forked from OSchip/llvm-project
1850 lines
72 KiB
C++
1850 lines
72 KiB
C++
//===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "mlir/IR/Block.h"
|
|
#include "mlir/IR/BlockAndValueMapping.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/Function.h"
|
|
#include "mlir/IR/Module.h"
|
|
#include "mlir/Transforms/Utils.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::detail;
|
|
|
|
#define DEBUG_TYPE "dialect-conversion"
|
|
|
|
/// Recursively collect all of the operations to convert from within 'region'.
|
|
/// If 'target' is nonnull, operations that are recursively legal have their
|
|
/// regions pre-filtered to avoid considering them for legalization.
|
|
static LogicalResult
|
|
computeConversionSet(iterator_range<Region::iterator> region,
|
|
Location regionLoc, std::vector<Operation *> &toConvert,
|
|
ConversionTarget *target = nullptr) {
|
|
if (llvm::empty(region))
|
|
return success();
|
|
|
|
// Traverse starting from the entry block.
|
|
SmallVector<Block *, 16> worklist(1, &*region.begin());
|
|
DenseSet<Block *> visitedBlocks;
|
|
visitedBlocks.insert(worklist.front());
|
|
while (!worklist.empty()) {
|
|
Block *block = worklist.pop_back_val();
|
|
|
|
// Compute the conversion set of each of the nested operations.
|
|
for (Operation &op : *block) {
|
|
toConvert.emplace_back(&op);
|
|
|
|
// Don't check this operation's children for conversion if the operation
|
|
// is recursively legal.
|
|
auto legalityInfo = target ? target->isLegal(&op)
|
|
: Optional<ConversionTarget::LegalOpDetails>();
|
|
if (legalityInfo && legalityInfo->isRecursivelyLegal)
|
|
continue;
|
|
for (auto ®ion : op.getRegions())
|
|
computeConversionSet(region.getBlocks(), region.getLoc(), toConvert,
|
|
target);
|
|
}
|
|
|
|
// Recurse to children that haven't been visited.
|
|
for (Block *succ : block->getSuccessors())
|
|
if (visitedBlocks.insert(succ).second)
|
|
worklist.push_back(succ);
|
|
}
|
|
|
|
// Check that all blocks in the region were visited.
|
|
if (llvm::any_of(llvm::drop_begin(region, 1),
|
|
[&](Block &block) { return !visitedBlocks.count(&block); }))
|
|
return emitError(regionLoc, "unreachable blocks were not converted");
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Multi-Level Value Mapper
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// This class wraps a BlockAndValueMapping to provide recursive lookup
|
|
/// functionality, i.e. we will traverse if the mapped value also has a mapping.
|
|
struct ConversionValueMapping {
|
|
/// Lookup a mapped value within the map. If a mapping for the provided value
|
|
/// does not exist then return the provided value.
|
|
Value lookupOrDefault(Value from) const;
|
|
|
|
/// Map a value to the one provided.
|
|
void map(Value oldVal, Value newVal) { mapping.map(oldVal, newVal); }
|
|
|
|
/// Drop the last mapping for the given value.
|
|
void erase(Value value) { mapping.erase(value); }
|
|
|
|
private:
|
|
/// Current value mappings.
|
|
BlockAndValueMapping mapping;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// Lookup a mapped value within the map. If a mapping for the provided value
|
|
/// does not exist then return the provided value.
|
|
Value ConversionValueMapping::lookupOrDefault(Value from) const {
|
|
// If this value had a valid mapping, unmap that value as well in the case
|
|
// that it was also replaced.
|
|
while (auto mappedValue = mapping.lookupOrNull(from))
|
|
from = mappedValue;
|
|
return from;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ArgConverter
|
|
//===----------------------------------------------------------------------===//
|
|
namespace {
|
|
/// This class provides a simple interface for converting the types of block
|
|
/// arguments. This is done by creating a new block that contains the new legal
|
|
/// types and extracting the block that contains the old illegal types to allow
|
|
/// for undoing pending rewrites in the case of failure.
|
|
struct ArgConverter {
|
|
ArgConverter(TypeConverter *typeConverter, PatternRewriter &rewriter)
|
|
: loc(rewriter.getUnknownLoc()), typeConverter(typeConverter),
|
|
rewriter(rewriter) {}
|
|
|
|
/// This structure contains the information pertaining to an argument that has
|
|
/// been converted.
|
|
struct ConvertedArgInfo {
|
|
ConvertedArgInfo(unsigned newArgIdx, unsigned newArgSize,
|
|
Value castValue = nullptr)
|
|
: newArgIdx(newArgIdx), newArgSize(newArgSize), castValue(castValue) {}
|
|
|
|
/// The start index of in the new argument list that contains arguments that
|
|
/// replace the original.
|
|
unsigned newArgIdx;
|
|
|
|
/// The number of arguments that replaced the original argument.
|
|
unsigned newArgSize;
|
|
|
|
/// The cast value that was created to cast from the new arguments to the
|
|
/// old. This only used if 'newArgSize' > 1.
|
|
Value castValue;
|
|
};
|
|
|
|
/// This structure contains information pertaining to a block that has had its
|
|
/// signature converted.
|
|
struct ConvertedBlockInfo {
|
|
ConvertedBlockInfo(Block *origBlock) : origBlock(origBlock) {}
|
|
|
|
/// The original block that was requested to have its signature converted.
|
|
Block *origBlock;
|
|
|
|
/// The conversion information for each of the arguments. The information is
|
|
/// None if the argument was dropped during conversion.
|
|
SmallVector<Optional<ConvertedArgInfo>, 1> argInfo;
|
|
};
|
|
|
|
/// Return if the signature of the given block has already been converted.
|
|
bool hasBeenConverted(Block *block) const {
|
|
return conversionInfo.count(block);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Rewrite Application
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Erase any rewrites registered for the blocks within the given operation
|
|
/// which is about to be removed. This merely drops the rewrites without
|
|
/// undoing them.
|
|
void notifyOpRemoved(Operation *op);
|
|
|
|
/// Cleanup and undo any generated conversions for the arguments of block.
|
|
/// This method replaces the new block with the original, reverting the IR to
|
|
/// its original state.
|
|
void discardRewrites(Block *block);
|
|
|
|
/// Fully replace uses of the old arguments with the new, materializing cast
|
|
/// operations as necessary.
|
|
// FIXME(riverriddle) The 'mapping' parameter is only necessary because the
|
|
// implementation of replaceUsesOfBlockArgument is buggy.
|
|
void applyRewrites(ConversionValueMapping &mapping);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Conversion
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Attempt to convert the signature of the given block, if successful a new
|
|
/// block is returned containing the new arguments. On failure, nullptr is
|
|
/// returned.
|
|
Block *convertSignature(Block *block, ConversionValueMapping &mapping);
|
|
|
|
/// Apply the given signature conversion on the given block. The new block
|
|
/// containing the updated signature is returned.
|
|
Block *applySignatureConversion(
|
|
Block *block, TypeConverter::SignatureConversion &signatureConversion,
|
|
ConversionValueMapping &mapping);
|
|
|
|
/// Insert a new conversion into the cache.
|
|
void insertConversion(Block *newBlock, ConvertedBlockInfo &&info);
|
|
|
|
/// A collection of blocks that have had their arguments converted.
|
|
llvm::MapVector<Block *, ConvertedBlockInfo> conversionInfo;
|
|
|
|
/// A mapping from valid regions, to those containing the original blocks of a
|
|
/// conversion.
|
|
DenseMap<Region *, std::unique_ptr<Region>> regionMapping;
|
|
|
|
/// An instance of the unknown location that is used when materializing
|
|
/// conversions.
|
|
Location loc;
|
|
|
|
/// The type converter to use when changing types.
|
|
TypeConverter *typeConverter;
|
|
|
|
/// The pattern rewriter to use when materializing conversions.
|
|
PatternRewriter &rewriter;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Rewrite Application
|
|
|
|
void ArgConverter::notifyOpRemoved(Operation *op) {
|
|
for (Region ®ion : op->getRegions()) {
|
|
for (Block &block : region) {
|
|
// Drop any rewrites from within.
|
|
for (Operation &nestedOp : block)
|
|
if (nestedOp.getNumRegions())
|
|
notifyOpRemoved(&nestedOp);
|
|
|
|
// Check if this block was converted.
|
|
auto it = conversionInfo.find(&block);
|
|
if (it == conversionInfo.end())
|
|
return;
|
|
|
|
// Drop all uses of the original arguments and delete the original block.
|
|
Block *origBlock = it->second.origBlock;
|
|
for (BlockArgument arg : origBlock->getArguments())
|
|
arg.dropAllUses();
|
|
conversionInfo.erase(it);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ArgConverter::discardRewrites(Block *block) {
|
|
auto it = conversionInfo.find(block);
|
|
if (it == conversionInfo.end())
|
|
return;
|
|
Block *origBlock = it->second.origBlock;
|
|
|
|
// Drop all uses of the new block arguments and replace uses of the new block.
|
|
for (int i = block->getNumArguments() - 1; i >= 0; --i)
|
|
block->getArgument(i).dropAllUses();
|
|
block->replaceAllUsesWith(origBlock);
|
|
|
|
// Move the operations back the original block and the delete the new block.
|
|
origBlock->getOperations().splice(origBlock->end(), block->getOperations());
|
|
origBlock->moveBefore(block);
|
|
block->erase();
|
|
|
|
conversionInfo.erase(it);
|
|
}
|
|
|
|
void ArgConverter::applyRewrites(ConversionValueMapping &mapping) {
|
|
for (auto &info : conversionInfo) {
|
|
Block *newBlock = info.first;
|
|
ConvertedBlockInfo &blockInfo = info.second;
|
|
Block *origBlock = blockInfo.origBlock;
|
|
|
|
// Process the remapping for each of the original arguments.
|
|
for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) {
|
|
Optional<ConvertedArgInfo> &argInfo = blockInfo.argInfo[i];
|
|
BlockArgument origArg = origBlock->getArgument(i);
|
|
|
|
// Handle the case of a 1->0 value mapping.
|
|
if (!argInfo) {
|
|
// If a replacement value was given for this argument, use that to
|
|
// replace all uses.
|
|
auto argReplacementValue = mapping.lookupOrDefault(origArg);
|
|
if (argReplacementValue != origArg) {
|
|
origArg.replaceAllUsesWith(argReplacementValue);
|
|
continue;
|
|
}
|
|
// If there are any dangling uses then replace the argument with one
|
|
// generated by the type converter. This is necessary as the cast must
|
|
// persist in the IR after conversion.
|
|
if (!origArg.use_empty()) {
|
|
rewriter.setInsertionPointToStart(newBlock);
|
|
auto *newOp = typeConverter->materializeConversion(
|
|
rewriter, origArg.getType(), llvm::None, loc);
|
|
origArg.replaceAllUsesWith(newOp->getResult(0));
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// If mapping is 1-1, replace the remaining uses and drop the cast
|
|
// operation.
|
|
// FIXME(riverriddle) This should check that the result type and operand
|
|
// type are the same, otherwise it should force a conversion to be
|
|
// materialized.
|
|
if (argInfo->newArgSize == 1) {
|
|
origArg.replaceAllUsesWith(
|
|
mapping.lookupOrDefault(newBlock->getArgument(argInfo->newArgIdx)));
|
|
continue;
|
|
}
|
|
|
|
// Otherwise this is a 1->N value mapping.
|
|
Value castValue = argInfo->castValue;
|
|
assert(argInfo->newArgSize > 1 && castValue && "expected 1->N mapping");
|
|
|
|
// If the argument is still used, replace it with the generated cast.
|
|
if (!origArg.use_empty())
|
|
origArg.replaceAllUsesWith(mapping.lookupOrDefault(castValue));
|
|
|
|
// If all users of the cast were removed, we can drop it. Otherwise, keep
|
|
// the operation alive and let the user handle any remaining usages.
|
|
if (castValue.use_empty())
|
|
castValue.getDefiningOp()->erase();
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Conversion
|
|
|
|
Block *ArgConverter::convertSignature(Block *block,
|
|
ConversionValueMapping &mapping) {
|
|
if (auto conversion = typeConverter->convertBlockSignature(block))
|
|
return applySignatureConversion(block, *conversion, mapping);
|
|
return nullptr;
|
|
}
|
|
|
|
Block *ArgConverter::applySignatureConversion(
|
|
Block *block, TypeConverter::SignatureConversion &signatureConversion,
|
|
ConversionValueMapping &mapping) {
|
|
// If no arguments are being changed or added, there is nothing to do.
|
|
unsigned origArgCount = block->getNumArguments();
|
|
auto convertedTypes = signatureConversion.getConvertedTypes();
|
|
if (origArgCount == 0 && convertedTypes.empty())
|
|
return block;
|
|
|
|
// Split the block at the beginning to get a new block to use for the updated
|
|
// signature.
|
|
Block *newBlock = block->splitBlock(block->begin());
|
|
block->replaceAllUsesWith(newBlock);
|
|
|
|
SmallVector<Value, 4> newArgRange(newBlock->addArguments(convertedTypes));
|
|
ArrayRef<Value> newArgs(newArgRange);
|
|
|
|
// Remap each of the original arguments as determined by the signature
|
|
// conversion.
|
|
ConvertedBlockInfo info(block);
|
|
info.argInfo.resize(origArgCount);
|
|
|
|
OpBuilder::InsertionGuard guard(rewriter);
|
|
rewriter.setInsertionPointToStart(newBlock);
|
|
for (unsigned i = 0; i != origArgCount; ++i) {
|
|
auto inputMap = signatureConversion.getInputMapping(i);
|
|
if (!inputMap)
|
|
continue;
|
|
BlockArgument origArg = block->getArgument(i);
|
|
|
|
// If inputMap->replacementValue is not nullptr, then the argument is
|
|
// dropped and a replacement value is provided to be the remappedValue.
|
|
if (inputMap->replacementValue) {
|
|
assert(inputMap->size == 0 &&
|
|
"invalid to provide a replacement value when the argument isn't "
|
|
"dropped");
|
|
mapping.map(origArg, inputMap->replacementValue);
|
|
continue;
|
|
}
|
|
|
|
// If this is a 1->1 mapping, then map the argument directly.
|
|
if (inputMap->size == 1) {
|
|
mapping.map(origArg, newArgs[inputMap->inputNo]);
|
|
info.argInfo[i] = ConvertedArgInfo(inputMap->inputNo, inputMap->size);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, this is a 1->N mapping. Call into the provided type converter
|
|
// to pack the new values.
|
|
auto replArgs = newArgs.slice(inputMap->inputNo, inputMap->size);
|
|
Operation *cast = typeConverter->materializeConversion(
|
|
rewriter, origArg.getType(), replArgs, loc);
|
|
assert(cast->getNumResults() == 1 &&
|
|
cast->getNumOperands() == replArgs.size());
|
|
mapping.map(origArg, cast->getResult(0));
|
|
info.argInfo[i] =
|
|
ConvertedArgInfo(inputMap->inputNo, inputMap->size, cast->getResult(0));
|
|
}
|
|
|
|
// Remove the original block from the region and return the new one.
|
|
insertConversion(newBlock, std::move(info));
|
|
return newBlock;
|
|
}
|
|
|
|
void ArgConverter::insertConversion(Block *newBlock,
|
|
ConvertedBlockInfo &&info) {
|
|
// Get a region to insert the old block.
|
|
Region *region = newBlock->getParent();
|
|
std::unique_ptr<Region> &mappedRegion = regionMapping[region];
|
|
if (!mappedRegion)
|
|
mappedRegion = std::make_unique<Region>(region->getParentOp());
|
|
|
|
// Move the original block to the mapped region and emplace the conversion.
|
|
mappedRegion->getBlocks().splice(mappedRegion->end(), region->getBlocks(),
|
|
info.origBlock->getIterator());
|
|
conversionInfo.insert({newBlock, std::move(info)});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConversionPatternRewriterImpl
|
|
//===----------------------------------------------------------------------===//
|
|
namespace {
|
|
/// This class contains a snapshot of the current conversion rewriter state.
|
|
/// This is useful when saving and undoing a set of rewrites.
|
|
struct RewriterState {
|
|
RewriterState(unsigned numCreatedOps, unsigned numReplacements,
|
|
unsigned numBlockActions, unsigned numIgnoredOperations,
|
|
unsigned numRootUpdates)
|
|
: numCreatedOps(numCreatedOps), numReplacements(numReplacements),
|
|
numBlockActions(numBlockActions),
|
|
numIgnoredOperations(numIgnoredOperations),
|
|
numRootUpdates(numRootUpdates) {}
|
|
|
|
/// The current number of created operations.
|
|
unsigned numCreatedOps;
|
|
|
|
/// The current number of replacements queued.
|
|
unsigned numReplacements;
|
|
|
|
/// The current number of block actions performed.
|
|
unsigned numBlockActions;
|
|
|
|
/// The current number of ignored operations.
|
|
unsigned numIgnoredOperations;
|
|
|
|
/// The current number of operations that were updated in place.
|
|
unsigned numRootUpdates;
|
|
};
|
|
|
|
/// The state of an operation that was updated by a pattern in-place. This
|
|
/// contains all of the necessary information to reconstruct an operation that
|
|
/// was updated in place.
|
|
class OperationTransactionState {
|
|
public:
|
|
OperationTransactionState() = default;
|
|
OperationTransactionState(Operation *op)
|
|
: op(op), loc(op->getLoc()), attrs(op->getAttrList()),
|
|
operands(op->operand_begin(), op->operand_end()),
|
|
successors(op->successor_begin(), op->successor_end()) {}
|
|
|
|
/// Discard the transaction state and reset the state of the original
|
|
/// operation.
|
|
void resetOperation() const {
|
|
op->setLoc(loc);
|
|
op->setAttrs(attrs);
|
|
op->setOperands(operands);
|
|
for (auto it : llvm::enumerate(successors))
|
|
op->setSuccessor(it.value(), it.index());
|
|
}
|
|
|
|
/// Return the original operation of this state.
|
|
Operation *getOperation() const { return op; }
|
|
|
|
private:
|
|
Operation *op;
|
|
LocationAttr loc;
|
|
NamedAttributeList attrs;
|
|
SmallVector<Value, 8> operands;
|
|
SmallVector<Block *, 2> successors;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
namespace mlir {
|
|
namespace detail {
|
|
struct ConversionPatternRewriterImpl {
|
|
/// This class represents one requested operation replacement via 'replaceOp'.
|
|
struct OpReplacement {
|
|
OpReplacement() = default;
|
|
OpReplacement(Operation *op, ValueRange newValues)
|
|
: op(op), newValues(newValues.begin(), newValues.end()) {}
|
|
|
|
Operation *op;
|
|
SmallVector<Value, 2> newValues;
|
|
};
|
|
|
|
/// The kind of the block action performed during the rewrite. Actions can be
|
|
/// undone if the conversion fails.
|
|
enum class BlockActionKind { Create, Move, Split, TypeConversion };
|
|
|
|
/// Original position of the given block in its parent region. We cannot use
|
|
/// a region iterator because it could have been invalidated by other region
|
|
/// operations since the position was stored.
|
|
struct BlockPosition {
|
|
Region *region;
|
|
Region::iterator::difference_type position;
|
|
};
|
|
|
|
/// The storage class for an undoable block action (one of BlockActionKind),
|
|
/// contains the information necessary to undo this action.
|
|
struct BlockAction {
|
|
static BlockAction getCreate(Block *block) {
|
|
return {BlockActionKind::Create, block, {}};
|
|
}
|
|
static BlockAction getMove(Block *block, BlockPosition originalPos) {
|
|
return {BlockActionKind::Move, block, {originalPos}};
|
|
}
|
|
static BlockAction getSplit(Block *block, Block *originalBlock) {
|
|
BlockAction action{BlockActionKind::Split, block, {}};
|
|
action.originalBlock = originalBlock;
|
|
return action;
|
|
}
|
|
static BlockAction getTypeConversion(Block *block) {
|
|
return BlockAction{BlockActionKind::TypeConversion, block, {}};
|
|
}
|
|
|
|
// The action kind.
|
|
BlockActionKind kind;
|
|
|
|
// A pointer to the block that was created by the action.
|
|
Block *block;
|
|
|
|
union {
|
|
// In use if kind == BlockActionKind::Move and contains a pointer to the
|
|
// region that originally contained the block as well as the position of
|
|
// the block in that region.
|
|
BlockPosition originalPosition;
|
|
// In use if kind == BlockActionKind::Split and contains a pointer to the
|
|
// block that was split into two parts.
|
|
Block *originalBlock;
|
|
};
|
|
};
|
|
|
|
ConversionPatternRewriterImpl(PatternRewriter &rewriter,
|
|
TypeConverter *converter)
|
|
: argConverter(converter, rewriter) {}
|
|
|
|
/// Return the current state of the rewriter.
|
|
RewriterState getCurrentState();
|
|
|
|
/// Reset the state of the rewriter to a previously saved point.
|
|
void resetState(RewriterState state);
|
|
|
|
/// Undo the block actions (motions, splits) one by one in reverse order until
|
|
/// "numActionsToKeep" actions remains.
|
|
void undoBlockActions(unsigned numActionsToKeep = 0);
|
|
|
|
/// Cleanup and destroy any generated rewrite operations. This method is
|
|
/// invoked when the conversion process fails.
|
|
void discardRewrites();
|
|
|
|
/// Apply all requested operation rewrites. This method is invoked when the
|
|
/// conversion process succeeds.
|
|
void applyRewrites();
|
|
|
|
/// Convert the signature of the given block.
|
|
LogicalResult convertBlockSignature(Block *block);
|
|
|
|
/// Apply a signature conversion on the given region.
|
|
Block *
|
|
applySignatureConversion(Region *region,
|
|
TypeConverter::SignatureConversion &conversion);
|
|
|
|
/// PatternRewriter hook for replacing the results of an operation.
|
|
void replaceOp(Operation *op, ValueRange newValues);
|
|
|
|
/// Notifies that a block was split.
|
|
void notifySplitBlock(Block *block, Block *continuation);
|
|
|
|
/// Notifies that the blocks of a region are about to be moved.
|
|
void notifyRegionIsBeingInlinedBefore(Region ®ion, Region &parent,
|
|
Region::iterator before);
|
|
|
|
/// Notifies that the blocks of a region were cloned into another.
|
|
void notifyRegionWasClonedBefore(iterator_range<Region::iterator> &blocks,
|
|
Location origRegionLoc);
|
|
|
|
/// Remap the given operands to those with potentially different types.
|
|
void remapValues(Operation::operand_range operands,
|
|
SmallVectorImpl<Value> &remapped);
|
|
|
|
/// Returns true if the given operation is ignored, and does not need to be
|
|
/// converted.
|
|
bool isOpIgnored(Operation *op) const;
|
|
|
|
/// Recursively marks the nested operations under 'op' as ignored. This
|
|
/// removes them from being considered for legalization.
|
|
void markNestedOpsIgnored(Operation *op);
|
|
|
|
// Mapping between replaced values that differ in type. This happens when
|
|
// replacing a value with one of a different type.
|
|
ConversionValueMapping mapping;
|
|
|
|
/// Utility used to convert block arguments.
|
|
ArgConverter argConverter;
|
|
|
|
/// Ordered vector of all of the newly created operations during conversion.
|
|
std::vector<Operation *> createdOps;
|
|
|
|
/// Ordered vector of any requested operation replacements.
|
|
SmallVector<OpReplacement, 4> replacements;
|
|
|
|
/// Ordered list of block operations (creations, splits, motions).
|
|
SmallVector<BlockAction, 4> blockActions;
|
|
|
|
/// A set of operations that have been erased/replaced/etc that should no
|
|
/// longer be considered for legalization. This is not meant to be an
|
|
/// exhaustive list of all operations, but the minimal set that can be used to
|
|
/// detect if a given operation should be `ignored`. For example, we may add
|
|
/// the operations that define non-empty regions to the set, but not any of
|
|
/// the others. This simplifies the amount of memory needed as we can query if
|
|
/// the parent operation was ignored.
|
|
llvm::SetVector<Operation *> ignoredOps;
|
|
|
|
/// A transaction state for each of operations that were updated in-place.
|
|
SmallVector<OperationTransactionState, 4> rootUpdates;
|
|
|
|
#ifndef NDEBUG
|
|
/// A set of operations that have pending updates. This tracking isn't
|
|
/// strictly necessary, and is thus only active during debug builds for extra
|
|
/// verification.
|
|
SmallPtrSet<Operation *, 1> pendingRootUpdates;
|
|
#endif
|
|
};
|
|
} // end namespace detail
|
|
} // end namespace mlir
|
|
|
|
RewriterState ConversionPatternRewriterImpl::getCurrentState() {
|
|
return RewriterState(createdOps.size(), replacements.size(),
|
|
blockActions.size(), ignoredOps.size(),
|
|
rootUpdates.size());
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::resetState(RewriterState state) {
|
|
// Reset any operations that were updated in place.
|
|
for (unsigned i = state.numRootUpdates, e = rootUpdates.size(); i != e; ++i)
|
|
rootUpdates[i].resetOperation();
|
|
rootUpdates.resize(state.numRootUpdates);
|
|
|
|
// Undo any block actions.
|
|
undoBlockActions(state.numBlockActions);
|
|
|
|
// Reset any replaced operations and undo any saved mappings.
|
|
for (auto &repl : llvm::drop_begin(replacements, state.numReplacements))
|
|
for (auto result : repl.op->getResults())
|
|
mapping.erase(result);
|
|
replacements.resize(state.numReplacements);
|
|
|
|
// Pop all of the newly created operations.
|
|
while (createdOps.size() != state.numCreatedOps) {
|
|
createdOps.back()->erase();
|
|
createdOps.pop_back();
|
|
}
|
|
|
|
// Pop all of the recorded ignored operations that are no longer valid.
|
|
while (ignoredOps.size() != state.numIgnoredOperations)
|
|
ignoredOps.pop_back();
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::undoBlockActions(
|
|
unsigned numActionsToKeep) {
|
|
for (auto &action :
|
|
llvm::reverse(llvm::drop_begin(blockActions, numActionsToKeep))) {
|
|
switch (action.kind) {
|
|
// Delete the created block.
|
|
case BlockActionKind::Create: {
|
|
// Unlink all of the operations within this block, they will be deleted
|
|
// separately.
|
|
auto &blockOps = action.block->getOperations();
|
|
while (!blockOps.empty())
|
|
blockOps.remove(blockOps.begin());
|
|
action.block->dropAllDefinedValueUses();
|
|
action.block->erase();
|
|
break;
|
|
}
|
|
// Move the block back to its original position.
|
|
case BlockActionKind::Move: {
|
|
Region *originalRegion = action.originalPosition.region;
|
|
originalRegion->getBlocks().splice(
|
|
std::next(originalRegion->begin(), action.originalPosition.position),
|
|
action.block->getParent()->getBlocks(), action.block);
|
|
break;
|
|
}
|
|
// Merge back the block that was split out.
|
|
case BlockActionKind::Split: {
|
|
action.originalBlock->getOperations().splice(
|
|
action.originalBlock->end(), action.block->getOperations());
|
|
action.block->dropAllDefinedValueUses();
|
|
action.block->erase();
|
|
break;
|
|
}
|
|
// Undo the type conversion.
|
|
case BlockActionKind::TypeConversion: {
|
|
argConverter.discardRewrites(action.block);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
blockActions.resize(numActionsToKeep);
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::discardRewrites() {
|
|
// Reset any operations that were updated in place.
|
|
for (auto &state : rootUpdates)
|
|
state.resetOperation();
|
|
|
|
undoBlockActions();
|
|
|
|
// Remove any newly created ops.
|
|
for (auto *op : llvm::reverse(createdOps))
|
|
op->erase();
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::applyRewrites() {
|
|
// Apply all of the rewrites replacements requested during conversion.
|
|
for (auto &repl : replacements) {
|
|
for (unsigned i = 0, e = repl.newValues.size(); i != e; ++i) {
|
|
if (auto newValue = repl.newValues[i])
|
|
repl.op->getResult(i).replaceAllUsesWith(
|
|
mapping.lookupOrDefault(newValue));
|
|
}
|
|
|
|
// If this operation defines any regions, drop any pending argument
|
|
// rewrites.
|
|
if (argConverter.typeConverter && repl.op->getNumRegions())
|
|
argConverter.notifyOpRemoved(repl.op);
|
|
}
|
|
|
|
// In a second pass, erase all of the replaced operations in reverse. This
|
|
// allows processing nested operations before their parent region is
|
|
// destroyed.
|
|
for (auto &repl : llvm::reverse(replacements))
|
|
repl.op->erase();
|
|
|
|
argConverter.applyRewrites(mapping);
|
|
}
|
|
|
|
LogicalResult
|
|
ConversionPatternRewriterImpl::convertBlockSignature(Block *block) {
|
|
// Check to see if this block should not be converted:
|
|
// * There is no type converter.
|
|
// * The block has already been converted.
|
|
// * This is an entry block, these are converted explicitly via patterns.
|
|
if (!argConverter.typeConverter || argConverter.hasBeenConverted(block) ||
|
|
!block->getParent() || block->isEntryBlock())
|
|
return success();
|
|
|
|
// Otherwise, try to convert the block signature.
|
|
Block *newBlock = argConverter.convertSignature(block, mapping);
|
|
if (newBlock)
|
|
blockActions.push_back(BlockAction::getTypeConversion(newBlock));
|
|
return success(newBlock);
|
|
}
|
|
|
|
Block *ConversionPatternRewriterImpl::applySignatureConversion(
|
|
Region *region, TypeConverter::SignatureConversion &conversion) {
|
|
if (!region->empty()) {
|
|
Block *newEntry = argConverter.applySignatureConversion(
|
|
®ion->front(), conversion, mapping);
|
|
blockActions.push_back(BlockAction::getTypeConversion(newEntry));
|
|
return newEntry;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::replaceOp(Operation *op,
|
|
ValueRange newValues) {
|
|
assert(newValues.size() == op->getNumResults());
|
|
|
|
// Create mappings for each of the new result values.
|
|
for (unsigned i = 0, e = newValues.size(); i < e; ++i)
|
|
if (auto repl = newValues[i])
|
|
mapping.map(op->getResult(i), repl);
|
|
|
|
// Record the requested operation replacement.
|
|
replacements.emplace_back(op, newValues);
|
|
|
|
/// Mark this operation as recursively ignored so that we don't need to
|
|
/// convert any nested operations.
|
|
markNestedOpsIgnored(op);
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::notifySplitBlock(Block *block,
|
|
Block *continuation) {
|
|
blockActions.push_back(BlockAction::getSplit(continuation, block));
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::notifyRegionIsBeingInlinedBefore(
|
|
Region ®ion, Region &parent, Region::iterator before) {
|
|
for (auto &pair : llvm::enumerate(region)) {
|
|
Block &block = pair.value();
|
|
unsigned position = pair.index();
|
|
blockActions.push_back(BlockAction::getMove(&block, {®ion, position}));
|
|
}
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::notifyRegionWasClonedBefore(
|
|
iterator_range<Region::iterator> &blocks, Location origRegionLoc) {
|
|
for (Block &block : blocks)
|
|
blockActions.push_back(BlockAction::getCreate(&block));
|
|
|
|
// Compute the conversion set for the inlined region.
|
|
auto result = computeConversionSet(blocks, origRegionLoc, createdOps);
|
|
|
|
// This original region has already had its conversion set computed, so there
|
|
// shouldn't be any new failures.
|
|
(void)result;
|
|
assert(succeeded(result) && "expected region to have no unreachable blocks");
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::remapValues(
|
|
Operation::operand_range operands, SmallVectorImpl<Value> &remapped) {
|
|
remapped.reserve(llvm::size(operands));
|
|
for (Value operand : operands)
|
|
remapped.push_back(mapping.lookupOrDefault(operand));
|
|
}
|
|
|
|
bool ConversionPatternRewriterImpl::isOpIgnored(Operation *op) const {
|
|
// Check to see if this operation or its parent were ignored.
|
|
return ignoredOps.count(op) || ignoredOps.count(op->getParentOp());
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::markNestedOpsIgnored(Operation *op) {
|
|
// Walk this operation and collect nested operations that define non-empty
|
|
// regions. We mark such operations as 'ignored' so that we know we don't have
|
|
// to convert them, or their nested ops.
|
|
if (op->getNumRegions() == 0)
|
|
return;
|
|
op->walk([&](Operation *op) {
|
|
if (llvm::any_of(op->getRegions(),
|
|
[](Region ®ion) { return !region.empty(); }))
|
|
ignoredOps.insert(op);
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConversionPatternRewriter
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ConversionPatternRewriter::ConversionPatternRewriter(MLIRContext *ctx,
|
|
TypeConverter *converter)
|
|
: PatternRewriter(ctx),
|
|
impl(new detail::ConversionPatternRewriterImpl(*this, converter)) {}
|
|
ConversionPatternRewriter::~ConversionPatternRewriter() {}
|
|
|
|
/// PatternRewriter hook for replacing the results of an operation.
|
|
void ConversionPatternRewriter::replaceOp(Operation *op,
|
|
ValueRange newValues) {
|
|
LLVM_DEBUG(llvm::dbgs() << "** Replacing operation : " << op->getName()
|
|
<< "\n");
|
|
impl->replaceOp(op, newValues);
|
|
}
|
|
|
|
/// PatternRewriter hook for erasing a dead operation. The uses of this
|
|
/// operation *must* be made dead by the end of the conversion process,
|
|
/// otherwise an assert will be issued.
|
|
void ConversionPatternRewriter::eraseOp(Operation *op) {
|
|
LLVM_DEBUG(llvm::dbgs() << "** Erasing operation : " << op->getName()
|
|
<< "\n");
|
|
SmallVector<Value, 1> nullRepls(op->getNumResults(), nullptr);
|
|
impl->replaceOp(op, nullRepls);
|
|
}
|
|
|
|
/// Apply a signature conversion to the entry block of the given region.
|
|
Block *ConversionPatternRewriter::applySignatureConversion(
|
|
Region *region, TypeConverter::SignatureConversion &conversion) {
|
|
return impl->applySignatureConversion(region, conversion);
|
|
}
|
|
|
|
void ConversionPatternRewriter::replaceUsesOfBlockArgument(BlockArgument from,
|
|
Value to) {
|
|
for (auto &u : from.getUses()) {
|
|
if (u.getOwner() == to.getDefiningOp())
|
|
continue;
|
|
u.getOwner()->replaceUsesOfWith(from, to);
|
|
}
|
|
impl->mapping.map(impl->mapping.lookupOrDefault(from), to);
|
|
}
|
|
|
|
/// Return the converted value that replaces 'key'. Return 'key' if there is
|
|
/// no such a converted value.
|
|
Value ConversionPatternRewriter::getRemappedValue(Value key) {
|
|
return impl->mapping.lookupOrDefault(key);
|
|
}
|
|
|
|
/// PatternRewriter hook for splitting a block into two parts.
|
|
Block *ConversionPatternRewriter::splitBlock(Block *block,
|
|
Block::iterator before) {
|
|
auto *continuation = PatternRewriter::splitBlock(block, before);
|
|
impl->notifySplitBlock(block, continuation);
|
|
return continuation;
|
|
}
|
|
|
|
/// PatternRewriter hook for merging a block into another.
|
|
void ConversionPatternRewriter::mergeBlocks(Block *source, Block *dest,
|
|
ValueRange argValues) {
|
|
// TODO(riverriddle) This requires fixing the implementation of
|
|
// 'replaceUsesOfBlockArgument', which currently isn't undoable.
|
|
llvm_unreachable("block merging updates are currently not supported");
|
|
}
|
|
|
|
/// PatternRewriter hook for moving blocks out of a region.
|
|
void ConversionPatternRewriter::inlineRegionBefore(Region ®ion,
|
|
Region &parent,
|
|
Region::iterator before) {
|
|
impl->notifyRegionIsBeingInlinedBefore(region, parent, before);
|
|
PatternRewriter::inlineRegionBefore(region, parent, before);
|
|
}
|
|
|
|
/// PatternRewriter hook for cloning blocks of one region into another.
|
|
void ConversionPatternRewriter::cloneRegionBefore(
|
|
Region ®ion, Region &parent, Region::iterator before,
|
|
BlockAndValueMapping &mapping) {
|
|
if (region.empty())
|
|
return;
|
|
PatternRewriter::cloneRegionBefore(region, parent, before, mapping);
|
|
|
|
// Collect the range of the cloned blocks.
|
|
auto clonedBeginIt = mapping.lookup(®ion.front())->getIterator();
|
|
auto clonedBlocks = llvm::make_range(clonedBeginIt, before);
|
|
impl->notifyRegionWasClonedBefore(clonedBlocks, region.getLoc());
|
|
}
|
|
|
|
/// PatternRewriter hook for creating a new operation.
|
|
Operation *ConversionPatternRewriter::insert(Operation *op) {
|
|
LLVM_DEBUG(llvm::dbgs() << "** Inserting operation : " << op->getName()
|
|
<< "\n");
|
|
impl->createdOps.push_back(op);
|
|
return OpBuilder::insert(op);
|
|
}
|
|
|
|
/// PatternRewriter hook for updating the root operation in-place.
|
|
void ConversionPatternRewriter::startRootUpdate(Operation *op) {
|
|
#ifndef NDEBUG
|
|
impl->pendingRootUpdates.insert(op);
|
|
#endif
|
|
impl->rootUpdates.emplace_back(op);
|
|
}
|
|
|
|
/// PatternRewriter hook for updating the root operation in-place.
|
|
void ConversionPatternRewriter::finalizeRootUpdate(Operation *op) {
|
|
// There is nothing to do here, we only need to track the operation at the
|
|
// start of the update.
|
|
#ifndef NDEBUG
|
|
assert(impl->pendingRootUpdates.erase(op) &&
|
|
"operation did not have a pending in-place update");
|
|
#endif
|
|
}
|
|
|
|
/// PatternRewriter hook for updating the root operation in-place.
|
|
void ConversionPatternRewriter::cancelRootUpdate(Operation *op) {
|
|
#ifndef NDEBUG
|
|
assert(impl->pendingRootUpdates.erase(op) &&
|
|
"operation did not have a pending in-place update");
|
|
#endif
|
|
// Erase the last update for this operation.
|
|
auto stateHasOp = [op](const auto &it) { return it.getOperation() == op; };
|
|
auto &rootUpdates = impl->rootUpdates;
|
|
auto it = llvm::find_if(llvm::reverse(rootUpdates), stateHasOp);
|
|
rootUpdates.erase(rootUpdates.begin() + (rootUpdates.rend() - it));
|
|
}
|
|
|
|
/// Return a reference to the internal implementation.
|
|
detail::ConversionPatternRewriterImpl &ConversionPatternRewriter::getImpl() {
|
|
return *impl;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Conversion Patterns
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Attempt to match and rewrite the IR root at the specified operation.
|
|
PatternMatchResult
|
|
ConversionPattern::matchAndRewrite(Operation *op,
|
|
PatternRewriter &rewriter) const {
|
|
SmallVector<Value, 4> operands;
|
|
auto &dialectRewriter = static_cast<ConversionPatternRewriter &>(rewriter);
|
|
dialectRewriter.getImpl().remapValues(op->getOperands(), operands);
|
|
|
|
// If this operation has no successors, invoke the rewrite directly.
|
|
if (op->getNumSuccessors() == 0)
|
|
return matchAndRewrite(op, operands, dialectRewriter);
|
|
|
|
// Otherwise, we need to remap the successors.
|
|
SmallVector<Block *, 2> destinations;
|
|
destinations.reserve(op->getNumSuccessors());
|
|
|
|
SmallVector<ArrayRef<Value>, 2> operandsPerDestination;
|
|
unsigned firstSuccessorOperand = op->getSuccessorOperandIndex(0);
|
|
for (unsigned i = 0, seen = 0, e = op->getNumSuccessors(); i < e; ++i) {
|
|
destinations.push_back(op->getSuccessor(i));
|
|
|
|
// Lookup the successors operands.
|
|
unsigned n = op->getNumSuccessorOperands(i);
|
|
operandsPerDestination.push_back(
|
|
llvm::makeArrayRef(operands.data() + firstSuccessorOperand + seen, n));
|
|
seen += n;
|
|
}
|
|
|
|
// Rewrite the operation.
|
|
return matchAndRewrite(
|
|
op,
|
|
llvm::makeArrayRef(operands.data(),
|
|
operands.data() + firstSuccessorOperand),
|
|
destinations, operandsPerDestination, dialectRewriter);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OperationLegalizer
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// A set of rewrite patterns that can be used to legalize a given operation.
|
|
using LegalizationPatterns = SmallVector<RewritePattern *, 1>;
|
|
|
|
/// This class defines a recursive operation legalizer.
|
|
class OperationLegalizer {
|
|
public:
|
|
using LegalizationAction = ConversionTarget::LegalizationAction;
|
|
|
|
OperationLegalizer(ConversionTarget &targetInfo,
|
|
const OwningRewritePatternList &patterns)
|
|
: target(targetInfo) {
|
|
buildLegalizationGraph(patterns);
|
|
computeLegalizationGraphBenefit();
|
|
}
|
|
|
|
/// Returns if the given operation is known to be illegal on the target.
|
|
bool isIllegal(Operation *op) const;
|
|
|
|
/// Attempt to legalize the given operation. Returns success if the operation
|
|
/// was legalized, failure otherwise.
|
|
LogicalResult legalize(Operation *op, ConversionPatternRewriter &rewriter);
|
|
|
|
/// Returns the conversion target in use by the legalizer.
|
|
ConversionTarget &getTarget() { return target; }
|
|
|
|
private:
|
|
/// Attempt to legalize the given operation by folding it.
|
|
LogicalResult legalizeWithFold(Operation *op,
|
|
ConversionPatternRewriter &rewriter);
|
|
|
|
/// Attempt to legalize the given operation by applying the provided pattern.
|
|
/// Returns success if the operation was legalized, failure otherwise.
|
|
LogicalResult legalizePattern(Operation *op, RewritePattern *pattern,
|
|
ConversionPatternRewriter &rewriter);
|
|
|
|
/// Build an optimistic legalization graph given the provided patterns. This
|
|
/// function populates 'legalizerPatterns' with the operations that are not
|
|
/// directly legal, but may be transitively legal for the current target given
|
|
/// the provided patterns.
|
|
void buildLegalizationGraph(const OwningRewritePatternList &patterns);
|
|
|
|
/// Compute the benefit of each node within the computed legalization graph.
|
|
/// This orders the patterns within 'legalizerPatterns' based upon two
|
|
/// criteria:
|
|
/// 1) Prefer patterns that have the lowest legalization depth, i.e.
|
|
/// represent the more direct mapping to the target.
|
|
/// 2) When comparing patterns with the same legalization depth, prefer the
|
|
/// pattern with the highest PatternBenefit. This allows for users to
|
|
/// prefer specific legalizations over others.
|
|
void computeLegalizationGraphBenefit();
|
|
|
|
/// The current set of patterns that have been applied.
|
|
SmallPtrSet<RewritePattern *, 8> appliedPatterns;
|
|
|
|
/// The set of legality information for operations transitively supported by
|
|
/// the target.
|
|
DenseMap<OperationName, LegalizationPatterns> legalizerPatterns;
|
|
|
|
/// The legalization information provided by the target.
|
|
ConversionTarget ⌖
|
|
};
|
|
} // namespace
|
|
|
|
bool OperationLegalizer::isIllegal(Operation *op) const {
|
|
// Check if the target explicitly marked this operation as illegal.
|
|
return target.getOpAction(op->getName()) == LegalizationAction::Illegal;
|
|
}
|
|
|
|
LogicalResult
|
|
OperationLegalizer::legalize(Operation *op,
|
|
ConversionPatternRewriter &rewriter) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Legalizing operation : " << op->getName()
|
|
<< "\n");
|
|
|
|
// Check if this operation is legal on the target.
|
|
if (auto legalityInfo = target.isLegal(op)) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "-- Success : Operation marked legal by the target\n");
|
|
// If this operation is recursively legal, mark its children as ignored so
|
|
// that we don't consider them for legalization.
|
|
if (legalityInfo->isRecursivelyLegal) {
|
|
LLVM_DEBUG(llvm::dbgs() << "-- Success : Operation is recursively legal; "
|
|
"Skipping internals\n");
|
|
rewriter.getImpl().markNestedOpsIgnored(op);
|
|
}
|
|
return success();
|
|
}
|
|
|
|
// Check to see if the operation is ignored and doesn't need to be converted.
|
|
if (rewriter.getImpl().isOpIgnored(op)) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "-- Success : Operation marked ignored during conversion\n");
|
|
return success();
|
|
}
|
|
|
|
// If the operation isn't legal, try to fold it in-place.
|
|
// TODO(riverriddle) Should we always try to do this, even if the op is
|
|
// already legal?
|
|
if (succeeded(legalizeWithFold(op, rewriter))) {
|
|
LLVM_DEBUG(llvm::dbgs() << "-- Success : Operation was folded\n");
|
|
return success();
|
|
}
|
|
|
|
// Otherwise, we need to apply a legalization pattern to this operation.
|
|
auto it = legalizerPatterns.find(op->getName());
|
|
if (it == legalizerPatterns.end()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "-- FAIL : no known legalization path.\n");
|
|
return failure();
|
|
}
|
|
|
|
// The patterns are sorted by expected benefit, so try to apply each in-order.
|
|
for (auto *pattern : it->second)
|
|
if (succeeded(legalizePattern(op, pattern, rewriter)))
|
|
return success();
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "-- FAIL : no matched legalization pattern.\n");
|
|
return failure();
|
|
}
|
|
|
|
LogicalResult
|
|
OperationLegalizer::legalizeWithFold(Operation *op,
|
|
ConversionPatternRewriter &rewriter) {
|
|
auto &rewriterImpl = rewriter.getImpl();
|
|
RewriterState curState = rewriterImpl.getCurrentState();
|
|
|
|
// Try to fold the operation.
|
|
SmallVector<Value, 2> replacementValues;
|
|
rewriter.setInsertionPoint(op);
|
|
if (failed(rewriter.tryFold(op, replacementValues)))
|
|
return failure();
|
|
|
|
// Insert a replacement for 'op' with the folded replacement values.
|
|
rewriter.replaceOp(op, replacementValues);
|
|
|
|
// Recursively legalize any new constant operations.
|
|
for (unsigned i = curState.numCreatedOps, e = rewriterImpl.createdOps.size();
|
|
i != e; ++i) {
|
|
Operation *cstOp = rewriterImpl.createdOps[i];
|
|
if (failed(legalize(cstOp, rewriter))) {
|
|
LLVM_DEBUG(llvm::dbgs() << "-- FAIL: Generated folding constant '"
|
|
<< cstOp->getName() << "' was illegal.\n");
|
|
rewriterImpl.resetState(curState);
|
|
return failure();
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult
|
|
OperationLegalizer::legalizePattern(Operation *op, RewritePattern *pattern,
|
|
ConversionPatternRewriter &rewriter) {
|
|
LLVM_DEBUG({
|
|
llvm::dbgs() << "-* Applying rewrite pattern '" << op->getName() << " -> (";
|
|
interleaveComma(pattern->getGeneratedOps(), llvm::dbgs());
|
|
llvm::dbgs() << ")'.\n";
|
|
});
|
|
|
|
// Ensure that we don't cycle by not allowing the same pattern to be
|
|
// applied twice in the same recursion stack.
|
|
// TODO(riverriddle) We could eventually converge, but that requires more
|
|
// complicated analysis.
|
|
if (!appliedPatterns.insert(pattern).second) {
|
|
LLVM_DEBUG(llvm::dbgs() << "-- FAIL: Pattern was already applied.\n");
|
|
return failure();
|
|
}
|
|
|
|
auto &rewriterImpl = rewriter.getImpl();
|
|
RewriterState curState = rewriterImpl.getCurrentState();
|
|
auto cleanupFailure = [&] {
|
|
// Reset the rewriter state and pop this pattern.
|
|
rewriterImpl.resetState(curState);
|
|
appliedPatterns.erase(pattern);
|
|
return failure();
|
|
};
|
|
|
|
// Try to rewrite with the given pattern.
|
|
rewriter.setInsertionPoint(op);
|
|
auto matchedPattern = pattern->matchAndRewrite(op, rewriter);
|
|
#ifndef NDEBUG
|
|
assert(rewriterImpl.pendingRootUpdates.empty() && "dangling root updates");
|
|
#endif
|
|
|
|
if (!matchedPattern) {
|
|
LLVM_DEBUG(llvm::dbgs() << "-- FAIL: Pattern failed to match.\n");
|
|
return cleanupFailure();
|
|
}
|
|
|
|
// If the pattern moved or created any blocks, try to legalize their types.
|
|
// This ensures that the types of the block arguments are legal for the region
|
|
// they were moved into.
|
|
for (unsigned i = curState.numBlockActions,
|
|
e = rewriterImpl.blockActions.size();
|
|
i != e; ++i) {
|
|
auto &action = rewriterImpl.blockActions[i];
|
|
if (action.kind ==
|
|
ConversionPatternRewriterImpl::BlockActionKind::TypeConversion)
|
|
continue;
|
|
|
|
// Convert the block signature.
|
|
if (failed(rewriterImpl.convertBlockSignature(action.block))) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "-- FAIL: failed to convert types of moved block.\n");
|
|
return cleanupFailure();
|
|
}
|
|
}
|
|
|
|
// Check all of the replacements to ensure that the pattern actually replaced
|
|
// the root operation. We also mark any other replaced ops as 'dead' so that
|
|
// we don't try to legalize them later.
|
|
bool replacedRoot = false;
|
|
for (unsigned i = curState.numReplacements,
|
|
e = rewriterImpl.replacements.size();
|
|
i != e; ++i) {
|
|
Operation *replacedOp = rewriterImpl.replacements[i].op;
|
|
if (replacedOp == op)
|
|
replacedRoot = true;
|
|
else
|
|
rewriterImpl.ignoredOps.insert(replacedOp);
|
|
}
|
|
|
|
// Check that the root was either updated or replace.
|
|
auto updatedRootInPlace = [&] {
|
|
return llvm::any_of(
|
|
llvm::drop_begin(rewriterImpl.rootUpdates, curState.numRootUpdates),
|
|
[op](auto &state) { return state.getOperation() == op; });
|
|
};
|
|
(void)replacedRoot;
|
|
(void)updatedRootInPlace;
|
|
assert((replacedRoot || updatedRootInPlace()) &&
|
|
"expected pattern to replace the root operation");
|
|
|
|
// Recursively legalize each of the operations updated in place.
|
|
for (unsigned i = curState.numRootUpdates,
|
|
e = rewriterImpl.rootUpdates.size();
|
|
i != e; ++i) {
|
|
auto &state = rewriterImpl.rootUpdates[i];
|
|
if (failed(legalize(state.getOperation(), rewriter))) {
|
|
LLVM_DEBUG(llvm::dbgs() << "-- FAIL: Operation updated in-place '"
|
|
<< op->getName() << "' was illegal.\n");
|
|
return cleanupFailure();
|
|
}
|
|
}
|
|
|
|
// Recursively legalize each of the new operations.
|
|
for (unsigned i = curState.numCreatedOps, e = rewriterImpl.createdOps.size();
|
|
i != e; ++i) {
|
|
Operation *op = rewriterImpl.createdOps[i];
|
|
if (failed(legalize(op, rewriter))) {
|
|
LLVM_DEBUG(llvm::dbgs() << "-- FAIL: Generated operation '"
|
|
<< op->getName() << "' was illegal.\n");
|
|
return cleanupFailure();
|
|
}
|
|
}
|
|
|
|
appliedPatterns.erase(pattern);
|
|
return success();
|
|
}
|
|
|
|
void OperationLegalizer::buildLegalizationGraph(
|
|
const OwningRewritePatternList &patterns) {
|
|
// A mapping between an operation and a set of operations that can be used to
|
|
// generate it.
|
|
DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps;
|
|
// A mapping between an operation and any currently invalid patterns it has.
|
|
DenseMap<OperationName, SmallPtrSet<RewritePattern *, 2>> invalidPatterns;
|
|
// A worklist of patterns to consider for legality.
|
|
llvm::SetVector<RewritePattern *> patternWorklist;
|
|
|
|
// Build the mapping from operations to the parent ops that may generate them.
|
|
for (auto &pattern : patterns) {
|
|
auto root = pattern->getRootKind();
|
|
|
|
// Skip operations that are always known to be legal.
|
|
if (target.getOpAction(root) == LegalizationAction::Legal)
|
|
continue;
|
|
|
|
// Add this pattern to the invalid set for the root op and record this root
|
|
// as a parent for any generated operations.
|
|
invalidPatterns[root].insert(pattern.get());
|
|
for (auto op : pattern->getGeneratedOps())
|
|
parentOps[op].insert(root);
|
|
|
|
// Add this pattern to the worklist.
|
|
patternWorklist.insert(pattern.get());
|
|
}
|
|
|
|
while (!patternWorklist.empty()) {
|
|
auto *pattern = patternWorklist.pop_back_val();
|
|
|
|
// Check to see if any of the generated operations are invalid.
|
|
if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) {
|
|
Optional<LegalizationAction> action = target.getOpAction(op);
|
|
return !legalizerPatterns.count(op) &&
|
|
(!action || action == LegalizationAction::Illegal);
|
|
}))
|
|
continue;
|
|
|
|
// Otherwise, if all of the generated operation are valid, this op is now
|
|
// legal so add all of the child patterns to the worklist.
|
|
legalizerPatterns[pattern->getRootKind()].push_back(pattern);
|
|
invalidPatterns[pattern->getRootKind()].erase(pattern);
|
|
|
|
// Add any invalid patterns of the parent operations to see if they have now
|
|
// become legal.
|
|
for (auto op : parentOps[pattern->getRootKind()])
|
|
patternWorklist.set_union(invalidPatterns[op]);
|
|
}
|
|
}
|
|
|
|
void OperationLegalizer::computeLegalizationGraphBenefit() {
|
|
// The smallest pattern depth, when legalizing an operation.
|
|
DenseMap<OperationName, unsigned> minPatternDepth;
|
|
|
|
// Compute the minimum legalization depth for a given operation.
|
|
std::function<unsigned(OperationName)> computeDepth = [&](OperationName op) {
|
|
// Check for existing depth.
|
|
auto depthIt = minPatternDepth.find(op);
|
|
if (depthIt != minPatternDepth.end())
|
|
return depthIt->second;
|
|
|
|
// If a mapping for this operation does not exist, then this operation
|
|
// is always legal. Return 0 as the depth for a directly legal operation.
|
|
auto opPatternsIt = legalizerPatterns.find(op);
|
|
if (opPatternsIt == legalizerPatterns.end() || opPatternsIt->second.empty())
|
|
return 0u;
|
|
|
|
// Initialize the depth to the maximum value.
|
|
unsigned minDepth = std::numeric_limits<unsigned>::max();
|
|
|
|
// Record this initial depth in case we encounter this op again when
|
|
// recursively computing the depth.
|
|
minPatternDepth.try_emplace(op, minDepth);
|
|
|
|
// Compute the depth for each pattern used to legalize this operation.
|
|
SmallVector<std::pair<RewritePattern *, unsigned>, 4> patternsByDepth;
|
|
patternsByDepth.reserve(opPatternsIt->second.size());
|
|
for (RewritePattern *pattern : opPatternsIt->second) {
|
|
unsigned depth = 0;
|
|
for (auto generatedOp : pattern->getGeneratedOps())
|
|
depth = std::max(depth, computeDepth(generatedOp) + 1);
|
|
patternsByDepth.emplace_back(pattern, depth);
|
|
|
|
// Update the min depth for this operation.
|
|
minDepth = std::min(minDepth, depth);
|
|
}
|
|
|
|
// Update the pattern depth.
|
|
minPatternDepth[op] = minDepth;
|
|
|
|
// If the operation only has one legalization pattern, there is no need to
|
|
// sort them.
|
|
if (patternsByDepth.size() == 1)
|
|
return minDepth;
|
|
|
|
// Sort the patterns by those likely to be the most beneficial.
|
|
llvm::array_pod_sort(
|
|
patternsByDepth.begin(), patternsByDepth.end(),
|
|
[](const std::pair<RewritePattern *, unsigned> *lhs,
|
|
const std::pair<RewritePattern *, unsigned> *rhs) {
|
|
// First sort by the smaller pattern legalization depth.
|
|
if (lhs->second != rhs->second)
|
|
return llvm::array_pod_sort_comparator<unsigned>(&lhs->second,
|
|
&rhs->second);
|
|
|
|
// Then sort by the larger pattern benefit.
|
|
auto lhsBenefit = lhs->first->getBenefit();
|
|
auto rhsBenefit = rhs->first->getBenefit();
|
|
return llvm::array_pod_sort_comparator<PatternBenefit>(&rhsBenefit,
|
|
&lhsBenefit);
|
|
});
|
|
|
|
// Update the legalization pattern to use the new sorted list.
|
|
opPatternsIt->second.clear();
|
|
for (auto &patternIt : patternsByDepth)
|
|
opPatternsIt->second.push_back(patternIt.first);
|
|
|
|
return minDepth;
|
|
};
|
|
|
|
// For each operation that is transitively legal, compute a cost for it.
|
|
for (auto &opIt : legalizerPatterns)
|
|
if (!minPatternDepth.count(opIt.first))
|
|
computeDepth(opIt.first);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OperationConverter
|
|
//===----------------------------------------------------------------------===//
|
|
namespace {
|
|
enum OpConversionMode {
|
|
// In this mode, the conversion will ignore failed conversions to allow
|
|
// illegal operations to co-exist in the IR.
|
|
Partial,
|
|
|
|
// In this mode, all operations must be legal for the given target for the
|
|
// conversion to succeed.
|
|
Full,
|
|
|
|
// In this mode, operations are analyzed for legality. No actual rewrites are
|
|
// applied to the operations on success.
|
|
Analysis,
|
|
};
|
|
|
|
// This class converts operations to a given conversion target via a set of
|
|
// rewrite patterns. The conversion behaves differently depending on the
|
|
// conversion mode.
|
|
struct OperationConverter {
|
|
explicit OperationConverter(ConversionTarget &target,
|
|
const OwningRewritePatternList &patterns,
|
|
OpConversionMode mode,
|
|
DenseSet<Operation *> *legalizableOps = nullptr)
|
|
: opLegalizer(target, patterns), mode(mode),
|
|
legalizableOps(legalizableOps) {}
|
|
|
|
/// Converts the given operations to the conversion target.
|
|
LogicalResult convertOperations(ArrayRef<Operation *> ops,
|
|
TypeConverter *typeConverter);
|
|
|
|
private:
|
|
/// Converts an operation with the given rewriter.
|
|
LogicalResult convert(ConversionPatternRewriter &rewriter, Operation *op);
|
|
|
|
/// Converts the type signatures of the blocks nested within 'op'.
|
|
LogicalResult convertBlockSignatures(ConversionPatternRewriter &rewriter,
|
|
Operation *op);
|
|
|
|
/// The legalizer to use when converting operations.
|
|
OperationLegalizer opLegalizer;
|
|
|
|
/// The conversion mode to use when legalizing operations.
|
|
OpConversionMode mode;
|
|
|
|
/// A set of pre-existing operations that were found to be legalizable to the
|
|
/// target. This field is only used when mode == OpConversionMode::Analysis.
|
|
DenseSet<Operation *> *legalizableOps;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
LogicalResult
|
|
OperationConverter::convertBlockSignatures(ConversionPatternRewriter &rewriter,
|
|
Operation *op) {
|
|
// Check to see if type signatures need to be converted.
|
|
if (!rewriter.getImpl().argConverter.typeConverter)
|
|
return success();
|
|
|
|
for (auto ®ion : op->getRegions()) {
|
|
for (auto &block : llvm::make_early_inc_range(region))
|
|
if (failed(rewriter.getImpl().convertBlockSignature(&block)))
|
|
return failure();
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OperationConverter::convert(ConversionPatternRewriter &rewriter,
|
|
Operation *op) {
|
|
// Legalize the given operation.
|
|
if (failed(opLegalizer.legalize(op, rewriter))) {
|
|
// Handle the case of a failed conversion for each of the different modes.
|
|
/// Full conversions expect all operations to be converted.
|
|
if (mode == OpConversionMode::Full)
|
|
return op->emitError()
|
|
<< "failed to legalize operation '" << op->getName() << "'";
|
|
/// Partial conversions allow conversions to fail iff the operation was not
|
|
/// explicitly marked as illegal.
|
|
if (mode == OpConversionMode::Partial && opLegalizer.isIllegal(op))
|
|
return op->emitError()
|
|
<< "failed to legalize operation '" << op->getName()
|
|
<< "' that was explicitly marked illegal";
|
|
} else {
|
|
/// Analysis conversions don't fail if any operations fail to legalize,
|
|
/// they are only interested in the operations that were successfully
|
|
/// legalized.
|
|
if (mode == OpConversionMode::Analysis)
|
|
legalizableOps->insert(op);
|
|
|
|
// If legalization succeeded, convert the types any of the blocks within
|
|
// this operation.
|
|
if (failed(convertBlockSignatures(rewriter, op)))
|
|
return failure();
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult
|
|
OperationConverter::convertOperations(ArrayRef<Operation *> ops,
|
|
TypeConverter *typeConverter) {
|
|
if (ops.empty())
|
|
return success();
|
|
ConversionTarget &target = opLegalizer.getTarget();
|
|
|
|
/// Compute the set of operations and blocks to convert.
|
|
std::vector<Operation *> toConvert;
|
|
for (auto *op : ops) {
|
|
toConvert.emplace_back(op);
|
|
for (auto ®ion : op->getRegions())
|
|
if (failed(computeConversionSet(region.getBlocks(), region.getLoc(),
|
|
toConvert, &target)))
|
|
return failure();
|
|
}
|
|
|
|
// Convert each operation and discard rewrites on failure.
|
|
ConversionPatternRewriter rewriter(ops.front()->getContext(), typeConverter);
|
|
for (auto *op : toConvert)
|
|
if (failed(convert(rewriter, op)))
|
|
return rewriter.getImpl().discardRewrites(), failure();
|
|
|
|
// Otherwise, the body conversion succeeded. Apply rewrites if this is not an
|
|
// analysis conversion.
|
|
if (mode == OpConversionMode::Analysis)
|
|
rewriter.getImpl().discardRewrites();
|
|
else
|
|
rewriter.getImpl().applyRewrites();
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type Conversion
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Remap an input of the original signature with a new set of types. The
|
|
/// new types are appended to the new signature conversion.
|
|
void TypeConverter::SignatureConversion::addInputs(unsigned origInputNo,
|
|
ArrayRef<Type> types) {
|
|
assert(!types.empty() && "expected valid types");
|
|
remapInput(origInputNo, /*newInputNo=*/argTypes.size(), types.size());
|
|
addInputs(types);
|
|
}
|
|
|
|
/// Append new input types to the signature conversion, this should only be
|
|
/// used if the new types are not intended to remap an existing input.
|
|
void TypeConverter::SignatureConversion::addInputs(ArrayRef<Type> types) {
|
|
assert(!types.empty() &&
|
|
"1->0 type remappings don't need to be added explicitly");
|
|
argTypes.append(types.begin(), types.end());
|
|
}
|
|
|
|
/// Remap an input of the original signature with a range of types in the
|
|
/// new signature.
|
|
void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
|
|
unsigned newInputNo,
|
|
unsigned newInputCount) {
|
|
assert(!remappedInputs[origInputNo] && "input has already been remapped");
|
|
assert(newInputCount != 0 && "expected valid input count");
|
|
remappedInputs[origInputNo] =
|
|
InputMapping{newInputNo, newInputCount, /*replacementValue=*/nullptr};
|
|
}
|
|
|
|
/// Remap an input of the original signature to another `replacementValue`
|
|
/// value. This would make the signature converter drop this argument.
|
|
void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
|
|
Value replacementValue) {
|
|
assert(!remappedInputs[origInputNo] && "input has already been remapped");
|
|
remappedInputs[origInputNo] =
|
|
InputMapping{origInputNo, /*size=*/0, replacementValue};
|
|
}
|
|
|
|
/// This hooks allows for converting a type.
|
|
LogicalResult TypeConverter::convertType(Type t,
|
|
SmallVectorImpl<Type> &results) {
|
|
if (auto newT = convertType(t)) {
|
|
results.push_back(newT);
|
|
return success();
|
|
}
|
|
return failure();
|
|
}
|
|
|
|
/// Convert the given set of types, filling 'results' as necessary. This
|
|
/// returns failure if the conversion of any of the types fails, success
|
|
/// otherwise.
|
|
LogicalResult TypeConverter::convertTypes(ArrayRef<Type> types,
|
|
SmallVectorImpl<Type> &results) {
|
|
for (auto type : types)
|
|
if (failed(convertType(type, results)))
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
/// Return true if the given type is legal for this type converter, i.e. the
|
|
/// type converts to itself.
|
|
bool TypeConverter::isLegal(Type type) {
|
|
SmallVector<Type, 1> results;
|
|
return succeeded(convertType(type, results)) && results.size() == 1 &&
|
|
results.front() == type;
|
|
}
|
|
|
|
/// Return true if the inputs and outputs of the given function type are
|
|
/// legal.
|
|
bool TypeConverter::isSignatureLegal(FunctionType funcType) {
|
|
return llvm::all_of(
|
|
llvm::concat<const Type>(funcType.getInputs(), funcType.getResults()),
|
|
[this](Type type) { return isLegal(type); });
|
|
}
|
|
|
|
/// This hook allows for converting a specific argument of a signature.
|
|
LogicalResult TypeConverter::convertSignatureArg(unsigned inputNo, Type type,
|
|
SignatureConversion &result) {
|
|
// Try to convert the given input type.
|
|
SmallVector<Type, 1> convertedTypes;
|
|
if (failed(convertType(type, convertedTypes)))
|
|
return failure();
|
|
|
|
// If this argument is being dropped, there is nothing left to do.
|
|
if (convertedTypes.empty())
|
|
return success();
|
|
|
|
// Otherwise, add the new inputs.
|
|
result.addInputs(inputNo, convertedTypes);
|
|
return success();
|
|
}
|
|
|
|
/// Create a default conversion pattern that rewrites the type signature of a
|
|
/// FuncOp.
|
|
namespace {
|
|
struct FuncOpSignatureConversion : public OpConversionPattern<FuncOp> {
|
|
FuncOpSignatureConversion(MLIRContext *ctx, TypeConverter &converter)
|
|
: OpConversionPattern(ctx), converter(converter) {}
|
|
|
|
/// Hook for derived classes to implement combined matching and rewriting.
|
|
PatternMatchResult
|
|
matchAndRewrite(FuncOp funcOp, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
FunctionType type = funcOp.getType();
|
|
|
|
// Convert the original function arguments.
|
|
TypeConverter::SignatureConversion result(type.getNumInputs());
|
|
for (unsigned i = 0, e = type.getNumInputs(); i != e; ++i)
|
|
if (failed(converter.convertSignatureArg(i, type.getInput(i), result)))
|
|
return matchFailure();
|
|
|
|
// Convert the original function results.
|
|
SmallVector<Type, 1> convertedResults;
|
|
if (failed(converter.convertTypes(type.getResults(), convertedResults)))
|
|
return matchFailure();
|
|
|
|
// Update the function signature in-place.
|
|
rewriter.updateRootInPlace(funcOp, [&] {
|
|
funcOp.setType(FunctionType::get(result.getConvertedTypes(),
|
|
convertedResults, funcOp.getContext()));
|
|
rewriter.applySignatureConversion(&funcOp.getBody(), result);
|
|
});
|
|
return matchSuccess();
|
|
}
|
|
|
|
/// The type converter to use when rewriting the signature.
|
|
TypeConverter &converter;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
void mlir::populateFuncOpTypeConversionPattern(
|
|
OwningRewritePatternList &patterns, MLIRContext *ctx,
|
|
TypeConverter &converter) {
|
|
patterns.insert<FuncOpSignatureConversion>(ctx, converter);
|
|
}
|
|
|
|
/// This function converts the type signature of the given block, by invoking
|
|
/// 'convertSignatureArg' for each argument. This function should return a valid
|
|
/// conversion for the signature on success, None otherwise.
|
|
auto TypeConverter::convertBlockSignature(Block *block)
|
|
-> Optional<SignatureConversion> {
|
|
SignatureConversion conversion(block->getNumArguments());
|
|
for (unsigned i = 0, e = block->getNumArguments(); i != e; ++i)
|
|
if (failed(convertSignatureArg(i, block->getArgument(i).getType(),
|
|
conversion)))
|
|
return llvm::None;
|
|
return conversion;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConversionTarget
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Register a legality action for the given operation.
|
|
void ConversionTarget::setOpAction(OperationName op,
|
|
LegalizationAction action) {
|
|
legalOperations[op] = {action, /*isRecursivelyLegal=*/false, llvm::None};
|
|
}
|
|
|
|
/// Register a legality action for the given dialects.
|
|
void ConversionTarget::setDialectAction(ArrayRef<StringRef> dialectNames,
|
|
LegalizationAction action) {
|
|
for (StringRef dialect : dialectNames)
|
|
legalDialects[dialect] = action;
|
|
}
|
|
|
|
/// Get the legality action for the given operation.
|
|
auto ConversionTarget::getOpAction(OperationName op) const
|
|
-> Optional<LegalizationAction> {
|
|
Optional<LegalizationInfo> info = getOpInfo(op);
|
|
return info ? info->action : Optional<LegalizationAction>();
|
|
}
|
|
|
|
/// If the given operation instance is legal on this target, a structure
|
|
/// containing legality information is returned. If the operation is not legal,
|
|
/// None is returned.
|
|
auto ConversionTarget::isLegal(Operation *op) const
|
|
-> Optional<LegalOpDetails> {
|
|
Optional<LegalizationInfo> info = getOpInfo(op->getName());
|
|
if (!info)
|
|
return llvm::None;
|
|
|
|
// Returns true if this operation instance is known to be legal.
|
|
auto isOpLegal = [&] {
|
|
// Handle dynamic legality either with the provided legality function, or
|
|
// the default hook on the derived instance.
|
|
if (info->action == LegalizationAction::Dynamic)
|
|
return info->legalityFn ? (*info->legalityFn)(op)
|
|
: isDynamicallyLegal(op);
|
|
|
|
// Otherwise, the operation is only legal if it was marked 'Legal'.
|
|
return info->action == LegalizationAction::Legal;
|
|
};
|
|
if (!isOpLegal())
|
|
return llvm::None;
|
|
|
|
// This operation is legal, compute any additional legality information.
|
|
LegalOpDetails legalityDetails;
|
|
if (info->isRecursivelyLegal) {
|
|
auto legalityFnIt = opRecursiveLegalityFns.find(op->getName());
|
|
if (legalityFnIt != opRecursiveLegalityFns.end())
|
|
legalityDetails.isRecursivelyLegal = legalityFnIt->second(op);
|
|
else
|
|
legalityDetails.isRecursivelyLegal = true;
|
|
}
|
|
return legalityDetails;
|
|
}
|
|
|
|
/// Set the dynamic legality callback for the given operation.
|
|
void ConversionTarget::setLegalityCallback(
|
|
OperationName name, const DynamicLegalityCallbackFn &callback) {
|
|
assert(callback && "expected valid legality callback");
|
|
auto infoIt = legalOperations.find(name);
|
|
assert(infoIt != legalOperations.end() &&
|
|
infoIt->second.action == LegalizationAction::Dynamic &&
|
|
"expected operation to already be marked as dynamically legal");
|
|
infoIt->second.legalityFn = callback;
|
|
}
|
|
|
|
/// Set the recursive legality callback for the given operation and mark the
|
|
/// operation as recursively legal.
|
|
void ConversionTarget::markOpRecursivelyLegal(
|
|
OperationName name, const DynamicLegalityCallbackFn &callback) {
|
|
auto infoIt = legalOperations.find(name);
|
|
assert(infoIt != legalOperations.end() &&
|
|
infoIt->second.action != LegalizationAction::Illegal &&
|
|
"expected operation to already be marked as legal");
|
|
infoIt->second.isRecursivelyLegal = true;
|
|
if (callback)
|
|
opRecursiveLegalityFns[name] = callback;
|
|
else
|
|
opRecursiveLegalityFns.erase(name);
|
|
}
|
|
|
|
/// Set the dynamic legality callback for the given dialects.
|
|
void ConversionTarget::setLegalityCallback(
|
|
ArrayRef<StringRef> dialects, const DynamicLegalityCallbackFn &callback) {
|
|
assert(callback && "expected valid legality callback");
|
|
for (StringRef dialect : dialects)
|
|
dialectLegalityFns[dialect] = callback;
|
|
}
|
|
|
|
/// Get the legalization information for the given operation.
|
|
auto ConversionTarget::getOpInfo(OperationName op) const
|
|
-> Optional<LegalizationInfo> {
|
|
// Check for info for this specific operation.
|
|
auto it = legalOperations.find(op);
|
|
if (it != legalOperations.end())
|
|
return it->second;
|
|
// Check for info for the parent dialect.
|
|
auto dialectIt = legalDialects.find(op.getDialect());
|
|
if (dialectIt != legalDialects.end()) {
|
|
Optional<DynamicLegalityCallbackFn> callback;
|
|
auto dialectFn = dialectLegalityFns.find(op.getDialect());
|
|
if (dialectFn != dialectLegalityFns.end())
|
|
callback = dialectFn->second;
|
|
return LegalizationInfo{dialectIt->second, /*isRecursivelyLegal=*/false,
|
|
callback};
|
|
}
|
|
// Otherwise, check if we mark unknown operations as dynamic.
|
|
if (unknownOpsDynamicallyLegal)
|
|
return LegalizationInfo{LegalizationAction::Dynamic,
|
|
/*isRecursivelyLegal=*/false, unknownLegalityFn};
|
|
return llvm::None;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Op Conversion Entry Points
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Apply a partial conversion on the given operations, and all nested
|
|
/// operations. This method converts as many operations to the target as
|
|
/// possible, ignoring operations that failed to legalize.
|
|
LogicalResult mlir::applyPartialConversion(
|
|
ArrayRef<Operation *> ops, ConversionTarget &target,
|
|
const OwningRewritePatternList &patterns, TypeConverter *converter) {
|
|
OperationConverter opConverter(target, patterns, OpConversionMode::Partial);
|
|
return opConverter.convertOperations(ops, converter);
|
|
}
|
|
LogicalResult
|
|
mlir::applyPartialConversion(Operation *op, ConversionTarget &target,
|
|
const OwningRewritePatternList &patterns,
|
|
TypeConverter *converter) {
|
|
return applyPartialConversion(llvm::makeArrayRef(op), target, patterns,
|
|
converter);
|
|
}
|
|
|
|
/// Apply a complete conversion on the given operations, and all nested
|
|
/// operations. This method will return failure if the conversion of any
|
|
/// operation fails.
|
|
LogicalResult
|
|
mlir::applyFullConversion(ArrayRef<Operation *> ops, ConversionTarget &target,
|
|
const OwningRewritePatternList &patterns,
|
|
TypeConverter *converter) {
|
|
OperationConverter opConverter(target, patterns, OpConversionMode::Full);
|
|
return opConverter.convertOperations(ops, converter);
|
|
}
|
|
LogicalResult
|
|
mlir::applyFullConversion(Operation *op, ConversionTarget &target,
|
|
const OwningRewritePatternList &patterns,
|
|
TypeConverter *converter) {
|
|
return applyFullConversion(llvm::makeArrayRef(op), target, patterns,
|
|
converter);
|
|
}
|
|
|
|
/// Apply an analysis conversion on the given operations, and all nested
|
|
/// operations. This method analyzes which operations would be successfully
|
|
/// converted to the target if a conversion was applied. All operations that
|
|
/// were found to be legalizable to the given 'target' are placed within the
|
|
/// provided 'convertedOps' set; note that no actual rewrites are applied to the
|
|
/// operations on success and only pre-existing operations are added to the set.
|
|
LogicalResult mlir::applyAnalysisConversion(
|
|
ArrayRef<Operation *> ops, ConversionTarget &target,
|
|
const OwningRewritePatternList &patterns,
|
|
DenseSet<Operation *> &convertedOps, TypeConverter *converter) {
|
|
OperationConverter opConverter(target, patterns, OpConversionMode::Analysis,
|
|
&convertedOps);
|
|
return opConverter.convertOperations(ops, converter);
|
|
}
|
|
LogicalResult
|
|
mlir::applyAnalysisConversion(Operation *op, ConversionTarget &target,
|
|
const OwningRewritePatternList &patterns,
|
|
DenseSet<Operation *> &convertedOps,
|
|
TypeConverter *converter) {
|
|
return applyAnalysisConversion(llvm::makeArrayRef(op), target, patterns,
|
|
convertedOps, converter);
|
|
}
|