llvm-project/lld/MachO/SyntheticSections.h

624 lines
21 KiB
C++

//===- SyntheticSections.h -------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLD_MACHO_SYNTHETIC_SECTIONS_H
#define LLD_MACHO_SYNTHETIC_SECTIONS_H
#include "Config.h"
#include "ExportTrie.h"
#include "InputSection.h"
#include "OutputSection.h"
#include "OutputSegment.h"
#include "Target.h"
#include "Writer.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <unordered_map>
namespace llvm {
class DWARFUnit;
} // namespace llvm
namespace lld {
namespace macho {
class Defined;
class DylibSymbol;
class LoadCommand;
class ObjFile;
class UnwindInfoSection;
class SyntheticSection : public OutputSection {
public:
SyntheticSection(const char *segname, const char *name);
virtual ~SyntheticSection() = default;
static bool classof(const OutputSection *sec) {
return sec->kind() == SyntheticKind;
}
StringRef segname;
// This fake InputSection makes it easier for us to write code that applies
// generically to both user inputs and synthetics.
InputSection *isec;
};
// All sections in __LINKEDIT should inherit from this.
class LinkEditSection : public SyntheticSection {
public:
LinkEditSection(const char *segname, const char *name)
: SyntheticSection(segname, name) {
align = target->wordSize;
}
// Implementations of this method can assume that the regular (non-__LINKEDIT)
// sections already have their addresses assigned.
virtual void finalizeContents() {}
// Sections in __LINKEDIT are special: their offsets are recorded in the
// load commands like LC_DYLD_INFO_ONLY and LC_SYMTAB, instead of in section
// headers.
bool isHidden() const override final { return true; }
virtual uint64_t getRawSize() const = 0;
// codesign (or more specifically libstuff) checks that each section in
// __LINKEDIT ends where the next one starts -- no gaps are permitted. We
// therefore align every section's start and end points to WordSize.
//
// NOTE: This assumes that the extra bytes required for alignment can be
// zero-valued bytes.
uint64_t getSize() const override final {
return llvm::alignTo(getRawSize(), align);
}
};
// The header of the Mach-O file, which must have a file offset of zero.
class MachHeaderSection final : public SyntheticSection {
public:
MachHeaderSection();
bool isHidden() const override { return true; }
uint64_t getSize() const override;
void writeTo(uint8_t *buf) const override;
void addLoadCommand(LoadCommand *);
protected:
std::vector<LoadCommand *> loadCommands;
uint32_t sizeOfCmds = 0;
};
// A hidden section that exists solely for the purpose of creating the
// __PAGEZERO segment, which is used to catch null pointer dereferences.
class PageZeroSection final : public SyntheticSection {
public:
PageZeroSection();
bool isHidden() const override { return true; }
bool isNeeded() const override { return target->pageZeroSize != 0; }
uint64_t getSize() const override { return target->pageZeroSize; }
uint64_t getFileSize() const override { return 0; }
void writeTo(uint8_t *buf) const override {}
};
// This is the base class for the GOT and TLVPointer sections, which are nearly
// functionally identical -- they will both be populated by dyld with addresses
// to non-lazily-loaded dylib symbols. The main difference is that the
// TLVPointerSection stores references to thread-local variables.
class NonLazyPointerSectionBase : public SyntheticSection {
public:
NonLazyPointerSectionBase(const char *segname, const char *name);
const llvm::SetVector<const Symbol *> &getEntries() const { return entries; }
bool isNeeded() const override { return !entries.empty(); }
uint64_t getSize() const override {
return entries.size() * target->wordSize;
}
void writeTo(uint8_t *buf) const override;
void addEntry(Symbol *sym);
uint64_t getVA(uint32_t gotIndex) const {
return addr + gotIndex * target->wordSize;
}
private:
llvm::SetVector<const Symbol *> entries;
};
class GotSection final : public NonLazyPointerSectionBase {
public:
GotSection();
};
class TlvPointerSection final : public NonLazyPointerSectionBase {
public:
TlvPointerSection();
};
struct Location {
const InputSection *isec;
uint64_t offset;
Location(const InputSection *isec, uint64_t offset)
: isec(isec), offset(offset) {}
uint64_t getVA() const { return isec->getVA(offset); }
};
// Stores rebase opcodes, which tell dyld where absolute addresses have been
// encoded in the binary. If the binary is not loaded at its preferred address,
// dyld has to rebase these addresses by adding an offset to them.
class RebaseSection final : public LinkEditSection {
public:
RebaseSection();
void finalizeContents() override;
uint64_t getRawSize() const override { return contents.size(); }
bool isNeeded() const override { return !locations.empty(); }
void writeTo(uint8_t *buf) const override;
void addEntry(const InputSection *isec, uint64_t offset) {
if (config->isPic)
locations.push_back({isec, offset});
}
private:
std::vector<Location> locations;
SmallVector<char, 128> contents;
};
struct BindingEntry {
int64_t addend;
Location target;
BindingEntry(int64_t addend, Location target)
: addend(addend), target(std::move(target)) {}
};
template <class Sym>
using BindingsMap = llvm::DenseMap<Sym, std::vector<BindingEntry>>;
// Stores bind opcodes for telling dyld which symbols to load non-lazily.
class BindingSection final : public LinkEditSection {
public:
BindingSection();
void finalizeContents() override;
uint64_t getRawSize() const override { return contents.size(); }
bool isNeeded() const override { return !bindingsMap.empty(); }
void writeTo(uint8_t *buf) const override;
void addEntry(const DylibSymbol *dysym, const InputSection *isec,
uint64_t offset, int64_t addend = 0) {
bindingsMap[dysym].emplace_back(addend, Location(isec, offset));
}
private:
BindingsMap<const DylibSymbol *> bindingsMap;
SmallVector<char, 128> contents;
};
// Stores bind opcodes for telling dyld which weak symbols need coalescing.
// There are two types of entries in this section:
//
// 1) Non-weak definitions: This is a symbol definition that weak symbols in
// other dylibs should coalesce to.
//
// 2) Weak bindings: These tell dyld that a given symbol reference should
// coalesce to a non-weak definition if one is found. Note that unlike the
// entries in the BindingSection, the bindings here only refer to these
// symbols by name, but do not specify which dylib to load them from.
class WeakBindingSection final : public LinkEditSection {
public:
WeakBindingSection();
void finalizeContents() override;
uint64_t getRawSize() const override { return contents.size(); }
bool isNeeded() const override {
return !bindingsMap.empty() || !definitions.empty();
}
void writeTo(uint8_t *buf) const override;
void addEntry(const Symbol *symbol, const InputSection *isec, uint64_t offset,
int64_t addend = 0) {
bindingsMap[symbol].emplace_back(addend, Location(isec, offset));
}
bool hasEntry() const { return !bindingsMap.empty(); }
void addNonWeakDefinition(const Defined *defined) {
definitions.emplace_back(defined);
}
bool hasNonWeakDefinition() const { return !definitions.empty(); }
private:
BindingsMap<const Symbol *> bindingsMap;
std::vector<const Defined *> definitions;
SmallVector<char, 128> contents;
};
// The following sections implement lazy symbol binding -- very similar to the
// PLT mechanism in ELF.
//
// ELF's .plt section is broken up into two sections in Mach-O: StubsSection
// and StubHelperSection. Calls to functions in dylibs will end up calling into
// StubsSection, which contains indirect jumps to addresses stored in the
// LazyPointerSection (the counterpart to ELF's .plt.got).
//
// We will first describe how non-weak symbols are handled.
//
// At program start, the LazyPointerSection contains addresses that point into
// one of the entry points in the middle of the StubHelperSection. The code in
// StubHelperSection will push on the stack an offset into the
// LazyBindingSection. The push is followed by a jump to the beginning of the
// StubHelperSection (similar to PLT0), which then calls into dyld_stub_binder.
// dyld_stub_binder is a non-lazily-bound symbol, so this call looks it up in
// the GOT.
//
// The stub binder will look up the bind opcodes in the LazyBindingSection at
// the given offset. The bind opcodes will tell the binder to update the
// address in the LazyPointerSection to point to the symbol, so that subsequent
// calls don't have to redo the symbol resolution. The binder will then jump to
// the resolved symbol.
//
// With weak symbols, the situation is slightly different. Since there is no
// "weak lazy" lookup, function calls to weak symbols are always non-lazily
// bound. We emit both regular non-lazy bindings as well as weak bindings, in
// order that the weak bindings may overwrite the non-lazy bindings if an
// appropriate symbol is found at runtime. However, the bound addresses will
// still be written (non-lazily) into the LazyPointerSection.
class StubsSection final : public SyntheticSection {
public:
StubsSection();
uint64_t getSize() const override;
bool isNeeded() const override { return !entries.empty(); }
void finalize() override;
void writeTo(uint8_t *buf) const override;
const llvm::SetVector<Symbol *> &getEntries() const { return entries; }
// Returns whether the symbol was added. Note that every stubs entry will
// have a corresponding entry in the LazyPointerSection.
bool addEntry(Symbol *);
uint64_t getVA(uint32_t stubsIndex) const {
assert(isFinal || target->usesThunks());
// ConcatOutputSection::finalize() can seek the address of a
// stub before its address is assigned. Before __stubs is
// finalized, return a contrived out-of-range address.
return isFinal ? addr + stubsIndex * target->stubSize
: TargetInfo::outOfRangeVA;
}
bool isFinal = false; // is address assigned?
private:
llvm::SetVector<Symbol *> entries;
};
class StubHelperSection final : public SyntheticSection {
public:
StubHelperSection();
uint64_t getSize() const override;
bool isNeeded() const override;
void writeTo(uint8_t *buf) const override;
void setup();
DylibSymbol *stubBinder = nullptr;
Defined *dyldPrivate = nullptr;
};
// Note that this section may also be targeted by non-lazy bindings. In
// particular, this happens when branch relocations target weak symbols.
class LazyPointerSection final : public SyntheticSection {
public:
LazyPointerSection();
uint64_t getSize() const override;
bool isNeeded() const override;
void writeTo(uint8_t *buf) const override;
};
class LazyBindingSection final : public LinkEditSection {
public:
LazyBindingSection();
void finalizeContents() override;
uint64_t getRawSize() const override { return contents.size(); }
bool isNeeded() const override { return !entries.empty(); }
void writeTo(uint8_t *buf) const override;
// Note that every entry here will by referenced by a corresponding entry in
// the StubHelperSection.
void addEntry(DylibSymbol *dysym);
const llvm::SetVector<DylibSymbol *> &getEntries() const { return entries; }
private:
uint32_t encode(const DylibSymbol &);
llvm::SetVector<DylibSymbol *> entries;
SmallVector<char, 128> contents;
llvm::raw_svector_ostream os{contents};
};
// Stores a trie that describes the set of exported symbols.
class ExportSection final : public LinkEditSection {
public:
ExportSection();
void finalizeContents() override;
uint64_t getRawSize() const override { return size; }
bool isNeeded() const override { return size; }
void writeTo(uint8_t *buf) const override;
bool hasWeakSymbol = false;
private:
TrieBuilder trieBuilder;
size_t size = 0;
};
// Stores 'data in code' entries that describe the locations of
// data regions inside code sections.
class DataInCodeSection final : public LinkEditSection {
public:
DataInCodeSection();
void finalizeContents() override;
uint64_t getRawSize() const override {
return sizeof(llvm::MachO::data_in_code_entry) * entries.size();
}
void writeTo(uint8_t *buf) const override;
private:
std::vector<llvm::MachO::data_in_code_entry> entries;
};
// Stores ULEB128 delta encoded addresses of functions.
class FunctionStartsSection final : public LinkEditSection {
public:
FunctionStartsSection();
void finalizeContents() override;
uint64_t getRawSize() const override { return contents.size(); }
void writeTo(uint8_t *buf) const override;
private:
SmallVector<char, 128> contents;
};
// Stores the strings referenced by the symbol table.
class StringTableSection final : public LinkEditSection {
public:
StringTableSection();
// Returns the start offset of the added string.
uint32_t addString(StringRef);
uint64_t getRawSize() const override { return size; }
void writeTo(uint8_t *buf) const override;
static constexpr size_t emptyStringIndex = 1;
private:
// ld64 emits string tables which start with a space and a zero byte. We
// match its behavior here since some tools depend on it.
// Consequently, the empty string will be at index 1, not zero.
std::vector<StringRef> strings{" "};
size_t size = 2;
};
struct SymtabEntry {
Symbol *sym;
size_t strx;
};
struct StabsEntry {
uint8_t type = 0;
uint32_t strx = StringTableSection::emptyStringIndex;
uint8_t sect = 0;
uint16_t desc = 0;
uint64_t value = 0;
StabsEntry() = default;
explicit StabsEntry(uint8_t type) : type(type) {}
};
// Symbols of the same type must be laid out contiguously: we choose to emit
// all local symbols first, then external symbols, and finally undefined
// symbols. For each symbol type, the LC_DYSYMTAB load command will record the
// range (start index and total number) of those symbols in the symbol table.
class SymtabSection : public LinkEditSection {
public:
void finalizeContents() override;
uint32_t getNumSymbols() const;
uint32_t getNumLocalSymbols() const {
return stabs.size() + localSymbols.size();
}
uint32_t getNumExternalSymbols() const { return externalSymbols.size(); }
uint32_t getNumUndefinedSymbols() const { return undefinedSymbols.size(); }
private:
void emitBeginSourceStab(llvm::DWARFUnit *compileUnit);
void emitEndSourceStab();
void emitObjectFileStab(ObjFile *);
void emitEndFunStab(Defined *);
void emitStabs();
protected:
SymtabSection(StringTableSection &);
StringTableSection &stringTableSection;
// STABS symbols are always local symbols, but we represent them with special
// entries because they may use fields like n_sect and n_desc differently.
std::vector<StabsEntry> stabs;
std::vector<SymtabEntry> localSymbols;
std::vector<SymtabEntry> externalSymbols;
std::vector<SymtabEntry> undefinedSymbols;
};
template <class LP> SymtabSection *makeSymtabSection(StringTableSection &);
// The indirect symbol table is a list of 32-bit integers that serve as indices
// into the (actual) symbol table. The indirect symbol table is a
// concatenation of several sub-arrays of indices, each sub-array belonging to
// a separate section. The starting offset of each sub-array is stored in the
// reserved1 header field of the respective section.
//
// These sub-arrays provide symbol information for sections that store
// contiguous sequences of symbol references. These references can be pointers
// (e.g. those in the GOT and TLVP sections) or assembly sequences (e.g.
// function stubs).
class IndirectSymtabSection final : public LinkEditSection {
public:
IndirectSymtabSection();
void finalizeContents() override;
uint32_t getNumSymbols() const;
uint64_t getRawSize() const override {
return getNumSymbols() * sizeof(uint32_t);
}
bool isNeeded() const override;
void writeTo(uint8_t *buf) const override;
};
// The code signature comes at the very end of the linked output file.
class CodeSignatureSection final : public LinkEditSection {
public:
// NOTE: These values are duplicated in llvm-objcopy's MachO/Object.h file
// and any changes here, should be repeated there.
static constexpr uint8_t blockSizeShift = 12;
static constexpr size_t blockSize = (1 << blockSizeShift); // 4 KiB
static constexpr size_t hashSize = 256 / 8;
static constexpr size_t blobHeadersSize = llvm::alignTo<8>(
sizeof(llvm::MachO::CS_SuperBlob) + sizeof(llvm::MachO::CS_BlobIndex));
static constexpr uint32_t fixedHeadersSize =
blobHeadersSize + sizeof(llvm::MachO::CS_CodeDirectory);
uint32_t fileNamePad = 0;
uint32_t allHeadersSize = 0;
StringRef fileName;
CodeSignatureSection();
uint64_t getRawSize() const override;
bool isNeeded() const override { return true; }
void writeTo(uint8_t *buf) const override;
uint32_t getBlockCount() const;
void writeHashes(uint8_t *buf) const;
};
class BitcodeBundleSection final : public SyntheticSection {
public:
BitcodeBundleSection();
uint64_t getSize() const override { return xarSize; }
void finalize() override;
void writeTo(uint8_t *buf) const override;
private:
llvm::SmallString<261> xarPath;
uint64_t xarSize;
};
class CStringSection : public SyntheticSection {
public:
CStringSection();
void addInput(CStringInputSection *);
uint64_t getSize() const override { return size; }
virtual void finalizeContents();
bool isNeeded() const override { return !inputs.empty(); }
void writeTo(uint8_t *buf) const override;
std::vector<CStringInputSection *> inputs;
private:
uint64_t size;
};
class DeduplicatedCStringSection final : public CStringSection {
public:
DeduplicatedCStringSection();
uint64_t getSize() const override { return builder.getSize(); }
void finalizeContents() override;
void writeTo(uint8_t *buf) const override { builder.write(buf); }
private:
llvm::StringTableBuilder builder;
};
/*
* This section contains deduplicated literal values. The 16-byte values are
* laid out first, followed by the 8- and then the 4-byte ones.
*/
class WordLiteralSection final : public SyntheticSection {
public:
using UInt128 = std::pair<uint64_t, uint64_t>;
// I don't think the standard guarantees the size of a pair, so let's make
// sure it's exact -- that way we can construct it via `mmap`.
static_assert(sizeof(UInt128) == 16, "");
WordLiteralSection();
void addInput(WordLiteralInputSection *);
void finalizeContents();
void writeTo(uint8_t *buf) const override;
uint64_t getSize() const override {
return literal16Map.size() * 16 + literal8Map.size() * 8 +
literal4Map.size() * 4;
}
bool isNeeded() const override {
return !literal16Map.empty() || !literal4Map.empty() ||
!literal8Map.empty();
}
uint64_t getLiteral16Offset(uintptr_t buf) const {
return literal16Map.at(*reinterpret_cast<const UInt128 *>(buf)) * 16;
}
uint64_t getLiteral8Offset(uintptr_t buf) const {
return literal16Map.size() * 16 +
literal8Map.at(*reinterpret_cast<const uint64_t *>(buf)) * 8;
}
uint64_t getLiteral4Offset(uintptr_t buf) const {
return literal16Map.size() * 16 + literal8Map.size() * 8 +
literal4Map.at(*reinterpret_cast<const uint32_t *>(buf)) * 4;
}
private:
std::vector<WordLiteralInputSection *> inputs;
template <class T> struct Hasher {
llvm::hash_code operator()(T v) const { return llvm::hash_value(v); }
};
// We're using unordered_map instead of DenseMap here because we need to
// support all possible integer values -- there are no suitable tombstone
// values for DenseMap.
std::unordered_map<UInt128, uint64_t, Hasher<UInt128>> literal16Map;
std::unordered_map<uint64_t, uint64_t> literal8Map;
std::unordered_map<uint32_t, uint64_t> literal4Map;
};
struct InStruct {
MachHeaderSection *header = nullptr;
CStringSection *cStringSection = nullptr;
WordLiteralSection *wordLiteralSection = nullptr;
RebaseSection *rebase = nullptr;
BindingSection *binding = nullptr;
WeakBindingSection *weakBinding = nullptr;
LazyBindingSection *lazyBinding = nullptr;
ExportSection *exports = nullptr;
GotSection *got = nullptr;
TlvPointerSection *tlvPointers = nullptr;
LazyPointerSection *lazyPointers = nullptr;
StubsSection *stubs = nullptr;
StubHelperSection *stubHelper = nullptr;
UnwindInfoSection *unwindInfo = nullptr;
ConcatInputSection *imageLoaderCache = nullptr;
};
extern InStruct in;
extern std::vector<SyntheticSection *> syntheticSections;
void createSyntheticSymbols();
} // namespace macho
} // namespace lld
#endif