llvm-project/polly
Hongbin Zheng fe11e287b4 BlockGenerator: Simplify the old value searching code.
Orignally, we first test if a ValueMap contains a Value, and than use the
index operator to get the corresponding new value. This requires the ValueMap
to lookup the key (i.e. the old value) twice.

Now, we directly use the "lookup" function provided by DenseMap to implement
the same functionality.

llvm-svn: 185260
2013-06-29 13:22:15 +00:00
..
autoconf 'chmod -x' on files that do not need the executable bits 2012-12-29 15:09:03 +00:00
cmake autoconf/cmake: Always require isl code generation. 2012-10-21 21:48:21 +00:00
docs
include TempScop: (Partial) Implement the printDetail function. 2013-06-29 07:00:14 +00:00
lib BlockGenerator: Simplify the old value searching code. 2013-06-29 13:22:15 +00:00
test TempScop: (Partial) Implement the printDetail function. 2013-06-29 07:00:14 +00:00
tools Reformat with clang-format 2013-05-07 07:30:56 +00:00
utils Update CLooG such that the isl test cases are really up to date 2013-06-24 07:38:29 +00:00
www Remove .htaccess file 2013-05-21 11:58:47 +00:00
.gitattributes Add the git attributes file. 2013-06-29 07:21:57 +00:00
CMakeLists.txt cmake: Add target to reformat with clang-format 2013-05-07 07:30:31 +00:00
CREDITS.txt (Test commit for polly) 2011-07-16 13:30:03 +00:00
LICENSE.txt Update the copyright coredits -- Happy new year 2013! 2013-01-01 10:00:19 +00:00
Makefile Revert "Fix a bug introduced by r153739: We are not able to provide the correct" 2012-04-11 07:43:13 +00:00
Makefile.common.in 'chmod -x' on files that do not need the executable bits 2012-12-29 15:09:03 +00:00
Makefile.config.in 'chmod -x' on files that do not need the executable bits 2012-12-29 15:09:03 +00:00
README Trivial change to the README, mainly to test commit access. 2012-10-09 04:59:42 +00:00
configure do not require cloog from configure 2012-11-26 23:03:41 +00:00

README

Polly - Polyhedral optimizations for LLVM
-----------------------------------------
http://polly.llvm.org/

Polly uses a mathematical representation, the polyhedral model, to represent and
transform loops and other control flow structures. Using an abstract
representation it is possible to reason about transformations in a more general
way and to use highly optimized linear programming libraries to figure out the
optimal loop structure. These transformations can be used to do constant
propagation through arrays, remove dead loop iterations, optimize loops for
cache locality, optimize arrays, apply advanced automatic parallelization, drive
vectorization, or they can be used to do software pipelining.