by Sethi-Ulmann number and push CopyToReg nodes down.
unsigned LPriority = SPQ->getNodePriority(left);
unsigned RPriority = SPQ->getNodePriority(right);
// Be really careful about hoisting call operands above previous calls.
// Only allows it if it would reduce register pressure.
if (left->isCall && right->isCallOp) {
unsigned RNumVals = right->getNode()->getNumValues();
RPriority = (RPriority > RNumVals) ? (RPriority - RNumVals) : 0;
}
if (right->isCall && left->isCallOp) {
unsigned LNumVals = left->getNode()->getNumValues();
LPriority = (LPriority > LNumVals) ? (LPriority - LNumVals) : 0;
}
if (LPriority != RPriority) {
DEBUG(++FactorCount[FactStatic]);
return LPriority > RPriority;
}
// One or both of the nodes are calls and their sethi-ullman numbers are the
// same, then keep source order.
if (left->isCall || right->isCall) {
unsigned LOrder = SPQ->getNodeOrdering(left);
unsigned ROrder = SPQ->getNodeOrdering(right);
// Prefer an ordering where the lower the non-zero order number, the higher
// the preference.
if ((LOrder || ROrder) && LOrder != ROrder)
return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
}
// Try schedule def + use closer when Sethi-Ullman numbers are the same.
// e.g.
// t1 = op t2, c1
// t3 = op t4, c2
//
// and the following instructions are both ready.
// t2 = op c3
// t4 = op c4
//
// Then schedule t2 = op first.
// i.e.
// t4 = op c4
// t2 = op c3
// t1 = op t2, c1
// t3 = op t4, c2
//
// This creates more short live intervals.
unsigned LDist = closestSucc(left);
unsigned RDist = closestSucc(right);
if (LDist != RDist) {
DEBUG(++FactorCount[FactOther]);
return LDist < RDist;
}
// How many registers becomes live when the node is scheduled.
unsigned LScratch = calcMaxScratches(left);
unsigned RScratch = calcMaxScratches(right);
if (LScratch != RScratch) {
DEBUG(++FactorCount[FactOther]);
return LScratch > RScratch;
}
// Comparing latency against a call makes little sense unless the node
// is register pressure-neutral.
if ((left->isCall && RPriority > 0) || (right->isCall && LPriority > 0))
return (left->NodeQueueId > right->NodeQueueId);
// Do not compare latencies when one or both of the nodes are calls.
if (!DisableSchedCycles &&
!(left->isCall || right->isCall)) {
int result = BUCompareLatency(left, right, false /*checkPref*/, SPQ);
if (result != 0)
return result > 0;
}
else {
if (left->getHeight() != right->getHeight()) {
DEBUG(++FactorCount[FactHeight]);
return left->getHeight() > right->getHeight();
}
if (left->getDepth() != right->getDepth()) {
DEBUG(++FactorCount[FactDepth]);
return left->getDepth() < right->getDepth();
}
}
assert(left->NodeQueueId && right->NodeQueueId &&
"NodeQueueId cannot be zero");
DEBUG(++FactorCount[FactOther]);
return (left->NodeQueueId > right->NodeQueueId);
}
// Bottom up
bool bu_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
if (int res = checkSpecialNodes(left, right))
return res > 0;
return BURRSort(left, right, SPQ);
}
// Source order, otherwise bottom up.
bool src_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
if (int res = checkSpecialNodes(left, right))
return res > 0;
unsigned LOrder = SPQ->getNodeOrdering(left);
unsigned ROrder = SPQ->getNodeOrdering(right);
// Prefer an ordering where the lower the non-zero order number, the higher
// the preference.
if ((LOrder || ROrder) && LOrder != ROrder)
return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
return BURRSort(left, right, SPQ);
}
// If the time between now and when the instruction will be ready can cover
// the spill code, then avoid adding it to the ready queue. This gives long
// stalls highest priority and allows hoisting across calls. It should also
// speed up processing the available queue.
bool hybrid_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
static const unsigned ReadyDelay = 3;
if (SPQ->MayReduceRegPressure(SU)) return true;
if (SU->getHeight() > (CurCycle + ReadyDelay)) return false;
if (SPQ->getHazardRec()->getHazardType(SU, -ReadyDelay)
!= ScheduleHazardRecognizer::NoHazard)
return false;
return true;
}
// Return true if right should be scheduled with higher priority than left.
bool hybrid_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
if (int res = checkSpecialNodes(left, right))
return res > 0;
if (left->isCall || right->isCall)
// No way to compute latency of calls.
return BURRSort(left, right, SPQ);
bool LHigh = SPQ->HighRegPressure(left);
bool RHigh = SPQ->HighRegPressure(right);
// Avoid causing spills. If register pressure is high, schedule for
// register pressure reduction.
if (LHigh && !RHigh) {
DEBUG(++FactorCount[FactPressureDiff]);
DEBUG(dbgs() << " pressure SU(" << left->NodeNum << ") > SU("
<< right->NodeNum << ")\n");
return true;
}
else if (!LHigh && RHigh) {
DEBUG(++FactorCount[FactPressureDiff]);
DEBUG(dbgs() << " pressure SU(" << right->NodeNum << ") > SU("
<< left->NodeNum << ")\n");
return false;
}
if (!LHigh && !RHigh) {
int result = BUCompareLatency(left, right, true /*checkPref*/, SPQ);
if (result != 0)
return result > 0;
}
return BURRSort(left, right, SPQ);
}
// Schedule as many instructions in each cycle as possible. So don't make an
// instruction available unless it is ready in the current cycle.
bool ilp_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
if (SU->getHeight() > CurCycle) return false;
if (SPQ->getHazardRec()->getHazardType(SU, 0)
!= ScheduleHazardRecognizer::NoHazard)
return false;
return true;
}
static bool canEnableCoalescing(SUnit *SU) {
unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
// CopyToReg should be close to its uses to facilitate coalescing and
// avoid spilling.
return true;
if (Opc == TargetOpcode::EXTRACT_SUBREG ||
Opc == TargetOpcode::SUBREG_TO_REG ||
Opc == TargetOpcode::INSERT_SUBREG)
// EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
// close to their uses to facilitate coalescing.
return true;
if (SU->NumPreds == 0 && SU->NumSuccs != 0)
// If SU does not have a register def, schedule it close to its uses
// because it does not lengthen any live ranges.
return true;
return false;
}
// list-ilp is currently an experimental scheduler that allows various
// heuristics to be enabled prior to the normal register reduction logic.
bool ilp_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
if (int res = checkSpecialNodes(left, right))
return res > 0;
if (left->isCall || right->isCall)
// No way to compute latency of calls.
return BURRSort(left, right, SPQ);
unsigned LLiveUses = 0, RLiveUses = 0;
int LPDiff = 0, RPDiff = 0;
if (!DisableSchedRegPressure || !DisableSchedLiveUses) {
LPDiff = SPQ->RegPressureDiff(left, LLiveUses);
RPDiff = SPQ->RegPressureDiff(right, RLiveUses);
}
if (!DisableSchedRegPressure && LPDiff != RPDiff) {
DEBUG(++FactorCount[FactPressureDiff]);
DEBUG(dbgs() << "RegPressureDiff SU(" << left->NodeNum << "): " << LPDiff
<< " != SU(" << right->NodeNum << "): " << RPDiff << "\n");
return LPDiff > RPDiff;
}
if (!DisableSchedRegPressure && (LPDiff > 0 || RPDiff > 0)) {
bool LReduce = canEnableCoalescing(left);
bool RReduce = canEnableCoalescing(right);
DEBUG(if (LReduce != RReduce) ++FactorCount[FactPressureDiff]);
if (LReduce && !RReduce) return false;
if (RReduce && !LReduce) return true;
}
if (!DisableSchedLiveUses && (LLiveUses != RLiveUses)) {
DEBUG(dbgs() << "Live uses SU(" << left->NodeNum << "): " << LLiveUses
<< " != SU(" << right->NodeNum << "): " << RLiveUses << "\n");
DEBUG(++FactorCount[FactRegUses]);
return LLiveUses < RLiveUses;
}
if (!DisableSchedStalls) {
bool LStall = BUHasStall(left, left->getHeight(), SPQ);
bool RStall = BUHasStall(right, right->getHeight(), SPQ);
if (LStall != RStall) {
DEBUG(++FactorCount[FactHeight]);
return left->getHeight() > right->getHeight();
}
}
if (!DisableSchedCriticalPath) {
int spread = (int)left->getDepth() - (int)right->getDepth();
if (std::abs(spread) > MaxReorderWindow) {
DEBUG(dbgs() << "Depth of SU(" << left->NodeNum << "): "
<< left->getDepth() << " != SU(" << right->NodeNum << "): "
<< right->getDepth() << "\n");
DEBUG(++FactorCount[FactDepth]);
return left->getDepth() < right->getDepth();
}
}
if (!DisableSchedHeight && left->getHeight() != right->getHeight()) {
int spread = (int)left->getHeight() - (int)right->getHeight();
if (std::abs(spread) > MaxReorderWindow) {
DEBUG(++FactorCount[FactHeight]);
return left->getHeight() > right->getHeight();
}
}
return BURRSort(left, right, SPQ);
}
void RegReductionPQBase::initNodes(std::vector<SUnit> &sunits) {
SUnits = &sunits;
// Add pseudo dependency edges for two-address nodes.
AddPseudoTwoAddrDeps();
// Reroute edges to nodes with multiple uses.
if (!TracksRegPressure)
PrescheduleNodesWithMultipleUses();
// Calculate node priorities.
CalculateSethiUllmanNumbers();
// For single block loops, mark nodes that look like canonical IV increments.
if (scheduleDAG->BB->isSuccessor(scheduleDAG->BB)) {
for (unsigned i = 0, e = sunits.size(); i != e; ++i) {
initVRegCycle(&sunits[i]);
}
}
}
//===----------------------------------------------------------------------===//
// Preschedule for Register Pressure
//===----------------------------------------------------------------------===//
bool RegReductionPQBase::canClobber(const SUnit *SU, const SUnit *Op) {
if (SU->isTwoAddress) {
unsigned Opc = SU->getNode()->getMachineOpcode();
const TargetInstrDesc &TID = TII->get(Opc);
unsigned NumRes = TID.getNumDefs();
unsigned NumOps = TID.getNumOperands() - NumRes;
for (unsigned i = 0; i != NumOps; ++i) {
if (TID.getOperandConstraint(i+NumRes, TOI::TIED_TO) != -1) {
SDNode *DU = SU->getNode()->getOperand(i).getNode();
if (DU->getNodeId() != -1 &&
Op->OrigNode == &(*SUnits)[DU->getNodeId()])
return true;
}
}
}
return false;
}
/// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
/// physical register defs.
static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
const TargetInstrInfo *TII,
const TargetRegisterInfo *TRI) {
SDNode *N = SuccSU->getNode();
unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
const unsigned *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
assert(ImpDefs && "Caller should check hasPhysRegDefs");
for (const SDNode *SUNode = SU->getNode(); SUNode;
SUNode = SUNode->getGluedNode()) {
if (!SUNode->isMachineOpcode())
continue;
const unsigned *SUImpDefs =
TII->get(SUNode->getMachineOpcode()).getImplicitDefs();
if (!SUImpDefs)
return false;
for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
EVT VT = N->getValueType(i);
if (VT == MVT::Glue || VT == MVT::Other)
continue;
if (!N->hasAnyUseOfValue(i))
continue;
unsigned Reg = ImpDefs[i - NumDefs];
for (;*SUImpDefs; ++SUImpDefs) {
unsigned SUReg = *SUImpDefs;
if (TRI->regsOverlap(Reg, SUReg))
return true;
}
}
}
return false;
}
/// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
/// are not handled well by the general register pressure reduction
/// heuristics. When presented with code like this:
///
/// N
/// / |
/// / |
/// U store
/// |
/// ...
///
/// the heuristics tend to push the store up, but since the
/// operand of the store has another use (U), this would increase
/// the length of that other use (the U->N edge).
///
/// This function transforms code like the above to route U's
/// dependence through the store when possible, like this:
///
/// N
/// ||
/// ||
/// store
/// |
/// U
/// |
/// ...
///
/// This results in the store being scheduled immediately
/// after N, which shortens the U->N live range, reducing
/// register pressure.
///
void RegReductionPQBase::PrescheduleNodesWithMultipleUses() {
// Visit all the nodes in topological order, working top-down.
for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
SUnit *SU = &(*SUnits)[i];
// For now, only look at nodes with no data successors, such as stores.
// These are especially important, due to the heuristics in
// getNodePriority for nodes with no data successors.
if (SU->NumSuccs != 0)
continue;
// For now, only look at nodes with exactly one data predecessor.
if (SU->NumPreds != 1)
continue;
// Avoid prescheduling copies to virtual registers, which don't behave
// like other nodes from the perspective of scheduling heuristics.
if (SDNode *N = SU->getNode())
if (N->getOpcode() == ISD::CopyToReg &&
TargetRegisterInfo::isVirtualRegister
(cast<RegisterSDNode>(N->getOperand(1))->getReg()))
continue;
// Locate the single data predecessor.
SUnit *PredSU = 0;
for (SUnit::const_pred_iterator II = SU->Preds.begin(),
EE = SU->Preds.end(); II != EE; ++II)
if (!II->isCtrl()) {
PredSU = II->getSUnit();
break;
}
assert(PredSU);
// Don't rewrite edges that carry physregs, because that requires additional
// support infrastructure.
if (PredSU->hasPhysRegDefs)
continue;
// Short-circuit the case where SU is PredSU's only data successor.
if (PredSU->NumSuccs == 1)
continue;
// Avoid prescheduling to copies from virtual registers, which don't behave
// like other nodes from the perspective of scheduling heuristics.
if (SDNode *N = SU->getNode())
if (N->getOpcode() == ISD::CopyFromReg &&
TargetRegisterInfo::isVirtualRegister
(cast<RegisterSDNode>(N->getOperand(1))->getReg()))
continue;
// Perform checks on the successors of PredSU.
for (SUnit::const_succ_iterator II = PredSU->Succs.begin(),
EE = PredSU->Succs.end(); II != EE; ++II) {
SUnit *PredSuccSU = II->getSUnit();
if (PredSuccSU == SU) continue;
// If PredSU has another successor with no data successors, for
// now don't attempt to choose either over the other.
if (PredSuccSU->NumSuccs == 0)
goto outer_loop_continue;
// Don't break physical register dependencies.
if (SU->hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs)
if (canClobberPhysRegDefs(PredSuccSU, SU, TII, TRI))
goto outer_loop_continue;
// Don't introduce graph cycles.
if (scheduleDAG->IsReachable(SU, PredSuccSU))
goto outer_loop_continue;
}
// Ok, the transformation is safe and the heuristics suggest it is
// profitable. Update the graph.
DEBUG(dbgs() << " Prescheduling SU #" << SU->NodeNum
<< " next to PredSU #" << PredSU->NodeNum
<< " to guide scheduling in the presence of multiple uses\n");
for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
SDep Edge = PredSU->Succs[i];
assert(!Edge.isAssignedRegDep());
SUnit *SuccSU = Edge.getSUnit();
if (SuccSU != SU) {
Edge.setSUnit(PredSU);
scheduleDAG->RemovePred(SuccSU, Edge);
scheduleDAG->AddPred(SU, Edge);
Edge.setSUnit(SU);
scheduleDAG->AddPred(SuccSU, Edge);
--i;
}
}
outer_loop_continue:;
}
}
/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
/// it as a def&use operand. Add a pseudo control edge from it to the other
/// node (if it won't create a cycle) so the two-address one will be scheduled
/// first (lower in the schedule). If both nodes are two-address, favor the
/// one that has a CopyToReg use (more likely to be a loop induction update).
/// If both are two-address, but one is commutable while the other is not
/// commutable, favor the one that's not commutable.
void RegReductionPQBase::AddPseudoTwoAddrDeps() {
for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
SUnit *SU = &(*SUnits)[i];
if (!SU->isTwoAddress)
continue;
SDNode *Node = SU->getNode();
if (!Node || !Node->isMachineOpcode() || SU->getNode()->getGluedNode())
continue;
bool isLiveOut = hasOnlyLiveOutUses(SU);
unsigned Opc = Node->getMachineOpcode();
const TargetInstrDesc &TID = TII->get(Opc);
unsigned NumRes = TID.getNumDefs();
unsigned NumOps = TID.getNumOperands() - NumRes;
for (unsigned j = 0; j != NumOps; ++j) {
if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) == -1)
continue;
SDNode *DU = SU->getNode()->getOperand(j).getNode();
if (DU->getNodeId() == -1)
continue;
const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
if (!DUSU) continue;
for (SUnit::const_succ_iterator I = DUSU->Succs.begin(),
E = DUSU->Succs.end(); I != E; ++I) {
if (I->isCtrl()) continue;
SUnit *SuccSU = I->getSUnit();
if (SuccSU == SU)
continue;
// Be conservative. Ignore if nodes aren't at roughly the same
// depth and height.
if (SuccSU->getHeight() < SU->getHeight() &&
(SU->getHeight() - SuccSU->getHeight()) > 1)
continue;
// Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
// constrains whatever is using the copy, instead of the copy
// itself. In the case that the copy is coalesced, this
// preserves the intent of the pseudo two-address heurietics.
while (SuccSU->Succs.size() == 1 &&
SuccSU->getNode()->isMachineOpcode() &&
SuccSU->getNode()->getMachineOpcode() ==
TargetOpcode::COPY_TO_REGCLASS)
SuccSU = SuccSU->Succs.front().getSUnit();
// Don't constrain non-instruction nodes.
if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
continue;
// Don't constrain nodes with physical register defs if the
// predecessor can clobber them.
if (SuccSU->hasPhysRegDefs && SU->hasPhysRegClobbers) {
if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
continue;
}
// Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
// these may be coalesced away. We want them close to their uses.
unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
if (SuccOpc == TargetOpcode::EXTRACT_SUBREG ||
SuccOpc == TargetOpcode::INSERT_SUBREG ||
SuccOpc == TargetOpcode::SUBREG_TO_REG)
continue;
if ((!canClobber(SuccSU, DUSU) ||
(isLiveOut && !hasOnlyLiveOutUses(SuccSU)) ||
(!SU->isCommutable && SuccSU->isCommutable)) &&
!scheduleDAG->IsReachable(SuccSU, SU)) {
DEBUG(dbgs() << " Adding a pseudo-two-addr edge from SU #"
<< SU->NodeNum << " to SU #" << SuccSU->NodeNum << "\n");
scheduleDAG->AddPred(SU, SDep(SuccSU, SDep::Order, /*Latency=*/0,
/*Reg=*/0, /*isNormalMemory=*/false,
/*isMustAlias=*/false,
/*isArtificial=*/true));
}
}
}
}
}
/// LimitedSumOfUnscheduledPredsOfSuccs - Compute the sum of the unscheduled
/// predecessors of the successors of the SUnit SU. Stop when the provided
/// limit is exceeded.
static unsigned LimitedSumOfUnscheduledPredsOfSuccs(const SUnit *SU,
unsigned Limit) {
unsigned Sum = 0;
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
const SUnit *SuccSU = I->getSUnit();
for (SUnit::const_pred_iterator II = SuccSU->Preds.begin(),
EE = SuccSU->Preds.end(); II != EE; ++II) {
SUnit *PredSU = II->getSUnit();
if (!PredSU->isScheduled)
if (++Sum > Limit)
return Sum;
}
}
return Sum;
}
// Top down
bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
if (int res = checkSpecialNodes(left, right))
return res < 0;
unsigned LPriority = SPQ->getNodePriority(left);
unsigned RPriority = SPQ->getNodePriority(right);
bool LIsTarget = left->getNode() && left->getNode()->isMachineOpcode();
bool RIsTarget = right->getNode() && right->getNode()->isMachineOpcode();
bool LIsFloater = LIsTarget && left->NumPreds == 0;
bool RIsFloater = RIsTarget && right->NumPreds == 0;
unsigned LBonus = (LimitedSumOfUnscheduledPredsOfSuccs(left,1) == 1) ? 2 : 0;
unsigned RBonus = (LimitedSumOfUnscheduledPredsOfSuccs(right,1) == 1) ? 2 : 0;
if (left->NumSuccs == 0 && right->NumSuccs != 0)
return false;
else if (left->NumSuccs != 0 && right->NumSuccs == 0)
return true;
if (LIsFloater)
LBonus -= 2;
if (RIsFloater)
RBonus -= 2;
if (left->NumSuccs == 1)
LBonus += 2;
if (right->NumSuccs == 1)
RBonus += 2;
if (LPriority+LBonus != RPriority+RBonus)
return LPriority+LBonus < RPriority+RBonus;
if (left->getDepth() != right->getDepth())
return left->getDepth() < right->getDepth();
if (left->NumSuccsLeft != right->NumSuccsLeft)
return left->NumSuccsLeft > right->NumSuccsLeft;
assert(left->NodeQueueId && right->NodeQueueId &&
"NodeQueueId cannot be zero");
return (left->NodeQueueId > right->NodeQueueId);
}
//===----------------------------------------------------------------------===//
// Public Constructor Functions
//===----------------------------------------------------------------------===//
llvm::ScheduleDAGSDNodes *
llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
CodeGenOpt::Level OptLevel) {
const TargetMachine &TM = IS->TM;
const TargetInstrInfo *TII = TM.getInstrInfo();
const TargetRegisterInfo *TRI = TM.getRegisterInfo();
BURegReductionPriorityQueue *PQ =
new BURegReductionPriorityQueue(*IS->MF, false, TII, TRI, 0);
ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
PQ->setScheduleDAG(SD);
return SD;
}
llvm::ScheduleDAGSDNodes *
llvm::createTDRRListDAGScheduler(SelectionDAGISel *IS,
CodeGenOpt::Level OptLevel) {
const TargetMachine &TM = IS->TM;
const TargetInstrInfo *TII = TM.getInstrInfo();
const TargetRegisterInfo *TRI = TM.getRegisterInfo();
TDRegReductionPriorityQueue *PQ =
new TDRegReductionPriorityQueue(*IS->MF, false, TII, TRI, 0);
ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
PQ->setScheduleDAG(SD);
return SD;
}
llvm::ScheduleDAGSDNodes *
llvm::createSourceListDAGScheduler(SelectionDAGISel *IS,
CodeGenOpt::Level OptLevel) {
const TargetMachine &TM = IS->TM;
const TargetInstrInfo *TII = TM.getInstrInfo();
const TargetRegisterInfo *TRI = TM.getRegisterInfo();
SrcRegReductionPriorityQueue *PQ =
new SrcRegReductionPriorityQueue(*IS->MF, false, TII, TRI, 0);
ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
PQ->setScheduleDAG(SD);
return SD;
}
llvm::ScheduleDAGSDNodes *
llvm::createHybridListDAGScheduler(SelectionDAGISel *IS,
CodeGenOpt::Level OptLevel) {
const TargetMachine &TM = IS->TM;
const TargetInstrInfo *TII = TM.getInstrInfo();
const TargetRegisterInfo *TRI = TM.getRegisterInfo();
const TargetLowering *TLI = &IS->getTargetLowering();
HybridBURRPriorityQueue *PQ =
new HybridBURRPriorityQueue(*IS->MF, true, TII, TRI, TLI);
ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
PQ->setScheduleDAG(SD);
return SD;
}
llvm::ScheduleDAGSDNodes *
llvm::createILPListDAGScheduler(SelectionDAGISel *IS,
CodeGenOpt::Level OptLevel) {
const TargetMachine &TM = IS->TM;
const TargetInstrInfo *TII = TM.getInstrInfo();
const TargetRegisterInfo *TRI = TM.getRegisterInfo();
const TargetLowering *TLI = &IS->getTargetLowering();
ILPBURRPriorityQueue *PQ =
new ILPBURRPriorityQueue(*IS->MF, true, TII, TRI, TLI);
ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
PQ->setScheduleDAG(SD);
return SD;
}