forked from OSchip/llvm-project
263 lines
9.3 KiB
C++
263 lines
9.3 KiB
C++
//===- CSE.cpp - Common Sub-expression Elimination ------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This transformation pass performs a simple common sub-expression elimination
|
|
// algorithm on operations within a function.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Analysis/Dominance.h"
|
|
#include "mlir/IR/Attributes.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/Function.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Support/Functional.h"
|
|
#include "mlir/Transforms/Passes.h"
|
|
#include "mlir/Transforms/Utils.h"
|
|
#include "llvm/ADT/DenseMapInfo.h"
|
|
#include "llvm/ADT/Hashing.h"
|
|
#include "llvm/ADT/ScopedHashTable.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/RecyclingAllocator.h"
|
|
#include <deque>
|
|
using namespace mlir;
|
|
|
|
namespace {
|
|
// TODO(riverriddle) Handle commutative operations.
|
|
struct SimpleOperationInfo : public llvm::DenseMapInfo<Operation *> {
|
|
static unsigned getHashValue(const Operation *opC) {
|
|
auto *op = const_cast<Operation *>(opC);
|
|
// Hash the operations based upon their:
|
|
// - Operation Name
|
|
// - Attributes
|
|
// - Result Types
|
|
// - Operands
|
|
return llvm::hash_combine(
|
|
op->getName(), op->getAttrList().getDictionary(), op->getResultTypes(),
|
|
llvm::hash_combine_range(op->operand_begin(), op->operand_end()));
|
|
}
|
|
static bool isEqual(const Operation *lhsC, const Operation *rhsC) {
|
|
auto *lhs = const_cast<Operation *>(lhsC);
|
|
auto *rhs = const_cast<Operation *>(rhsC);
|
|
if (lhs == rhs)
|
|
return true;
|
|
if (lhs == getTombstoneKey() || lhs == getEmptyKey() ||
|
|
rhs == getTombstoneKey() || rhs == getEmptyKey())
|
|
return false;
|
|
|
|
// Compare the operation name.
|
|
if (lhs->getName() != rhs->getName())
|
|
return false;
|
|
// Check operand and result type counts.
|
|
if (lhs->getNumOperands() != rhs->getNumOperands() ||
|
|
lhs->getNumResults() != rhs->getNumResults())
|
|
return false;
|
|
// Compare attributes.
|
|
if (lhs->getAttrList() != rhs->getAttrList())
|
|
return false;
|
|
// Compare operands.
|
|
if (!std::equal(lhs->operand_begin(), lhs->operand_end(),
|
|
rhs->operand_begin()))
|
|
return false;
|
|
// Compare result types.
|
|
return std::equal(lhs->result_type_begin(), lhs->result_type_end(),
|
|
rhs->result_type_begin());
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
namespace {
|
|
/// Simple common sub-expression elimination.
|
|
struct CSE : public OperationPass<CSE> {
|
|
CSE() = default;
|
|
CSE(const CSE &) {}
|
|
|
|
/// Shared implementation of operation elimination and scoped map definitions.
|
|
using AllocatorTy = llvm::RecyclingAllocator<
|
|
llvm::BumpPtrAllocator,
|
|
llvm::ScopedHashTableVal<Operation *, Operation *>>;
|
|
using ScopedMapTy = llvm::ScopedHashTable<Operation *, Operation *,
|
|
SimpleOperationInfo, AllocatorTy>;
|
|
|
|
/// Represents a single entry in the depth first traversal of a CFG.
|
|
struct CFGStackNode {
|
|
CFGStackNode(ScopedMapTy &knownValues, DominanceInfoNode *node)
|
|
: scope(knownValues), node(node), childIterator(node->begin()),
|
|
processed(false) {}
|
|
|
|
/// Scope for the known values.
|
|
ScopedMapTy::ScopeTy scope;
|
|
|
|
DominanceInfoNode *node;
|
|
DominanceInfoNode::iterator childIterator;
|
|
|
|
/// If this node has been fully processed yet or not.
|
|
bool processed;
|
|
};
|
|
|
|
/// Attempt to eliminate a redundant operation. Returns success if the
|
|
/// operation was marked for removal, failure otherwise.
|
|
LogicalResult simplifyOperation(ScopedMapTy &knownValues, Operation *op);
|
|
|
|
void simplifyBlock(ScopedMapTy &knownValues, DominanceInfo &domInfo,
|
|
Block *bb);
|
|
void simplifyRegion(ScopedMapTy &knownValues, DominanceInfo &domInfo,
|
|
Region ®ion);
|
|
|
|
void runOnOperation() override;
|
|
|
|
private:
|
|
/// Operations marked as dead and to be erased.
|
|
std::vector<Operation *> opsToErase;
|
|
|
|
/// Statistics for CSE.
|
|
Statistic numCSE{this, "num-cse'd", "Number of operations CSE'd"};
|
|
Statistic numDCE{this, "num-dce'd", "Number of operations trivially DCE'd"};
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// Attempt to eliminate a redundant operation.
|
|
LogicalResult CSE::simplifyOperation(ScopedMapTy &knownValues, Operation *op) {
|
|
// Don't simplify operations with nested blocks. We don't currently model
|
|
// equality comparisons correctly among other things. It is also unclear
|
|
// whether we would want to CSE such operations.
|
|
if (op->getNumRegions() != 0)
|
|
return failure();
|
|
|
|
// TODO(riverriddle) We currently only eliminate non side-effecting
|
|
// operations.
|
|
if (!op->hasNoSideEffect())
|
|
return failure();
|
|
|
|
// If the operation is already trivially dead just add it to the erase list.
|
|
if (op->use_empty()) {
|
|
opsToErase.push_back(op);
|
|
++numDCE;
|
|
return success();
|
|
}
|
|
|
|
// Look for an existing definition for the operation.
|
|
if (auto *existing = knownValues.lookup(op)) {
|
|
// If we find one then replace all uses of the current operation with the
|
|
// existing one and mark it for deletion.
|
|
op->replaceAllUsesWith(existing);
|
|
opsToErase.push_back(op);
|
|
|
|
// If the existing operation has an unknown location and the current
|
|
// operation doesn't, then set the existing op's location to that of the
|
|
// current op.
|
|
if (existing->getLoc().isa<UnknownLoc>() &&
|
|
!op->getLoc().isa<UnknownLoc>()) {
|
|
existing->setLoc(op->getLoc());
|
|
}
|
|
|
|
++numCSE;
|
|
return success();
|
|
}
|
|
|
|
// Otherwise, we add this operation to the known values map.
|
|
knownValues.insert(op, op);
|
|
return failure();
|
|
}
|
|
|
|
void CSE::simplifyBlock(ScopedMapTy &knownValues, DominanceInfo &domInfo,
|
|
Block *bb) {
|
|
for (auto &inst : *bb) {
|
|
// If the operation is simplified, we don't process any held regions.
|
|
if (succeeded(simplifyOperation(knownValues, &inst)))
|
|
continue;
|
|
|
|
// If this operation is isolated above, we can't process nested regions with
|
|
// the given 'knownValues' map. This would cause the insertion of implicit
|
|
// captures in explicit capture only regions.
|
|
if (!inst.isRegistered() || inst.isKnownIsolatedFromAbove()) {
|
|
ScopedMapTy nestedKnownValues;
|
|
for (auto ®ion : inst.getRegions())
|
|
simplifyRegion(nestedKnownValues, domInfo, region);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, process nested regions normally.
|
|
for (auto ®ion : inst.getRegions())
|
|
simplifyRegion(knownValues, domInfo, region);
|
|
}
|
|
}
|
|
|
|
void CSE::simplifyRegion(ScopedMapTy &knownValues, DominanceInfo &domInfo,
|
|
Region ®ion) {
|
|
// If the region is empty there is nothing to do.
|
|
if (region.empty())
|
|
return;
|
|
|
|
// If the region only contains one block, then simplify it directly.
|
|
if (std::next(region.begin()) == region.end()) {
|
|
ScopedMapTy::ScopeTy scope(knownValues);
|
|
simplifyBlock(knownValues, domInfo, ®ion.front());
|
|
return;
|
|
}
|
|
|
|
// Note, deque is being used here because there was significant performance
|
|
// gains over vector when the container becomes very large due to the
|
|
// specific access patterns. If/when these performance issues are no
|
|
// longer a problem we can change this to vector. For more information see
|
|
// the llvm mailing list discussion on this:
|
|
// http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
|
|
std::deque<std::unique_ptr<CFGStackNode>> stack;
|
|
|
|
// Process the nodes of the dom tree for this region.
|
|
stack.emplace_back(std::make_unique<CFGStackNode>(
|
|
knownValues, domInfo.getRootNode(®ion)));
|
|
|
|
while (!stack.empty()) {
|
|
auto ¤tNode = stack.back();
|
|
|
|
// Check to see if we need to process this node.
|
|
if (!currentNode->processed) {
|
|
currentNode->processed = true;
|
|
simplifyBlock(knownValues, domInfo, currentNode->node->getBlock());
|
|
}
|
|
|
|
// Otherwise, check to see if we need to process a child node.
|
|
if (currentNode->childIterator != currentNode->node->end()) {
|
|
auto *childNode = *(currentNode->childIterator++);
|
|
stack.emplace_back(
|
|
std::make_unique<CFGStackNode>(knownValues, childNode));
|
|
} else {
|
|
// Finally, if the node and all of its children have been processed
|
|
// then we delete the node.
|
|
stack.pop_back();
|
|
}
|
|
}
|
|
}
|
|
|
|
void CSE::runOnOperation() {
|
|
/// A scoped hash table of defining operations within a region.
|
|
ScopedMapTy knownValues;
|
|
|
|
DominanceInfo &domInfo = getAnalysis<DominanceInfo>();
|
|
for (Region ®ion : getOperation()->getRegions())
|
|
simplifyRegion(knownValues, domInfo, region);
|
|
|
|
// If no operations were erased, then we mark all analyses as preserved.
|
|
if (opsToErase.empty())
|
|
return markAllAnalysesPreserved();
|
|
|
|
/// Erase any operations that were marked as dead during simplification.
|
|
for (auto *op : opsToErase)
|
|
op->erase();
|
|
opsToErase.clear();
|
|
|
|
// We currently don't remove region operations, so mark dominance as
|
|
// preserved.
|
|
markAnalysesPreserved<DominanceInfo, PostDominanceInfo>();
|
|
}
|
|
|
|
std::unique_ptr<Pass> mlir::createCSEPass() { return std::make_unique<CSE>(); }
|
|
|
|
static PassRegistration<CSE> pass("cse", "Eliminate common sub-expressions");
|