forked from OSchip/llvm-project
9314 lines
372 KiB
C++
9314 lines
372 KiB
C++
//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the PPCISelLowering class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PPCISelLowering.h"
|
|
#include "MCTargetDesc/PPCPredicates.h"
|
|
#include "PPCMachineFunctionInfo.h"
|
|
#include "PPCPerfectShuffle.h"
|
|
#include "PPCTargetMachine.h"
|
|
#include "PPCTargetObjectFile.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/CodeGen/CallingConvLower.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
using namespace llvm;
|
|
|
|
// FIXME: Remove this once soft-float is supported.
|
|
static cl::opt<bool> DisablePPCFloatInVariadic("disable-ppc-float-in-variadic",
|
|
cl::desc("disable saving float registers for va_start on PPC"), cl::Hidden);
|
|
|
|
static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
|
|
cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
|
|
|
|
static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
|
|
cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
|
|
|
|
static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
|
|
cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
|
|
|
|
// FIXME: Remove this once the bug has been fixed!
|
|
extern cl::opt<bool> ANDIGlueBug;
|
|
|
|
PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM)
|
|
: TargetLowering(TM),
|
|
Subtarget(*TM.getSubtargetImpl()) {
|
|
setPow2SDivIsCheap();
|
|
|
|
// Use _setjmp/_longjmp instead of setjmp/longjmp.
|
|
setUseUnderscoreSetJmp(true);
|
|
setUseUnderscoreLongJmp(true);
|
|
|
|
// On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
|
|
// arguments are at least 4/8 bytes aligned.
|
|
bool isPPC64 = Subtarget.isPPC64();
|
|
setMinStackArgumentAlignment(isPPC64 ? 8:4);
|
|
|
|
// Set up the register classes.
|
|
addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
|
|
addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
|
|
addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
|
|
|
|
// PowerPC has an i16 but no i8 (or i1) SEXTLOAD
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
|
|
|
|
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
|
|
|
|
// PowerPC has pre-inc load and store's.
|
|
setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
|
|
setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
|
|
setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
|
|
setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
|
|
setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
|
|
setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
|
|
setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
|
|
setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
|
|
setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
|
|
setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
|
|
|
|
if (Subtarget.useCRBits()) {
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
|
|
|
|
if (isPPC64 || Subtarget.hasFPCVT()) {
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
|
|
AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
|
|
isPPC64 ? MVT::i64 : MVT::i32);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
|
|
AddPromotedToType (ISD::UINT_TO_FP, MVT::i1,
|
|
isPPC64 ? MVT::i64 : MVT::i32);
|
|
} else {
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
|
|
}
|
|
|
|
// PowerPC does not support direct load / store of condition registers
|
|
setOperationAction(ISD::LOAD, MVT::i1, Custom);
|
|
setOperationAction(ISD::STORE, MVT::i1, Custom);
|
|
|
|
// FIXME: Remove this once the ANDI glue bug is fixed:
|
|
if (ANDIGlueBug)
|
|
setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
|
|
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
|
|
setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
|
|
setTruncStoreAction(MVT::i64, MVT::i1, Expand);
|
|
setTruncStoreAction(MVT::i32, MVT::i1, Expand);
|
|
setTruncStoreAction(MVT::i16, MVT::i1, Expand);
|
|
setTruncStoreAction(MVT::i8, MVT::i1, Expand);
|
|
|
|
addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
|
|
}
|
|
|
|
// This is used in the ppcf128->int sequence. Note it has different semantics
|
|
// from FP_ROUND: that rounds to nearest, this rounds to zero.
|
|
setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
|
|
|
|
// We do not currently implement these libm ops for PowerPC.
|
|
setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
|
|
setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand);
|
|
setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
|
|
setOperationAction(ISD::FRINT, MVT::ppcf128, Expand);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
|
|
setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
|
|
|
|
// PowerPC has no SREM/UREM instructions
|
|
setOperationAction(ISD::SREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::UREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::SREM, MVT::i64, Expand);
|
|
setOperationAction(ISD::UREM, MVT::i64, Expand);
|
|
|
|
// Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
|
|
setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
|
|
setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
|
|
setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
|
|
setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
|
|
setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
|
|
setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
|
|
|
|
// We don't support sin/cos/sqrt/fmod/pow
|
|
setOperationAction(ISD::FSIN , MVT::f64, Expand);
|
|
setOperationAction(ISD::FCOS , MVT::f64, Expand);
|
|
setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
|
|
setOperationAction(ISD::FREM , MVT::f64, Expand);
|
|
setOperationAction(ISD::FPOW , MVT::f64, Expand);
|
|
setOperationAction(ISD::FMA , MVT::f64, Legal);
|
|
setOperationAction(ISD::FSIN , MVT::f32, Expand);
|
|
setOperationAction(ISD::FCOS , MVT::f32, Expand);
|
|
setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
|
|
setOperationAction(ISD::FREM , MVT::f32, Expand);
|
|
setOperationAction(ISD::FPOW , MVT::f32, Expand);
|
|
setOperationAction(ISD::FMA , MVT::f32, Legal);
|
|
|
|
setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
|
|
|
|
// If we're enabling GP optimizations, use hardware square root
|
|
if (!Subtarget.hasFSQRT() &&
|
|
!(TM.Options.UnsafeFPMath &&
|
|
Subtarget.hasFRSQRTE() && Subtarget.hasFRE()))
|
|
setOperationAction(ISD::FSQRT, MVT::f64, Expand);
|
|
|
|
if (!Subtarget.hasFSQRT() &&
|
|
!(TM.Options.UnsafeFPMath &&
|
|
Subtarget.hasFRSQRTES() && Subtarget.hasFRES()))
|
|
setOperationAction(ISD::FSQRT, MVT::f32, Expand);
|
|
|
|
if (Subtarget.hasFCPSGN()) {
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
|
|
} else {
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
|
|
}
|
|
|
|
if (Subtarget.hasFPRND()) {
|
|
setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
|
|
setOperationAction(ISD::FCEIL, MVT::f64, Legal);
|
|
setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
|
|
setOperationAction(ISD::FROUND, MVT::f64, Legal);
|
|
|
|
setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
|
|
setOperationAction(ISD::FCEIL, MVT::f32, Legal);
|
|
setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
|
|
setOperationAction(ISD::FROUND, MVT::f32, Legal);
|
|
}
|
|
|
|
// PowerPC does not have BSWAP, CTPOP or CTTZ
|
|
setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
|
|
setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
|
|
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
|
|
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
|
|
setOperationAction(ISD::BSWAP, MVT::i64 , Expand);
|
|
setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
|
|
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
|
|
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
|
|
|
|
if (Subtarget.hasPOPCNTD()) {
|
|
setOperationAction(ISD::CTPOP, MVT::i32 , Legal);
|
|
setOperationAction(ISD::CTPOP, MVT::i64 , Legal);
|
|
} else {
|
|
setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
|
|
setOperationAction(ISD::CTPOP, MVT::i64 , Expand);
|
|
}
|
|
|
|
// PowerPC does not have ROTR
|
|
setOperationAction(ISD::ROTR, MVT::i32 , Expand);
|
|
setOperationAction(ISD::ROTR, MVT::i64 , Expand);
|
|
|
|
if (!Subtarget.useCRBits()) {
|
|
// PowerPC does not have Select
|
|
setOperationAction(ISD::SELECT, MVT::i32, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::i64, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::f32, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::f64, Expand);
|
|
}
|
|
|
|
// PowerPC wants to turn select_cc of FP into fsel when possible.
|
|
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
|
|
|
|
// PowerPC wants to optimize integer setcc a bit
|
|
if (!Subtarget.useCRBits())
|
|
setOperationAction(ISD::SETCC, MVT::i32, Custom);
|
|
|
|
// PowerPC does not have BRCOND which requires SetCC
|
|
if (!Subtarget.useCRBits())
|
|
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
|
|
|
|
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
|
|
|
|
// PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
|
|
|
|
// PowerPC does not have [U|S]INT_TO_FP
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
|
|
|
|
setOperationAction(ISD::BITCAST, MVT::f32, Expand);
|
|
setOperationAction(ISD::BITCAST, MVT::i32, Expand);
|
|
setOperationAction(ISD::BITCAST, MVT::i64, Expand);
|
|
setOperationAction(ISD::BITCAST, MVT::f64, Expand);
|
|
|
|
// We cannot sextinreg(i1). Expand to shifts.
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
|
|
|
|
// NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
|
|
// SjLj exception handling but a light-weight setjmp/longjmp replacement to
|
|
// support continuation, user-level threading, and etc.. As a result, no
|
|
// other SjLj exception interfaces are implemented and please don't build
|
|
// your own exception handling based on them.
|
|
// LLVM/Clang supports zero-cost DWARF exception handling.
|
|
setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
|
|
setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
|
|
|
|
// We want to legalize GlobalAddress and ConstantPool nodes into the
|
|
// appropriate instructions to materialize the address.
|
|
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
|
|
setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
|
|
setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
|
|
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
|
|
setOperationAction(ISD::JumpTable, MVT::i32, Custom);
|
|
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
|
|
setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
|
|
setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
|
|
setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
|
|
setOperationAction(ISD::JumpTable, MVT::i64, Custom);
|
|
|
|
// TRAP is legal.
|
|
setOperationAction(ISD::TRAP, MVT::Other, Legal);
|
|
|
|
// TRAMPOLINE is custom lowered.
|
|
setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
|
|
setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
|
|
|
|
// VASTART needs to be custom lowered to use the VarArgsFrameIndex
|
|
setOperationAction(ISD::VASTART , MVT::Other, Custom);
|
|
|
|
if (Subtarget.isSVR4ABI()) {
|
|
if (isPPC64) {
|
|
// VAARG always uses double-word chunks, so promote anything smaller.
|
|
setOperationAction(ISD::VAARG, MVT::i1, Promote);
|
|
AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
|
|
setOperationAction(ISD::VAARG, MVT::i8, Promote);
|
|
AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
|
|
setOperationAction(ISD::VAARG, MVT::i16, Promote);
|
|
AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
|
|
setOperationAction(ISD::VAARG, MVT::i32, Promote);
|
|
AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
|
|
setOperationAction(ISD::VAARG, MVT::Other, Expand);
|
|
} else {
|
|
// VAARG is custom lowered with the 32-bit SVR4 ABI.
|
|
setOperationAction(ISD::VAARG, MVT::Other, Custom);
|
|
setOperationAction(ISD::VAARG, MVT::i64, Custom);
|
|
}
|
|
} else
|
|
setOperationAction(ISD::VAARG, MVT::Other, Expand);
|
|
|
|
if (Subtarget.isSVR4ABI() && !isPPC64)
|
|
// VACOPY is custom lowered with the 32-bit SVR4 ABI.
|
|
setOperationAction(ISD::VACOPY , MVT::Other, Custom);
|
|
else
|
|
setOperationAction(ISD::VACOPY , MVT::Other, Expand);
|
|
|
|
// Use the default implementation.
|
|
setOperationAction(ISD::VAEND , MVT::Other, Expand);
|
|
setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
|
|
setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom);
|
|
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
|
|
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom);
|
|
|
|
// We want to custom lower some of our intrinsics.
|
|
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
|
|
|
|
// To handle counter-based loop conditions.
|
|
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
|
|
|
|
// Comparisons that require checking two conditions.
|
|
setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
|
|
setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
|
|
setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
|
|
setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
|
|
setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
|
|
setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
|
|
setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
|
|
setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
|
|
setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
|
|
setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
|
|
setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
|
|
setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
|
|
|
|
if (Subtarget.has64BitSupport()) {
|
|
// They also have instructions for converting between i64 and fp.
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
|
|
// This is just the low 32 bits of a (signed) fp->i64 conversion.
|
|
// We cannot do this with Promote because i64 is not a legal type.
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
|
|
|
|
if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
|
|
} else {
|
|
// PowerPC does not have FP_TO_UINT on 32-bit implementations.
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
|
|
}
|
|
|
|
// With the instructions enabled under FPCVT, we can do everything.
|
|
if (Subtarget.hasFPCVT()) {
|
|
if (Subtarget.has64BitSupport()) {
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
|
|
}
|
|
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
|
|
}
|
|
|
|
if (Subtarget.use64BitRegs()) {
|
|
// 64-bit PowerPC implementations can support i64 types directly
|
|
addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
|
|
// BUILD_PAIR can't be handled natively, and should be expanded to shl/or
|
|
setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
|
|
// 64-bit PowerPC wants to expand i128 shifts itself.
|
|
setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
|
|
setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
|
|
setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
|
|
} else {
|
|
// 32-bit PowerPC wants to expand i64 shifts itself.
|
|
setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
|
|
setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
|
|
setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
|
|
}
|
|
|
|
if (Subtarget.hasAltivec()) {
|
|
// First set operation action for all vector types to expand. Then we
|
|
// will selectively turn on ones that can be effectively codegen'd.
|
|
for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
|
|
i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
|
|
MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
|
|
|
|
// add/sub are legal for all supported vector VT's.
|
|
setOperationAction(ISD::ADD , VT, Legal);
|
|
setOperationAction(ISD::SUB , VT, Legal);
|
|
|
|
// We promote all shuffles to v16i8.
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
|
|
AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
|
|
|
|
// We promote all non-typed operations to v4i32.
|
|
setOperationAction(ISD::AND , VT, Promote);
|
|
AddPromotedToType (ISD::AND , VT, MVT::v4i32);
|
|
setOperationAction(ISD::OR , VT, Promote);
|
|
AddPromotedToType (ISD::OR , VT, MVT::v4i32);
|
|
setOperationAction(ISD::XOR , VT, Promote);
|
|
AddPromotedToType (ISD::XOR , VT, MVT::v4i32);
|
|
setOperationAction(ISD::LOAD , VT, Promote);
|
|
AddPromotedToType (ISD::LOAD , VT, MVT::v4i32);
|
|
setOperationAction(ISD::SELECT, VT, Promote);
|
|
AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
|
|
setOperationAction(ISD::STORE, VT, Promote);
|
|
AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
|
|
|
|
// No other operations are legal.
|
|
setOperationAction(ISD::MUL , VT, Expand);
|
|
setOperationAction(ISD::SDIV, VT, Expand);
|
|
setOperationAction(ISD::SREM, VT, Expand);
|
|
setOperationAction(ISD::UDIV, VT, Expand);
|
|
setOperationAction(ISD::UREM, VT, Expand);
|
|
setOperationAction(ISD::FDIV, VT, Expand);
|
|
setOperationAction(ISD::FREM, VT, Expand);
|
|
setOperationAction(ISD::FNEG, VT, Expand);
|
|
setOperationAction(ISD::FSQRT, VT, Expand);
|
|
setOperationAction(ISD::FLOG, VT, Expand);
|
|
setOperationAction(ISD::FLOG10, VT, Expand);
|
|
setOperationAction(ISD::FLOG2, VT, Expand);
|
|
setOperationAction(ISD::FEXP, VT, Expand);
|
|
setOperationAction(ISD::FEXP2, VT, Expand);
|
|
setOperationAction(ISD::FSIN, VT, Expand);
|
|
setOperationAction(ISD::FCOS, VT, Expand);
|
|
setOperationAction(ISD::FABS, VT, Expand);
|
|
setOperationAction(ISD::FPOWI, VT, Expand);
|
|
setOperationAction(ISD::FFLOOR, VT, Expand);
|
|
setOperationAction(ISD::FCEIL, VT, Expand);
|
|
setOperationAction(ISD::FTRUNC, VT, Expand);
|
|
setOperationAction(ISD::FRINT, VT, Expand);
|
|
setOperationAction(ISD::FNEARBYINT, VT, Expand);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
|
|
setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
|
|
setOperationAction(ISD::MULHU, VT, Expand);
|
|
setOperationAction(ISD::MULHS, VT, Expand);
|
|
setOperationAction(ISD::UMUL_LOHI, VT, Expand);
|
|
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
|
|
setOperationAction(ISD::UDIVREM, VT, Expand);
|
|
setOperationAction(ISD::SDIVREM, VT, Expand);
|
|
setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
|
|
setOperationAction(ISD::FPOW, VT, Expand);
|
|
setOperationAction(ISD::BSWAP, VT, Expand);
|
|
setOperationAction(ISD::CTPOP, VT, Expand);
|
|
setOperationAction(ISD::CTLZ, VT, Expand);
|
|
setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
|
|
setOperationAction(ISD::CTTZ, VT, Expand);
|
|
setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
|
|
setOperationAction(ISD::VSELECT, VT, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
|
|
|
|
for (unsigned j = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
|
|
j <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++j) {
|
|
MVT::SimpleValueType InnerVT = (MVT::SimpleValueType)j;
|
|
setTruncStoreAction(VT, InnerVT, Expand);
|
|
}
|
|
setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
|
|
setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, VT, Expand);
|
|
}
|
|
|
|
// We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
|
|
// with merges, splats, etc.
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
|
|
|
|
setOperationAction(ISD::AND , MVT::v4i32, Legal);
|
|
setOperationAction(ISD::OR , MVT::v4i32, Legal);
|
|
setOperationAction(ISD::XOR , MVT::v4i32, Legal);
|
|
setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
|
|
setOperationAction(ISD::SELECT, MVT::v4i32,
|
|
Subtarget.useCRBits() ? Legal : Expand);
|
|
setOperationAction(ISD::STORE , MVT::v4i32, Legal);
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
|
|
setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
|
|
setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
|
|
setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
|
|
|
|
addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
|
|
addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
|
|
addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
|
|
addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
|
|
|
|
setOperationAction(ISD::MUL, MVT::v4f32, Legal);
|
|
setOperationAction(ISD::FMA, MVT::v4f32, Legal);
|
|
|
|
if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
|
|
setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
|
|
setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
|
|
}
|
|
|
|
setOperationAction(ISD::MUL, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::MUL, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::MUL, MVT::v16i8, Custom);
|
|
|
|
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
|
|
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
|
|
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
|
|
|
|
// Altivec does not contain unordered floating-point compare instructions
|
|
setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
|
|
setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
|
|
setCondCodeAction(ISD::SETO, MVT::v4f32, Expand);
|
|
setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
|
|
|
|
if (Subtarget.hasVSX()) {
|
|
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
|
|
|
|
setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
|
|
setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
|
|
setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
|
|
setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
|
|
|
|
setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
|
|
|
|
setOperationAction(ISD::MUL, MVT::v2f64, Legal);
|
|
setOperationAction(ISD::FMA, MVT::v2f64, Legal);
|
|
|
|
setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
|
|
setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
|
|
|
|
setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
|
|
setOperationAction(ISD::VSELECT, MVT::v8i16, Legal);
|
|
setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
|
|
setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
|
|
setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
|
|
|
|
// Share the Altivec comparison restrictions.
|
|
setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
|
|
setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
|
|
setCondCodeAction(ISD::SETO, MVT::v2f64, Expand);
|
|
setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
|
|
|
|
setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
|
|
setOperationAction(ISD::STORE, MVT::v2f64, Legal);
|
|
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
|
|
|
|
addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
|
|
|
|
addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
|
|
addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
|
|
|
|
// VSX v2i64 only supports non-arithmetic operations.
|
|
setOperationAction(ISD::ADD, MVT::v2i64, Expand);
|
|
setOperationAction(ISD::SUB, MVT::v2i64, Expand);
|
|
|
|
setOperationAction(ISD::SHL, MVT::v2i64, Expand);
|
|
setOperationAction(ISD::SRA, MVT::v2i64, Expand);
|
|
setOperationAction(ISD::SRL, MVT::v2i64, Expand);
|
|
|
|
setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
|
|
|
|
setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
|
|
AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
|
|
setOperationAction(ISD::STORE, MVT::v2i64, Promote);
|
|
AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
|
|
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
|
|
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
|
|
|
|
// Vector operation legalization checks the result type of
|
|
// SIGN_EXTEND_INREG, overall legalization checks the inner type.
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
|
|
|
|
addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
|
|
}
|
|
}
|
|
|
|
if (Subtarget.has64BitSupport()) {
|
|
setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
|
|
setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
|
|
}
|
|
|
|
if (!isPPC64) {
|
|
setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand);
|
|
setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
|
|
}
|
|
|
|
setBooleanContents(ZeroOrOneBooleanContent);
|
|
// Altivec instructions set fields to all zeros or all ones.
|
|
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
|
|
|
|
if (!isPPC64) {
|
|
// These libcalls are not available in 32-bit.
|
|
setLibcallName(RTLIB::SHL_I128, nullptr);
|
|
setLibcallName(RTLIB::SRL_I128, nullptr);
|
|
setLibcallName(RTLIB::SRA_I128, nullptr);
|
|
}
|
|
|
|
if (isPPC64) {
|
|
setStackPointerRegisterToSaveRestore(PPC::X1);
|
|
setExceptionPointerRegister(PPC::X3);
|
|
setExceptionSelectorRegister(PPC::X4);
|
|
} else {
|
|
setStackPointerRegisterToSaveRestore(PPC::R1);
|
|
setExceptionPointerRegister(PPC::R3);
|
|
setExceptionSelectorRegister(PPC::R4);
|
|
}
|
|
|
|
// We have target-specific dag combine patterns for the following nodes:
|
|
setTargetDAGCombine(ISD::SINT_TO_FP);
|
|
setTargetDAGCombine(ISD::LOAD);
|
|
setTargetDAGCombine(ISD::STORE);
|
|
setTargetDAGCombine(ISD::BR_CC);
|
|
if (Subtarget.useCRBits())
|
|
setTargetDAGCombine(ISD::BRCOND);
|
|
setTargetDAGCombine(ISD::BSWAP);
|
|
setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
|
|
|
|
setTargetDAGCombine(ISD::SIGN_EXTEND);
|
|
setTargetDAGCombine(ISD::ZERO_EXTEND);
|
|
setTargetDAGCombine(ISD::ANY_EXTEND);
|
|
|
|
if (Subtarget.useCRBits()) {
|
|
setTargetDAGCombine(ISD::TRUNCATE);
|
|
setTargetDAGCombine(ISD::SETCC);
|
|
setTargetDAGCombine(ISD::SELECT_CC);
|
|
}
|
|
|
|
// Use reciprocal estimates.
|
|
if (TM.Options.UnsafeFPMath) {
|
|
setTargetDAGCombine(ISD::FDIV);
|
|
setTargetDAGCombine(ISD::FSQRT);
|
|
}
|
|
|
|
// Darwin long double math library functions have $LDBL128 appended.
|
|
if (Subtarget.isDarwin()) {
|
|
setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
|
|
setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
|
|
setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
|
|
setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
|
|
setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
|
|
setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
|
|
setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
|
|
setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
|
|
setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
|
|
setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
|
|
}
|
|
|
|
// With 32 condition bits, we don't need to sink (and duplicate) compares
|
|
// aggressively in CodeGenPrep.
|
|
if (Subtarget.useCRBits())
|
|
setHasMultipleConditionRegisters();
|
|
|
|
setMinFunctionAlignment(2);
|
|
if (Subtarget.isDarwin())
|
|
setPrefFunctionAlignment(4);
|
|
|
|
setInsertFencesForAtomic(true);
|
|
|
|
if (Subtarget.enableMachineScheduler())
|
|
setSchedulingPreference(Sched::Source);
|
|
else
|
|
setSchedulingPreference(Sched::Hybrid);
|
|
|
|
computeRegisterProperties();
|
|
|
|
// The Freescale cores does better with aggressive inlining of memcpy and
|
|
// friends. Gcc uses same threshold of 128 bytes (= 32 word stores).
|
|
if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
|
|
Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
|
|
MaxStoresPerMemset = 32;
|
|
MaxStoresPerMemsetOptSize = 16;
|
|
MaxStoresPerMemcpy = 32;
|
|
MaxStoresPerMemcpyOptSize = 8;
|
|
MaxStoresPerMemmove = 32;
|
|
MaxStoresPerMemmoveOptSize = 8;
|
|
|
|
setPrefFunctionAlignment(4);
|
|
}
|
|
}
|
|
|
|
/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
|
|
/// the desired ByVal argument alignment.
|
|
static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
|
|
unsigned MaxMaxAlign) {
|
|
if (MaxAlign == MaxMaxAlign)
|
|
return;
|
|
if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
|
|
if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
|
|
MaxAlign = 32;
|
|
else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
|
|
MaxAlign = 16;
|
|
} else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
|
|
unsigned EltAlign = 0;
|
|
getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
|
|
if (EltAlign > MaxAlign)
|
|
MaxAlign = EltAlign;
|
|
} else if (StructType *STy = dyn_cast<StructType>(Ty)) {
|
|
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
|
|
unsigned EltAlign = 0;
|
|
getMaxByValAlign(STy->getElementType(i), EltAlign, MaxMaxAlign);
|
|
if (EltAlign > MaxAlign)
|
|
MaxAlign = EltAlign;
|
|
if (MaxAlign == MaxMaxAlign)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
|
|
/// function arguments in the caller parameter area.
|
|
unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
|
|
// Darwin passes everything on 4 byte boundary.
|
|
if (Subtarget.isDarwin())
|
|
return 4;
|
|
|
|
// 16byte and wider vectors are passed on 16byte boundary.
|
|
// The rest is 8 on PPC64 and 4 on PPC32 boundary.
|
|
unsigned Align = Subtarget.isPPC64() ? 8 : 4;
|
|
if (Subtarget.hasAltivec() || Subtarget.hasQPX())
|
|
getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
|
|
return Align;
|
|
}
|
|
|
|
const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
|
|
switch (Opcode) {
|
|
default: return nullptr;
|
|
case PPCISD::FSEL: return "PPCISD::FSEL";
|
|
case PPCISD::FCFID: return "PPCISD::FCFID";
|
|
case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
|
|
case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
|
|
case PPCISD::FRE: return "PPCISD::FRE";
|
|
case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE";
|
|
case PPCISD::STFIWX: return "PPCISD::STFIWX";
|
|
case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
|
|
case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
|
|
case PPCISD::VPERM: return "PPCISD::VPERM";
|
|
case PPCISD::Hi: return "PPCISD::Hi";
|
|
case PPCISD::Lo: return "PPCISD::Lo";
|
|
case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY";
|
|
case PPCISD::LOAD: return "PPCISD::LOAD";
|
|
case PPCISD::LOAD_TOC: return "PPCISD::LOAD_TOC";
|
|
case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC";
|
|
case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
|
|
case PPCISD::SRL: return "PPCISD::SRL";
|
|
case PPCISD::SRA: return "PPCISD::SRA";
|
|
case PPCISD::SHL: return "PPCISD::SHL";
|
|
case PPCISD::CALL: return "PPCISD::CALL";
|
|
case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP";
|
|
case PPCISD::CALL_TLS: return "PPCISD::CALL_TLS";
|
|
case PPCISD::CALL_NOP_TLS: return "PPCISD::CALL_NOP_TLS";
|
|
case PPCISD::MTCTR: return "PPCISD::MTCTR";
|
|
case PPCISD::BCTRL: return "PPCISD::BCTRL";
|
|
case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
|
|
case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP";
|
|
case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
|
|
case PPCISD::MFOCRF: return "PPCISD::MFOCRF";
|
|
case PPCISD::VCMP: return "PPCISD::VCMP";
|
|
case PPCISD::VCMPo: return "PPCISD::VCMPo";
|
|
case PPCISD::LBRX: return "PPCISD::LBRX";
|
|
case PPCISD::STBRX: return "PPCISD::STBRX";
|
|
case PPCISD::LARX: return "PPCISD::LARX";
|
|
case PPCISD::STCX: return "PPCISD::STCX";
|
|
case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
|
|
case PPCISD::BDNZ: return "PPCISD::BDNZ";
|
|
case PPCISD::BDZ: return "PPCISD::BDZ";
|
|
case PPCISD::MFFS: return "PPCISD::MFFS";
|
|
case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ";
|
|
case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN";
|
|
case PPCISD::CR6SET: return "PPCISD::CR6SET";
|
|
case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET";
|
|
case PPCISD::ADDIS_TOC_HA: return "PPCISD::ADDIS_TOC_HA";
|
|
case PPCISD::LD_TOC_L: return "PPCISD::LD_TOC_L";
|
|
case PPCISD::ADDI_TOC_L: return "PPCISD::ADDI_TOC_L";
|
|
case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT";
|
|
case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
|
|
case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L";
|
|
case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS";
|
|
case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA";
|
|
case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L";
|
|
case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA";
|
|
case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L";
|
|
case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
|
|
case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L";
|
|
case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT";
|
|
case PPCISD::SC: return "PPCISD::SC";
|
|
}
|
|
}
|
|
|
|
EVT PPCTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
|
|
if (!VT.isVector())
|
|
return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
|
|
return VT.changeVectorElementTypeToInteger();
|
|
}
|
|
|
|
bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
|
|
assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Node matching predicates, for use by the tblgen matching code.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
|
|
static bool isFloatingPointZero(SDValue Op) {
|
|
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
|
|
return CFP->getValueAPF().isZero();
|
|
else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
|
|
// Maybe this has already been legalized into the constant pool?
|
|
if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
|
|
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
|
|
return CFP->getValueAPF().isZero();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
|
|
/// true if Op is undef or if it matches the specified value.
|
|
static bool isConstantOrUndef(int Op, int Val) {
|
|
return Op < 0 || Op == Val;
|
|
}
|
|
|
|
/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
|
|
/// VPKUHUM instruction.
|
|
/// The ShuffleKind distinguishes between big-endian operations with
|
|
/// two different inputs (0), either-endian operations with two identical
|
|
/// inputs (1), and little-endian operantion with two different inputs (2).
|
|
/// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
|
|
bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
|
|
SelectionDAG &DAG) {
|
|
bool IsLE = DAG.getSubtarget().getDataLayout()->isLittleEndian();
|
|
if (ShuffleKind == 0) {
|
|
if (IsLE)
|
|
return false;
|
|
for (unsigned i = 0; i != 16; ++i)
|
|
if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
|
|
return false;
|
|
} else if (ShuffleKind == 2) {
|
|
if (!IsLE)
|
|
return false;
|
|
for (unsigned i = 0; i != 16; ++i)
|
|
if (!isConstantOrUndef(N->getMaskElt(i), i*2))
|
|
return false;
|
|
} else if (ShuffleKind == 1) {
|
|
unsigned j = IsLE ? 0 : 1;
|
|
for (unsigned i = 0; i != 8; ++i)
|
|
if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) ||
|
|
!isConstantOrUndef(N->getMaskElt(i+8), i*2+j))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
|
|
/// VPKUWUM instruction.
|
|
/// The ShuffleKind distinguishes between big-endian operations with
|
|
/// two different inputs (0), either-endian operations with two identical
|
|
/// inputs (1), and little-endian operantion with two different inputs (2).
|
|
/// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
|
|
bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
|
|
SelectionDAG &DAG) {
|
|
bool IsLE = DAG.getSubtarget().getDataLayout()->isLittleEndian();
|
|
if (ShuffleKind == 0) {
|
|
if (IsLE)
|
|
return false;
|
|
for (unsigned i = 0; i != 16; i += 2)
|
|
if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) ||
|
|
!isConstantOrUndef(N->getMaskElt(i+1), i*2+3))
|
|
return false;
|
|
} else if (ShuffleKind == 2) {
|
|
if (!IsLE)
|
|
return false;
|
|
for (unsigned i = 0; i != 16; i += 2)
|
|
if (!isConstantOrUndef(N->getMaskElt(i ), i*2) ||
|
|
!isConstantOrUndef(N->getMaskElt(i+1), i*2+1))
|
|
return false;
|
|
} else if (ShuffleKind == 1) {
|
|
unsigned j = IsLE ? 0 : 2;
|
|
for (unsigned i = 0; i != 8; i += 2)
|
|
if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) ||
|
|
!isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) ||
|
|
!isConstantOrUndef(N->getMaskElt(i+8), i*2+j) ||
|
|
!isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// isVMerge - Common function, used to match vmrg* shuffles.
|
|
///
|
|
static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
|
|
unsigned LHSStart, unsigned RHSStart) {
|
|
if (N->getValueType(0) != MVT::v16i8)
|
|
return false;
|
|
assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
|
|
"Unsupported merge size!");
|
|
|
|
for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
|
|
for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
|
|
if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
|
|
LHSStart+j+i*UnitSize) ||
|
|
!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
|
|
RHSStart+j+i*UnitSize))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
|
|
/// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
|
|
/// The ShuffleKind distinguishes between big-endian merges with two
|
|
/// different inputs (0), either-endian merges with two identical inputs (1),
|
|
/// and little-endian merges with two different inputs (2). For the latter,
|
|
/// the input operands are swapped (see PPCInstrAltivec.td).
|
|
bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
|
|
unsigned ShuffleKind, SelectionDAG &DAG) {
|
|
if (DAG.getSubtarget().getDataLayout()->isLittleEndian()) {
|
|
if (ShuffleKind == 1) // unary
|
|
return isVMerge(N, UnitSize, 0, 0);
|
|
else if (ShuffleKind == 2) // swapped
|
|
return isVMerge(N, UnitSize, 0, 16);
|
|
else
|
|
return false;
|
|
} else {
|
|
if (ShuffleKind == 1) // unary
|
|
return isVMerge(N, UnitSize, 8, 8);
|
|
else if (ShuffleKind == 0) // normal
|
|
return isVMerge(N, UnitSize, 8, 24);
|
|
else
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
|
|
/// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
|
|
/// The ShuffleKind distinguishes between big-endian merges with two
|
|
/// different inputs (0), either-endian merges with two identical inputs (1),
|
|
/// and little-endian merges with two different inputs (2). For the latter,
|
|
/// the input operands are swapped (see PPCInstrAltivec.td).
|
|
bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
|
|
unsigned ShuffleKind, SelectionDAG &DAG) {
|
|
if (DAG.getSubtarget().getDataLayout()->isLittleEndian()) {
|
|
if (ShuffleKind == 1) // unary
|
|
return isVMerge(N, UnitSize, 8, 8);
|
|
else if (ShuffleKind == 2) // swapped
|
|
return isVMerge(N, UnitSize, 8, 24);
|
|
else
|
|
return false;
|
|
} else {
|
|
if (ShuffleKind == 1) // unary
|
|
return isVMerge(N, UnitSize, 0, 0);
|
|
else if (ShuffleKind == 0) // normal
|
|
return isVMerge(N, UnitSize, 0, 16);
|
|
else
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
|
|
/// amount, otherwise return -1.
|
|
/// The ShuffleKind distinguishes between big-endian operations with two
|
|
/// different inputs (0), either-endian operations with two identical inputs
|
|
/// (1), and little-endian operations with two different inputs (2). For the
|
|
/// latter, the input operands are swapped (see PPCInstrAltivec.td).
|
|
int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
|
|
SelectionDAG &DAG) {
|
|
if (N->getValueType(0) != MVT::v16i8)
|
|
return -1;
|
|
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
|
|
|
|
// Find the first non-undef value in the shuffle mask.
|
|
unsigned i;
|
|
for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
|
|
/*search*/;
|
|
|
|
if (i == 16) return -1; // all undef.
|
|
|
|
// Otherwise, check to see if the rest of the elements are consecutively
|
|
// numbered from this value.
|
|
unsigned ShiftAmt = SVOp->getMaskElt(i);
|
|
if (ShiftAmt < i) return -1;
|
|
|
|
ShiftAmt -= i;
|
|
bool isLE = DAG.getTarget().getSubtargetImpl()->getDataLayout()->
|
|
isLittleEndian();
|
|
|
|
if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
|
|
// Check the rest of the elements to see if they are consecutive.
|
|
for (++i; i != 16; ++i)
|
|
if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
|
|
return -1;
|
|
} else if (ShuffleKind == 1) {
|
|
// Check the rest of the elements to see if they are consecutive.
|
|
for (++i; i != 16; ++i)
|
|
if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
|
|
return -1;
|
|
} else
|
|
return -1;
|
|
|
|
if (ShuffleKind == 2 && isLE)
|
|
ShiftAmt = 16 - ShiftAmt;
|
|
|
|
return ShiftAmt;
|
|
}
|
|
|
|
/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a splat of a single element that is suitable for input to
|
|
/// VSPLTB/VSPLTH/VSPLTW.
|
|
bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
|
|
assert(N->getValueType(0) == MVT::v16i8 &&
|
|
(EltSize == 1 || EltSize == 2 || EltSize == 4));
|
|
|
|
// This is a splat operation if each element of the permute is the same, and
|
|
// if the value doesn't reference the second vector.
|
|
unsigned ElementBase = N->getMaskElt(0);
|
|
|
|
// FIXME: Handle UNDEF elements too!
|
|
if (ElementBase >= 16)
|
|
return false;
|
|
|
|
// Check that the indices are consecutive, in the case of a multi-byte element
|
|
// splatted with a v16i8 mask.
|
|
for (unsigned i = 1; i != EltSize; ++i)
|
|
if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
|
|
return false;
|
|
|
|
for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
|
|
if (N->getMaskElt(i) < 0) continue;
|
|
for (unsigned j = 0; j != EltSize; ++j)
|
|
if (N->getMaskElt(i+j) != N->getMaskElt(j))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// isAllNegativeZeroVector - Returns true if all elements of build_vector
|
|
/// are -0.0.
|
|
bool PPC::isAllNegativeZeroVector(SDNode *N) {
|
|
BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
|
|
|
|
APInt APVal, APUndef;
|
|
unsigned BitSize;
|
|
bool HasAnyUndefs;
|
|
|
|
if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
|
|
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
|
|
return CFP->getValueAPF().isNegZero();
|
|
|
|
return false;
|
|
}
|
|
|
|
/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
|
|
/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
|
|
unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
|
|
SelectionDAG &DAG) {
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
|
|
assert(isSplatShuffleMask(SVOp, EltSize));
|
|
if (DAG.getSubtarget().getDataLayout()->isLittleEndian())
|
|
return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
|
|
else
|
|
return SVOp->getMaskElt(0) / EltSize;
|
|
}
|
|
|
|
/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
|
|
/// by using a vspltis[bhw] instruction of the specified element size, return
|
|
/// the constant being splatted. The ByteSize field indicates the number of
|
|
/// bytes of each element [124] -> [bhw].
|
|
SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
|
|
SDValue OpVal(nullptr, 0);
|
|
|
|
// If ByteSize of the splat is bigger than the element size of the
|
|
// build_vector, then we have a case where we are checking for a splat where
|
|
// multiple elements of the buildvector are folded together into a single
|
|
// logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
|
|
unsigned EltSize = 16/N->getNumOperands();
|
|
if (EltSize < ByteSize) {
|
|
unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
|
|
SDValue UniquedVals[4];
|
|
assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
|
|
|
|
// See if all of the elements in the buildvector agree across.
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
|
|
if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
|
|
// If the element isn't a constant, bail fully out.
|
|
if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
|
|
|
|
|
|
if (!UniquedVals[i&(Multiple-1)].getNode())
|
|
UniquedVals[i&(Multiple-1)] = N->getOperand(i);
|
|
else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
|
|
return SDValue(); // no match.
|
|
}
|
|
|
|
// Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
|
|
// either constant or undef values that are identical for each chunk. See
|
|
// if these chunks can form into a larger vspltis*.
|
|
|
|
// Check to see if all of the leading entries are either 0 or -1. If
|
|
// neither, then this won't fit into the immediate field.
|
|
bool LeadingZero = true;
|
|
bool LeadingOnes = true;
|
|
for (unsigned i = 0; i != Multiple-1; ++i) {
|
|
if (!UniquedVals[i].getNode()) continue; // Must have been undefs.
|
|
|
|
LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
|
|
LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
|
|
}
|
|
// Finally, check the least significant entry.
|
|
if (LeadingZero) {
|
|
if (!UniquedVals[Multiple-1].getNode())
|
|
return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef
|
|
int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
|
|
if (Val < 16)
|
|
return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4)
|
|
}
|
|
if (LeadingOnes) {
|
|
if (!UniquedVals[Multiple-1].getNode())
|
|
return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef
|
|
int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
|
|
if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
|
|
return DAG.getTargetConstant(Val, MVT::i32);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Check to see if this buildvec has a single non-undef value in its elements.
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
|
|
if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
|
|
if (!OpVal.getNode())
|
|
OpVal = N->getOperand(i);
|
|
else if (OpVal != N->getOperand(i))
|
|
return SDValue();
|
|
}
|
|
|
|
if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def.
|
|
|
|
unsigned ValSizeInBytes = EltSize;
|
|
uint64_t Value = 0;
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
|
|
Value = CN->getZExtValue();
|
|
} else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
|
|
assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
|
|
Value = FloatToBits(CN->getValueAPF().convertToFloat());
|
|
}
|
|
|
|
// If the splat value is larger than the element value, then we can never do
|
|
// this splat. The only case that we could fit the replicated bits into our
|
|
// immediate field for would be zero, and we prefer to use vxor for it.
|
|
if (ValSizeInBytes < ByteSize) return SDValue();
|
|
|
|
// If the element value is larger than the splat value, cut it in half and
|
|
// check to see if the two halves are equal. Continue doing this until we
|
|
// get to ByteSize. This allows us to handle 0x01010101 as 0x01.
|
|
while (ValSizeInBytes > ByteSize) {
|
|
ValSizeInBytes >>= 1;
|
|
|
|
// If the top half equals the bottom half, we're still ok.
|
|
if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
|
|
(Value & ((1 << (8*ValSizeInBytes))-1)))
|
|
return SDValue();
|
|
}
|
|
|
|
// Properly sign extend the value.
|
|
int MaskVal = SignExtend32(Value, ByteSize * 8);
|
|
|
|
// If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
|
|
if (MaskVal == 0) return SDValue();
|
|
|
|
// Finally, if this value fits in a 5 bit sext field, return it
|
|
if (SignExtend32<5>(MaskVal) == MaskVal)
|
|
return DAG.getTargetConstant(MaskVal, MVT::i32);
|
|
return SDValue();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Addressing Mode Selection
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
|
|
/// or 64-bit immediate, and if the value can be accurately represented as a
|
|
/// sign extension from a 16-bit value. If so, this returns true and the
|
|
/// immediate.
|
|
static bool isIntS16Immediate(SDNode *N, short &Imm) {
|
|
if (!isa<ConstantSDNode>(N))
|
|
return false;
|
|
|
|
Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
|
|
if (N->getValueType(0) == MVT::i32)
|
|
return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
|
|
else
|
|
return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
|
|
}
|
|
static bool isIntS16Immediate(SDValue Op, short &Imm) {
|
|
return isIntS16Immediate(Op.getNode(), Imm);
|
|
}
|
|
|
|
|
|
/// SelectAddressRegReg - Given the specified addressed, check to see if it
|
|
/// can be represented as an indexed [r+r] operation. Returns false if it
|
|
/// can be more efficiently represented with [r+imm].
|
|
bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
|
|
SDValue &Index,
|
|
SelectionDAG &DAG) const {
|
|
short imm = 0;
|
|
if (N.getOpcode() == ISD::ADD) {
|
|
if (isIntS16Immediate(N.getOperand(1), imm))
|
|
return false; // r+i
|
|
if (N.getOperand(1).getOpcode() == PPCISD::Lo)
|
|
return false; // r+i
|
|
|
|
Base = N.getOperand(0);
|
|
Index = N.getOperand(1);
|
|
return true;
|
|
} else if (N.getOpcode() == ISD::OR) {
|
|
if (isIntS16Immediate(N.getOperand(1), imm))
|
|
return false; // r+i can fold it if we can.
|
|
|
|
// If this is an or of disjoint bitfields, we can codegen this as an add
|
|
// (for better address arithmetic) if the LHS and RHS of the OR are provably
|
|
// disjoint.
|
|
APInt LHSKnownZero, LHSKnownOne;
|
|
APInt RHSKnownZero, RHSKnownOne;
|
|
DAG.computeKnownBits(N.getOperand(0),
|
|
LHSKnownZero, LHSKnownOne);
|
|
|
|
if (LHSKnownZero.getBoolValue()) {
|
|
DAG.computeKnownBits(N.getOperand(1),
|
|
RHSKnownZero, RHSKnownOne);
|
|
// If all of the bits are known zero on the LHS or RHS, the add won't
|
|
// carry.
|
|
if (~(LHSKnownZero | RHSKnownZero) == 0) {
|
|
Base = N.getOperand(0);
|
|
Index = N.getOperand(1);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// If we happen to be doing an i64 load or store into a stack slot that has
|
|
// less than a 4-byte alignment, then the frame-index elimination may need to
|
|
// use an indexed load or store instruction (because the offset may not be a
|
|
// multiple of 4). The extra register needed to hold the offset comes from the
|
|
// register scavenger, and it is possible that the scavenger will need to use
|
|
// an emergency spill slot. As a result, we need to make sure that a spill slot
|
|
// is allocated when doing an i64 load/store into a less-than-4-byte-aligned
|
|
// stack slot.
|
|
static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
|
|
// FIXME: This does not handle the LWA case.
|
|
if (VT != MVT::i64)
|
|
return;
|
|
|
|
// NOTE: We'll exclude negative FIs here, which come from argument
|
|
// lowering, because there are no known test cases triggering this problem
|
|
// using packed structures (or similar). We can remove this exclusion if
|
|
// we find such a test case. The reason why this is so test-case driven is
|
|
// because this entire 'fixup' is only to prevent crashes (from the
|
|
// register scavenger) on not-really-valid inputs. For example, if we have:
|
|
// %a = alloca i1
|
|
// %b = bitcast i1* %a to i64*
|
|
// store i64* a, i64 b
|
|
// then the store should really be marked as 'align 1', but is not. If it
|
|
// were marked as 'align 1' then the indexed form would have been
|
|
// instruction-selected initially, and the problem this 'fixup' is preventing
|
|
// won't happen regardless.
|
|
if (FrameIdx < 0)
|
|
return;
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
|
|
unsigned Align = MFI->getObjectAlignment(FrameIdx);
|
|
if (Align >= 4)
|
|
return;
|
|
|
|
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
|
|
FuncInfo->setHasNonRISpills();
|
|
}
|
|
|
|
/// Returns true if the address N can be represented by a base register plus
|
|
/// a signed 16-bit displacement [r+imm], and if it is not better
|
|
/// represented as reg+reg. If Aligned is true, only accept displacements
|
|
/// suitable for STD and friends, i.e. multiples of 4.
|
|
bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
|
|
SDValue &Base,
|
|
SelectionDAG &DAG,
|
|
bool Aligned) const {
|
|
// FIXME dl should come from parent load or store, not from address
|
|
SDLoc dl(N);
|
|
// If this can be more profitably realized as r+r, fail.
|
|
if (SelectAddressRegReg(N, Disp, Base, DAG))
|
|
return false;
|
|
|
|
if (N.getOpcode() == ISD::ADD) {
|
|
short imm = 0;
|
|
if (isIntS16Immediate(N.getOperand(1), imm) &&
|
|
(!Aligned || (imm & 3) == 0)) {
|
|
Disp = DAG.getTargetConstant(imm, N.getValueType());
|
|
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
|
|
Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
|
|
fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
|
|
} else {
|
|
Base = N.getOperand(0);
|
|
}
|
|
return true; // [r+i]
|
|
} else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
|
|
// Match LOAD (ADD (X, Lo(G))).
|
|
assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
|
|
&& "Cannot handle constant offsets yet!");
|
|
Disp = N.getOperand(1).getOperand(0); // The global address.
|
|
assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
|
|
Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
|
|
Disp.getOpcode() == ISD::TargetConstantPool ||
|
|
Disp.getOpcode() == ISD::TargetJumpTable);
|
|
Base = N.getOperand(0);
|
|
return true; // [&g+r]
|
|
}
|
|
} else if (N.getOpcode() == ISD::OR) {
|
|
short imm = 0;
|
|
if (isIntS16Immediate(N.getOperand(1), imm) &&
|
|
(!Aligned || (imm & 3) == 0)) {
|
|
// If this is an or of disjoint bitfields, we can codegen this as an add
|
|
// (for better address arithmetic) if the LHS and RHS of the OR are
|
|
// provably disjoint.
|
|
APInt LHSKnownZero, LHSKnownOne;
|
|
DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
|
|
|
|
if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
|
|
// If all of the bits are known zero on the LHS or RHS, the add won't
|
|
// carry.
|
|
if (FrameIndexSDNode *FI =
|
|
dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
|
|
Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
|
|
fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
|
|
} else {
|
|
Base = N.getOperand(0);
|
|
}
|
|
Disp = DAG.getTargetConstant(imm, N.getValueType());
|
|
return true;
|
|
}
|
|
}
|
|
} else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
|
|
// Loading from a constant address.
|
|
|
|
// If this address fits entirely in a 16-bit sext immediate field, codegen
|
|
// this as "d, 0"
|
|
short Imm;
|
|
if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) {
|
|
Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
|
|
Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
|
|
CN->getValueType(0));
|
|
return true;
|
|
}
|
|
|
|
// Handle 32-bit sext immediates with LIS + addr mode.
|
|
if ((CN->getValueType(0) == MVT::i32 ||
|
|
(int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
|
|
(!Aligned || (CN->getZExtValue() & 3) == 0)) {
|
|
int Addr = (int)CN->getZExtValue();
|
|
|
|
// Otherwise, break this down into an LIS + disp.
|
|
Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
|
|
|
|
Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
|
|
unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
|
|
Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
Disp = DAG.getTargetConstant(0, getPointerTy());
|
|
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
|
|
Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
|
|
fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
|
|
} else
|
|
Base = N;
|
|
return true; // [r+0]
|
|
}
|
|
|
|
/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
|
|
/// represented as an indexed [r+r] operation.
|
|
bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
|
|
SDValue &Index,
|
|
SelectionDAG &DAG) const {
|
|
// Check to see if we can easily represent this as an [r+r] address. This
|
|
// will fail if it thinks that the address is more profitably represented as
|
|
// reg+imm, e.g. where imm = 0.
|
|
if (SelectAddressRegReg(N, Base, Index, DAG))
|
|
return true;
|
|
|
|
// If the operand is an addition, always emit this as [r+r], since this is
|
|
// better (for code size, and execution, as the memop does the add for free)
|
|
// than emitting an explicit add.
|
|
if (N.getOpcode() == ISD::ADD) {
|
|
Base = N.getOperand(0);
|
|
Index = N.getOperand(1);
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, do it the hard way, using R0 as the base register.
|
|
Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
|
|
N.getValueType());
|
|
Index = N;
|
|
return true;
|
|
}
|
|
|
|
/// getPreIndexedAddressParts - returns true by value, base pointer and
|
|
/// offset pointer and addressing mode by reference if the node's address
|
|
/// can be legally represented as pre-indexed load / store address.
|
|
bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
|
|
SDValue &Offset,
|
|
ISD::MemIndexedMode &AM,
|
|
SelectionDAG &DAG) const {
|
|
if (DisablePPCPreinc) return false;
|
|
|
|
bool isLoad = true;
|
|
SDValue Ptr;
|
|
EVT VT;
|
|
unsigned Alignment;
|
|
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
|
|
Ptr = LD->getBasePtr();
|
|
VT = LD->getMemoryVT();
|
|
Alignment = LD->getAlignment();
|
|
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
|
|
Ptr = ST->getBasePtr();
|
|
VT = ST->getMemoryVT();
|
|
Alignment = ST->getAlignment();
|
|
isLoad = false;
|
|
} else
|
|
return false;
|
|
|
|
// PowerPC doesn't have preinc load/store instructions for vectors.
|
|
if (VT.isVector())
|
|
return false;
|
|
|
|
if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
|
|
|
|
// Common code will reject creating a pre-inc form if the base pointer
|
|
// is a frame index, or if N is a store and the base pointer is either
|
|
// the same as or a predecessor of the value being stored. Check for
|
|
// those situations here, and try with swapped Base/Offset instead.
|
|
bool Swap = false;
|
|
|
|
if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
|
|
Swap = true;
|
|
else if (!isLoad) {
|
|
SDValue Val = cast<StoreSDNode>(N)->getValue();
|
|
if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
|
|
Swap = true;
|
|
}
|
|
|
|
if (Swap)
|
|
std::swap(Base, Offset);
|
|
|
|
AM = ISD::PRE_INC;
|
|
return true;
|
|
}
|
|
|
|
// LDU/STU can only handle immediates that are a multiple of 4.
|
|
if (VT != MVT::i64) {
|
|
if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false))
|
|
return false;
|
|
} else {
|
|
// LDU/STU need an address with at least 4-byte alignment.
|
|
if (Alignment < 4)
|
|
return false;
|
|
|
|
if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true))
|
|
return false;
|
|
}
|
|
|
|
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
|
|
// PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of
|
|
// sext i32 to i64 when addr mode is r+i.
|
|
if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
|
|
LD->getExtensionType() == ISD::SEXTLOAD &&
|
|
isa<ConstantSDNode>(Offset))
|
|
return false;
|
|
}
|
|
|
|
AM = ISD::PRE_INC;
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LowerOperation implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// GetLabelAccessInfo - Return true if we should reference labels using a
|
|
/// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
|
|
static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
|
|
unsigned &LoOpFlags,
|
|
const GlobalValue *GV = nullptr) {
|
|
HiOpFlags = PPCII::MO_HA;
|
|
LoOpFlags = PPCII::MO_LO;
|
|
|
|
// Don't use the pic base if not in PIC relocation model.
|
|
bool isPIC = TM.getRelocationModel() == Reloc::PIC_;
|
|
|
|
if (isPIC) {
|
|
HiOpFlags |= PPCII::MO_PIC_FLAG;
|
|
LoOpFlags |= PPCII::MO_PIC_FLAG;
|
|
}
|
|
|
|
// If this is a reference to a global value that requires a non-lazy-ptr, make
|
|
// sure that instruction lowering adds it.
|
|
if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
|
|
HiOpFlags |= PPCII::MO_NLP_FLAG;
|
|
LoOpFlags |= PPCII::MO_NLP_FLAG;
|
|
|
|
if (GV->hasHiddenVisibility()) {
|
|
HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
|
|
LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
|
|
}
|
|
}
|
|
|
|
return isPIC;
|
|
}
|
|
|
|
static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
|
|
SelectionDAG &DAG) {
|
|
EVT PtrVT = HiPart.getValueType();
|
|
SDValue Zero = DAG.getConstant(0, PtrVT);
|
|
SDLoc DL(HiPart);
|
|
|
|
SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
|
|
SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
|
|
|
|
// With PIC, the first instruction is actually "GR+hi(&G)".
|
|
if (isPIC)
|
|
Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
|
|
DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
|
|
|
|
// Generate non-pic code that has direct accesses to the constant pool.
|
|
// The address of the global is just (hi(&g)+lo(&g)).
|
|
return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
EVT PtrVT = Op.getValueType();
|
|
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
|
|
const Constant *C = CP->getConstVal();
|
|
|
|
// 64-bit SVR4 ABI code is always position-independent.
|
|
// The actual address of the GlobalValue is stored in the TOC.
|
|
if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
|
|
SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
|
|
return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(CP), MVT::i64, GA,
|
|
DAG.getRegister(PPC::X2, MVT::i64));
|
|
}
|
|
|
|
unsigned MOHiFlag, MOLoFlag;
|
|
bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
|
|
|
|
if (isPIC && Subtarget.isSVR4ABI()) {
|
|
SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
|
|
PPCII::MO_PIC_FLAG);
|
|
SDLoc DL(CP);
|
|
return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i32, GA,
|
|
DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT));
|
|
}
|
|
|
|
SDValue CPIHi =
|
|
DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
|
|
SDValue CPILo =
|
|
DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
|
|
return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
|
|
EVT PtrVT = Op.getValueType();
|
|
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
|
|
|
|
// 64-bit SVR4 ABI code is always position-independent.
|
|
// The actual address of the GlobalValue is stored in the TOC.
|
|
if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
|
|
SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
|
|
return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(JT), MVT::i64, GA,
|
|
DAG.getRegister(PPC::X2, MVT::i64));
|
|
}
|
|
|
|
unsigned MOHiFlag, MOLoFlag;
|
|
bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
|
|
|
|
if (isPIC && Subtarget.isSVR4ABI()) {
|
|
SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
|
|
PPCII::MO_PIC_FLAG);
|
|
SDLoc DL(GA);
|
|
return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(JT), PtrVT, GA,
|
|
DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT));
|
|
}
|
|
|
|
SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
|
|
SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
|
|
return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
EVT PtrVT = Op.getValueType();
|
|
BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
|
|
const BlockAddress *BA = BASDN->getBlockAddress();
|
|
|
|
// 64-bit SVR4 ABI code is always position-independent.
|
|
// The actual BlockAddress is stored in the TOC.
|
|
if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
|
|
SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
|
|
return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(BASDN), MVT::i64, GA,
|
|
DAG.getRegister(PPC::X2, MVT::i64));
|
|
}
|
|
|
|
unsigned MOHiFlag, MOLoFlag;
|
|
bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
|
|
SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
|
|
SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
|
|
return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
|
|
}
|
|
|
|
// Generate a call to __tls_get_addr for the given GOT entry Op.
|
|
std::pair<SDValue,SDValue>
|
|
PPCTargetLowering::lowerTLSCall(SDValue Op, SDLoc dl,
|
|
SelectionDAG &DAG) const {
|
|
|
|
Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext());
|
|
TargetLowering::ArgListTy Args;
|
|
TargetLowering::ArgListEntry Entry;
|
|
Entry.Node = Op;
|
|
Entry.Ty = IntPtrTy;
|
|
Args.push_back(Entry);
|
|
|
|
TargetLowering::CallLoweringInfo CLI(DAG);
|
|
CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
|
|
.setCallee(CallingConv::C, IntPtrTy,
|
|
DAG.getTargetExternalSymbol("__tls_get_addr", getPointerTy()),
|
|
std::move(Args), 0);
|
|
|
|
return LowerCallTo(CLI);
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
|
|
// FIXME: TLS addresses currently use medium model code sequences,
|
|
// which is the most useful form. Eventually support for small and
|
|
// large models could be added if users need it, at the cost of
|
|
// additional complexity.
|
|
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
|
|
SDLoc dl(GA);
|
|
const GlobalValue *GV = GA->getGlobal();
|
|
EVT PtrVT = getPointerTy();
|
|
bool is64bit = Subtarget.isPPC64();
|
|
const Module *M = DAG.getMachineFunction().getFunction()->getParent();
|
|
PICLevel::Level picLevel = M->getPICLevel();
|
|
|
|
TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
|
|
|
|
if (Model == TLSModel::LocalExec) {
|
|
SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
|
|
PPCII::MO_TPREL_HA);
|
|
SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
|
|
PPCII::MO_TPREL_LO);
|
|
SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
|
|
is64bit ? MVT::i64 : MVT::i32);
|
|
SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
|
|
return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
|
|
}
|
|
|
|
if (Model == TLSModel::InitialExec) {
|
|
SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
|
|
SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
|
|
PPCII::MO_TLS);
|
|
SDValue GOTPtr;
|
|
if (is64bit) {
|
|
SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
|
|
GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
|
|
PtrVT, GOTReg, TGA);
|
|
} else
|
|
GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
|
|
SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
|
|
PtrVT, TGA, GOTPtr);
|
|
return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
|
|
}
|
|
|
|
if (Model == TLSModel::GeneralDynamic) {
|
|
SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
|
|
PPCII::MO_TLSGD);
|
|
SDValue GOTPtr;
|
|
if (is64bit) {
|
|
SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
|
|
GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
|
|
GOTReg, TGA);
|
|
} else {
|
|
if (picLevel == PICLevel::Small)
|
|
GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
|
|
else
|
|
GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
|
|
}
|
|
SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSGD_L, dl, PtrVT,
|
|
GOTPtr, TGA);
|
|
std::pair<SDValue, SDValue> CallResult = lowerTLSCall(GOTEntry, dl, DAG);
|
|
return CallResult.first;
|
|
}
|
|
|
|
if (Model == TLSModel::LocalDynamic) {
|
|
SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
|
|
PPCII::MO_TLSLD);
|
|
SDValue GOTPtr;
|
|
if (is64bit) {
|
|
SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
|
|
GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
|
|
GOTReg, TGA);
|
|
} else {
|
|
if (picLevel == PICLevel::Small)
|
|
GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
|
|
else
|
|
GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
|
|
}
|
|
SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSLD_L, dl, PtrVT,
|
|
GOTPtr, TGA);
|
|
std::pair<SDValue, SDValue> CallResult = lowerTLSCall(GOTEntry, dl, DAG);
|
|
SDValue TLSAddr = CallResult.first;
|
|
SDValue Chain = CallResult.second;
|
|
SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, PtrVT,
|
|
Chain, TLSAddr, TGA);
|
|
return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
|
|
}
|
|
|
|
llvm_unreachable("Unknown TLS model!");
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
EVT PtrVT = Op.getValueType();
|
|
GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
|
|
SDLoc DL(GSDN);
|
|
const GlobalValue *GV = GSDN->getGlobal();
|
|
|
|
// 64-bit SVR4 ABI code is always position-independent.
|
|
// The actual address of the GlobalValue is stored in the TOC.
|
|
if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
|
|
SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
|
|
return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
|
|
DAG.getRegister(PPC::X2, MVT::i64));
|
|
}
|
|
|
|
unsigned MOHiFlag, MOLoFlag;
|
|
bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
|
|
|
|
if (isPIC && Subtarget.isSVR4ABI()) {
|
|
SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
|
|
GSDN->getOffset(),
|
|
PPCII::MO_PIC_FLAG);
|
|
return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i32, GA,
|
|
DAG.getNode(PPCISD::GlobalBaseReg, DL, MVT::i32));
|
|
}
|
|
|
|
SDValue GAHi =
|
|
DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
|
|
SDValue GALo =
|
|
DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
|
|
|
|
SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
|
|
|
|
// If the global reference is actually to a non-lazy-pointer, we have to do an
|
|
// extra load to get the address of the global.
|
|
if (MOHiFlag & PPCII::MO_NLP_FLAG)
|
|
Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
|
|
false, false, false, 0);
|
|
return Ptr;
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
|
|
SDLoc dl(Op);
|
|
|
|
if (Op.getValueType() == MVT::v2i64) {
|
|
// When the operands themselves are v2i64 values, we need to do something
|
|
// special because VSX has no underlying comparison operations for these.
|
|
if (Op.getOperand(0).getValueType() == MVT::v2i64) {
|
|
// Equality can be handled by casting to the legal type for Altivec
|
|
// comparisons, everything else needs to be expanded.
|
|
if (CC == ISD::SETEQ || CC == ISD::SETNE) {
|
|
return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
|
|
DAG.getSetCC(dl, MVT::v4i32,
|
|
DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
|
|
DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
|
|
CC));
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// We handle most of these in the usual way.
|
|
return Op;
|
|
}
|
|
|
|
// If we're comparing for equality to zero, expose the fact that this is
|
|
// implented as a ctlz/srl pair on ppc, so that the dag combiner can
|
|
// fold the new nodes.
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
if (C->isNullValue() && CC == ISD::SETEQ) {
|
|
EVT VT = Op.getOperand(0).getValueType();
|
|
SDValue Zext = Op.getOperand(0);
|
|
if (VT.bitsLT(MVT::i32)) {
|
|
VT = MVT::i32;
|
|
Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
|
|
}
|
|
unsigned Log2b = Log2_32(VT.getSizeInBits());
|
|
SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
|
|
SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
|
|
DAG.getConstant(Log2b, MVT::i32));
|
|
return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
|
|
}
|
|
// Leave comparisons against 0 and -1 alone for now, since they're usually
|
|
// optimized. FIXME: revisit this when we can custom lower all setcc
|
|
// optimizations.
|
|
if (C->isAllOnesValue() || C->isNullValue())
|
|
return SDValue();
|
|
}
|
|
|
|
// If we have an integer seteq/setne, turn it into a compare against zero
|
|
// by xor'ing the rhs with the lhs, which is faster than setting a
|
|
// condition register, reading it back out, and masking the correct bit. The
|
|
// normal approach here uses sub to do this instead of xor. Using xor exposes
|
|
// the result to other bit-twiddling opportunities.
|
|
EVT LHSVT = Op.getOperand(0).getValueType();
|
|
if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
|
|
EVT VT = Op.getValueType();
|
|
SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
|
|
Op.getOperand(1));
|
|
return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
|
|
const PPCSubtarget &Subtarget) const {
|
|
SDNode *Node = Op.getNode();
|
|
EVT VT = Node->getValueType(0);
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
SDValue InChain = Node->getOperand(0);
|
|
SDValue VAListPtr = Node->getOperand(1);
|
|
const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
|
|
SDLoc dl(Node);
|
|
|
|
assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
|
|
|
|
// gpr_index
|
|
SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
|
|
VAListPtr, MachinePointerInfo(SV), MVT::i8,
|
|
false, false, false, 0);
|
|
InChain = GprIndex.getValue(1);
|
|
|
|
if (VT == MVT::i64) {
|
|
// Check if GprIndex is even
|
|
SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
|
|
DAG.getConstant(1, MVT::i32));
|
|
SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
|
|
DAG.getConstant(0, MVT::i32), ISD::SETNE);
|
|
SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
|
|
DAG.getConstant(1, MVT::i32));
|
|
// Align GprIndex to be even if it isn't
|
|
GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
|
|
GprIndex);
|
|
}
|
|
|
|
// fpr index is 1 byte after gpr
|
|
SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
|
|
DAG.getConstant(1, MVT::i32));
|
|
|
|
// fpr
|
|
SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
|
|
FprPtr, MachinePointerInfo(SV), MVT::i8,
|
|
false, false, false, 0);
|
|
InChain = FprIndex.getValue(1);
|
|
|
|
SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
|
|
DAG.getConstant(8, MVT::i32));
|
|
|
|
SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
|
|
DAG.getConstant(4, MVT::i32));
|
|
|
|
// areas
|
|
SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
|
|
MachinePointerInfo(), false, false,
|
|
false, 0);
|
|
InChain = OverflowArea.getValue(1);
|
|
|
|
SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
|
|
MachinePointerInfo(), false, false,
|
|
false, 0);
|
|
InChain = RegSaveArea.getValue(1);
|
|
|
|
// select overflow_area if index > 8
|
|
SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
|
|
DAG.getConstant(8, MVT::i32), ISD::SETLT);
|
|
|
|
// adjustment constant gpr_index * 4/8
|
|
SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
|
|
VT.isInteger() ? GprIndex : FprIndex,
|
|
DAG.getConstant(VT.isInteger() ? 4 : 8,
|
|
MVT::i32));
|
|
|
|
// OurReg = RegSaveArea + RegConstant
|
|
SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
|
|
RegConstant);
|
|
|
|
// Floating types are 32 bytes into RegSaveArea
|
|
if (VT.isFloatingPoint())
|
|
OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
|
|
DAG.getConstant(32, MVT::i32));
|
|
|
|
// increase {f,g}pr_index by 1 (or 2 if VT is i64)
|
|
SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
|
|
VT.isInteger() ? GprIndex : FprIndex,
|
|
DAG.getConstant(VT == MVT::i64 ? 2 : 1,
|
|
MVT::i32));
|
|
|
|
InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
|
|
VT.isInteger() ? VAListPtr : FprPtr,
|
|
MachinePointerInfo(SV),
|
|
MVT::i8, false, false, 0);
|
|
|
|
// determine if we should load from reg_save_area or overflow_area
|
|
SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
|
|
|
|
// increase overflow_area by 4/8 if gpr/fpr > 8
|
|
SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
|
|
DAG.getConstant(VT.isInteger() ? 4 : 8,
|
|
MVT::i32));
|
|
|
|
OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
|
|
OverflowAreaPlusN);
|
|
|
|
InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
|
|
OverflowAreaPtr,
|
|
MachinePointerInfo(),
|
|
MVT::i32, false, false, 0);
|
|
|
|
return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
|
|
false, false, false, 0);
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG,
|
|
const PPCSubtarget &Subtarget) const {
|
|
assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
|
|
|
|
// We have to copy the entire va_list struct:
|
|
// 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
|
|
return DAG.getMemcpy(Op.getOperand(0), Op,
|
|
Op.getOperand(1), Op.getOperand(2),
|
|
DAG.getConstant(12, MVT::i32), 8, false, true,
|
|
MachinePointerInfo(), MachinePointerInfo());
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
return Op.getOperand(0);
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Trmp = Op.getOperand(1); // trampoline
|
|
SDValue FPtr = Op.getOperand(2); // nested function
|
|
SDValue Nest = Op.getOperand(3); // 'nest' parameter value
|
|
SDLoc dl(Op);
|
|
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
bool isPPC64 = (PtrVT == MVT::i64);
|
|
Type *IntPtrTy =
|
|
DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType(
|
|
*DAG.getContext());
|
|
|
|
TargetLowering::ArgListTy Args;
|
|
TargetLowering::ArgListEntry Entry;
|
|
|
|
Entry.Ty = IntPtrTy;
|
|
Entry.Node = Trmp; Args.push_back(Entry);
|
|
|
|
// TrampSize == (isPPC64 ? 48 : 40);
|
|
Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
|
|
isPPC64 ? MVT::i64 : MVT::i32);
|
|
Args.push_back(Entry);
|
|
|
|
Entry.Node = FPtr; Args.push_back(Entry);
|
|
Entry.Node = Nest; Args.push_back(Entry);
|
|
|
|
// Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
|
|
TargetLowering::CallLoweringInfo CLI(DAG);
|
|
CLI.setDebugLoc(dl).setChain(Chain)
|
|
.setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
|
|
DAG.getExternalSymbol("__trampoline_setup", PtrVT),
|
|
std::move(Args), 0);
|
|
|
|
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
|
|
return CallResult.second;
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
|
|
const PPCSubtarget &Subtarget) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
|
|
|
|
SDLoc dl(Op);
|
|
|
|
if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
|
|
// vastart just stores the address of the VarArgsFrameIndex slot into the
|
|
// memory location argument.
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
|
|
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
|
|
return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
|
|
MachinePointerInfo(SV),
|
|
false, false, 0);
|
|
}
|
|
|
|
// For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
|
|
// We suppose the given va_list is already allocated.
|
|
//
|
|
// typedef struct {
|
|
// char gpr; /* index into the array of 8 GPRs
|
|
// * stored in the register save area
|
|
// * gpr=0 corresponds to r3,
|
|
// * gpr=1 to r4, etc.
|
|
// */
|
|
// char fpr; /* index into the array of 8 FPRs
|
|
// * stored in the register save area
|
|
// * fpr=0 corresponds to f1,
|
|
// * fpr=1 to f2, etc.
|
|
// */
|
|
// char *overflow_arg_area;
|
|
// /* location on stack that holds
|
|
// * the next overflow argument
|
|
// */
|
|
// char *reg_save_area;
|
|
// /* where r3:r10 and f1:f8 (if saved)
|
|
// * are stored
|
|
// */
|
|
// } va_list[1];
|
|
|
|
|
|
SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
|
|
SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
|
|
|
|
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
|
|
SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
|
|
PtrVT);
|
|
SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
|
|
PtrVT);
|
|
|
|
uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
|
|
SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
|
|
|
|
uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
|
|
SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
|
|
|
|
uint64_t FPROffset = 1;
|
|
SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
|
|
|
|
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
|
|
|
|
// Store first byte : number of int regs
|
|
SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
|
|
Op.getOperand(1),
|
|
MachinePointerInfo(SV),
|
|
MVT::i8, false, false, 0);
|
|
uint64_t nextOffset = FPROffset;
|
|
SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
|
|
ConstFPROffset);
|
|
|
|
// Store second byte : number of float regs
|
|
SDValue secondStore =
|
|
DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
|
|
MachinePointerInfo(SV, nextOffset), MVT::i8,
|
|
false, false, 0);
|
|
nextOffset += StackOffset;
|
|
nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
|
|
|
|
// Store second word : arguments given on stack
|
|
SDValue thirdStore =
|
|
DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
|
|
MachinePointerInfo(SV, nextOffset),
|
|
false, false, 0);
|
|
nextOffset += FrameOffset;
|
|
nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
|
|
|
|
// Store third word : arguments given in registers
|
|
return DAG.getStore(thirdStore, dl, FR, nextPtr,
|
|
MachinePointerInfo(SV, nextOffset),
|
|
false, false, 0);
|
|
|
|
}
|
|
|
|
#include "PPCGenCallingConv.inc"
|
|
|
|
// Function whose sole purpose is to kill compiler warnings
|
|
// stemming from unused functions included from PPCGenCallingConv.inc.
|
|
CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
|
|
return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
|
|
}
|
|
|
|
bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
|
|
CCValAssign::LocInfo &LocInfo,
|
|
ISD::ArgFlagsTy &ArgFlags,
|
|
CCState &State) {
|
|
return true;
|
|
}
|
|
|
|
bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
|
|
MVT &LocVT,
|
|
CCValAssign::LocInfo &LocInfo,
|
|
ISD::ArgFlagsTy &ArgFlags,
|
|
CCState &State) {
|
|
static const MCPhysReg ArgRegs[] = {
|
|
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
|
|
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
|
|
};
|
|
const unsigned NumArgRegs = array_lengthof(ArgRegs);
|
|
|
|
unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
|
|
|
|
// Skip one register if the first unallocated register has an even register
|
|
// number and there are still argument registers available which have not been
|
|
// allocated yet. RegNum is actually an index into ArgRegs, which means we
|
|
// need to skip a register if RegNum is odd.
|
|
if (RegNum != NumArgRegs && RegNum % 2 == 1) {
|
|
State.AllocateReg(ArgRegs[RegNum]);
|
|
}
|
|
|
|
// Always return false here, as this function only makes sure that the first
|
|
// unallocated register has an odd register number and does not actually
|
|
// allocate a register for the current argument.
|
|
return false;
|
|
}
|
|
|
|
bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
|
|
MVT &LocVT,
|
|
CCValAssign::LocInfo &LocInfo,
|
|
ISD::ArgFlagsTy &ArgFlags,
|
|
CCState &State) {
|
|
static const MCPhysReg ArgRegs[] = {
|
|
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
|
|
PPC::F8
|
|
};
|
|
|
|
const unsigned NumArgRegs = array_lengthof(ArgRegs);
|
|
|
|
unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
|
|
|
|
// If there is only one Floating-point register left we need to put both f64
|
|
// values of a split ppc_fp128 value on the stack.
|
|
if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
|
|
State.AllocateReg(ArgRegs[RegNum]);
|
|
}
|
|
|
|
// Always return false here, as this function only makes sure that the two f64
|
|
// values a ppc_fp128 value is split into are both passed in registers or both
|
|
// passed on the stack and does not actually allocate a register for the
|
|
// current argument.
|
|
return false;
|
|
}
|
|
|
|
/// GetFPR - Get the set of FP registers that should be allocated for arguments,
|
|
/// on Darwin.
|
|
static const MCPhysReg *GetFPR() {
|
|
static const MCPhysReg FPR[] = {
|
|
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
|
|
PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
|
|
};
|
|
|
|
return FPR;
|
|
}
|
|
|
|
/// CalculateStackSlotSize - Calculates the size reserved for this argument on
|
|
/// the stack.
|
|
static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
|
|
unsigned PtrByteSize) {
|
|
unsigned ArgSize = ArgVT.getStoreSize();
|
|
if (Flags.isByVal())
|
|
ArgSize = Flags.getByValSize();
|
|
|
|
// Round up to multiples of the pointer size, except for array members,
|
|
// which are always packed.
|
|
if (!Flags.isInConsecutiveRegs())
|
|
ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
|
|
|
|
return ArgSize;
|
|
}
|
|
|
|
/// CalculateStackSlotAlignment - Calculates the alignment of this argument
|
|
/// on the stack.
|
|
static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
|
|
ISD::ArgFlagsTy Flags,
|
|
unsigned PtrByteSize) {
|
|
unsigned Align = PtrByteSize;
|
|
|
|
// Altivec parameters are padded to a 16 byte boundary.
|
|
if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
|
|
ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
|
|
ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64)
|
|
Align = 16;
|
|
|
|
// ByVal parameters are aligned as requested.
|
|
if (Flags.isByVal()) {
|
|
unsigned BVAlign = Flags.getByValAlign();
|
|
if (BVAlign > PtrByteSize) {
|
|
if (BVAlign % PtrByteSize != 0)
|
|
llvm_unreachable(
|
|
"ByVal alignment is not a multiple of the pointer size");
|
|
|
|
Align = BVAlign;
|
|
}
|
|
}
|
|
|
|
// Array members are always packed to their original alignment.
|
|
if (Flags.isInConsecutiveRegs()) {
|
|
// If the array member was split into multiple registers, the first
|
|
// needs to be aligned to the size of the full type. (Except for
|
|
// ppcf128, which is only aligned as its f64 components.)
|
|
if (Flags.isSplit() && OrigVT != MVT::ppcf128)
|
|
Align = OrigVT.getStoreSize();
|
|
else
|
|
Align = ArgVT.getStoreSize();
|
|
}
|
|
|
|
return Align;
|
|
}
|
|
|
|
/// CalculateStackSlotUsed - Return whether this argument will use its
|
|
/// stack slot (instead of being passed in registers). ArgOffset,
|
|
/// AvailableFPRs, and AvailableVRs must hold the current argument
|
|
/// position, and will be updated to account for this argument.
|
|
static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
|
|
ISD::ArgFlagsTy Flags,
|
|
unsigned PtrByteSize,
|
|
unsigned LinkageSize,
|
|
unsigned ParamAreaSize,
|
|
unsigned &ArgOffset,
|
|
unsigned &AvailableFPRs,
|
|
unsigned &AvailableVRs) {
|
|
bool UseMemory = false;
|
|
|
|
// Respect alignment of argument on the stack.
|
|
unsigned Align =
|
|
CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
|
|
ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
|
|
// If there's no space left in the argument save area, we must
|
|
// use memory (this check also catches zero-sized arguments).
|
|
if (ArgOffset >= LinkageSize + ParamAreaSize)
|
|
UseMemory = true;
|
|
|
|
// Allocate argument on the stack.
|
|
ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
|
|
if (Flags.isInConsecutiveRegsLast())
|
|
ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
|
|
// If we overran the argument save area, we must use memory
|
|
// (this check catches arguments passed partially in memory)
|
|
if (ArgOffset > LinkageSize + ParamAreaSize)
|
|
UseMemory = true;
|
|
|
|
// However, if the argument is actually passed in an FPR or a VR,
|
|
// we don't use memory after all.
|
|
if (!Flags.isByVal()) {
|
|
if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
|
|
if (AvailableFPRs > 0) {
|
|
--AvailableFPRs;
|
|
return false;
|
|
}
|
|
if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
|
|
ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
|
|
ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64)
|
|
if (AvailableVRs > 0) {
|
|
--AvailableVRs;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return UseMemory;
|
|
}
|
|
|
|
/// EnsureStackAlignment - Round stack frame size up from NumBytes to
|
|
/// ensure minimum alignment required for target.
|
|
static unsigned EnsureStackAlignment(const TargetMachine &Target,
|
|
unsigned NumBytes) {
|
|
unsigned TargetAlign =
|
|
Target.getSubtargetImpl()->getFrameLowering()->getStackAlignment();
|
|
unsigned AlignMask = TargetAlign - 1;
|
|
NumBytes = (NumBytes + AlignMask) & ~AlignMask;
|
|
return NumBytes;
|
|
}
|
|
|
|
SDValue
|
|
PPCTargetLowering::LowerFormalArguments(SDValue Chain,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg>
|
|
&Ins,
|
|
SDLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals)
|
|
const {
|
|
if (Subtarget.isSVR4ABI()) {
|
|
if (Subtarget.isPPC64())
|
|
return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
|
|
dl, DAG, InVals);
|
|
else
|
|
return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
|
|
dl, DAG, InVals);
|
|
} else {
|
|
return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
|
|
dl, DAG, InVals);
|
|
}
|
|
}
|
|
|
|
SDValue
|
|
PPCTargetLowering::LowerFormalArguments_32SVR4(
|
|
SDValue Chain,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg>
|
|
&Ins,
|
|
SDLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
|
|
// 32-bit SVR4 ABI Stack Frame Layout:
|
|
// +-----------------------------------+
|
|
// +--> | Back chain |
|
|
// | +-----------------------------------+
|
|
// | | Floating-point register save area |
|
|
// | +-----------------------------------+
|
|
// | | General register save area |
|
|
// | +-----------------------------------+
|
|
// | | CR save word |
|
|
// | +-----------------------------------+
|
|
// | | VRSAVE save word |
|
|
// | +-----------------------------------+
|
|
// | | Alignment padding |
|
|
// | +-----------------------------------+
|
|
// | | Vector register save area |
|
|
// | +-----------------------------------+
|
|
// | | Local variable space |
|
|
// | +-----------------------------------+
|
|
// | | Parameter list area |
|
|
// | +-----------------------------------+
|
|
// | | LR save word |
|
|
// | +-----------------------------------+
|
|
// SP--> +--- | Back chain |
|
|
// +-----------------------------------+
|
|
//
|
|
// Specifications:
|
|
// System V Application Binary Interface PowerPC Processor Supplement
|
|
// AltiVec Technology Programming Interface Manual
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
|
|
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
// Potential tail calls could cause overwriting of argument stack slots.
|
|
bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
|
|
(CallConv == CallingConv::Fast));
|
|
unsigned PtrByteSize = 4;
|
|
|
|
// Assign locations to all of the incoming arguments.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
|
|
*DAG.getContext());
|
|
|
|
// Reserve space for the linkage area on the stack.
|
|
unsigned LinkageSize = PPCFrameLowering::getLinkageSize(false, false, false);
|
|
CCInfo.AllocateStack(LinkageSize, PtrByteSize);
|
|
|
|
CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
|
|
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
|
|
// Arguments stored in registers.
|
|
if (VA.isRegLoc()) {
|
|
const TargetRegisterClass *RC;
|
|
EVT ValVT = VA.getValVT();
|
|
|
|
switch (ValVT.getSimpleVT().SimpleTy) {
|
|
default:
|
|
llvm_unreachable("ValVT not supported by formal arguments Lowering");
|
|
case MVT::i1:
|
|
case MVT::i32:
|
|
RC = &PPC::GPRCRegClass;
|
|
break;
|
|
case MVT::f32:
|
|
RC = &PPC::F4RCRegClass;
|
|
break;
|
|
case MVT::f64:
|
|
if (Subtarget.hasVSX())
|
|
RC = &PPC::VSFRCRegClass;
|
|
else
|
|
RC = &PPC::F8RCRegClass;
|
|
break;
|
|
case MVT::v16i8:
|
|
case MVT::v8i16:
|
|
case MVT::v4i32:
|
|
case MVT::v4f32:
|
|
RC = &PPC::VRRCRegClass;
|
|
break;
|
|
case MVT::v2f64:
|
|
case MVT::v2i64:
|
|
RC = &PPC::VSHRCRegClass;
|
|
break;
|
|
}
|
|
|
|
// Transform the arguments stored in physical registers into virtual ones.
|
|
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
|
|
SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
|
|
ValVT == MVT::i1 ? MVT::i32 : ValVT);
|
|
|
|
if (ValVT == MVT::i1)
|
|
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
|
|
|
|
InVals.push_back(ArgValue);
|
|
} else {
|
|
// Argument stored in memory.
|
|
assert(VA.isMemLoc());
|
|
|
|
unsigned ArgSize = VA.getLocVT().getStoreSize();
|
|
int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
|
|
isImmutable);
|
|
|
|
// Create load nodes to retrieve arguments from the stack.
|
|
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
|
|
InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
|
|
MachinePointerInfo(),
|
|
false, false, false, 0));
|
|
}
|
|
}
|
|
|
|
// Assign locations to all of the incoming aggregate by value arguments.
|
|
// Aggregates passed by value are stored in the local variable space of the
|
|
// caller's stack frame, right above the parameter list area.
|
|
SmallVector<CCValAssign, 16> ByValArgLocs;
|
|
CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
|
|
ByValArgLocs, *DAG.getContext());
|
|
|
|
// Reserve stack space for the allocations in CCInfo.
|
|
CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
|
|
|
|
CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
|
|
|
|
// Area that is at least reserved in the caller of this function.
|
|
unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
|
|
MinReservedArea = std::max(MinReservedArea, LinkageSize);
|
|
|
|
// Set the size that is at least reserved in caller of this function. Tail
|
|
// call optimized function's reserved stack space needs to be aligned so that
|
|
// taking the difference between two stack areas will result in an aligned
|
|
// stack.
|
|
MinReservedArea = EnsureStackAlignment(MF.getTarget(), MinReservedArea);
|
|
FuncInfo->setMinReservedArea(MinReservedArea);
|
|
|
|
SmallVector<SDValue, 8> MemOps;
|
|
|
|
// If the function takes variable number of arguments, make a frame index for
|
|
// the start of the first vararg value... for expansion of llvm.va_start.
|
|
if (isVarArg) {
|
|
static const MCPhysReg GPArgRegs[] = {
|
|
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
|
|
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
|
|
};
|
|
const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
|
|
|
|
static const MCPhysReg FPArgRegs[] = {
|
|
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
|
|
PPC::F8
|
|
};
|
|
unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
|
|
if (DisablePPCFloatInVariadic)
|
|
NumFPArgRegs = 0;
|
|
|
|
FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
|
|
NumGPArgRegs));
|
|
FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
|
|
NumFPArgRegs));
|
|
|
|
// Make room for NumGPArgRegs and NumFPArgRegs.
|
|
int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
|
|
NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
|
|
|
|
FuncInfo->setVarArgsStackOffset(
|
|
MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
|
|
CCInfo.getNextStackOffset(), true));
|
|
|
|
FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
|
|
SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
|
|
|
|
// The fixed integer arguments of a variadic function are stored to the
|
|
// VarArgsFrameIndex on the stack so that they may be loaded by deferencing
|
|
// the result of va_next.
|
|
for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
|
|
// Get an existing live-in vreg, or add a new one.
|
|
unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
|
|
if (!VReg)
|
|
VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
|
|
|
|
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
|
|
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
|
|
MachinePointerInfo(), false, false, 0);
|
|
MemOps.push_back(Store);
|
|
// Increment the address by four for the next argument to store
|
|
SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
|
|
FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
|
|
}
|
|
|
|
// FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
|
|
// is set.
|
|
// The double arguments are stored to the VarArgsFrameIndex
|
|
// on the stack.
|
|
for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
|
|
// Get an existing live-in vreg, or add a new one.
|
|
unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
|
|
if (!VReg)
|
|
VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
|
|
|
|
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
|
|
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
|
|
MachinePointerInfo(), false, false, 0);
|
|
MemOps.push_back(Store);
|
|
// Increment the address by eight for the next argument to store
|
|
SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
|
|
PtrVT);
|
|
FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
|
|
}
|
|
}
|
|
|
|
if (!MemOps.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
|
|
|
|
return Chain;
|
|
}
|
|
|
|
// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
|
|
// value to MVT::i64 and then truncate to the correct register size.
|
|
SDValue
|
|
PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
|
|
SelectionDAG &DAG, SDValue ArgVal,
|
|
SDLoc dl) const {
|
|
if (Flags.isSExt())
|
|
ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
|
|
DAG.getValueType(ObjectVT));
|
|
else if (Flags.isZExt())
|
|
ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
|
|
DAG.getValueType(ObjectVT));
|
|
|
|
return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
|
|
}
|
|
|
|
SDValue
|
|
PPCTargetLowering::LowerFormalArguments_64SVR4(
|
|
SDValue Chain,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg>
|
|
&Ins,
|
|
SDLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
// TODO: add description of PPC stack frame format, or at least some docs.
|
|
//
|
|
bool isELFv2ABI = Subtarget.isELFv2ABI();
|
|
bool isLittleEndian = Subtarget.isLittleEndian();
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
|
|
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
// Potential tail calls could cause overwriting of argument stack slots.
|
|
bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
|
|
(CallConv == CallingConv::Fast));
|
|
unsigned PtrByteSize = 8;
|
|
|
|
unsigned LinkageSize = PPCFrameLowering::getLinkageSize(true, false,
|
|
isELFv2ABI);
|
|
|
|
static const MCPhysReg GPR[] = {
|
|
PPC::X3, PPC::X4, PPC::X5, PPC::X6,
|
|
PPC::X7, PPC::X8, PPC::X9, PPC::X10,
|
|
};
|
|
|
|
static const MCPhysReg *FPR = GetFPR();
|
|
|
|
static const MCPhysReg VR[] = {
|
|
PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
|
|
PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
|
|
};
|
|
static const MCPhysReg VSRH[] = {
|
|
PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
|
|
PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
|
|
};
|
|
|
|
const unsigned Num_GPR_Regs = array_lengthof(GPR);
|
|
const unsigned Num_FPR_Regs = 13;
|
|
const unsigned Num_VR_Regs = array_lengthof(VR);
|
|
|
|
// Do a first pass over the arguments to determine whether the ABI
|
|
// guarantees that our caller has allocated the parameter save area
|
|
// on its stack frame. In the ELFv1 ABI, this is always the case;
|
|
// in the ELFv2 ABI, it is true if this is a vararg function or if
|
|
// any parameter is located in a stack slot.
|
|
|
|
bool HasParameterArea = !isELFv2ABI || isVarArg;
|
|
unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
|
|
unsigned NumBytes = LinkageSize;
|
|
unsigned AvailableFPRs = Num_FPR_Regs;
|
|
unsigned AvailableVRs = Num_VR_Regs;
|
|
for (unsigned i = 0, e = Ins.size(); i != e; ++i)
|
|
if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
|
|
PtrByteSize, LinkageSize, ParamAreaSize,
|
|
NumBytes, AvailableFPRs, AvailableVRs))
|
|
HasParameterArea = true;
|
|
|
|
// Add DAG nodes to load the arguments or copy them out of registers. On
|
|
// entry to a function on PPC, the arguments start after the linkage area,
|
|
// although the first ones are often in registers.
|
|
|
|
unsigned ArgOffset = LinkageSize;
|
|
unsigned GPR_idx, FPR_idx = 0, VR_idx = 0;
|
|
SmallVector<SDValue, 8> MemOps;
|
|
Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
|
|
unsigned CurArgIdx = 0;
|
|
for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
|
|
SDValue ArgVal;
|
|
bool needsLoad = false;
|
|
EVT ObjectVT = Ins[ArgNo].VT;
|
|
EVT OrigVT = Ins[ArgNo].ArgVT;
|
|
unsigned ObjSize = ObjectVT.getStoreSize();
|
|
unsigned ArgSize = ObjSize;
|
|
ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
|
|
std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
|
|
CurArgIdx = Ins[ArgNo].OrigArgIndex;
|
|
|
|
/* Respect alignment of argument on the stack. */
|
|
unsigned Align =
|
|
CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
|
|
ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
|
|
unsigned CurArgOffset = ArgOffset;
|
|
|
|
/* Compute GPR index associated with argument offset. */
|
|
GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
|
|
GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
|
|
|
|
// FIXME the codegen can be much improved in some cases.
|
|
// We do not have to keep everything in memory.
|
|
if (Flags.isByVal()) {
|
|
// ObjSize is the true size, ArgSize rounded up to multiple of registers.
|
|
ObjSize = Flags.getByValSize();
|
|
ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
|
|
// Empty aggregate parameters do not take up registers. Examples:
|
|
// struct { } a;
|
|
// union { } b;
|
|
// int c[0];
|
|
// etc. However, we have to provide a place-holder in InVals, so
|
|
// pretend we have an 8-byte item at the current address for that
|
|
// purpose.
|
|
if (!ObjSize) {
|
|
int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
|
|
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
|
|
InVals.push_back(FIN);
|
|
continue;
|
|
}
|
|
|
|
// Create a stack object covering all stack doublewords occupied
|
|
// by the argument. If the argument is (fully or partially) on
|
|
// the stack, or if the argument is fully in registers but the
|
|
// caller has allocated the parameter save anyway, we can refer
|
|
// directly to the caller's stack frame. Otherwise, create a
|
|
// local copy in our own frame.
|
|
int FI;
|
|
if (HasParameterArea ||
|
|
ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
|
|
FI = MFI->CreateFixedObject(ArgSize, ArgOffset, false, true);
|
|
else
|
|
FI = MFI->CreateStackObject(ArgSize, Align, false);
|
|
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
|
|
|
|
// Handle aggregates smaller than 8 bytes.
|
|
if (ObjSize < PtrByteSize) {
|
|
// The value of the object is its address, which differs from the
|
|
// address of the enclosing doubleword on big-endian systems.
|
|
SDValue Arg = FIN;
|
|
if (!isLittleEndian) {
|
|
SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, PtrVT);
|
|
Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
|
|
}
|
|
InVals.push_back(Arg);
|
|
|
|
if (GPR_idx != Num_GPR_Regs) {
|
|
unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
|
|
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
|
|
SDValue Store;
|
|
|
|
if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
|
|
EVT ObjType = (ObjSize == 1 ? MVT::i8 :
|
|
(ObjSize == 2 ? MVT::i16 : MVT::i32));
|
|
Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
|
|
MachinePointerInfo(FuncArg),
|
|
ObjType, false, false, 0);
|
|
} else {
|
|
// For sizes that don't fit a truncating store (3, 5, 6, 7),
|
|
// store the whole register as-is to the parameter save area
|
|
// slot.
|
|
Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
|
|
MachinePointerInfo(FuncArg),
|
|
false, false, 0);
|
|
}
|
|
|
|
MemOps.push_back(Store);
|
|
}
|
|
// Whether we copied from a register or not, advance the offset
|
|
// into the parameter save area by a full doubleword.
|
|
ArgOffset += PtrByteSize;
|
|
continue;
|
|
}
|
|
|
|
// The value of the object is its address, which is the address of
|
|
// its first stack doubleword.
|
|
InVals.push_back(FIN);
|
|
|
|
// Store whatever pieces of the object are in registers to memory.
|
|
for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
|
|
if (GPR_idx == Num_GPR_Regs)
|
|
break;
|
|
|
|
unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
|
|
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
|
|
SDValue Addr = FIN;
|
|
if (j) {
|
|
SDValue Off = DAG.getConstant(j, PtrVT);
|
|
Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
|
|
}
|
|
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
|
|
MachinePointerInfo(FuncArg, j),
|
|
false, false, 0);
|
|
MemOps.push_back(Store);
|
|
++GPR_idx;
|
|
}
|
|
ArgOffset += ArgSize;
|
|
continue;
|
|
}
|
|
|
|
switch (ObjectVT.getSimpleVT().SimpleTy) {
|
|
default: llvm_unreachable("Unhandled argument type!");
|
|
case MVT::i1:
|
|
case MVT::i32:
|
|
case MVT::i64:
|
|
// These can be scalar arguments or elements of an integer array type
|
|
// passed directly. Clang may use those instead of "byval" aggregate
|
|
// types to avoid forcing arguments to memory unnecessarily.
|
|
if (GPR_idx != Num_GPR_Regs) {
|
|
unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
|
|
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
|
|
|
|
if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
|
|
// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
|
|
// value to MVT::i64 and then truncate to the correct register size.
|
|
ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
|
|
} else {
|
|
needsLoad = true;
|
|
ArgSize = PtrByteSize;
|
|
}
|
|
ArgOffset += 8;
|
|
break;
|
|
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
// These can be scalar arguments or elements of a float array type
|
|
// passed directly. The latter are used to implement ELFv2 homogenous
|
|
// float aggregates.
|
|
if (FPR_idx != Num_FPR_Regs) {
|
|
unsigned VReg;
|
|
|
|
if (ObjectVT == MVT::f32)
|
|
VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
|
|
else
|
|
VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() ?
|
|
&PPC::VSFRCRegClass :
|
|
&PPC::F8RCRegClass);
|
|
|
|
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
|
|
++FPR_idx;
|
|
} else if (GPR_idx != Num_GPR_Regs) {
|
|
// This can only ever happen in the presence of f32 array types,
|
|
// since otherwise we never run out of FPRs before running out
|
|
// of GPRs.
|
|
unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
|
|
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
|
|
|
|
if (ObjectVT == MVT::f32) {
|
|
if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
|
|
ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
|
|
DAG.getConstant(32, MVT::i32));
|
|
ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
|
|
}
|
|
|
|
ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
|
|
} else {
|
|
needsLoad = true;
|
|
}
|
|
|
|
// When passing an array of floats, the array occupies consecutive
|
|
// space in the argument area; only round up to the next doubleword
|
|
// at the end of the array. Otherwise, each float takes 8 bytes.
|
|
ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
|
|
ArgOffset += ArgSize;
|
|
if (Flags.isInConsecutiveRegsLast())
|
|
ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
|
|
break;
|
|
case MVT::v4f32:
|
|
case MVT::v4i32:
|
|
case MVT::v8i16:
|
|
case MVT::v16i8:
|
|
case MVT::v2f64:
|
|
case MVT::v2i64:
|
|
// These can be scalar arguments or elements of a vector array type
|
|
// passed directly. The latter are used to implement ELFv2 homogenous
|
|
// vector aggregates.
|
|
if (VR_idx != Num_VR_Regs) {
|
|
unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ?
|
|
MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) :
|
|
MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
|
|
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
|
|
++VR_idx;
|
|
} else {
|
|
needsLoad = true;
|
|
}
|
|
ArgOffset += 16;
|
|
break;
|
|
}
|
|
|
|
// We need to load the argument to a virtual register if we determined
|
|
// above that we ran out of physical registers of the appropriate type.
|
|
if (needsLoad) {
|
|
if (ObjSize < ArgSize && !isLittleEndian)
|
|
CurArgOffset += ArgSize - ObjSize;
|
|
int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
|
|
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
|
|
ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
|
|
false, false, false, 0);
|
|
}
|
|
|
|
InVals.push_back(ArgVal);
|
|
}
|
|
|
|
// Area that is at least reserved in the caller of this function.
|
|
unsigned MinReservedArea;
|
|
if (HasParameterArea)
|
|
MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
|
|
else
|
|
MinReservedArea = LinkageSize;
|
|
|
|
// Set the size that is at least reserved in caller of this function. Tail
|
|
// call optimized functions' reserved stack space needs to be aligned so that
|
|
// taking the difference between two stack areas will result in an aligned
|
|
// stack.
|
|
MinReservedArea = EnsureStackAlignment(MF.getTarget(), MinReservedArea);
|
|
FuncInfo->setMinReservedArea(MinReservedArea);
|
|
|
|
// If the function takes variable number of arguments, make a frame index for
|
|
// the start of the first vararg value... for expansion of llvm.va_start.
|
|
if (isVarArg) {
|
|
int Depth = ArgOffset;
|
|
|
|
FuncInfo->setVarArgsFrameIndex(
|
|
MFI->CreateFixedObject(PtrByteSize, Depth, true));
|
|
SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
|
|
|
|
// If this function is vararg, store any remaining integer argument regs
|
|
// to their spots on the stack so that they may be loaded by deferencing the
|
|
// result of va_next.
|
|
for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
|
|
GPR_idx < Num_GPR_Regs; ++GPR_idx) {
|
|
unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
|
|
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
|
|
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
|
|
MachinePointerInfo(), false, false, 0);
|
|
MemOps.push_back(Store);
|
|
// Increment the address by four for the next argument to store
|
|
SDValue PtrOff = DAG.getConstant(PtrByteSize, PtrVT);
|
|
FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
|
|
}
|
|
}
|
|
|
|
if (!MemOps.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
|
|
|
|
return Chain;
|
|
}
|
|
|
|
SDValue
|
|
PPCTargetLowering::LowerFormalArguments_Darwin(
|
|
SDValue Chain,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg>
|
|
&Ins,
|
|
SDLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
// TODO: add description of PPC stack frame format, or at least some docs.
|
|
//
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
|
|
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
bool isPPC64 = PtrVT == MVT::i64;
|
|
// Potential tail calls could cause overwriting of argument stack slots.
|
|
bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
|
|
(CallConv == CallingConv::Fast));
|
|
unsigned PtrByteSize = isPPC64 ? 8 : 4;
|
|
|
|
unsigned LinkageSize = PPCFrameLowering::getLinkageSize(isPPC64, true,
|
|
false);
|
|
unsigned ArgOffset = LinkageSize;
|
|
// Area that is at least reserved in caller of this function.
|
|
unsigned MinReservedArea = ArgOffset;
|
|
|
|
static const MCPhysReg GPR_32[] = { // 32-bit registers.
|
|
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
|
|
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
|
|
};
|
|
static const MCPhysReg GPR_64[] = { // 64-bit registers.
|
|
PPC::X3, PPC::X4, PPC::X5, PPC::X6,
|
|
PPC::X7, PPC::X8, PPC::X9, PPC::X10,
|
|
};
|
|
|
|
static const MCPhysReg *FPR = GetFPR();
|
|
|
|
static const MCPhysReg VR[] = {
|
|
PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
|
|
PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
|
|
};
|
|
|
|
const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
|
|
const unsigned Num_FPR_Regs = 13;
|
|
const unsigned Num_VR_Regs = array_lengthof( VR);
|
|
|
|
unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
|
|
|
|
const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
|
|
|
|
// In 32-bit non-varargs functions, the stack space for vectors is after the
|
|
// stack space for non-vectors. We do not use this space unless we have
|
|
// too many vectors to fit in registers, something that only occurs in
|
|
// constructed examples:), but we have to walk the arglist to figure
|
|
// that out...for the pathological case, compute VecArgOffset as the
|
|
// start of the vector parameter area. Computing VecArgOffset is the
|
|
// entire point of the following loop.
|
|
unsigned VecArgOffset = ArgOffset;
|
|
if (!isVarArg && !isPPC64) {
|
|
for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
|
|
++ArgNo) {
|
|
EVT ObjectVT = Ins[ArgNo].VT;
|
|
ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
|
|
|
|
if (Flags.isByVal()) {
|
|
// ObjSize is the true size, ArgSize rounded up to multiple of regs.
|
|
unsigned ObjSize = Flags.getByValSize();
|
|
unsigned ArgSize =
|
|
((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
|
|
VecArgOffset += ArgSize;
|
|
continue;
|
|
}
|
|
|
|
switch(ObjectVT.getSimpleVT().SimpleTy) {
|
|
default: llvm_unreachable("Unhandled argument type!");
|
|
case MVT::i1:
|
|
case MVT::i32:
|
|
case MVT::f32:
|
|
VecArgOffset += 4;
|
|
break;
|
|
case MVT::i64: // PPC64
|
|
case MVT::f64:
|
|
// FIXME: We are guaranteed to be !isPPC64 at this point.
|
|
// Does MVT::i64 apply?
|
|
VecArgOffset += 8;
|
|
break;
|
|
case MVT::v4f32:
|
|
case MVT::v4i32:
|
|
case MVT::v8i16:
|
|
case MVT::v16i8:
|
|
// Nothing to do, we're only looking at Nonvector args here.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// We've found where the vector parameter area in memory is. Skip the
|
|
// first 12 parameters; these don't use that memory.
|
|
VecArgOffset = ((VecArgOffset+15)/16)*16;
|
|
VecArgOffset += 12*16;
|
|
|
|
// Add DAG nodes to load the arguments or copy them out of registers. On
|
|
// entry to a function on PPC, the arguments start after the linkage area,
|
|
// although the first ones are often in registers.
|
|
|
|
SmallVector<SDValue, 8> MemOps;
|
|
unsigned nAltivecParamsAtEnd = 0;
|
|
Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
|
|
unsigned CurArgIdx = 0;
|
|
for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
|
|
SDValue ArgVal;
|
|
bool needsLoad = false;
|
|
EVT ObjectVT = Ins[ArgNo].VT;
|
|
unsigned ObjSize = ObjectVT.getSizeInBits()/8;
|
|
unsigned ArgSize = ObjSize;
|
|
ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
|
|
std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
|
|
CurArgIdx = Ins[ArgNo].OrigArgIndex;
|
|
|
|
unsigned CurArgOffset = ArgOffset;
|
|
|
|
// Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
|
|
if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
|
|
ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
|
|
if (isVarArg || isPPC64) {
|
|
MinReservedArea = ((MinReservedArea+15)/16)*16;
|
|
MinReservedArea += CalculateStackSlotSize(ObjectVT,
|
|
Flags,
|
|
PtrByteSize);
|
|
} else nAltivecParamsAtEnd++;
|
|
} else
|
|
// Calculate min reserved area.
|
|
MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
|
|
Flags,
|
|
PtrByteSize);
|
|
|
|
// FIXME the codegen can be much improved in some cases.
|
|
// We do not have to keep everything in memory.
|
|
if (Flags.isByVal()) {
|
|
// ObjSize is the true size, ArgSize rounded up to multiple of registers.
|
|
ObjSize = Flags.getByValSize();
|
|
ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
|
|
// Objects of size 1 and 2 are right justified, everything else is
|
|
// left justified. This means the memory address is adjusted forwards.
|
|
if (ObjSize==1 || ObjSize==2) {
|
|
CurArgOffset = CurArgOffset + (4 - ObjSize);
|
|
}
|
|
// The value of the object is its address.
|
|
int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, false, true);
|
|
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
|
|
InVals.push_back(FIN);
|
|
if (ObjSize==1 || ObjSize==2) {
|
|
if (GPR_idx != Num_GPR_Regs) {
|
|
unsigned VReg;
|
|
if (isPPC64)
|
|
VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
|
|
else
|
|
VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
|
|
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
|
|
EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
|
|
SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
|
|
MachinePointerInfo(FuncArg),
|
|
ObjType, false, false, 0);
|
|
MemOps.push_back(Store);
|
|
++GPR_idx;
|
|
}
|
|
|
|
ArgOffset += PtrByteSize;
|
|
|
|
continue;
|
|
}
|
|
for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
|
|
// Store whatever pieces of the object are in registers
|
|
// to memory. ArgOffset will be the address of the beginning
|
|
// of the object.
|
|
if (GPR_idx != Num_GPR_Regs) {
|
|
unsigned VReg;
|
|
if (isPPC64)
|
|
VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
|
|
else
|
|
VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
|
|
int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
|
|
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
|
|
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
|
|
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
|
|
MachinePointerInfo(FuncArg, j),
|
|
false, false, 0);
|
|
MemOps.push_back(Store);
|
|
++GPR_idx;
|
|
ArgOffset += PtrByteSize;
|
|
} else {
|
|
ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
|
|
break;
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
switch (ObjectVT.getSimpleVT().SimpleTy) {
|
|
default: llvm_unreachable("Unhandled argument type!");
|
|
case MVT::i1:
|
|
case MVT::i32:
|
|
if (!isPPC64) {
|
|
if (GPR_idx != Num_GPR_Regs) {
|
|
unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
|
|
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
|
|
|
|
if (ObjectVT == MVT::i1)
|
|
ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
|
|
|
|
++GPR_idx;
|
|
} else {
|
|
needsLoad = true;
|
|
ArgSize = PtrByteSize;
|
|
}
|
|
// All int arguments reserve stack space in the Darwin ABI.
|
|
ArgOffset += PtrByteSize;
|
|
break;
|
|
}
|
|
// FALLTHROUGH
|
|
case MVT::i64: // PPC64
|
|
if (GPR_idx != Num_GPR_Regs) {
|
|
unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
|
|
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
|
|
|
|
if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
|
|
// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
|
|
// value to MVT::i64 and then truncate to the correct register size.
|
|
ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
|
|
|
|
++GPR_idx;
|
|
} else {
|
|
needsLoad = true;
|
|
ArgSize = PtrByteSize;
|
|
}
|
|
// All int arguments reserve stack space in the Darwin ABI.
|
|
ArgOffset += 8;
|
|
break;
|
|
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
// Every 4 bytes of argument space consumes one of the GPRs available for
|
|
// argument passing.
|
|
if (GPR_idx != Num_GPR_Regs) {
|
|
++GPR_idx;
|
|
if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
|
|
++GPR_idx;
|
|
}
|
|
if (FPR_idx != Num_FPR_Regs) {
|
|
unsigned VReg;
|
|
|
|
if (ObjectVT == MVT::f32)
|
|
VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
|
|
else
|
|
VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
|
|
|
|
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
|
|
++FPR_idx;
|
|
} else {
|
|
needsLoad = true;
|
|
}
|
|
|
|
// All FP arguments reserve stack space in the Darwin ABI.
|
|
ArgOffset += isPPC64 ? 8 : ObjSize;
|
|
break;
|
|
case MVT::v4f32:
|
|
case MVT::v4i32:
|
|
case MVT::v8i16:
|
|
case MVT::v16i8:
|
|
// Note that vector arguments in registers don't reserve stack space,
|
|
// except in varargs functions.
|
|
if (VR_idx != Num_VR_Regs) {
|
|
unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
|
|
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
|
|
if (isVarArg) {
|
|
while ((ArgOffset % 16) != 0) {
|
|
ArgOffset += PtrByteSize;
|
|
if (GPR_idx != Num_GPR_Regs)
|
|
GPR_idx++;
|
|
}
|
|
ArgOffset += 16;
|
|
GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
|
|
}
|
|
++VR_idx;
|
|
} else {
|
|
if (!isVarArg && !isPPC64) {
|
|
// Vectors go after all the nonvectors.
|
|
CurArgOffset = VecArgOffset;
|
|
VecArgOffset += 16;
|
|
} else {
|
|
// Vectors are aligned.
|
|
ArgOffset = ((ArgOffset+15)/16)*16;
|
|
CurArgOffset = ArgOffset;
|
|
ArgOffset += 16;
|
|
}
|
|
needsLoad = true;
|
|
}
|
|
break;
|
|
}
|
|
|
|
// We need to load the argument to a virtual register if we determined above
|
|
// that we ran out of physical registers of the appropriate type.
|
|
if (needsLoad) {
|
|
int FI = MFI->CreateFixedObject(ObjSize,
|
|
CurArgOffset + (ArgSize - ObjSize),
|
|
isImmutable);
|
|
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
|
|
ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
|
|
false, false, false, 0);
|
|
}
|
|
|
|
InVals.push_back(ArgVal);
|
|
}
|
|
|
|
// Allow for Altivec parameters at the end, if needed.
|
|
if (nAltivecParamsAtEnd) {
|
|
MinReservedArea = ((MinReservedArea+15)/16)*16;
|
|
MinReservedArea += 16*nAltivecParamsAtEnd;
|
|
}
|
|
|
|
// Area that is at least reserved in the caller of this function.
|
|
MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
|
|
|
|
// Set the size that is at least reserved in caller of this function. Tail
|
|
// call optimized functions' reserved stack space needs to be aligned so that
|
|
// taking the difference between two stack areas will result in an aligned
|
|
// stack.
|
|
MinReservedArea = EnsureStackAlignment(MF.getTarget(), MinReservedArea);
|
|
FuncInfo->setMinReservedArea(MinReservedArea);
|
|
|
|
// If the function takes variable number of arguments, make a frame index for
|
|
// the start of the first vararg value... for expansion of llvm.va_start.
|
|
if (isVarArg) {
|
|
int Depth = ArgOffset;
|
|
|
|
FuncInfo->setVarArgsFrameIndex(
|
|
MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
|
|
Depth, true));
|
|
SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
|
|
|
|
// If this function is vararg, store any remaining integer argument regs
|
|
// to their spots on the stack so that they may be loaded by deferencing the
|
|
// result of va_next.
|
|
for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
|
|
unsigned VReg;
|
|
|
|
if (isPPC64)
|
|
VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
|
|
else
|
|
VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
|
|
|
|
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
|
|
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
|
|
MachinePointerInfo(), false, false, 0);
|
|
MemOps.push_back(Store);
|
|
// Increment the address by four for the next argument to store
|
|
SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
|
|
FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
|
|
}
|
|
}
|
|
|
|
if (!MemOps.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
|
|
|
|
return Chain;
|
|
}
|
|
|
|
/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
|
|
/// adjusted to accommodate the arguments for the tailcall.
|
|
static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
|
|
unsigned ParamSize) {
|
|
|
|
if (!isTailCall) return 0;
|
|
|
|
PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
|
|
unsigned CallerMinReservedArea = FI->getMinReservedArea();
|
|
int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
|
|
// Remember only if the new adjustement is bigger.
|
|
if (SPDiff < FI->getTailCallSPDelta())
|
|
FI->setTailCallSPDelta(SPDiff);
|
|
|
|
return SPDiff;
|
|
}
|
|
|
|
/// IsEligibleForTailCallOptimization - Check whether the call is eligible
|
|
/// for tail call optimization. Targets which want to do tail call
|
|
/// optimization should implement this function.
|
|
bool
|
|
PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
|
|
CallingConv::ID CalleeCC,
|
|
bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SelectionDAG& DAG) const {
|
|
if (!getTargetMachine().Options.GuaranteedTailCallOpt)
|
|
return false;
|
|
|
|
// Variable argument functions are not supported.
|
|
if (isVarArg)
|
|
return false;
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
|
|
if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
|
|
// Functions containing by val parameters are not supported.
|
|
for (unsigned i = 0; i != Ins.size(); i++) {
|
|
ISD::ArgFlagsTy Flags = Ins[i].Flags;
|
|
if (Flags.isByVal()) return false;
|
|
}
|
|
|
|
// Non-PIC/GOT tail calls are supported.
|
|
if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
|
|
return true;
|
|
|
|
// At the moment we can only do local tail calls (in same module, hidden
|
|
// or protected) if we are generating PIC.
|
|
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
|
|
return G->getGlobal()->hasHiddenVisibility()
|
|
|| G->getGlobal()->hasProtectedVisibility();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// isCallCompatibleAddress - Return the immediate to use if the specified
|
|
/// 32-bit value is representable in the immediate field of a BxA instruction.
|
|
static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
|
|
if (!C) return nullptr;
|
|
|
|
int Addr = C->getZExtValue();
|
|
if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero.
|
|
SignExtend32<26>(Addr) != Addr)
|
|
return nullptr; // Top 6 bits have to be sext of immediate.
|
|
|
|
return DAG.getConstant((int)C->getZExtValue() >> 2,
|
|
DAG.getTargetLoweringInfo().getPointerTy()).getNode();
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct TailCallArgumentInfo {
|
|
SDValue Arg;
|
|
SDValue FrameIdxOp;
|
|
int FrameIdx;
|
|
|
|
TailCallArgumentInfo() : FrameIdx(0) {}
|
|
};
|
|
|
|
}
|
|
|
|
/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
|
|
static void
|
|
StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
|
|
SDValue Chain,
|
|
const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
|
|
SmallVectorImpl<SDValue> &MemOpChains,
|
|
SDLoc dl) {
|
|
for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
|
|
SDValue Arg = TailCallArgs[i].Arg;
|
|
SDValue FIN = TailCallArgs[i].FrameIdxOp;
|
|
int FI = TailCallArgs[i].FrameIdx;
|
|
// Store relative to framepointer.
|
|
MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
|
|
MachinePointerInfo::getFixedStack(FI),
|
|
false, false, 0));
|
|
}
|
|
}
|
|
|
|
/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
|
|
/// the appropriate stack slot for the tail call optimized function call.
|
|
static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
|
|
MachineFunction &MF,
|
|
SDValue Chain,
|
|
SDValue OldRetAddr,
|
|
SDValue OldFP,
|
|
int SPDiff,
|
|
bool isPPC64,
|
|
bool isDarwinABI,
|
|
SDLoc dl) {
|
|
if (SPDiff) {
|
|
// Calculate the new stack slot for the return address.
|
|
int SlotSize = isPPC64 ? 8 : 4;
|
|
int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
|
|
isDarwinABI);
|
|
int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
|
|
NewRetAddrLoc, true);
|
|
EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
|
|
SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
|
|
Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
|
|
MachinePointerInfo::getFixedStack(NewRetAddr),
|
|
false, false, 0);
|
|
|
|
// When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
|
|
// slot as the FP is never overwritten.
|
|
if (isDarwinABI) {
|
|
int NewFPLoc =
|
|
SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
|
|
int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
|
|
true);
|
|
SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
|
|
Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
|
|
MachinePointerInfo::getFixedStack(NewFPIdx),
|
|
false, false, 0);
|
|
}
|
|
}
|
|
return Chain;
|
|
}
|
|
|
|
/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
|
|
/// the position of the argument.
|
|
static void
|
|
CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
|
|
SDValue Arg, int SPDiff, unsigned ArgOffset,
|
|
SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
|
|
int Offset = ArgOffset + SPDiff;
|
|
uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
|
|
int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
|
|
EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
|
|
SDValue FIN = DAG.getFrameIndex(FI, VT);
|
|
TailCallArgumentInfo Info;
|
|
Info.Arg = Arg;
|
|
Info.FrameIdxOp = FIN;
|
|
Info.FrameIdx = FI;
|
|
TailCallArguments.push_back(Info);
|
|
}
|
|
|
|
/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
|
|
/// stack slot. Returns the chain as result and the loaded frame pointers in
|
|
/// LROpOut/FPOpout. Used when tail calling.
|
|
SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
|
|
int SPDiff,
|
|
SDValue Chain,
|
|
SDValue &LROpOut,
|
|
SDValue &FPOpOut,
|
|
bool isDarwinABI,
|
|
SDLoc dl) const {
|
|
if (SPDiff) {
|
|
// Load the LR and FP stack slot for later adjusting.
|
|
EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
|
|
LROpOut = getReturnAddrFrameIndex(DAG);
|
|
LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
|
|
false, false, false, 0);
|
|
Chain = SDValue(LROpOut.getNode(), 1);
|
|
|
|
// When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
|
|
// slot as the FP is never overwritten.
|
|
if (isDarwinABI) {
|
|
FPOpOut = getFramePointerFrameIndex(DAG);
|
|
FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
|
|
false, false, false, 0);
|
|
Chain = SDValue(FPOpOut.getNode(), 1);
|
|
}
|
|
}
|
|
return Chain;
|
|
}
|
|
|
|
/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
|
|
/// by "Src" to address "Dst" of size "Size". Alignment information is
|
|
/// specified by the specific parameter attribute. The copy will be passed as
|
|
/// a byval function parameter.
|
|
/// Sometimes what we are copying is the end of a larger object, the part that
|
|
/// does not fit in registers.
|
|
static SDValue
|
|
CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
|
|
ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
|
|
SDLoc dl) {
|
|
SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
|
|
return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
|
|
false, false, MachinePointerInfo(),
|
|
MachinePointerInfo());
|
|
}
|
|
|
|
/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
|
|
/// tail calls.
|
|
static void
|
|
LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
|
|
SDValue Arg, SDValue PtrOff, int SPDiff,
|
|
unsigned ArgOffset, bool isPPC64, bool isTailCall,
|
|
bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
|
|
SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments,
|
|
SDLoc dl) {
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
if (!isTailCall) {
|
|
if (isVector) {
|
|
SDValue StackPtr;
|
|
if (isPPC64)
|
|
StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
|
|
else
|
|
StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
|
|
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
|
|
DAG.getConstant(ArgOffset, PtrVT));
|
|
}
|
|
MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
|
|
MachinePointerInfo(), false, false, 0));
|
|
// Calculate and remember argument location.
|
|
} else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
|
|
TailCallArguments);
|
|
}
|
|
|
|
static
|
|
void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
|
|
SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
|
|
SDValue LROp, SDValue FPOp, bool isDarwinABI,
|
|
SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
|
|
// Emit a sequence of copyto/copyfrom virtual registers for arguments that
|
|
// might overwrite each other in case of tail call optimization.
|
|
SmallVector<SDValue, 8> MemOpChains2;
|
|
// Do not flag preceding copytoreg stuff together with the following stuff.
|
|
InFlag = SDValue();
|
|
StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
|
|
MemOpChains2, dl);
|
|
if (!MemOpChains2.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
|
|
|
|
// Store the return address to the appropriate stack slot.
|
|
Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
|
|
isPPC64, isDarwinABI, dl);
|
|
|
|
// Emit callseq_end just before tailcall node.
|
|
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
|
|
DAG.getIntPtrConstant(0, true), InFlag, dl);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
static
|
|
unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
|
|
SDValue &Chain, SDLoc dl, int SPDiff, bool isTailCall,
|
|
SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass,
|
|
SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
|
|
const PPCSubtarget &Subtarget) {
|
|
|
|
bool isPPC64 = Subtarget.isPPC64();
|
|
bool isSVR4ABI = Subtarget.isSVR4ABI();
|
|
bool isELFv2ABI = Subtarget.isELFv2ABI();
|
|
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
NodeTys.push_back(MVT::Other); // Returns a chain
|
|
NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use.
|
|
|
|
unsigned CallOpc = PPCISD::CALL;
|
|
|
|
bool needIndirectCall = true;
|
|
if (!isSVR4ABI || !isPPC64)
|
|
if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
|
|
// If this is an absolute destination address, use the munged value.
|
|
Callee = SDValue(Dest, 0);
|
|
needIndirectCall = false;
|
|
}
|
|
|
|
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
|
|
unsigned OpFlags = 0;
|
|
if ((DAG.getTarget().getRelocationModel() != Reloc::Static &&
|
|
(Subtarget.getTargetTriple().isMacOSX() &&
|
|
Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
|
|
(G->getGlobal()->isDeclaration() ||
|
|
G->getGlobal()->isWeakForLinker())) ||
|
|
(Subtarget.isTargetELF() && !isPPC64 &&
|
|
!G->getGlobal()->hasLocalLinkage() &&
|
|
DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
|
|
// PC-relative references to external symbols should go through $stub,
|
|
// unless we're building with the leopard linker or later, which
|
|
// automatically synthesizes these stubs.
|
|
OpFlags = PPCII::MO_PLT_OR_STUB;
|
|
}
|
|
|
|
// If the callee is a GlobalAddress/ExternalSymbol node (quite common,
|
|
// every direct call is) turn it into a TargetGlobalAddress /
|
|
// TargetExternalSymbol node so that legalize doesn't hack it.
|
|
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
|
|
Callee.getValueType(), 0, OpFlags);
|
|
needIndirectCall = false;
|
|
}
|
|
|
|
if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
|
|
unsigned char OpFlags = 0;
|
|
|
|
if ((DAG.getTarget().getRelocationModel() != Reloc::Static &&
|
|
(Subtarget.getTargetTriple().isMacOSX() &&
|
|
Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5))) ||
|
|
(Subtarget.isTargetELF() && !isPPC64 &&
|
|
DAG.getTarget().getRelocationModel() == Reloc::PIC_) ) {
|
|
// PC-relative references to external symbols should go through $stub,
|
|
// unless we're building with the leopard linker or later, which
|
|
// automatically synthesizes these stubs.
|
|
OpFlags = PPCII::MO_PLT_OR_STUB;
|
|
}
|
|
|
|
Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
|
|
OpFlags);
|
|
needIndirectCall = false;
|
|
}
|
|
|
|
if (needIndirectCall) {
|
|
// Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
|
|
// to do the call, we can't use PPCISD::CALL.
|
|
SDValue MTCTROps[] = {Chain, Callee, InFlag};
|
|
|
|
if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
|
|
// Function pointers in the 64-bit SVR4 ABI do not point to the function
|
|
// entry point, but to the function descriptor (the function entry point
|
|
// address is part of the function descriptor though).
|
|
// The function descriptor is a three doubleword structure with the
|
|
// following fields: function entry point, TOC base address and
|
|
// environment pointer.
|
|
// Thus for a call through a function pointer, the following actions need
|
|
// to be performed:
|
|
// 1. Save the TOC of the caller in the TOC save area of its stack
|
|
// frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
|
|
// 2. Load the address of the function entry point from the function
|
|
// descriptor.
|
|
// 3. Load the TOC of the callee from the function descriptor into r2.
|
|
// 4. Load the environment pointer from the function descriptor into
|
|
// r11.
|
|
// 5. Branch to the function entry point address.
|
|
// 6. On return of the callee, the TOC of the caller needs to be
|
|
// restored (this is done in FinishCall()).
|
|
//
|
|
// All those operations are flagged together to ensure that no other
|
|
// operations can be scheduled in between. E.g. without flagging the
|
|
// operations together, a TOC access in the caller could be scheduled
|
|
// between the load of the callee TOC and the branch to the callee, which
|
|
// results in the TOC access going through the TOC of the callee instead
|
|
// of going through the TOC of the caller, which leads to incorrect code.
|
|
|
|
// Load the address of the function entry point from the function
|
|
// descriptor.
|
|
SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
|
|
SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs,
|
|
makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
|
|
Chain = LoadFuncPtr.getValue(1);
|
|
InFlag = LoadFuncPtr.getValue(2);
|
|
|
|
// Load environment pointer into r11.
|
|
// Offset of the environment pointer within the function descriptor.
|
|
SDValue PtrOff = DAG.getIntPtrConstant(16);
|
|
|
|
SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
|
|
SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
|
|
InFlag);
|
|
Chain = LoadEnvPtr.getValue(1);
|
|
InFlag = LoadEnvPtr.getValue(2);
|
|
|
|
SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
|
|
InFlag);
|
|
Chain = EnvVal.getValue(0);
|
|
InFlag = EnvVal.getValue(1);
|
|
|
|
// Load TOC of the callee into r2. We are using a target-specific load
|
|
// with r2 hard coded, because the result of a target-independent load
|
|
// would never go directly into r2, since r2 is a reserved register (which
|
|
// prevents the register allocator from allocating it), resulting in an
|
|
// additional register being allocated and an unnecessary move instruction
|
|
// being generated.
|
|
VTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue TOCOff = DAG.getIntPtrConstant(8);
|
|
SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
|
|
SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
|
|
AddTOC, InFlag);
|
|
Chain = LoadTOCPtr.getValue(0);
|
|
InFlag = LoadTOCPtr.getValue(1);
|
|
|
|
MTCTROps[0] = Chain;
|
|
MTCTROps[1] = LoadFuncPtr;
|
|
MTCTROps[2] = InFlag;
|
|
}
|
|
|
|
Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
|
|
makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
|
|
InFlag = Chain.getValue(1);
|
|
|
|
NodeTys.clear();
|
|
NodeTys.push_back(MVT::Other);
|
|
NodeTys.push_back(MVT::Glue);
|
|
Ops.push_back(Chain);
|
|
CallOpc = PPCISD::BCTRL;
|
|
Callee.setNode(nullptr);
|
|
// Add use of X11 (holding environment pointer)
|
|
if (isSVR4ABI && isPPC64 && !isELFv2ABI)
|
|
Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
|
|
// Add CTR register as callee so a bctr can be emitted later.
|
|
if (isTailCall)
|
|
Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
|
|
}
|
|
|
|
// If this is a direct call, pass the chain and the callee.
|
|
if (Callee.getNode()) {
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(Callee);
|
|
|
|
// If this is a call to __tls_get_addr, find the symbol whose address
|
|
// is to be taken and add it to the list. This will be used to
|
|
// generate __tls_get_addr(<sym>@tlsgd) or __tls_get_addr(<sym>@tlsld).
|
|
// We find the symbol by walking the chain to the CopyFromReg, walking
|
|
// back from the CopyFromReg to the ADDI_TLSGD_L or ADDI_TLSLD_L, and
|
|
// pulling the symbol from that node.
|
|
if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
|
|
if (!strcmp(S->getSymbol(), "__tls_get_addr")) {
|
|
assert(!needIndirectCall && "Indirect call to __tls_get_addr???");
|
|
SDNode *AddI = Chain.getNode()->getOperand(2).getNode();
|
|
SDValue TGTAddr = AddI->getOperand(1);
|
|
assert(TGTAddr.getNode()->getOpcode() == ISD::TargetGlobalTLSAddress &&
|
|
"Didn't find target global TLS address where we expected one");
|
|
Ops.push_back(TGTAddr);
|
|
CallOpc = PPCISD::CALL_TLS;
|
|
}
|
|
}
|
|
// If this is a tail call add stack pointer delta.
|
|
if (isTailCall)
|
|
Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
|
|
|
|
// Add argument registers to the end of the list so that they are known live
|
|
// into the call.
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
|
|
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
|
|
RegsToPass[i].second.getValueType()));
|
|
|
|
// Direct calls in the ELFv2 ABI need the TOC register live into the call.
|
|
if (Callee.getNode() && isELFv2ABI)
|
|
Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
|
|
|
|
return CallOpc;
|
|
}
|
|
|
|
static
|
|
bool isLocalCall(const SDValue &Callee)
|
|
{
|
|
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
|
|
return !G->getGlobal()->isDeclaration() &&
|
|
!G->getGlobal()->isWeakForLinker();
|
|
return false;
|
|
}
|
|
|
|
SDValue
|
|
PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SDLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
|
|
*DAG.getContext());
|
|
CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
|
|
|
|
// Copy all of the result registers out of their specified physreg.
|
|
for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = RVLocs[i];
|
|
assert(VA.isRegLoc() && "Can only return in registers!");
|
|
|
|
SDValue Val = DAG.getCopyFromReg(Chain, dl,
|
|
VA.getLocReg(), VA.getLocVT(), InFlag);
|
|
Chain = Val.getValue(1);
|
|
InFlag = Val.getValue(2);
|
|
|
|
switch (VA.getLocInfo()) {
|
|
default: llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full: break;
|
|
case CCValAssign::AExt:
|
|
Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
|
|
break;
|
|
case CCValAssign::ZExt:
|
|
Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
|
|
DAG.getValueType(VA.getValVT()));
|
|
Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
|
|
break;
|
|
case CCValAssign::SExt:
|
|
Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
|
|
DAG.getValueType(VA.getValVT()));
|
|
Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
|
|
break;
|
|
}
|
|
|
|
InVals.push_back(Val);
|
|
}
|
|
|
|
return Chain;
|
|
}
|
|
|
|
SDValue
|
|
PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl,
|
|
bool isTailCall, bool isVarArg,
|
|
SelectionDAG &DAG,
|
|
SmallVector<std::pair<unsigned, SDValue>, 8>
|
|
&RegsToPass,
|
|
SDValue InFlag, SDValue Chain,
|
|
SDValue &Callee,
|
|
int SPDiff, unsigned NumBytes,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
|
|
bool isELFv2ABI = Subtarget.isELFv2ABI();
|
|
std::vector<EVT> NodeTys;
|
|
SmallVector<SDValue, 8> Ops;
|
|
unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
|
|
isTailCall, RegsToPass, Ops, NodeTys,
|
|
Subtarget);
|
|
|
|
// Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
|
|
if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
|
|
Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
|
|
|
|
// When performing tail call optimization the callee pops its arguments off
|
|
// the stack. Account for this here so these bytes can be pushed back on in
|
|
// PPCFrameLowering::eliminateCallFramePseudoInstr.
|
|
int BytesCalleePops =
|
|
(CallConv == CallingConv::Fast &&
|
|
getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
|
|
|
|
// Add a register mask operand representing the call-preserved registers.
|
|
const TargetRegisterInfo *TRI =
|
|
getTargetMachine().getSubtargetImpl()->getRegisterInfo();
|
|
const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
|
|
assert(Mask && "Missing call preserved mask for calling convention");
|
|
Ops.push_back(DAG.getRegisterMask(Mask));
|
|
|
|
if (InFlag.getNode())
|
|
Ops.push_back(InFlag);
|
|
|
|
// Emit tail call.
|
|
if (isTailCall) {
|
|
assert(((Callee.getOpcode() == ISD::Register &&
|
|
cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
|
|
Callee.getOpcode() == ISD::TargetExternalSymbol ||
|
|
Callee.getOpcode() == ISD::TargetGlobalAddress ||
|
|
isa<ConstantSDNode>(Callee)) &&
|
|
"Expecting an global address, external symbol, absolute value or register");
|
|
|
|
return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
|
|
}
|
|
|
|
// Add a NOP immediately after the branch instruction when using the 64-bit
|
|
// SVR4 ABI. At link time, if caller and callee are in a different module and
|
|
// thus have a different TOC, the call will be replaced with a call to a stub
|
|
// function which saves the current TOC, loads the TOC of the callee and
|
|
// branches to the callee. The NOP will be replaced with a load instruction
|
|
// which restores the TOC of the caller from the TOC save slot of the current
|
|
// stack frame. If caller and callee belong to the same module (and have the
|
|
// same TOC), the NOP will remain unchanged.
|
|
|
|
bool needsTOCRestore = false;
|
|
if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64()) {
|
|
if (CallOpc == PPCISD::BCTRL) {
|
|
// This is a call through a function pointer.
|
|
// Restore the caller TOC from the save area into R2.
|
|
// See PrepareCall() for more information about calls through function
|
|
// pointers in the 64-bit SVR4 ABI.
|
|
// We are using a target-specific load with r2 hard coded, because the
|
|
// result of a target-independent load would never go directly into r2,
|
|
// since r2 is a reserved register (which prevents the register allocator
|
|
// from allocating it), resulting in an additional register being
|
|
// allocated and an unnecessary move instruction being generated.
|
|
needsTOCRestore = true;
|
|
} else if ((CallOpc == PPCISD::CALL) &&
|
|
(!isLocalCall(Callee) ||
|
|
DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
|
|
// Otherwise insert NOP for non-local calls.
|
|
CallOpc = PPCISD::CALL_NOP;
|
|
} else if (CallOpc == PPCISD::CALL_TLS)
|
|
// For 64-bit SVR4, TLS calls are always non-local.
|
|
CallOpc = PPCISD::CALL_NOP_TLS;
|
|
}
|
|
|
|
Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
|
|
InFlag = Chain.getValue(1);
|
|
|
|
if (needsTOCRestore) {
|
|
SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
|
|
unsigned TOCSaveOffset = PPCFrameLowering::getTOCSaveOffset(isELFv2ABI);
|
|
SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset);
|
|
SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
|
|
Chain = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain, AddTOC, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
|
|
DAG.getIntPtrConstant(BytesCalleePops, true),
|
|
InFlag, dl);
|
|
if (!Ins.empty())
|
|
InFlag = Chain.getValue(1);
|
|
|
|
return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
|
|
Ins, dl, DAG, InVals);
|
|
}
|
|
|
|
SDValue
|
|
PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
SelectionDAG &DAG = CLI.DAG;
|
|
SDLoc &dl = CLI.DL;
|
|
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
|
|
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
|
|
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
|
|
SDValue Chain = CLI.Chain;
|
|
SDValue Callee = CLI.Callee;
|
|
bool &isTailCall = CLI.IsTailCall;
|
|
CallingConv::ID CallConv = CLI.CallConv;
|
|
bool isVarArg = CLI.IsVarArg;
|
|
|
|
if (isTailCall)
|
|
isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
|
|
Ins, DAG);
|
|
|
|
if (!isTailCall && CLI.CS && CLI.CS->isMustTailCall())
|
|
report_fatal_error("failed to perform tail call elimination on a call "
|
|
"site marked musttail");
|
|
|
|
if (Subtarget.isSVR4ABI()) {
|
|
if (Subtarget.isPPC64())
|
|
return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
|
|
isTailCall, Outs, OutVals, Ins,
|
|
dl, DAG, InVals);
|
|
else
|
|
return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
|
|
isTailCall, Outs, OutVals, Ins,
|
|
dl, DAG, InVals);
|
|
}
|
|
|
|
return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
|
|
isTailCall, Outs, OutVals, Ins,
|
|
dl, DAG, InVals);
|
|
}
|
|
|
|
SDValue
|
|
PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
bool isTailCall,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SDLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
// See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
|
|
// of the 32-bit SVR4 ABI stack frame layout.
|
|
|
|
assert((CallConv == CallingConv::C ||
|
|
CallConv == CallingConv::Fast) && "Unknown calling convention!");
|
|
|
|
unsigned PtrByteSize = 4;
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
|
|
// Mark this function as potentially containing a function that contains a
|
|
// tail call. As a consequence the frame pointer will be used for dynamicalloc
|
|
// and restoring the callers stack pointer in this functions epilog. This is
|
|
// done because by tail calling the called function might overwrite the value
|
|
// in this function's (MF) stack pointer stack slot 0(SP).
|
|
if (getTargetMachine().Options.GuaranteedTailCallOpt &&
|
|
CallConv == CallingConv::Fast)
|
|
MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
|
|
|
|
// Count how many bytes are to be pushed on the stack, including the linkage
|
|
// area, parameter list area and the part of the local variable space which
|
|
// contains copies of aggregates which are passed by value.
|
|
|
|
// Assign locations to all of the outgoing arguments.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
|
|
*DAG.getContext());
|
|
|
|
// Reserve space for the linkage area on the stack.
|
|
CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false, false),
|
|
PtrByteSize);
|
|
|
|
if (isVarArg) {
|
|
// Handle fixed and variable vector arguments differently.
|
|
// Fixed vector arguments go into registers as long as registers are
|
|
// available. Variable vector arguments always go into memory.
|
|
unsigned NumArgs = Outs.size();
|
|
|
|
for (unsigned i = 0; i != NumArgs; ++i) {
|
|
MVT ArgVT = Outs[i].VT;
|
|
ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
|
|
bool Result;
|
|
|
|
if (Outs[i].IsFixed) {
|
|
Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
|
|
CCInfo);
|
|
} else {
|
|
Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
|
|
ArgFlags, CCInfo);
|
|
}
|
|
|
|
if (Result) {
|
|
#ifndef NDEBUG
|
|
errs() << "Call operand #" << i << " has unhandled type "
|
|
<< EVT(ArgVT).getEVTString() << "\n";
|
|
#endif
|
|
llvm_unreachable(nullptr);
|
|
}
|
|
}
|
|
} else {
|
|
// All arguments are treated the same.
|
|
CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
|
|
}
|
|
|
|
// Assign locations to all of the outgoing aggregate by value arguments.
|
|
SmallVector<CCValAssign, 16> ByValArgLocs;
|
|
CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
|
|
ByValArgLocs, *DAG.getContext());
|
|
|
|
// Reserve stack space for the allocations in CCInfo.
|
|
CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
|
|
|
|
CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
|
|
|
|
// Size of the linkage area, parameter list area and the part of the local
|
|
// space variable where copies of aggregates which are passed by value are
|
|
// stored.
|
|
unsigned NumBytes = CCByValInfo.getNextStackOffset();
|
|
|
|
// Calculate by how many bytes the stack has to be adjusted in case of tail
|
|
// call optimization.
|
|
int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
|
|
|
|
// Adjust the stack pointer for the new arguments...
|
|
// These operations are automatically eliminated by the prolog/epilog pass
|
|
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
|
|
dl);
|
|
SDValue CallSeqStart = Chain;
|
|
|
|
// Load the return address and frame pointer so it can be moved somewhere else
|
|
// later.
|
|
SDValue LROp, FPOp;
|
|
Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
|
|
dl);
|
|
|
|
// Set up a copy of the stack pointer for use loading and storing any
|
|
// arguments that may not fit in the registers available for argument
|
|
// passing.
|
|
SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
|
|
|
|
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
|
|
SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
|
|
SmallVector<SDValue, 8> MemOpChains;
|
|
|
|
bool seenFloatArg = false;
|
|
// Walk the register/memloc assignments, inserting copies/loads.
|
|
for (unsigned i = 0, j = 0, e = ArgLocs.size();
|
|
i != e;
|
|
++i) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
SDValue Arg = OutVals[i];
|
|
ISD::ArgFlagsTy Flags = Outs[i].Flags;
|
|
|
|
if (Flags.isByVal()) {
|
|
// Argument is an aggregate which is passed by value, thus we need to
|
|
// create a copy of it in the local variable space of the current stack
|
|
// frame (which is the stack frame of the caller) and pass the address of
|
|
// this copy to the callee.
|
|
assert((j < ByValArgLocs.size()) && "Index out of bounds!");
|
|
CCValAssign &ByValVA = ByValArgLocs[j++];
|
|
assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
|
|
|
|
// Memory reserved in the local variable space of the callers stack frame.
|
|
unsigned LocMemOffset = ByValVA.getLocMemOffset();
|
|
|
|
SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
|
|
PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
|
|
|
|
// Create a copy of the argument in the local area of the current
|
|
// stack frame.
|
|
SDValue MemcpyCall =
|
|
CreateCopyOfByValArgument(Arg, PtrOff,
|
|
CallSeqStart.getNode()->getOperand(0),
|
|
Flags, DAG, dl);
|
|
|
|
// This must go outside the CALLSEQ_START..END.
|
|
SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
|
|
CallSeqStart.getNode()->getOperand(1),
|
|
SDLoc(MemcpyCall));
|
|
DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
|
|
NewCallSeqStart.getNode());
|
|
Chain = CallSeqStart = NewCallSeqStart;
|
|
|
|
// Pass the address of the aggregate copy on the stack either in a
|
|
// physical register or in the parameter list area of the current stack
|
|
// frame to the callee.
|
|
Arg = PtrOff;
|
|
}
|
|
|
|
if (VA.isRegLoc()) {
|
|
if (Arg.getValueType() == MVT::i1)
|
|
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg);
|
|
|
|
seenFloatArg |= VA.getLocVT().isFloatingPoint();
|
|
// Put argument in a physical register.
|
|
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
|
|
} else {
|
|
// Put argument in the parameter list area of the current stack frame.
|
|
assert(VA.isMemLoc());
|
|
unsigned LocMemOffset = VA.getLocMemOffset();
|
|
|
|
if (!isTailCall) {
|
|
SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
|
|
PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
|
|
|
|
MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
|
|
MachinePointerInfo(),
|
|
false, false, 0));
|
|
} else {
|
|
// Calculate and remember argument location.
|
|
CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
|
|
TailCallArguments);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!MemOpChains.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
|
|
|
|
// Build a sequence of copy-to-reg nodes chained together with token chain
|
|
// and flag operands which copy the outgoing args into the appropriate regs.
|
|
SDValue InFlag;
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
|
|
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
|
|
RegsToPass[i].second, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
// Set CR bit 6 to true if this is a vararg call with floating args passed in
|
|
// registers.
|
|
if (isVarArg) {
|
|
SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue Ops[] = { Chain, InFlag };
|
|
|
|
Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
|
|
dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
|
|
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
if (isTailCall)
|
|
PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
|
|
false, TailCallArguments);
|
|
|
|
return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
|
|
RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
|
|
Ins, InVals);
|
|
}
|
|
|
|
// Copy an argument into memory, being careful to do this outside the
|
|
// call sequence for the call to which the argument belongs.
|
|
SDValue
|
|
PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
|
|
SDValue CallSeqStart,
|
|
ISD::ArgFlagsTy Flags,
|
|
SelectionDAG &DAG,
|
|
SDLoc dl) const {
|
|
SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
|
|
CallSeqStart.getNode()->getOperand(0),
|
|
Flags, DAG, dl);
|
|
// The MEMCPY must go outside the CALLSEQ_START..END.
|
|
SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
|
|
CallSeqStart.getNode()->getOperand(1),
|
|
SDLoc(MemcpyCall));
|
|
DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
|
|
NewCallSeqStart.getNode());
|
|
return NewCallSeqStart;
|
|
}
|
|
|
|
SDValue
|
|
PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
bool isTailCall,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SDLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
|
|
bool isELFv2ABI = Subtarget.isELFv2ABI();
|
|
bool isLittleEndian = Subtarget.isLittleEndian();
|
|
unsigned NumOps = Outs.size();
|
|
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
unsigned PtrByteSize = 8;
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
|
|
// Mark this function as potentially containing a function that contains a
|
|
// tail call. As a consequence the frame pointer will be used for dynamicalloc
|
|
// and restoring the callers stack pointer in this functions epilog. This is
|
|
// done because by tail calling the called function might overwrite the value
|
|
// in this function's (MF) stack pointer stack slot 0(SP).
|
|
if (getTargetMachine().Options.GuaranteedTailCallOpt &&
|
|
CallConv == CallingConv::Fast)
|
|
MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
|
|
|
|
// Count how many bytes are to be pushed on the stack, including the linkage
|
|
// area, and parameter passing area. On ELFv1, the linkage area is 48 bytes
|
|
// reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
|
|
// area is 32 bytes reserved space for [SP][CR][LR][TOC].
|
|
unsigned LinkageSize = PPCFrameLowering::getLinkageSize(true, false,
|
|
isELFv2ABI);
|
|
unsigned NumBytes = LinkageSize;
|
|
|
|
// Add up all the space actually used.
|
|
for (unsigned i = 0; i != NumOps; ++i) {
|
|
ISD::ArgFlagsTy Flags = Outs[i].Flags;
|
|
EVT ArgVT = Outs[i].VT;
|
|
EVT OrigVT = Outs[i].ArgVT;
|
|
|
|
/* Respect alignment of argument on the stack. */
|
|
unsigned Align =
|
|
CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
|
|
NumBytes = ((NumBytes + Align - 1) / Align) * Align;
|
|
|
|
NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
|
|
if (Flags.isInConsecutiveRegsLast())
|
|
NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
|
|
}
|
|
|
|
unsigned NumBytesActuallyUsed = NumBytes;
|
|
|
|
// The prolog code of the callee may store up to 8 GPR argument registers to
|
|
// the stack, allowing va_start to index over them in memory if its varargs.
|
|
// Because we cannot tell if this is needed on the caller side, we have to
|
|
// conservatively assume that it is needed. As such, make sure we have at
|
|
// least enough stack space for the caller to store the 8 GPRs.
|
|
// FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
|
|
NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
|
|
|
|
// Tail call needs the stack to be aligned.
|
|
if (getTargetMachine().Options.GuaranteedTailCallOpt &&
|
|
CallConv == CallingConv::Fast)
|
|
NumBytes = EnsureStackAlignment(MF.getTarget(), NumBytes);
|
|
|
|
// Calculate by how many bytes the stack has to be adjusted in case of tail
|
|
// call optimization.
|
|
int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
|
|
|
|
// To protect arguments on the stack from being clobbered in a tail call,
|
|
// force all the loads to happen before doing any other lowering.
|
|
if (isTailCall)
|
|
Chain = DAG.getStackArgumentTokenFactor(Chain);
|
|
|
|
// Adjust the stack pointer for the new arguments...
|
|
// These operations are automatically eliminated by the prolog/epilog pass
|
|
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
|
|
dl);
|
|
SDValue CallSeqStart = Chain;
|
|
|
|
// Load the return address and frame pointer so it can be move somewhere else
|
|
// later.
|
|
SDValue LROp, FPOp;
|
|
Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
|
|
dl);
|
|
|
|
// Set up a copy of the stack pointer for use loading and storing any
|
|
// arguments that may not fit in the registers available for argument
|
|
// passing.
|
|
SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
|
|
|
|
// Figure out which arguments are going to go in registers, and which in
|
|
// memory. Also, if this is a vararg function, floating point operations
|
|
// must be stored to our stack, and loaded into integer regs as well, if
|
|
// any integer regs are available for argument passing.
|
|
unsigned ArgOffset = LinkageSize;
|
|
unsigned GPR_idx, FPR_idx = 0, VR_idx = 0;
|
|
|
|
static const MCPhysReg GPR[] = {
|
|
PPC::X3, PPC::X4, PPC::X5, PPC::X6,
|
|
PPC::X7, PPC::X8, PPC::X9, PPC::X10,
|
|
};
|
|
static const MCPhysReg *FPR = GetFPR();
|
|
|
|
static const MCPhysReg VR[] = {
|
|
PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
|
|
PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
|
|
};
|
|
static const MCPhysReg VSRH[] = {
|
|
PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
|
|
PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
|
|
};
|
|
|
|
const unsigned NumGPRs = array_lengthof(GPR);
|
|
const unsigned NumFPRs = 13;
|
|
const unsigned NumVRs = array_lengthof(VR);
|
|
|
|
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
|
|
SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
|
|
|
|
SmallVector<SDValue, 8> MemOpChains;
|
|
for (unsigned i = 0; i != NumOps; ++i) {
|
|
SDValue Arg = OutVals[i];
|
|
ISD::ArgFlagsTy Flags = Outs[i].Flags;
|
|
EVT ArgVT = Outs[i].VT;
|
|
EVT OrigVT = Outs[i].ArgVT;
|
|
|
|
/* Respect alignment of argument on the stack. */
|
|
unsigned Align =
|
|
CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
|
|
ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
|
|
|
|
/* Compute GPR index associated with argument offset. */
|
|
GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
|
|
GPR_idx = std::min(GPR_idx, NumGPRs);
|
|
|
|
// PtrOff will be used to store the current argument to the stack if a
|
|
// register cannot be found for it.
|
|
SDValue PtrOff;
|
|
|
|
PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
|
|
|
|
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
|
|
|
|
// Promote integers to 64-bit values.
|
|
if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
|
|
// FIXME: Should this use ANY_EXTEND if neither sext nor zext?
|
|
unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
|
|
Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
|
|
}
|
|
|
|
// FIXME memcpy is used way more than necessary. Correctness first.
|
|
// Note: "by value" is code for passing a structure by value, not
|
|
// basic types.
|
|
if (Flags.isByVal()) {
|
|
// Note: Size includes alignment padding, so
|
|
// struct x { short a; char b; }
|
|
// will have Size = 4. With #pragma pack(1), it will have Size = 3.
|
|
// These are the proper values we need for right-justifying the
|
|
// aggregate in a parameter register.
|
|
unsigned Size = Flags.getByValSize();
|
|
|
|
// An empty aggregate parameter takes up no storage and no
|
|
// registers.
|
|
if (Size == 0)
|
|
continue;
|
|
|
|
// All aggregates smaller than 8 bytes must be passed right-justified.
|
|
if (Size==1 || Size==2 || Size==4) {
|
|
EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
|
|
if (GPR_idx != NumGPRs) {
|
|
SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
|
|
MachinePointerInfo(), VT,
|
|
false, false, false, 0);
|
|
MemOpChains.push_back(Load.getValue(1));
|
|
RegsToPass.push_back(std::make_pair(GPR[GPR_idx], Load));
|
|
|
|
ArgOffset += PtrByteSize;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (GPR_idx == NumGPRs && Size < 8) {
|
|
SDValue AddPtr = PtrOff;
|
|
if (!isLittleEndian) {
|
|
SDValue Const = DAG.getConstant(PtrByteSize - Size,
|
|
PtrOff.getValueType());
|
|
AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
|
|
}
|
|
Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
|
|
CallSeqStart,
|
|
Flags, DAG, dl);
|
|
ArgOffset += PtrByteSize;
|
|
continue;
|
|
}
|
|
// Copy entire object into memory. There are cases where gcc-generated
|
|
// code assumes it is there, even if it could be put entirely into
|
|
// registers. (This is not what the doc says.)
|
|
|
|
// FIXME: The above statement is likely due to a misunderstanding of the
|
|
// documents. All arguments must be copied into the parameter area BY
|
|
// THE CALLEE in the event that the callee takes the address of any
|
|
// formal argument. That has not yet been implemented. However, it is
|
|
// reasonable to use the stack area as a staging area for the register
|
|
// load.
|
|
|
|
// Skip this for small aggregates, as we will use the same slot for a
|
|
// right-justified copy, below.
|
|
if (Size >= 8)
|
|
Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
|
|
CallSeqStart,
|
|
Flags, DAG, dl);
|
|
|
|
// When a register is available, pass a small aggregate right-justified.
|
|
if (Size < 8 && GPR_idx != NumGPRs) {
|
|
// The easiest way to get this right-justified in a register
|
|
// is to copy the structure into the rightmost portion of a
|
|
// local variable slot, then load the whole slot into the
|
|
// register.
|
|
// FIXME: The memcpy seems to produce pretty awful code for
|
|
// small aggregates, particularly for packed ones.
|
|
// FIXME: It would be preferable to use the slot in the
|
|
// parameter save area instead of a new local variable.
|
|
SDValue AddPtr = PtrOff;
|
|
if (!isLittleEndian) {
|
|
SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType());
|
|
AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
|
|
}
|
|
Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
|
|
CallSeqStart,
|
|
Flags, DAG, dl);
|
|
|
|
// Load the slot into the register.
|
|
SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
|
|
MachinePointerInfo(),
|
|
false, false, false, 0);
|
|
MemOpChains.push_back(Load.getValue(1));
|
|
RegsToPass.push_back(std::make_pair(GPR[GPR_idx], Load));
|
|
|
|
// Done with this argument.
|
|
ArgOffset += PtrByteSize;
|
|
continue;
|
|
}
|
|
|
|
// For aggregates larger than PtrByteSize, copy the pieces of the
|
|
// object that fit into registers from the parameter save area.
|
|
for (unsigned j=0; j<Size; j+=PtrByteSize) {
|
|
SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
|
|
SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
|
|
if (GPR_idx != NumGPRs) {
|
|
SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
|
|
MachinePointerInfo(),
|
|
false, false, false, 0);
|
|
MemOpChains.push_back(Load.getValue(1));
|
|
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
|
|
ArgOffset += PtrByteSize;
|
|
} else {
|
|
ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
|
|
break;
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
switch (Arg.getSimpleValueType().SimpleTy) {
|
|
default: llvm_unreachable("Unexpected ValueType for argument!");
|
|
case MVT::i1:
|
|
case MVT::i32:
|
|
case MVT::i64:
|
|
// These can be scalar arguments or elements of an integer array type
|
|
// passed directly. Clang may use those instead of "byval" aggregate
|
|
// types to avoid forcing arguments to memory unnecessarily.
|
|
if (GPR_idx != NumGPRs) {
|
|
RegsToPass.push_back(std::make_pair(GPR[GPR_idx], Arg));
|
|
} else {
|
|
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
|
|
true, isTailCall, false, MemOpChains,
|
|
TailCallArguments, dl);
|
|
}
|
|
ArgOffset += PtrByteSize;
|
|
break;
|
|
case MVT::f32:
|
|
case MVT::f64: {
|
|
// These can be scalar arguments or elements of a float array type
|
|
// passed directly. The latter are used to implement ELFv2 homogenous
|
|
// float aggregates.
|
|
|
|
// Named arguments go into FPRs first, and once they overflow, the
|
|
// remaining arguments go into GPRs and then the parameter save area.
|
|
// Unnamed arguments for vararg functions always go to GPRs and
|
|
// then the parameter save area. For now, put all arguments to vararg
|
|
// routines always in both locations (FPR *and* GPR or stack slot).
|
|
bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
|
|
|
|
// First load the argument into the next available FPR.
|
|
if (FPR_idx != NumFPRs)
|
|
RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
|
|
|
|
// Next, load the argument into GPR or stack slot if needed.
|
|
if (!NeedGPROrStack)
|
|
;
|
|
else if (GPR_idx != NumGPRs) {
|
|
// In the non-vararg case, this can only ever happen in the
|
|
// presence of f32 array types, since otherwise we never run
|
|
// out of FPRs before running out of GPRs.
|
|
SDValue ArgVal;
|
|
|
|
// Double values are always passed in a single GPR.
|
|
if (Arg.getValueType() != MVT::f32) {
|
|
ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
|
|
|
|
// Non-array float values are extended and passed in a GPR.
|
|
} else if (!Flags.isInConsecutiveRegs()) {
|
|
ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
|
|
ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
|
|
|
|
// If we have an array of floats, we collect every odd element
|
|
// together with its predecessor into one GPR.
|
|
} else if (ArgOffset % PtrByteSize != 0) {
|
|
SDValue Lo, Hi;
|
|
Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
|
|
Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
|
|
if (!isLittleEndian)
|
|
std::swap(Lo, Hi);
|
|
ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
|
|
|
|
// The final element, if even, goes into the first half of a GPR.
|
|
} else if (Flags.isInConsecutiveRegsLast()) {
|
|
ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
|
|
ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
|
|
if (!isLittleEndian)
|
|
ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
|
|
DAG.getConstant(32, MVT::i32));
|
|
|
|
// Non-final even elements are skipped; they will be handled
|
|
// together the with subsequent argument on the next go-around.
|
|
} else
|
|
ArgVal = SDValue();
|
|
|
|
if (ArgVal.getNode())
|
|
RegsToPass.push_back(std::make_pair(GPR[GPR_idx], ArgVal));
|
|
} else {
|
|
// Single-precision floating-point values are mapped to the
|
|
// second (rightmost) word of the stack doubleword.
|
|
if (Arg.getValueType() == MVT::f32 &&
|
|
!isLittleEndian && !Flags.isInConsecutiveRegs()) {
|
|
SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
|
|
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
|
|
}
|
|
|
|
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
|
|
true, isTailCall, false, MemOpChains,
|
|
TailCallArguments, dl);
|
|
}
|
|
// When passing an array of floats, the array occupies consecutive
|
|
// space in the argument area; only round up to the next doubleword
|
|
// at the end of the array. Otherwise, each float takes 8 bytes.
|
|
ArgOffset += (Arg.getValueType() == MVT::f32 &&
|
|
Flags.isInConsecutiveRegs()) ? 4 : 8;
|
|
if (Flags.isInConsecutiveRegsLast())
|
|
ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
|
|
break;
|
|
}
|
|
case MVT::v4f32:
|
|
case MVT::v4i32:
|
|
case MVT::v8i16:
|
|
case MVT::v16i8:
|
|
case MVT::v2f64:
|
|
case MVT::v2i64:
|
|
// These can be scalar arguments or elements of a vector array type
|
|
// passed directly. The latter are used to implement ELFv2 homogenous
|
|
// vector aggregates.
|
|
|
|
// For a varargs call, named arguments go into VRs or on the stack as
|
|
// usual; unnamed arguments always go to the stack or the corresponding
|
|
// GPRs when within range. For now, we always put the value in both
|
|
// locations (or even all three).
|
|
if (isVarArg) {
|
|
// We could elide this store in the case where the object fits
|
|
// entirely in R registers. Maybe later.
|
|
SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
|
|
MachinePointerInfo(), false, false, 0);
|
|
MemOpChains.push_back(Store);
|
|
if (VR_idx != NumVRs) {
|
|
SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
|
|
MachinePointerInfo(),
|
|
false, false, false, 0);
|
|
MemOpChains.push_back(Load.getValue(1));
|
|
|
|
unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
|
|
Arg.getSimpleValueType() == MVT::v2i64) ?
|
|
VSRH[VR_idx] : VR[VR_idx];
|
|
++VR_idx;
|
|
|
|
RegsToPass.push_back(std::make_pair(VReg, Load));
|
|
}
|
|
ArgOffset += 16;
|
|
for (unsigned i=0; i<16; i+=PtrByteSize) {
|
|
if (GPR_idx == NumGPRs)
|
|
break;
|
|
SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
|
|
DAG.getConstant(i, PtrVT));
|
|
SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
|
|
false, false, false, 0);
|
|
MemOpChains.push_back(Load.getValue(1));
|
|
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Non-varargs Altivec params go into VRs or on the stack.
|
|
if (VR_idx != NumVRs) {
|
|
unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
|
|
Arg.getSimpleValueType() == MVT::v2i64) ?
|
|
VSRH[VR_idx] : VR[VR_idx];
|
|
++VR_idx;
|
|
|
|
RegsToPass.push_back(std::make_pair(VReg, Arg));
|
|
} else {
|
|
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
|
|
true, isTailCall, true, MemOpChains,
|
|
TailCallArguments, dl);
|
|
}
|
|
ArgOffset += 16;
|
|
break;
|
|
}
|
|
}
|
|
|
|
assert(NumBytesActuallyUsed == ArgOffset);
|
|
(void)NumBytesActuallyUsed;
|
|
|
|
if (!MemOpChains.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
|
|
|
|
// Check if this is an indirect call (MTCTR/BCTRL).
|
|
// See PrepareCall() for more information about calls through function
|
|
// pointers in the 64-bit SVR4 ABI.
|
|
if (!isTailCall &&
|
|
!dyn_cast<GlobalAddressSDNode>(Callee) &&
|
|
!dyn_cast<ExternalSymbolSDNode>(Callee)) {
|
|
// Load r2 into a virtual register and store it to the TOC save area.
|
|
SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
|
|
// TOC save area offset.
|
|
unsigned TOCSaveOffset = PPCFrameLowering::getTOCSaveOffset(isELFv2ABI);
|
|
SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset);
|
|
SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
|
|
Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
|
|
false, false, 0);
|
|
// In the ELFv2 ABI, R12 must contain the address of an indirect callee.
|
|
// This does not mean the MTCTR instruction must use R12; it's easier
|
|
// to model this as an extra parameter, so do that.
|
|
if (isELFv2ABI)
|
|
RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
|
|
}
|
|
|
|
// Build a sequence of copy-to-reg nodes chained together with token chain
|
|
// and flag operands which copy the outgoing args into the appropriate regs.
|
|
SDValue InFlag;
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
|
|
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
|
|
RegsToPass[i].second, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
if (isTailCall)
|
|
PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
|
|
FPOp, true, TailCallArguments);
|
|
|
|
return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
|
|
RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
|
|
Ins, InVals);
|
|
}
|
|
|
|
SDValue
|
|
PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
bool isTailCall,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SDLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
|
|
unsigned NumOps = Outs.size();
|
|
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
bool isPPC64 = PtrVT == MVT::i64;
|
|
unsigned PtrByteSize = isPPC64 ? 8 : 4;
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
|
|
// Mark this function as potentially containing a function that contains a
|
|
// tail call. As a consequence the frame pointer will be used for dynamicalloc
|
|
// and restoring the callers stack pointer in this functions epilog. This is
|
|
// done because by tail calling the called function might overwrite the value
|
|
// in this function's (MF) stack pointer stack slot 0(SP).
|
|
if (getTargetMachine().Options.GuaranteedTailCallOpt &&
|
|
CallConv == CallingConv::Fast)
|
|
MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
|
|
|
|
// Count how many bytes are to be pushed on the stack, including the linkage
|
|
// area, and parameter passing area. We start with 24/48 bytes, which is
|
|
// prereserved space for [SP][CR][LR][3 x unused].
|
|
unsigned LinkageSize = PPCFrameLowering::getLinkageSize(isPPC64, true,
|
|
false);
|
|
unsigned NumBytes = LinkageSize;
|
|
|
|
// Add up all the space actually used.
|
|
// In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
|
|
// they all go in registers, but we must reserve stack space for them for
|
|
// possible use by the caller. In varargs or 64-bit calls, parameters are
|
|
// assigned stack space in order, with padding so Altivec parameters are
|
|
// 16-byte aligned.
|
|
unsigned nAltivecParamsAtEnd = 0;
|
|
for (unsigned i = 0; i != NumOps; ++i) {
|
|
ISD::ArgFlagsTy Flags = Outs[i].Flags;
|
|
EVT ArgVT = Outs[i].VT;
|
|
// Varargs Altivec parameters are padded to a 16 byte boundary.
|
|
if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
|
|
ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
|
|
ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
|
|
if (!isVarArg && !isPPC64) {
|
|
// Non-varargs Altivec parameters go after all the non-Altivec
|
|
// parameters; handle those later so we know how much padding we need.
|
|
nAltivecParamsAtEnd++;
|
|
continue;
|
|
}
|
|
// Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
|
|
NumBytes = ((NumBytes+15)/16)*16;
|
|
}
|
|
NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
|
|
}
|
|
|
|
// Allow for Altivec parameters at the end, if needed.
|
|
if (nAltivecParamsAtEnd) {
|
|
NumBytes = ((NumBytes+15)/16)*16;
|
|
NumBytes += 16*nAltivecParamsAtEnd;
|
|
}
|
|
|
|
// The prolog code of the callee may store up to 8 GPR argument registers to
|
|
// the stack, allowing va_start to index over them in memory if its varargs.
|
|
// Because we cannot tell if this is needed on the caller side, we have to
|
|
// conservatively assume that it is needed. As such, make sure we have at
|
|
// least enough stack space for the caller to store the 8 GPRs.
|
|
NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
|
|
|
|
// Tail call needs the stack to be aligned.
|
|
if (getTargetMachine().Options.GuaranteedTailCallOpt &&
|
|
CallConv == CallingConv::Fast)
|
|
NumBytes = EnsureStackAlignment(MF.getTarget(), NumBytes);
|
|
|
|
// Calculate by how many bytes the stack has to be adjusted in case of tail
|
|
// call optimization.
|
|
int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
|
|
|
|
// To protect arguments on the stack from being clobbered in a tail call,
|
|
// force all the loads to happen before doing any other lowering.
|
|
if (isTailCall)
|
|
Chain = DAG.getStackArgumentTokenFactor(Chain);
|
|
|
|
// Adjust the stack pointer for the new arguments...
|
|
// These operations are automatically eliminated by the prolog/epilog pass
|
|
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
|
|
dl);
|
|
SDValue CallSeqStart = Chain;
|
|
|
|
// Load the return address and frame pointer so it can be move somewhere else
|
|
// later.
|
|
SDValue LROp, FPOp;
|
|
Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
|
|
dl);
|
|
|
|
// Set up a copy of the stack pointer for use loading and storing any
|
|
// arguments that may not fit in the registers available for argument
|
|
// passing.
|
|
SDValue StackPtr;
|
|
if (isPPC64)
|
|
StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
|
|
else
|
|
StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
|
|
|
|
// Figure out which arguments are going to go in registers, and which in
|
|
// memory. Also, if this is a vararg function, floating point operations
|
|
// must be stored to our stack, and loaded into integer regs as well, if
|
|
// any integer regs are available for argument passing.
|
|
unsigned ArgOffset = LinkageSize;
|
|
unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
|
|
|
|
static const MCPhysReg GPR_32[] = { // 32-bit registers.
|
|
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
|
|
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
|
|
};
|
|
static const MCPhysReg GPR_64[] = { // 64-bit registers.
|
|
PPC::X3, PPC::X4, PPC::X5, PPC::X6,
|
|
PPC::X7, PPC::X8, PPC::X9, PPC::X10,
|
|
};
|
|
static const MCPhysReg *FPR = GetFPR();
|
|
|
|
static const MCPhysReg VR[] = {
|
|
PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
|
|
PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
|
|
};
|
|
const unsigned NumGPRs = array_lengthof(GPR_32);
|
|
const unsigned NumFPRs = 13;
|
|
const unsigned NumVRs = array_lengthof(VR);
|
|
|
|
const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
|
|
|
|
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
|
|
SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
|
|
|
|
SmallVector<SDValue, 8> MemOpChains;
|
|
for (unsigned i = 0; i != NumOps; ++i) {
|
|
SDValue Arg = OutVals[i];
|
|
ISD::ArgFlagsTy Flags = Outs[i].Flags;
|
|
|
|
// PtrOff will be used to store the current argument to the stack if a
|
|
// register cannot be found for it.
|
|
SDValue PtrOff;
|
|
|
|
PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
|
|
|
|
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
|
|
|
|
// On PPC64, promote integers to 64-bit values.
|
|
if (isPPC64 && Arg.getValueType() == MVT::i32) {
|
|
// FIXME: Should this use ANY_EXTEND if neither sext nor zext?
|
|
unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
|
|
Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
|
|
}
|
|
|
|
// FIXME memcpy is used way more than necessary. Correctness first.
|
|
// Note: "by value" is code for passing a structure by value, not
|
|
// basic types.
|
|
if (Flags.isByVal()) {
|
|
unsigned Size = Flags.getByValSize();
|
|
// Very small objects are passed right-justified. Everything else is
|
|
// passed left-justified.
|
|
if (Size==1 || Size==2) {
|
|
EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
|
|
if (GPR_idx != NumGPRs) {
|
|
SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
|
|
MachinePointerInfo(), VT,
|
|
false, false, false, 0);
|
|
MemOpChains.push_back(Load.getValue(1));
|
|
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
|
|
|
|
ArgOffset += PtrByteSize;
|
|
} else {
|
|
SDValue Const = DAG.getConstant(PtrByteSize - Size,
|
|
PtrOff.getValueType());
|
|
SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
|
|
Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
|
|
CallSeqStart,
|
|
Flags, DAG, dl);
|
|
ArgOffset += PtrByteSize;
|
|
}
|
|
continue;
|
|
}
|
|
// Copy entire object into memory. There are cases where gcc-generated
|
|
// code assumes it is there, even if it could be put entirely into
|
|
// registers. (This is not what the doc says.)
|
|
Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
|
|
CallSeqStart,
|
|
Flags, DAG, dl);
|
|
|
|
// For small aggregates (Darwin only) and aggregates >= PtrByteSize,
|
|
// copy the pieces of the object that fit into registers from the
|
|
// parameter save area.
|
|
for (unsigned j=0; j<Size; j+=PtrByteSize) {
|
|
SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
|
|
SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
|
|
if (GPR_idx != NumGPRs) {
|
|
SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
|
|
MachinePointerInfo(),
|
|
false, false, false, 0);
|
|
MemOpChains.push_back(Load.getValue(1));
|
|
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
|
|
ArgOffset += PtrByteSize;
|
|
} else {
|
|
ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
|
|
break;
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
switch (Arg.getSimpleValueType().SimpleTy) {
|
|
default: llvm_unreachable("Unexpected ValueType for argument!");
|
|
case MVT::i1:
|
|
case MVT::i32:
|
|
case MVT::i64:
|
|
if (GPR_idx != NumGPRs) {
|
|
if (Arg.getValueType() == MVT::i1)
|
|
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
|
|
|
|
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
|
|
} else {
|
|
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
|
|
isPPC64, isTailCall, false, MemOpChains,
|
|
TailCallArguments, dl);
|
|
}
|
|
ArgOffset += PtrByteSize;
|
|
break;
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
if (FPR_idx != NumFPRs) {
|
|
RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
|
|
|
|
if (isVarArg) {
|
|
SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
|
|
MachinePointerInfo(), false, false, 0);
|
|
MemOpChains.push_back(Store);
|
|
|
|
// Float varargs are always shadowed in available integer registers
|
|
if (GPR_idx != NumGPRs) {
|
|
SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
|
|
MachinePointerInfo(), false, false,
|
|
false, 0);
|
|
MemOpChains.push_back(Load.getValue(1));
|
|
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
|
|
}
|
|
if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
|
|
SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
|
|
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
|
|
SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
|
|
MachinePointerInfo(),
|
|
false, false, false, 0);
|
|
MemOpChains.push_back(Load.getValue(1));
|
|
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
|
|
}
|
|
} else {
|
|
// If we have any FPRs remaining, we may also have GPRs remaining.
|
|
// Args passed in FPRs consume either 1 (f32) or 2 (f64) available
|
|
// GPRs.
|
|
if (GPR_idx != NumGPRs)
|
|
++GPR_idx;
|
|
if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
|
|
!isPPC64) // PPC64 has 64-bit GPR's obviously :)
|
|
++GPR_idx;
|
|
}
|
|
} else
|
|
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
|
|
isPPC64, isTailCall, false, MemOpChains,
|
|
TailCallArguments, dl);
|
|
if (isPPC64)
|
|
ArgOffset += 8;
|
|
else
|
|
ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
|
|
break;
|
|
case MVT::v4f32:
|
|
case MVT::v4i32:
|
|
case MVT::v8i16:
|
|
case MVT::v16i8:
|
|
if (isVarArg) {
|
|
// These go aligned on the stack, or in the corresponding R registers
|
|
// when within range. The Darwin PPC ABI doc claims they also go in
|
|
// V registers; in fact gcc does this only for arguments that are
|
|
// prototyped, not for those that match the ... We do it for all
|
|
// arguments, seems to work.
|
|
while (ArgOffset % 16 !=0) {
|
|
ArgOffset += PtrByteSize;
|
|
if (GPR_idx != NumGPRs)
|
|
GPR_idx++;
|
|
}
|
|
// We could elide this store in the case where the object fits
|
|
// entirely in R registers. Maybe later.
|
|
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
|
|
DAG.getConstant(ArgOffset, PtrVT));
|
|
SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
|
|
MachinePointerInfo(), false, false, 0);
|
|
MemOpChains.push_back(Store);
|
|
if (VR_idx != NumVRs) {
|
|
SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
|
|
MachinePointerInfo(),
|
|
false, false, false, 0);
|
|
MemOpChains.push_back(Load.getValue(1));
|
|
RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
|
|
}
|
|
ArgOffset += 16;
|
|
for (unsigned i=0; i<16; i+=PtrByteSize) {
|
|
if (GPR_idx == NumGPRs)
|
|
break;
|
|
SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
|
|
DAG.getConstant(i, PtrVT));
|
|
SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
|
|
false, false, false, 0);
|
|
MemOpChains.push_back(Load.getValue(1));
|
|
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Non-varargs Altivec params generally go in registers, but have
|
|
// stack space allocated at the end.
|
|
if (VR_idx != NumVRs) {
|
|
// Doesn't have GPR space allocated.
|
|
RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
|
|
} else if (nAltivecParamsAtEnd==0) {
|
|
// We are emitting Altivec params in order.
|
|
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
|
|
isPPC64, isTailCall, true, MemOpChains,
|
|
TailCallArguments, dl);
|
|
ArgOffset += 16;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
// If all Altivec parameters fit in registers, as they usually do,
|
|
// they get stack space following the non-Altivec parameters. We
|
|
// don't track this here because nobody below needs it.
|
|
// If there are more Altivec parameters than fit in registers emit
|
|
// the stores here.
|
|
if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
|
|
unsigned j = 0;
|
|
// Offset is aligned; skip 1st 12 params which go in V registers.
|
|
ArgOffset = ((ArgOffset+15)/16)*16;
|
|
ArgOffset += 12*16;
|
|
for (unsigned i = 0; i != NumOps; ++i) {
|
|
SDValue Arg = OutVals[i];
|
|
EVT ArgType = Outs[i].VT;
|
|
if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
|
|
ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
|
|
if (++j > NumVRs) {
|
|
SDValue PtrOff;
|
|
// We are emitting Altivec params in order.
|
|
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
|
|
isPPC64, isTailCall, true, MemOpChains,
|
|
TailCallArguments, dl);
|
|
ArgOffset += 16;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!MemOpChains.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
|
|
|
|
// On Darwin, R12 must contain the address of an indirect callee. This does
|
|
// not mean the MTCTR instruction must use R12; it's easier to model this as
|
|
// an extra parameter, so do that.
|
|
if (!isTailCall &&
|
|
!dyn_cast<GlobalAddressSDNode>(Callee) &&
|
|
!dyn_cast<ExternalSymbolSDNode>(Callee) &&
|
|
!isBLACompatibleAddress(Callee, DAG))
|
|
RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
|
|
PPC::R12), Callee));
|
|
|
|
// Build a sequence of copy-to-reg nodes chained together with token chain
|
|
// and flag operands which copy the outgoing args into the appropriate regs.
|
|
SDValue InFlag;
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
|
|
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
|
|
RegsToPass[i].second, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
if (isTailCall)
|
|
PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
|
|
FPOp, true, TailCallArguments);
|
|
|
|
return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
|
|
RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
|
|
Ins, InVals);
|
|
}
|
|
|
|
bool
|
|
PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
|
|
MachineFunction &MF, bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
LLVMContext &Context) const {
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
|
|
return CCInfo.CheckReturn(Outs, RetCC_PPC);
|
|
}
|
|
|
|
SDValue
|
|
PPCTargetLowering::LowerReturn(SDValue Chain,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
SDLoc dl, SelectionDAG &DAG) const {
|
|
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
|
|
*DAG.getContext());
|
|
CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
|
|
|
|
SDValue Flag;
|
|
SmallVector<SDValue, 4> RetOps(1, Chain);
|
|
|
|
// Copy the result values into the output registers.
|
|
for (unsigned i = 0; i != RVLocs.size(); ++i) {
|
|
CCValAssign &VA = RVLocs[i];
|
|
assert(VA.isRegLoc() && "Can only return in registers!");
|
|
|
|
SDValue Arg = OutVals[i];
|
|
|
|
switch (VA.getLocInfo()) {
|
|
default: llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full: break;
|
|
case CCValAssign::AExt:
|
|
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
|
|
break;
|
|
case CCValAssign::ZExt:
|
|
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
|
|
break;
|
|
case CCValAssign::SExt:
|
|
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
|
|
break;
|
|
}
|
|
|
|
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
|
|
Flag = Chain.getValue(1);
|
|
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
|
|
}
|
|
|
|
RetOps[0] = Chain; // Update chain.
|
|
|
|
// Add the flag if we have it.
|
|
if (Flag.getNode())
|
|
RetOps.push_back(Flag);
|
|
|
|
return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
|
|
const PPCSubtarget &Subtarget) const {
|
|
// When we pop the dynamic allocation we need to restore the SP link.
|
|
SDLoc dl(Op);
|
|
|
|
// Get the corect type for pointers.
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
|
|
// Construct the stack pointer operand.
|
|
bool isPPC64 = Subtarget.isPPC64();
|
|
unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
|
|
SDValue StackPtr = DAG.getRegister(SP, PtrVT);
|
|
|
|
// Get the operands for the STACKRESTORE.
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue SaveSP = Op.getOperand(1);
|
|
|
|
// Load the old link SP.
|
|
SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
|
|
MachinePointerInfo(),
|
|
false, false, false, 0);
|
|
|
|
// Restore the stack pointer.
|
|
Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
|
|
|
|
// Store the old link SP.
|
|
return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
|
|
false, false, 0);
|
|
}
|
|
|
|
|
|
|
|
SDValue
|
|
PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
bool isPPC64 = Subtarget.isPPC64();
|
|
bool isDarwinABI = Subtarget.isDarwinABI();
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
|
|
// Get current frame pointer save index. The users of this index will be
|
|
// primarily DYNALLOC instructions.
|
|
PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
|
|
int RASI = FI->getReturnAddrSaveIndex();
|
|
|
|
// If the frame pointer save index hasn't been defined yet.
|
|
if (!RASI) {
|
|
// Find out what the fix offset of the frame pointer save area.
|
|
int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
|
|
// Allocate the frame index for frame pointer save area.
|
|
RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
|
|
// Save the result.
|
|
FI->setReturnAddrSaveIndex(RASI);
|
|
}
|
|
return DAG.getFrameIndex(RASI, PtrVT);
|
|
}
|
|
|
|
SDValue
|
|
PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
bool isPPC64 = Subtarget.isPPC64();
|
|
bool isDarwinABI = Subtarget.isDarwinABI();
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
|
|
// Get current frame pointer save index. The users of this index will be
|
|
// primarily DYNALLOC instructions.
|
|
PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
|
|
int FPSI = FI->getFramePointerSaveIndex();
|
|
|
|
// If the frame pointer save index hasn't been defined yet.
|
|
if (!FPSI) {
|
|
// Find out what the fix offset of the frame pointer save area.
|
|
int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
|
|
isDarwinABI);
|
|
|
|
// Allocate the frame index for frame pointer save area.
|
|
FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
|
|
// Save the result.
|
|
FI->setFramePointerSaveIndex(FPSI);
|
|
}
|
|
return DAG.getFrameIndex(FPSI, PtrVT);
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
|
|
SelectionDAG &DAG,
|
|
const PPCSubtarget &Subtarget) const {
|
|
// Get the inputs.
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Size = Op.getOperand(1);
|
|
SDLoc dl(Op);
|
|
|
|
// Get the corect type for pointers.
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
// Negate the size.
|
|
SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
|
|
DAG.getConstant(0, PtrVT), Size);
|
|
// Construct a node for the frame pointer save index.
|
|
SDValue FPSIdx = getFramePointerFrameIndex(DAG);
|
|
// Build a DYNALLOC node.
|
|
SDValue Ops[3] = { Chain, NegSize, FPSIdx };
|
|
SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
|
|
return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
|
|
}
|
|
|
|
SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
|
|
DAG.getVTList(MVT::i32, MVT::Other),
|
|
Op.getOperand(0), Op.getOperand(1));
|
|
}
|
|
|
|
SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
|
|
Op.getOperand(0), Op.getOperand(1));
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
|
|
assert(Op.getValueType() == MVT::i1 &&
|
|
"Custom lowering only for i1 loads");
|
|
|
|
// First, load 8 bits into 32 bits, then truncate to 1 bit.
|
|
|
|
SDLoc dl(Op);
|
|
LoadSDNode *LD = cast<LoadSDNode>(Op);
|
|
|
|
SDValue Chain = LD->getChain();
|
|
SDValue BasePtr = LD->getBasePtr();
|
|
MachineMemOperand *MMO = LD->getMemOperand();
|
|
|
|
SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(), Chain,
|
|
BasePtr, MVT::i8, MMO);
|
|
SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
|
|
|
|
SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
|
|
return DAG.getMergeValues(Ops, dl);
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
|
|
assert(Op.getOperand(1).getValueType() == MVT::i1 &&
|
|
"Custom lowering only for i1 stores");
|
|
|
|
// First, zero extend to 32 bits, then use a truncating store to 8 bits.
|
|
|
|
SDLoc dl(Op);
|
|
StoreSDNode *ST = cast<StoreSDNode>(Op);
|
|
|
|
SDValue Chain = ST->getChain();
|
|
SDValue BasePtr = ST->getBasePtr();
|
|
SDValue Value = ST->getValue();
|
|
MachineMemOperand *MMO = ST->getMemOperand();
|
|
|
|
Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(), Value);
|
|
return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
|
|
}
|
|
|
|
// FIXME: Remove this once the ANDI glue bug is fixed:
|
|
SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
|
|
assert(Op.getValueType() == MVT::i1 &&
|
|
"Custom lowering only for i1 results");
|
|
|
|
SDLoc DL(Op);
|
|
return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
|
|
Op.getOperand(0));
|
|
}
|
|
|
|
/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
|
|
/// possible.
|
|
SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
|
|
// Not FP? Not a fsel.
|
|
if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
|
|
!Op.getOperand(2).getValueType().isFloatingPoint())
|
|
return Op;
|
|
|
|
// We might be able to do better than this under some circumstances, but in
|
|
// general, fsel-based lowering of select is a finite-math-only optimization.
|
|
// For more information, see section F.3 of the 2.06 ISA specification.
|
|
if (!DAG.getTarget().Options.NoInfsFPMath ||
|
|
!DAG.getTarget().Options.NoNaNsFPMath)
|
|
return Op;
|
|
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
|
|
|
|
EVT ResVT = Op.getValueType();
|
|
EVT CmpVT = Op.getOperand(0).getValueType();
|
|
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
|
|
SDValue TV = Op.getOperand(2), FV = Op.getOperand(3);
|
|
SDLoc dl(Op);
|
|
|
|
// If the RHS of the comparison is a 0.0, we don't need to do the
|
|
// subtraction at all.
|
|
SDValue Sel1;
|
|
if (isFloatingPointZero(RHS))
|
|
switch (CC) {
|
|
default: break; // SETUO etc aren't handled by fsel.
|
|
case ISD::SETNE:
|
|
std::swap(TV, FV);
|
|
case ISD::SETEQ:
|
|
if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
|
|
LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
|
|
Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
|
|
if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits
|
|
Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
|
|
return DAG.getNode(PPCISD::FSEL, dl, ResVT,
|
|
DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
|
|
case ISD::SETULT:
|
|
case ISD::SETLT:
|
|
std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
|
|
case ISD::SETOGE:
|
|
case ISD::SETGE:
|
|
if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
|
|
LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
|
|
return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
|
|
case ISD::SETUGT:
|
|
case ISD::SETGT:
|
|
std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
|
|
case ISD::SETOLE:
|
|
case ISD::SETLE:
|
|
if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
|
|
LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
|
|
return DAG.getNode(PPCISD::FSEL, dl, ResVT,
|
|
DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
|
|
}
|
|
|
|
SDValue Cmp;
|
|
switch (CC) {
|
|
default: break; // SETUO etc aren't handled by fsel.
|
|
case ISD::SETNE:
|
|
std::swap(TV, FV);
|
|
case ISD::SETEQ:
|
|
Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
|
|
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
|
|
Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
|
|
Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
|
|
if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits
|
|
Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
|
|
return DAG.getNode(PPCISD::FSEL, dl, ResVT,
|
|
DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
|
|
case ISD::SETULT:
|
|
case ISD::SETLT:
|
|
Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
|
|
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
|
|
Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
|
|
return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
|
|
case ISD::SETOGE:
|
|
case ISD::SETGE:
|
|
Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
|
|
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
|
|
Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
|
|
return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
|
|
case ISD::SETUGT:
|
|
case ISD::SETGT:
|
|
Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
|
|
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
|
|
Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
|
|
return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
|
|
case ISD::SETOLE:
|
|
case ISD::SETLE:
|
|
Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
|
|
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
|
|
Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
|
|
return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
|
|
}
|
|
return Op;
|
|
}
|
|
|
|
// FIXME: Split this code up when LegalizeDAGTypes lands.
|
|
SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
|
|
SDLoc dl) const {
|
|
assert(Op.getOperand(0).getValueType().isFloatingPoint());
|
|
SDValue Src = Op.getOperand(0);
|
|
if (Src.getValueType() == MVT::f32)
|
|
Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
|
|
|
|
SDValue Tmp;
|
|
switch (Op.getSimpleValueType().SimpleTy) {
|
|
default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
|
|
case MVT::i32:
|
|
Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
|
|
(Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ :
|
|
PPCISD::FCTIDZ),
|
|
dl, MVT::f64, Src);
|
|
break;
|
|
case MVT::i64:
|
|
assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
|
|
"i64 FP_TO_UINT is supported only with FPCVT");
|
|
Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
|
|
PPCISD::FCTIDUZ,
|
|
dl, MVT::f64, Src);
|
|
break;
|
|
}
|
|
|
|
// Convert the FP value to an int value through memory.
|
|
bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
|
|
(Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
|
|
SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
|
|
int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
|
|
MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(FI);
|
|
|
|
// Emit a store to the stack slot.
|
|
SDValue Chain;
|
|
if (i32Stack) {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineMemOperand *MMO =
|
|
MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
|
|
SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
|
|
Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
|
|
DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
|
|
} else
|
|
Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
|
|
MPI, false, false, 0);
|
|
|
|
// Result is a load from the stack slot. If loading 4 bytes, make sure to
|
|
// add in a bias.
|
|
if (Op.getValueType() == MVT::i32 && !i32Stack) {
|
|
FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
|
|
DAG.getConstant(4, FIPtr.getValueType()));
|
|
MPI = MachinePointerInfo();
|
|
}
|
|
|
|
return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MPI,
|
|
false, false, false, 0);
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc dl(Op);
|
|
// Don't handle ppc_fp128 here; let it be lowered to a libcall.
|
|
if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
|
|
return SDValue();
|
|
|
|
if (Op.getOperand(0).getValueType() == MVT::i1)
|
|
return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
|
|
DAG.getConstantFP(1.0, Op.getValueType()),
|
|
DAG.getConstantFP(0.0, Op.getValueType()));
|
|
|
|
assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
|
|
"UINT_TO_FP is supported only with FPCVT");
|
|
|
|
// If we have FCFIDS, then use it when converting to single-precision.
|
|
// Otherwise, convert to double-precision and then round.
|
|
unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
|
|
(Op.getOpcode() == ISD::UINT_TO_FP ?
|
|
PPCISD::FCFIDUS : PPCISD::FCFIDS) :
|
|
(Op.getOpcode() == ISD::UINT_TO_FP ?
|
|
PPCISD::FCFIDU : PPCISD::FCFID);
|
|
MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
|
|
MVT::f32 : MVT::f64;
|
|
|
|
if (Op.getOperand(0).getValueType() == MVT::i64) {
|
|
SDValue SINT = Op.getOperand(0);
|
|
// When converting to single-precision, we actually need to convert
|
|
// to double-precision first and then round to single-precision.
|
|
// To avoid double-rounding effects during that operation, we have
|
|
// to prepare the input operand. Bits that might be truncated when
|
|
// converting to double-precision are replaced by a bit that won't
|
|
// be lost at this stage, but is below the single-precision rounding
|
|
// position.
|
|
//
|
|
// However, if -enable-unsafe-fp-math is in effect, accept double
|
|
// rounding to avoid the extra overhead.
|
|
if (Op.getValueType() == MVT::f32 &&
|
|
!Subtarget.hasFPCVT() &&
|
|
!DAG.getTarget().Options.UnsafeFPMath) {
|
|
|
|
// Twiddle input to make sure the low 11 bits are zero. (If this
|
|
// is the case, we are guaranteed the value will fit into the 53 bit
|
|
// mantissa of an IEEE double-precision value without rounding.)
|
|
// If any of those low 11 bits were not zero originally, make sure
|
|
// bit 12 (value 2048) is set instead, so that the final rounding
|
|
// to single-precision gets the correct result.
|
|
SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
|
|
SINT, DAG.getConstant(2047, MVT::i64));
|
|
Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
|
|
Round, DAG.getConstant(2047, MVT::i64));
|
|
Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
|
|
Round = DAG.getNode(ISD::AND, dl, MVT::i64,
|
|
Round, DAG.getConstant(-2048, MVT::i64));
|
|
|
|
// However, we cannot use that value unconditionally: if the magnitude
|
|
// of the input value is small, the bit-twiddling we did above might
|
|
// end up visibly changing the output. Fortunately, in that case, we
|
|
// don't need to twiddle bits since the original input will convert
|
|
// exactly to double-precision floating-point already. Therefore,
|
|
// construct a conditional to use the original value if the top 11
|
|
// bits are all sign-bit copies, and use the rounded value computed
|
|
// above otherwise.
|
|
SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
|
|
SINT, DAG.getConstant(53, MVT::i32));
|
|
Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
|
|
Cond, DAG.getConstant(1, MVT::i64));
|
|
Cond = DAG.getSetCC(dl, MVT::i32,
|
|
Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT);
|
|
|
|
SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
|
|
}
|
|
|
|
SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
|
|
SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
|
|
|
|
if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
|
|
FP = DAG.getNode(ISD::FP_ROUND, dl,
|
|
MVT::f32, FP, DAG.getIntPtrConstant(0));
|
|
return FP;
|
|
}
|
|
|
|
assert(Op.getOperand(0).getValueType() == MVT::i32 &&
|
|
"Unhandled INT_TO_FP type in custom expander!");
|
|
// Since we only generate this in 64-bit mode, we can take advantage of
|
|
// 64-bit registers. In particular, sign extend the input value into the
|
|
// 64-bit register with extsw, store the WHOLE 64-bit value into the stack
|
|
// then lfd it and fcfid it.
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *FrameInfo = MF.getFrameInfo();
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
|
|
SDValue Ld;
|
|
if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
|
|
int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
|
|
SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
|
|
|
|
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
|
|
MachinePointerInfo::getFixedStack(FrameIdx),
|
|
false, false, 0);
|
|
|
|
assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
|
|
"Expected an i32 store");
|
|
MachineMemOperand *MMO =
|
|
MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
|
|
MachineMemOperand::MOLoad, 4, 4);
|
|
SDValue Ops[] = { Store, FIdx };
|
|
Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
|
|
PPCISD::LFIWZX : PPCISD::LFIWAX,
|
|
dl, DAG.getVTList(MVT::f64, MVT::Other),
|
|
Ops, MVT::i32, MMO);
|
|
} else {
|
|
assert(Subtarget.isPPC64() &&
|
|
"i32->FP without LFIWAX supported only on PPC64");
|
|
|
|
int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
|
|
SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
|
|
|
|
SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
|
|
Op.getOperand(0));
|
|
|
|
// STD the extended value into the stack slot.
|
|
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Ext64, FIdx,
|
|
MachinePointerInfo::getFixedStack(FrameIdx),
|
|
false, false, 0);
|
|
|
|
// Load the value as a double.
|
|
Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx,
|
|
MachinePointerInfo::getFixedStack(FrameIdx),
|
|
false, false, false, 0);
|
|
}
|
|
|
|
// FCFID it and return it.
|
|
SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
|
|
if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
|
|
FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
|
|
return FP;
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc dl(Op);
|
|
/*
|
|
The rounding mode is in bits 30:31 of FPSR, and has the following
|
|
settings:
|
|
00 Round to nearest
|
|
01 Round to 0
|
|
10 Round to +inf
|
|
11 Round to -inf
|
|
|
|
FLT_ROUNDS, on the other hand, expects the following:
|
|
-1 Undefined
|
|
0 Round to 0
|
|
1 Round to nearest
|
|
2 Round to +inf
|
|
3 Round to -inf
|
|
|
|
To perform the conversion, we do:
|
|
((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
|
|
*/
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
EVT VT = Op.getValueType();
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
|
|
// Save FP Control Word to register
|
|
EVT NodeTys[] = {
|
|
MVT::f64, // return register
|
|
MVT::Glue // unused in this context
|
|
};
|
|
SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
|
|
|
|
// Save FP register to stack slot
|
|
int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
|
|
SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
|
|
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
|
|
StackSlot, MachinePointerInfo(), false, false,0);
|
|
|
|
// Load FP Control Word from low 32 bits of stack slot.
|
|
SDValue Four = DAG.getConstant(4, PtrVT);
|
|
SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
|
|
SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
|
|
false, false, false, 0);
|
|
|
|
// Transform as necessary
|
|
SDValue CWD1 =
|
|
DAG.getNode(ISD::AND, dl, MVT::i32,
|
|
CWD, DAG.getConstant(3, MVT::i32));
|
|
SDValue CWD2 =
|
|
DAG.getNode(ISD::SRL, dl, MVT::i32,
|
|
DAG.getNode(ISD::AND, dl, MVT::i32,
|
|
DAG.getNode(ISD::XOR, dl, MVT::i32,
|
|
CWD, DAG.getConstant(3, MVT::i32)),
|
|
DAG.getConstant(3, MVT::i32)),
|
|
DAG.getConstant(1, MVT::i32));
|
|
|
|
SDValue RetVal =
|
|
DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
|
|
|
|
return DAG.getNode((VT.getSizeInBits() < 16 ?
|
|
ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
|
|
EVT VT = Op.getValueType();
|
|
unsigned BitWidth = VT.getSizeInBits();
|
|
SDLoc dl(Op);
|
|
assert(Op.getNumOperands() == 3 &&
|
|
VT == Op.getOperand(1).getValueType() &&
|
|
"Unexpected SHL!");
|
|
|
|
// Expand into a bunch of logical ops. Note that these ops
|
|
// depend on the PPC behavior for oversized shift amounts.
|
|
SDValue Lo = Op.getOperand(0);
|
|
SDValue Hi = Op.getOperand(1);
|
|
SDValue Amt = Op.getOperand(2);
|
|
EVT AmtVT = Amt.getValueType();
|
|
|
|
SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
|
|
DAG.getConstant(BitWidth, AmtVT), Amt);
|
|
SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
|
|
SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
|
|
SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
|
|
SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
|
|
DAG.getConstant(-BitWidth, AmtVT));
|
|
SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
|
|
SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
|
|
SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
|
|
SDValue OutOps[] = { OutLo, OutHi };
|
|
return DAG.getMergeValues(OutOps, dl);
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
|
|
EVT VT = Op.getValueType();
|
|
SDLoc dl(Op);
|
|
unsigned BitWidth = VT.getSizeInBits();
|
|
assert(Op.getNumOperands() == 3 &&
|
|
VT == Op.getOperand(1).getValueType() &&
|
|
"Unexpected SRL!");
|
|
|
|
// Expand into a bunch of logical ops. Note that these ops
|
|
// depend on the PPC behavior for oversized shift amounts.
|
|
SDValue Lo = Op.getOperand(0);
|
|
SDValue Hi = Op.getOperand(1);
|
|
SDValue Amt = Op.getOperand(2);
|
|
EVT AmtVT = Amt.getValueType();
|
|
|
|
SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
|
|
DAG.getConstant(BitWidth, AmtVT), Amt);
|
|
SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
|
|
SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
|
|
SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
|
|
SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
|
|
DAG.getConstant(-BitWidth, AmtVT));
|
|
SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
|
|
SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
|
|
SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
|
|
SDValue OutOps[] = { OutLo, OutHi };
|
|
return DAG.getMergeValues(OutOps, dl);
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc dl(Op);
|
|
EVT VT = Op.getValueType();
|
|
unsigned BitWidth = VT.getSizeInBits();
|
|
assert(Op.getNumOperands() == 3 &&
|
|
VT == Op.getOperand(1).getValueType() &&
|
|
"Unexpected SRA!");
|
|
|
|
// Expand into a bunch of logical ops, followed by a select_cc.
|
|
SDValue Lo = Op.getOperand(0);
|
|
SDValue Hi = Op.getOperand(1);
|
|
SDValue Amt = Op.getOperand(2);
|
|
EVT AmtVT = Amt.getValueType();
|
|
|
|
SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
|
|
DAG.getConstant(BitWidth, AmtVT), Amt);
|
|
SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
|
|
SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
|
|
SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
|
|
SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
|
|
DAG.getConstant(-BitWidth, AmtVT));
|
|
SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
|
|
SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
|
|
SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
|
|
Tmp4, Tmp6, ISD::SETLE);
|
|
SDValue OutOps[] = { OutLo, OutHi };
|
|
return DAG.getMergeValues(OutOps, dl);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Vector related lowering.
|
|
//
|
|
|
|
/// BuildSplatI - Build a canonical splati of Val with an element size of
|
|
/// SplatSize. Cast the result to VT.
|
|
static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
|
|
SelectionDAG &DAG, SDLoc dl) {
|
|
assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
|
|
|
|
static const EVT VTys[] = { // canonical VT to use for each size.
|
|
MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
|
|
};
|
|
|
|
EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
|
|
|
|
// Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
|
|
if (Val == -1)
|
|
SplatSize = 1;
|
|
|
|
EVT CanonicalVT = VTys[SplatSize-1];
|
|
|
|
// Build a canonical splat for this value.
|
|
SDValue Elt = DAG.getConstant(Val, MVT::i32);
|
|
SmallVector<SDValue, 8> Ops;
|
|
Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
|
|
SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, Ops);
|
|
return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
|
|
}
|
|
|
|
/// BuildIntrinsicOp - Return a unary operator intrinsic node with the
|
|
/// specified intrinsic ID.
|
|
static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op,
|
|
SelectionDAG &DAG, SDLoc dl,
|
|
EVT DestVT = MVT::Other) {
|
|
if (DestVT == MVT::Other) DestVT = Op.getValueType();
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
|
|
DAG.getConstant(IID, MVT::i32), Op);
|
|
}
|
|
|
|
/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
|
|
/// specified intrinsic ID.
|
|
static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
|
|
SelectionDAG &DAG, SDLoc dl,
|
|
EVT DestVT = MVT::Other) {
|
|
if (DestVT == MVT::Other) DestVT = LHS.getValueType();
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
|
|
DAG.getConstant(IID, MVT::i32), LHS, RHS);
|
|
}
|
|
|
|
/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
|
|
/// specified intrinsic ID.
|
|
static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
|
|
SDValue Op2, SelectionDAG &DAG,
|
|
SDLoc dl, EVT DestVT = MVT::Other) {
|
|
if (DestVT == MVT::Other) DestVT = Op0.getValueType();
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
|
|
DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
|
|
}
|
|
|
|
|
|
/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
|
|
/// amount. The result has the specified value type.
|
|
static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
|
|
EVT VT, SelectionDAG &DAG, SDLoc dl) {
|
|
// Force LHS/RHS to be the right type.
|
|
LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
|
|
RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
|
|
|
|
int Ops[16];
|
|
for (unsigned i = 0; i != 16; ++i)
|
|
Ops[i] = i + Amt;
|
|
SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, T);
|
|
}
|
|
|
|
// If this is a case we can't handle, return null and let the default
|
|
// expansion code take care of it. If we CAN select this case, and if it
|
|
// selects to a single instruction, return Op. Otherwise, if we can codegen
|
|
// this case more efficiently than a constant pool load, lower it to the
|
|
// sequence of ops that should be used.
|
|
SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc dl(Op);
|
|
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
|
|
assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
|
|
|
|
// Check if this is a splat of a constant value.
|
|
APInt APSplatBits, APSplatUndef;
|
|
unsigned SplatBitSize;
|
|
bool HasAnyUndefs;
|
|
if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
|
|
HasAnyUndefs, 0, true) || SplatBitSize > 32)
|
|
return SDValue();
|
|
|
|
unsigned SplatBits = APSplatBits.getZExtValue();
|
|
unsigned SplatUndef = APSplatUndef.getZExtValue();
|
|
unsigned SplatSize = SplatBitSize / 8;
|
|
|
|
// First, handle single instruction cases.
|
|
|
|
// All zeros?
|
|
if (SplatBits == 0) {
|
|
// Canonicalize all zero vectors to be v4i32.
|
|
if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
|
|
SDValue Z = DAG.getConstant(0, MVT::i32);
|
|
Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
|
|
Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
|
|
}
|
|
return Op;
|
|
}
|
|
|
|
// If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
|
|
int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
|
|
(32-SplatBitSize));
|
|
if (SextVal >= -16 && SextVal <= 15)
|
|
return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
|
|
|
|
|
|
// Two instruction sequences.
|
|
|
|
// If this value is in the range [-32,30] and is even, use:
|
|
// VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
|
|
// If this value is in the range [17,31] and is odd, use:
|
|
// VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
|
|
// If this value is in the range [-31,-17] and is odd, use:
|
|
// VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
|
|
// Note the last two are three-instruction sequences.
|
|
if (SextVal >= -32 && SextVal <= 31) {
|
|
// To avoid having these optimizations undone by constant folding,
|
|
// we convert to a pseudo that will be expanded later into one of
|
|
// the above forms.
|
|
SDValue Elt = DAG.getConstant(SextVal, MVT::i32);
|
|
EVT VT = (SplatSize == 1 ? MVT::v16i8 :
|
|
(SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
|
|
SDValue EltSize = DAG.getConstant(SplatSize, MVT::i32);
|
|
SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
|
|
if (VT == Op.getValueType())
|
|
return RetVal;
|
|
else
|
|
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
|
|
}
|
|
|
|
// If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
|
|
// 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
|
|
// for fneg/fabs.
|
|
if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
|
|
// Make -1 and vspltisw -1:
|
|
SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
|
|
|
|
// Make the VSLW intrinsic, computing 0x8000_0000.
|
|
SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
|
|
OnesV, DAG, dl);
|
|
|
|
// xor by OnesV to invert it.
|
|
Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
|
|
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
|
|
}
|
|
|
|
// The remaining cases assume either big endian element order or
|
|
// a splat-size that equates to the element size of the vector
|
|
// to be built. An example that doesn't work for little endian is
|
|
// {0, -1, 0, -1, 0, -1, 0, -1} which has a splat size of 32 bits
|
|
// and a vector element size of 16 bits. The code below will
|
|
// produce the vector in big endian element order, which for little
|
|
// endian is {-1, 0, -1, 0, -1, 0, -1, 0}.
|
|
|
|
// For now, just avoid these optimizations in that case.
|
|
// FIXME: Develop correct optimizations for LE with mismatched
|
|
// splat and element sizes.
|
|
|
|
if (Subtarget.isLittleEndian() &&
|
|
SplatSize != Op.getValueType().getVectorElementType().getSizeInBits())
|
|
return SDValue();
|
|
|
|
// Check to see if this is a wide variety of vsplti*, binop self cases.
|
|
static const signed char SplatCsts[] = {
|
|
-1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
|
|
-8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
|
|
};
|
|
|
|
for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
|
|
// Indirect through the SplatCsts array so that we favor 'vsplti -1' for
|
|
// cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
|
|
int i = SplatCsts[idx];
|
|
|
|
// Figure out what shift amount will be used by altivec if shifted by i in
|
|
// this splat size.
|
|
unsigned TypeShiftAmt = i & (SplatBitSize-1);
|
|
|
|
// vsplti + shl self.
|
|
if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
|
|
SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
|
|
static const unsigned IIDs[] = { // Intrinsic to use for each size.
|
|
Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
|
|
Intrinsic::ppc_altivec_vslw
|
|
};
|
|
Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
|
|
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
|
|
}
|
|
|
|
// vsplti + srl self.
|
|
if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
|
|
SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
|
|
static const unsigned IIDs[] = { // Intrinsic to use for each size.
|
|
Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
|
|
Intrinsic::ppc_altivec_vsrw
|
|
};
|
|
Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
|
|
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
|
|
}
|
|
|
|
// vsplti + sra self.
|
|
if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
|
|
SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
|
|
static const unsigned IIDs[] = { // Intrinsic to use for each size.
|
|
Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
|
|
Intrinsic::ppc_altivec_vsraw
|
|
};
|
|
Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
|
|
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
|
|
}
|
|
|
|
// vsplti + rol self.
|
|
if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
|
|
((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
|
|
SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
|
|
static const unsigned IIDs[] = { // Intrinsic to use for each size.
|
|
Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
|
|
Intrinsic::ppc_altivec_vrlw
|
|
};
|
|
Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
|
|
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
|
|
}
|
|
|
|
// t = vsplti c, result = vsldoi t, t, 1
|
|
if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
|
|
SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
|
|
return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
|
|
}
|
|
// t = vsplti c, result = vsldoi t, t, 2
|
|
if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
|
|
SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
|
|
return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
|
|
}
|
|
// t = vsplti c, result = vsldoi t, t, 3
|
|
if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
|
|
SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
|
|
return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
|
|
/// the specified operations to build the shuffle.
|
|
static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
|
|
SDValue RHS, SelectionDAG &DAG,
|
|
SDLoc dl) {
|
|
unsigned OpNum = (PFEntry >> 26) & 0x0F;
|
|
unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
|
|
unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
|
|
|
|
enum {
|
|
OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
|
|
OP_VMRGHW,
|
|
OP_VMRGLW,
|
|
OP_VSPLTISW0,
|
|
OP_VSPLTISW1,
|
|
OP_VSPLTISW2,
|
|
OP_VSPLTISW3,
|
|
OP_VSLDOI4,
|
|
OP_VSLDOI8,
|
|
OP_VSLDOI12
|
|
};
|
|
|
|
if (OpNum == OP_COPY) {
|
|
if (LHSID == (1*9+2)*9+3) return LHS;
|
|
assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
|
|
return RHS;
|
|
}
|
|
|
|
SDValue OpLHS, OpRHS;
|
|
OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
|
|
OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
|
|
|
|
int ShufIdxs[16];
|
|
switch (OpNum) {
|
|
default: llvm_unreachable("Unknown i32 permute!");
|
|
case OP_VMRGHW:
|
|
ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
|
|
ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
|
|
ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
|
|
ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
|
|
break;
|
|
case OP_VMRGLW:
|
|
ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
|
|
ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
|
|
ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
|
|
ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
|
|
break;
|
|
case OP_VSPLTISW0:
|
|
for (unsigned i = 0; i != 16; ++i)
|
|
ShufIdxs[i] = (i&3)+0;
|
|
break;
|
|
case OP_VSPLTISW1:
|
|
for (unsigned i = 0; i != 16; ++i)
|
|
ShufIdxs[i] = (i&3)+4;
|
|
break;
|
|
case OP_VSPLTISW2:
|
|
for (unsigned i = 0; i != 16; ++i)
|
|
ShufIdxs[i] = (i&3)+8;
|
|
break;
|
|
case OP_VSPLTISW3:
|
|
for (unsigned i = 0; i != 16; ++i)
|
|
ShufIdxs[i] = (i&3)+12;
|
|
break;
|
|
case OP_VSLDOI4:
|
|
return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
|
|
case OP_VSLDOI8:
|
|
return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
|
|
case OP_VSLDOI12:
|
|
return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
|
|
}
|
|
EVT VT = OpLHS.getValueType();
|
|
OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
|
|
OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
|
|
SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, T);
|
|
}
|
|
|
|
/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
|
|
/// is a shuffle we can handle in a single instruction, return it. Otherwise,
|
|
/// return the code it can be lowered into. Worst case, it can always be
|
|
/// lowered into a vperm.
|
|
SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc dl(Op);
|
|
SDValue V1 = Op.getOperand(0);
|
|
SDValue V2 = Op.getOperand(1);
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
|
|
EVT VT = Op.getValueType();
|
|
bool isLittleEndian = Subtarget.isLittleEndian();
|
|
|
|
// Cases that are handled by instructions that take permute immediates
|
|
// (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
|
|
// selected by the instruction selector.
|
|
if (V2.getOpcode() == ISD::UNDEF) {
|
|
if (PPC::isSplatShuffleMask(SVOp, 1) ||
|
|
PPC::isSplatShuffleMask(SVOp, 2) ||
|
|
PPC::isSplatShuffleMask(SVOp, 4) ||
|
|
PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
|
|
PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
|
|
PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
|
|
PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
|
|
PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
|
|
PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
|
|
PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
|
|
PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
|
|
PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG)) {
|
|
return Op;
|
|
}
|
|
}
|
|
|
|
// Altivec has a variety of "shuffle immediates" that take two vector inputs
|
|
// and produce a fixed permutation. If any of these match, do not lower to
|
|
// VPERM.
|
|
unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
|
|
if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
|
|
PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
|
|
PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
|
|
PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
|
|
PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
|
|
PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
|
|
PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
|
|
PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
|
|
PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG))
|
|
return Op;
|
|
|
|
// Check to see if this is a shuffle of 4-byte values. If so, we can use our
|
|
// perfect shuffle table to emit an optimal matching sequence.
|
|
ArrayRef<int> PermMask = SVOp->getMask();
|
|
|
|
unsigned PFIndexes[4];
|
|
bool isFourElementShuffle = true;
|
|
for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
|
|
unsigned EltNo = 8; // Start out undef.
|
|
for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
|
|
if (PermMask[i*4+j] < 0)
|
|
continue; // Undef, ignore it.
|
|
|
|
unsigned ByteSource = PermMask[i*4+j];
|
|
if ((ByteSource & 3) != j) {
|
|
isFourElementShuffle = false;
|
|
break;
|
|
}
|
|
|
|
if (EltNo == 8) {
|
|
EltNo = ByteSource/4;
|
|
} else if (EltNo != ByteSource/4) {
|
|
isFourElementShuffle = false;
|
|
break;
|
|
}
|
|
}
|
|
PFIndexes[i] = EltNo;
|
|
}
|
|
|
|
// If this shuffle can be expressed as a shuffle of 4-byte elements, use the
|
|
// perfect shuffle vector to determine if it is cost effective to do this as
|
|
// discrete instructions, or whether we should use a vperm.
|
|
// For now, we skip this for little endian until such time as we have a
|
|
// little-endian perfect shuffle table.
|
|
if (isFourElementShuffle && !isLittleEndian) {
|
|
// Compute the index in the perfect shuffle table.
|
|
unsigned PFTableIndex =
|
|
PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
|
|
|
|
unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
|
|
unsigned Cost = (PFEntry >> 30);
|
|
|
|
// Determining when to avoid vperm is tricky. Many things affect the cost
|
|
// of vperm, particularly how many times the perm mask needs to be computed.
|
|
// For example, if the perm mask can be hoisted out of a loop or is already
|
|
// used (perhaps because there are multiple permutes with the same shuffle
|
|
// mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
|
|
// the loop requires an extra register.
|
|
//
|
|
// As a compromise, we only emit discrete instructions if the shuffle can be
|
|
// generated in 3 or fewer operations. When we have loop information
|
|
// available, if this block is within a loop, we should avoid using vperm
|
|
// for 3-operation perms and use a constant pool load instead.
|
|
if (Cost < 3)
|
|
return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
|
|
}
|
|
|
|
// Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
|
|
// vector that will get spilled to the constant pool.
|
|
if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
|
|
|
|
// The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
|
|
// that it is in input element units, not in bytes. Convert now.
|
|
|
|
// For little endian, the order of the input vectors is reversed, and
|
|
// the permutation mask is complemented with respect to 31. This is
|
|
// necessary to produce proper semantics with the big-endian-biased vperm
|
|
// instruction.
|
|
EVT EltVT = V1.getValueType().getVectorElementType();
|
|
unsigned BytesPerElement = EltVT.getSizeInBits()/8;
|
|
|
|
SmallVector<SDValue, 16> ResultMask;
|
|
for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
|
|
unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
|
|
|
|
for (unsigned j = 0; j != BytesPerElement; ++j)
|
|
if (isLittleEndian)
|
|
ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement+j),
|
|
MVT::i32));
|
|
else
|
|
ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
|
|
MVT::i32));
|
|
}
|
|
|
|
SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
|
|
ResultMask);
|
|
if (isLittleEndian)
|
|
return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
|
|
V2, V1, VPermMask);
|
|
else
|
|
return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
|
|
V1, V2, VPermMask);
|
|
}
|
|
|
|
/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
|
|
/// altivec comparison. If it is, return true and fill in Opc/isDot with
|
|
/// information about the intrinsic.
|
|
static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
|
|
bool &isDot) {
|
|
unsigned IntrinsicID =
|
|
cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
|
|
CompareOpc = -1;
|
|
isDot = false;
|
|
switch (IntrinsicID) {
|
|
default: return false;
|
|
// Comparison predicates.
|
|
case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
|
|
|
|
// Normal Comparisons.
|
|
case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
|
|
/// lower, do it, otherwise return null.
|
|
SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
// If this is a lowered altivec predicate compare, CompareOpc is set to the
|
|
// opcode number of the comparison.
|
|
SDLoc dl(Op);
|
|
int CompareOpc;
|
|
bool isDot;
|
|
if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
|
|
return SDValue(); // Don't custom lower most intrinsics.
|
|
|
|
// If this is a non-dot comparison, make the VCMP node and we are done.
|
|
if (!isDot) {
|
|
SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
|
|
Op.getOperand(1), Op.getOperand(2),
|
|
DAG.getConstant(CompareOpc, MVT::i32));
|
|
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
|
|
}
|
|
|
|
// Create the PPCISD altivec 'dot' comparison node.
|
|
SDValue Ops[] = {
|
|
Op.getOperand(2), // LHS
|
|
Op.getOperand(3), // RHS
|
|
DAG.getConstant(CompareOpc, MVT::i32)
|
|
};
|
|
EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
|
|
SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
|
|
|
|
// Now that we have the comparison, emit a copy from the CR to a GPR.
|
|
// This is flagged to the above dot comparison.
|
|
SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
|
|
DAG.getRegister(PPC::CR6, MVT::i32),
|
|
CompNode.getValue(1));
|
|
|
|
// Unpack the result based on how the target uses it.
|
|
unsigned BitNo; // Bit # of CR6.
|
|
bool InvertBit; // Invert result?
|
|
switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
|
|
default: // Can't happen, don't crash on invalid number though.
|
|
case 0: // Return the value of the EQ bit of CR6.
|
|
BitNo = 0; InvertBit = false;
|
|
break;
|
|
case 1: // Return the inverted value of the EQ bit of CR6.
|
|
BitNo = 0; InvertBit = true;
|
|
break;
|
|
case 2: // Return the value of the LT bit of CR6.
|
|
BitNo = 2; InvertBit = false;
|
|
break;
|
|
case 3: // Return the inverted value of the LT bit of CR6.
|
|
BitNo = 2; InvertBit = true;
|
|
break;
|
|
}
|
|
|
|
// Shift the bit into the low position.
|
|
Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
|
|
DAG.getConstant(8-(3-BitNo), MVT::i32));
|
|
// Isolate the bit.
|
|
Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
|
|
DAG.getConstant(1, MVT::i32));
|
|
|
|
// If we are supposed to, toggle the bit.
|
|
if (InvertBit)
|
|
Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
|
|
DAG.getConstant(1, MVT::i32));
|
|
return Flags;
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc dl(Op);
|
|
// For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int
|
|
// instructions), but for smaller types, we need to first extend up to v2i32
|
|
// before doing going farther.
|
|
if (Op.getValueType() == MVT::v2i64) {
|
|
EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
|
|
if (ExtVT != MVT::v2i32) {
|
|
Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0));
|
|
Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op,
|
|
DAG.getValueType(EVT::getVectorVT(*DAG.getContext(),
|
|
ExtVT.getVectorElementType(), 4)));
|
|
Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op);
|
|
Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op,
|
|
DAG.getValueType(MVT::v2i32));
|
|
}
|
|
|
|
return Op;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc dl(Op);
|
|
// Create a stack slot that is 16-byte aligned.
|
|
MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
|
|
int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
|
|
EVT PtrVT = getPointerTy();
|
|
SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
|
|
|
|
// Store the input value into Value#0 of the stack slot.
|
|
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
|
|
Op.getOperand(0), FIdx, MachinePointerInfo(),
|
|
false, false, 0);
|
|
// Load it out.
|
|
return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
|
|
false, false, false, 0);
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc dl(Op);
|
|
if (Op.getValueType() == MVT::v4i32) {
|
|
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
|
|
|
|
SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl);
|
|
SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
|
|
|
|
SDValue RHSSwap = // = vrlw RHS, 16
|
|
BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
|
|
|
|
// Shrinkify inputs to v8i16.
|
|
LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
|
|
RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
|
|
RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
|
|
|
|
// Low parts multiplied together, generating 32-bit results (we ignore the
|
|
// top parts).
|
|
SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
|
|
LHS, RHS, DAG, dl, MVT::v4i32);
|
|
|
|
SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
|
|
LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
|
|
// Shift the high parts up 16 bits.
|
|
HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
|
|
Neg16, DAG, dl);
|
|
return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
|
|
} else if (Op.getValueType() == MVT::v8i16) {
|
|
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
|
|
|
|
SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
|
|
|
|
return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
|
|
LHS, RHS, Zero, DAG, dl);
|
|
} else if (Op.getValueType() == MVT::v16i8) {
|
|
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
|
|
bool isLittleEndian = Subtarget.isLittleEndian();
|
|
|
|
// Multiply the even 8-bit parts, producing 16-bit sums.
|
|
SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
|
|
LHS, RHS, DAG, dl, MVT::v8i16);
|
|
EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
|
|
|
|
// Multiply the odd 8-bit parts, producing 16-bit sums.
|
|
SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
|
|
LHS, RHS, DAG, dl, MVT::v8i16);
|
|
OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
|
|
|
|
// Merge the results together. Because vmuleub and vmuloub are
|
|
// instructions with a big-endian bias, we must reverse the
|
|
// element numbering and reverse the meaning of "odd" and "even"
|
|
// when generating little endian code.
|
|
int Ops[16];
|
|
for (unsigned i = 0; i != 8; ++i) {
|
|
if (isLittleEndian) {
|
|
Ops[i*2 ] = 2*i;
|
|
Ops[i*2+1] = 2*i+16;
|
|
} else {
|
|
Ops[i*2 ] = 2*i+1;
|
|
Ops[i*2+1] = 2*i+1+16;
|
|
}
|
|
}
|
|
if (isLittleEndian)
|
|
return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
|
|
else
|
|
return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
|
|
} else {
|
|
llvm_unreachable("Unknown mul to lower!");
|
|
}
|
|
}
|
|
|
|
/// LowerOperation - Provide custom lowering hooks for some operations.
|
|
///
|
|
SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
|
|
switch (Op.getOpcode()) {
|
|
default: llvm_unreachable("Wasn't expecting to be able to lower this!");
|
|
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
|
|
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
|
|
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
|
|
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
|
|
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
|
|
case ISD::SETCC: return LowerSETCC(Op, DAG);
|
|
case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
|
|
case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
|
|
case ISD::VASTART:
|
|
return LowerVASTART(Op, DAG, Subtarget);
|
|
|
|
case ISD::VAARG:
|
|
return LowerVAARG(Op, DAG, Subtarget);
|
|
|
|
case ISD::VACOPY:
|
|
return LowerVACOPY(Op, DAG, Subtarget);
|
|
|
|
case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, Subtarget);
|
|
case ISD::DYNAMIC_STACKALLOC:
|
|
return LowerDYNAMIC_STACKALLOC(Op, DAG, Subtarget);
|
|
|
|
case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG);
|
|
case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG);
|
|
|
|
case ISD::LOAD: return LowerLOAD(Op, DAG);
|
|
case ISD::STORE: return LowerSTORE(Op, DAG);
|
|
case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG);
|
|
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
|
|
case ISD::FP_TO_UINT:
|
|
case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG,
|
|
SDLoc(Op));
|
|
case ISD::UINT_TO_FP:
|
|
case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
|
|
case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
|
|
|
|
// Lower 64-bit shifts.
|
|
case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG);
|
|
case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG);
|
|
case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG);
|
|
|
|
// Vector-related lowering.
|
|
case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
|
|
case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
|
|
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
|
|
case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
|
|
case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
|
|
case ISD::MUL: return LowerMUL(Op, DAG);
|
|
|
|
// For counter-based loop handling.
|
|
case ISD::INTRINSIC_W_CHAIN: return SDValue();
|
|
|
|
// Frame & Return address.
|
|
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
|
|
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
|
|
}
|
|
}
|
|
|
|
void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
|
|
SmallVectorImpl<SDValue>&Results,
|
|
SelectionDAG &DAG) const {
|
|
const TargetMachine &TM = getTargetMachine();
|
|
SDLoc dl(N);
|
|
switch (N->getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Do not know how to custom type legalize this operation!");
|
|
case ISD::INTRINSIC_W_CHAIN: {
|
|
if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
|
|
Intrinsic::ppc_is_decremented_ctr_nonzero)
|
|
break;
|
|
|
|
assert(N->getValueType(0) == MVT::i1 &&
|
|
"Unexpected result type for CTR decrement intrinsic");
|
|
EVT SVT = getSetCCResultType(*DAG.getContext(), N->getValueType(0));
|
|
SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
|
|
SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
|
|
N->getOperand(1));
|
|
|
|
Results.push_back(NewInt);
|
|
Results.push_back(NewInt.getValue(1));
|
|
break;
|
|
}
|
|
case ISD::VAARG: {
|
|
if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
|
|
|| TM.getSubtarget<PPCSubtarget>().isPPC64())
|
|
return;
|
|
|
|
EVT VT = N->getValueType(0);
|
|
|
|
if (VT == MVT::i64) {
|
|
SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, Subtarget);
|
|
|
|
Results.push_back(NewNode);
|
|
Results.push_back(NewNode.getValue(1));
|
|
}
|
|
return;
|
|
}
|
|
case ISD::FP_ROUND_INREG: {
|
|
assert(N->getValueType(0) == MVT::ppcf128);
|
|
assert(N->getOperand(0).getValueType() == MVT::ppcf128);
|
|
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
|
|
MVT::f64, N->getOperand(0),
|
|
DAG.getIntPtrConstant(0));
|
|
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
|
|
MVT::f64, N->getOperand(0),
|
|
DAG.getIntPtrConstant(1));
|
|
|
|
// Add the two halves of the long double in round-to-zero mode.
|
|
SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
|
|
|
|
// We know the low half is about to be thrown away, so just use something
|
|
// convenient.
|
|
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
|
|
FPreg, FPreg));
|
|
return;
|
|
}
|
|
case ISD::FP_TO_SINT:
|
|
// LowerFP_TO_INT() can only handle f32 and f64.
|
|
if (N->getOperand(0).getValueType() == MVT::ppcf128)
|
|
return;
|
|
Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Other Lowering Code
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
|
|
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
|
|
Function *Func = Intrinsic::getDeclaration(M, Id);
|
|
return Builder.CreateCall(Func);
|
|
}
|
|
|
|
// The mappings for emitLeading/TrailingFence is taken from
|
|
// http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
|
|
Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
|
|
AtomicOrdering Ord, bool IsStore,
|
|
bool IsLoad) const {
|
|
if (Ord == SequentiallyConsistent)
|
|
return callIntrinsic(Builder, Intrinsic::ppc_sync);
|
|
else if (isAtLeastRelease(Ord))
|
|
return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
|
|
else
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
|
|
AtomicOrdering Ord, bool IsStore,
|
|
bool IsLoad) const {
|
|
if (IsLoad && isAtLeastAcquire(Ord))
|
|
return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
|
|
// FIXME: this is too conservative, a dependent branch + isync is enough.
|
|
// See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
|
|
// http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
|
|
// and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
|
|
else
|
|
return nullptr;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
|
|
bool is64bit, unsigned BinOpcode) const {
|
|
// This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
|
|
const TargetInstrInfo *TII =
|
|
getTargetMachine().getSubtargetImpl()->getInstrInfo();
|
|
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction *F = BB->getParent();
|
|
MachineFunction::iterator It = BB;
|
|
++It;
|
|
|
|
unsigned dest = MI->getOperand(0).getReg();
|
|
unsigned ptrA = MI->getOperand(1).getReg();
|
|
unsigned ptrB = MI->getOperand(2).getReg();
|
|
unsigned incr = MI->getOperand(3).getReg();
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
|
|
MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
F->insert(It, loopMBB);
|
|
F->insert(It, exitMBB);
|
|
exitMBB->splice(exitMBB->begin(), BB,
|
|
std::next(MachineBasicBlock::iterator(MI)), BB->end());
|
|
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
MachineRegisterInfo &RegInfo = F->getRegInfo();
|
|
unsigned TmpReg = (!BinOpcode) ? incr :
|
|
RegInfo.createVirtualRegister(
|
|
is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
|
|
(const TargetRegisterClass *) &PPC::GPRCRegClass);
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// fallthrough --> loopMBB
|
|
BB->addSuccessor(loopMBB);
|
|
|
|
// loopMBB:
|
|
// l[wd]arx dest, ptr
|
|
// add r0, dest, incr
|
|
// st[wd]cx. r0, ptr
|
|
// bne- loopMBB
|
|
// fallthrough --> exitMBB
|
|
BB = loopMBB;
|
|
BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
|
|
.addReg(ptrA).addReg(ptrB);
|
|
if (BinOpcode)
|
|
BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
|
|
BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
|
|
.addReg(TmpReg).addReg(ptrA).addReg(ptrB);
|
|
BuildMI(BB, dl, TII->get(PPC::BCC))
|
|
.addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
|
|
BB->addSuccessor(loopMBB);
|
|
BB->addSuccessor(exitMBB);
|
|
|
|
// exitMBB:
|
|
// ...
|
|
BB = exitMBB;
|
|
return BB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
|
|
MachineBasicBlock *BB,
|
|
bool is8bit, // operation
|
|
unsigned BinOpcode) const {
|
|
// This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
|
|
const TargetInstrInfo *TII =
|
|
getTargetMachine().getSubtargetImpl()->getInstrInfo();
|
|
// In 64 bit mode we have to use 64 bits for addresses, even though the
|
|
// lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address
|
|
// registers without caring whether they're 32 or 64, but here we're
|
|
// doing actual arithmetic on the addresses.
|
|
bool is64bit = Subtarget.isPPC64();
|
|
unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
|
|
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction *F = BB->getParent();
|
|
MachineFunction::iterator It = BB;
|
|
++It;
|
|
|
|
unsigned dest = MI->getOperand(0).getReg();
|
|
unsigned ptrA = MI->getOperand(1).getReg();
|
|
unsigned ptrB = MI->getOperand(2).getReg();
|
|
unsigned incr = MI->getOperand(3).getReg();
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
|
|
MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
F->insert(It, loopMBB);
|
|
F->insert(It, exitMBB);
|
|
exitMBB->splice(exitMBB->begin(), BB,
|
|
std::next(MachineBasicBlock::iterator(MI)), BB->end());
|
|
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
MachineRegisterInfo &RegInfo = F->getRegInfo();
|
|
const TargetRegisterClass *RC =
|
|
is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
|
|
(const TargetRegisterClass *) &PPC::GPRCRegClass;
|
|
unsigned PtrReg = RegInfo.createVirtualRegister(RC);
|
|
unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
|
|
unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
|
|
unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
|
|
unsigned MaskReg = RegInfo.createVirtualRegister(RC);
|
|
unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
|
|
unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
|
|
unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
|
|
unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
|
|
unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
|
|
unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
|
|
unsigned Ptr1Reg;
|
|
unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// fallthrough --> loopMBB
|
|
BB->addSuccessor(loopMBB);
|
|
|
|
// The 4-byte load must be aligned, while a char or short may be
|
|
// anywhere in the word. Hence all this nasty bookkeeping code.
|
|
// add ptr1, ptrA, ptrB [copy if ptrA==0]
|
|
// rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
|
|
// xori shift, shift1, 24 [16]
|
|
// rlwinm ptr, ptr1, 0, 0, 29
|
|
// slw incr2, incr, shift
|
|
// li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
|
|
// slw mask, mask2, shift
|
|
// loopMBB:
|
|
// lwarx tmpDest, ptr
|
|
// add tmp, tmpDest, incr2
|
|
// andc tmp2, tmpDest, mask
|
|
// and tmp3, tmp, mask
|
|
// or tmp4, tmp3, tmp2
|
|
// stwcx. tmp4, ptr
|
|
// bne- loopMBB
|
|
// fallthrough --> exitMBB
|
|
// srw dest, tmpDest, shift
|
|
if (ptrA != ZeroReg) {
|
|
Ptr1Reg = RegInfo.createVirtualRegister(RC);
|
|
BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
|
|
.addReg(ptrA).addReg(ptrB);
|
|
} else {
|
|
Ptr1Reg = ptrB;
|
|
}
|
|
BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
|
|
.addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
|
|
BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
|
|
.addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
|
|
if (is64bit)
|
|
BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
|
|
.addReg(Ptr1Reg).addImm(0).addImm(61);
|
|
else
|
|
BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
|
|
.addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
|
|
BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
|
|
.addReg(incr).addReg(ShiftReg);
|
|
if (is8bit)
|
|
BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
|
|
else {
|
|
BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
|
|
BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
|
|
}
|
|
BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
|
|
.addReg(Mask2Reg).addReg(ShiftReg);
|
|
|
|
BB = loopMBB;
|
|
BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
|
|
.addReg(ZeroReg).addReg(PtrReg);
|
|
if (BinOpcode)
|
|
BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
|
|
.addReg(Incr2Reg).addReg(TmpDestReg);
|
|
BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
|
|
.addReg(TmpDestReg).addReg(MaskReg);
|
|
BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
|
|
.addReg(TmpReg).addReg(MaskReg);
|
|
BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
|
|
.addReg(Tmp3Reg).addReg(Tmp2Reg);
|
|
BuildMI(BB, dl, TII->get(PPC::STWCX))
|
|
.addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
|
|
BuildMI(BB, dl, TII->get(PPC::BCC))
|
|
.addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
|
|
BB->addSuccessor(loopMBB);
|
|
BB->addSuccessor(exitMBB);
|
|
|
|
// exitMBB:
|
|
// ...
|
|
BB = exitMBB;
|
|
BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
|
|
.addReg(ShiftReg);
|
|
return BB;
|
|
}
|
|
|
|
llvm::MachineBasicBlock*
|
|
PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
|
|
MachineBasicBlock *MBB) const {
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
const TargetInstrInfo *TII =
|
|
getTargetMachine().getSubtargetImpl()->getInstrInfo();
|
|
|
|
MachineFunction *MF = MBB->getParent();
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
|
|
const BasicBlock *BB = MBB->getBasicBlock();
|
|
MachineFunction::iterator I = MBB;
|
|
++I;
|
|
|
|
// Memory Reference
|
|
MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
|
|
MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
|
|
|
|
unsigned DstReg = MI->getOperand(0).getReg();
|
|
const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
|
|
assert(RC->hasType(MVT::i32) && "Invalid destination!");
|
|
unsigned mainDstReg = MRI.createVirtualRegister(RC);
|
|
unsigned restoreDstReg = MRI.createVirtualRegister(RC);
|
|
|
|
MVT PVT = getPointerTy();
|
|
assert((PVT == MVT::i64 || PVT == MVT::i32) &&
|
|
"Invalid Pointer Size!");
|
|
// For v = setjmp(buf), we generate
|
|
//
|
|
// thisMBB:
|
|
// SjLjSetup mainMBB
|
|
// bl mainMBB
|
|
// v_restore = 1
|
|
// b sinkMBB
|
|
//
|
|
// mainMBB:
|
|
// buf[LabelOffset] = LR
|
|
// v_main = 0
|
|
//
|
|
// sinkMBB:
|
|
// v = phi(main, restore)
|
|
//
|
|
|
|
MachineBasicBlock *thisMBB = MBB;
|
|
MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
|
|
MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
|
|
MF->insert(I, mainMBB);
|
|
MF->insert(I, sinkMBB);
|
|
|
|
MachineInstrBuilder MIB;
|
|
|
|
// Transfer the remainder of BB and its successor edges to sinkMBB.
|
|
sinkMBB->splice(sinkMBB->begin(), MBB,
|
|
std::next(MachineBasicBlock::iterator(MI)), MBB->end());
|
|
sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
|
|
|
|
// Note that the structure of the jmp_buf used here is not compatible
|
|
// with that used by libc, and is not designed to be. Specifically, it
|
|
// stores only those 'reserved' registers that LLVM does not otherwise
|
|
// understand how to spill. Also, by convention, by the time this
|
|
// intrinsic is called, Clang has already stored the frame address in the
|
|
// first slot of the buffer and stack address in the third. Following the
|
|
// X86 target code, we'll store the jump address in the second slot. We also
|
|
// need to save the TOC pointer (R2) to handle jumps between shared
|
|
// libraries, and that will be stored in the fourth slot. The thread
|
|
// identifier (R13) is not affected.
|
|
|
|
// thisMBB:
|
|
const int64_t LabelOffset = 1 * PVT.getStoreSize();
|
|
const int64_t TOCOffset = 3 * PVT.getStoreSize();
|
|
const int64_t BPOffset = 4 * PVT.getStoreSize();
|
|
|
|
// Prepare IP either in reg.
|
|
const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
|
|
unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
|
|
unsigned BufReg = MI->getOperand(1).getReg();
|
|
|
|
if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
|
|
MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
|
|
.addReg(PPC::X2)
|
|
.addImm(TOCOffset)
|
|
.addReg(BufReg);
|
|
MIB.setMemRefs(MMOBegin, MMOEnd);
|
|
}
|
|
|
|
// Naked functions never have a base pointer, and so we use r1. For all
|
|
// other functions, this decision must be delayed until during PEI.
|
|
unsigned BaseReg;
|
|
if (MF->getFunction()->getAttributes().hasAttribute(
|
|
AttributeSet::FunctionIndex, Attribute::Naked))
|
|
BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
|
|
else
|
|
BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
|
|
|
|
MIB = BuildMI(*thisMBB, MI, DL,
|
|
TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
|
|
.addReg(BaseReg)
|
|
.addImm(BPOffset)
|
|
.addReg(BufReg);
|
|
MIB.setMemRefs(MMOBegin, MMOEnd);
|
|
|
|
// Setup
|
|
MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
|
|
const PPCRegisterInfo *TRI =
|
|
getTargetMachine().getSubtarget<PPCSubtarget>().getRegisterInfo();
|
|
MIB.addRegMask(TRI->getNoPreservedMask());
|
|
|
|
BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
|
|
|
|
MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
|
|
.addMBB(mainMBB);
|
|
MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
|
|
|
|
thisMBB->addSuccessor(mainMBB, /* weight */ 0);
|
|
thisMBB->addSuccessor(sinkMBB, /* weight */ 1);
|
|
|
|
// mainMBB:
|
|
// mainDstReg = 0
|
|
MIB = BuildMI(mainMBB, DL,
|
|
TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
|
|
|
|
// Store IP
|
|
if (Subtarget.isPPC64()) {
|
|
MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
|
|
.addReg(LabelReg)
|
|
.addImm(LabelOffset)
|
|
.addReg(BufReg);
|
|
} else {
|
|
MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
|
|
.addReg(LabelReg)
|
|
.addImm(LabelOffset)
|
|
.addReg(BufReg);
|
|
}
|
|
|
|
MIB.setMemRefs(MMOBegin, MMOEnd);
|
|
|
|
BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
|
|
mainMBB->addSuccessor(sinkMBB);
|
|
|
|
// sinkMBB:
|
|
BuildMI(*sinkMBB, sinkMBB->begin(), DL,
|
|
TII->get(PPC::PHI), DstReg)
|
|
.addReg(mainDstReg).addMBB(mainMBB)
|
|
.addReg(restoreDstReg).addMBB(thisMBB);
|
|
|
|
MI->eraseFromParent();
|
|
return sinkMBB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
|
|
MachineBasicBlock *MBB) const {
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
const TargetInstrInfo *TII =
|
|
getTargetMachine().getSubtargetImpl()->getInstrInfo();
|
|
|
|
MachineFunction *MF = MBB->getParent();
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
|
|
// Memory Reference
|
|
MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
|
|
MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
|
|
|
|
MVT PVT = getPointerTy();
|
|
assert((PVT == MVT::i64 || PVT == MVT::i32) &&
|
|
"Invalid Pointer Size!");
|
|
|
|
const TargetRegisterClass *RC =
|
|
(PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
|
|
unsigned Tmp = MRI.createVirtualRegister(RC);
|
|
// Since FP is only updated here but NOT referenced, it's treated as GPR.
|
|
unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
|
|
unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
|
|
unsigned BP = (PVT == MVT::i64) ? PPC::X30 :
|
|
(Subtarget.isSVR4ABI() &&
|
|
MF->getTarget().getRelocationModel() == Reloc::PIC_ ?
|
|
PPC::R29 : PPC::R30);
|
|
|
|
MachineInstrBuilder MIB;
|
|
|
|
const int64_t LabelOffset = 1 * PVT.getStoreSize();
|
|
const int64_t SPOffset = 2 * PVT.getStoreSize();
|
|
const int64_t TOCOffset = 3 * PVT.getStoreSize();
|
|
const int64_t BPOffset = 4 * PVT.getStoreSize();
|
|
|
|
unsigned BufReg = MI->getOperand(0).getReg();
|
|
|
|
// Reload FP (the jumped-to function may not have had a
|
|
// frame pointer, and if so, then its r31 will be restored
|
|
// as necessary).
|
|
if (PVT == MVT::i64) {
|
|
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
|
|
.addImm(0)
|
|
.addReg(BufReg);
|
|
} else {
|
|
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
|
|
.addImm(0)
|
|
.addReg(BufReg);
|
|
}
|
|
MIB.setMemRefs(MMOBegin, MMOEnd);
|
|
|
|
// Reload IP
|
|
if (PVT == MVT::i64) {
|
|
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
|
|
.addImm(LabelOffset)
|
|
.addReg(BufReg);
|
|
} else {
|
|
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
|
|
.addImm(LabelOffset)
|
|
.addReg(BufReg);
|
|
}
|
|
MIB.setMemRefs(MMOBegin, MMOEnd);
|
|
|
|
// Reload SP
|
|
if (PVT == MVT::i64) {
|
|
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
|
|
.addImm(SPOffset)
|
|
.addReg(BufReg);
|
|
} else {
|
|
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
|
|
.addImm(SPOffset)
|
|
.addReg(BufReg);
|
|
}
|
|
MIB.setMemRefs(MMOBegin, MMOEnd);
|
|
|
|
// Reload BP
|
|
if (PVT == MVT::i64) {
|
|
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
|
|
.addImm(BPOffset)
|
|
.addReg(BufReg);
|
|
} else {
|
|
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
|
|
.addImm(BPOffset)
|
|
.addReg(BufReg);
|
|
}
|
|
MIB.setMemRefs(MMOBegin, MMOEnd);
|
|
|
|
// Reload TOC
|
|
if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
|
|
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
|
|
.addImm(TOCOffset)
|
|
.addReg(BufReg);
|
|
|
|
MIB.setMemRefs(MMOBegin, MMOEnd);
|
|
}
|
|
|
|
// Jump
|
|
BuildMI(*MBB, MI, DL,
|
|
TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
|
|
BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
|
|
|
|
MI->eraseFromParent();
|
|
return MBB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
|
|
MachineBasicBlock *BB) const {
|
|
if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 ||
|
|
MI->getOpcode() == PPC::EH_SjLj_SetJmp64) {
|
|
return emitEHSjLjSetJmp(MI, BB);
|
|
} else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 ||
|
|
MI->getOpcode() == PPC::EH_SjLj_LongJmp64) {
|
|
return emitEHSjLjLongJmp(MI, BB);
|
|
}
|
|
|
|
const TargetInstrInfo *TII =
|
|
getTargetMachine().getSubtargetImpl()->getInstrInfo();
|
|
|
|
// To "insert" these instructions we actually have to insert their
|
|
// control-flow patterns.
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction::iterator It = BB;
|
|
++It;
|
|
|
|
MachineFunction *F = BB->getParent();
|
|
|
|
if (Subtarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
|
|
MI->getOpcode() == PPC::SELECT_CC_I8 ||
|
|
MI->getOpcode() == PPC::SELECT_I4 ||
|
|
MI->getOpcode() == PPC::SELECT_I8)) {
|
|
SmallVector<MachineOperand, 2> Cond;
|
|
if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
|
|
MI->getOpcode() == PPC::SELECT_CC_I8)
|
|
Cond.push_back(MI->getOperand(4));
|
|
else
|
|
Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
|
|
Cond.push_back(MI->getOperand(1));
|
|
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
const TargetInstrInfo *TII =
|
|
getTargetMachine().getSubtargetImpl()->getInstrInfo();
|
|
TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(),
|
|
Cond, MI->getOperand(2).getReg(),
|
|
MI->getOperand(3).getReg());
|
|
} else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
|
|
MI->getOpcode() == PPC::SELECT_CC_I8 ||
|
|
MI->getOpcode() == PPC::SELECT_CC_F4 ||
|
|
MI->getOpcode() == PPC::SELECT_CC_F8 ||
|
|
MI->getOpcode() == PPC::SELECT_CC_VRRC ||
|
|
MI->getOpcode() == PPC::SELECT_CC_VSFRC ||
|
|
MI->getOpcode() == PPC::SELECT_CC_VSRC ||
|
|
MI->getOpcode() == PPC::SELECT_I4 ||
|
|
MI->getOpcode() == PPC::SELECT_I8 ||
|
|
MI->getOpcode() == PPC::SELECT_F4 ||
|
|
MI->getOpcode() == PPC::SELECT_F8 ||
|
|
MI->getOpcode() == PPC::SELECT_VRRC ||
|
|
MI->getOpcode() == PPC::SELECT_VSFRC ||
|
|
MI->getOpcode() == PPC::SELECT_VSRC) {
|
|
// The incoming instruction knows the destination vreg to set, the
|
|
// condition code register to branch on, the true/false values to
|
|
// select between, and a branch opcode to use.
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// TrueVal = ...
|
|
// cmpTY ccX, r1, r2
|
|
// bCC copy1MBB
|
|
// fallthrough --> copy0MBB
|
|
MachineBasicBlock *thisMBB = BB;
|
|
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
F->insert(It, copy0MBB);
|
|
F->insert(It, sinkMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to sinkMBB.
|
|
sinkMBB->splice(sinkMBB->begin(), BB,
|
|
std::next(MachineBasicBlock::iterator(MI)), BB->end());
|
|
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
// Next, add the true and fallthrough blocks as its successors.
|
|
BB->addSuccessor(copy0MBB);
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
if (MI->getOpcode() == PPC::SELECT_I4 ||
|
|
MI->getOpcode() == PPC::SELECT_I8 ||
|
|
MI->getOpcode() == PPC::SELECT_F4 ||
|
|
MI->getOpcode() == PPC::SELECT_F8 ||
|
|
MI->getOpcode() == PPC::SELECT_VRRC ||
|
|
MI->getOpcode() == PPC::SELECT_VSFRC ||
|
|
MI->getOpcode() == PPC::SELECT_VSRC) {
|
|
BuildMI(BB, dl, TII->get(PPC::BC))
|
|
.addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
|
|
} else {
|
|
unsigned SelectPred = MI->getOperand(4).getImm();
|
|
BuildMI(BB, dl, TII->get(PPC::BCC))
|
|
.addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
|
|
}
|
|
|
|
// copy0MBB:
|
|
// %FalseValue = ...
|
|
// # fallthrough to sinkMBB
|
|
BB = copy0MBB;
|
|
|
|
// Update machine-CFG edges
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// sinkMBB:
|
|
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
|
|
// ...
|
|
BB = sinkMBB;
|
|
BuildMI(*BB, BB->begin(), dl,
|
|
TII->get(PPC::PHI), MI->getOperand(0).getReg())
|
|
.addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
|
|
.addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
|
|
}
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
|
|
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
|
|
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
|
|
BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
|
|
BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
|
|
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
|
|
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
|
|
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
|
|
BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
|
|
BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
|
|
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
|
|
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
|
|
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
|
|
BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
|
|
BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
|
|
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
|
|
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
|
|
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
|
|
BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
|
|
BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
|
|
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
|
|
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
|
|
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
|
|
BB = EmitAtomicBinary(MI, BB, false, PPC::NAND);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
|
|
BB = EmitAtomicBinary(MI, BB, true, PPC::NAND8);
|
|
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
|
|
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
|
|
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
|
|
BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
|
|
BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
|
|
|
|
else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
|
|
BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
|
|
BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
|
|
BB = EmitAtomicBinary(MI, BB, false, 0);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
|
|
BB = EmitAtomicBinary(MI, BB, true, 0);
|
|
|
|
else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
|
|
MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
|
|
bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
|
|
|
|
unsigned dest = MI->getOperand(0).getReg();
|
|
unsigned ptrA = MI->getOperand(1).getReg();
|
|
unsigned ptrB = MI->getOperand(2).getReg();
|
|
unsigned oldval = MI->getOperand(3).getReg();
|
|
unsigned newval = MI->getOperand(4).getReg();
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
|
|
MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
F->insert(It, loop1MBB);
|
|
F->insert(It, loop2MBB);
|
|
F->insert(It, midMBB);
|
|
F->insert(It, exitMBB);
|
|
exitMBB->splice(exitMBB->begin(), BB,
|
|
std::next(MachineBasicBlock::iterator(MI)), BB->end());
|
|
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// fallthrough --> loopMBB
|
|
BB->addSuccessor(loop1MBB);
|
|
|
|
// loop1MBB:
|
|
// l[wd]arx dest, ptr
|
|
// cmp[wd] dest, oldval
|
|
// bne- midMBB
|
|
// loop2MBB:
|
|
// st[wd]cx. newval, ptr
|
|
// bne- loopMBB
|
|
// b exitBB
|
|
// midMBB:
|
|
// st[wd]cx. dest, ptr
|
|
// exitBB:
|
|
BB = loop1MBB;
|
|
BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
|
|
.addReg(ptrA).addReg(ptrB);
|
|
BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
|
|
.addReg(oldval).addReg(dest);
|
|
BuildMI(BB, dl, TII->get(PPC::BCC))
|
|
.addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
|
|
BB->addSuccessor(loop2MBB);
|
|
BB->addSuccessor(midMBB);
|
|
|
|
BB = loop2MBB;
|
|
BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
|
|
.addReg(newval).addReg(ptrA).addReg(ptrB);
|
|
BuildMI(BB, dl, TII->get(PPC::BCC))
|
|
.addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
|
|
BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
|
|
BB->addSuccessor(loop1MBB);
|
|
BB->addSuccessor(exitMBB);
|
|
|
|
BB = midMBB;
|
|
BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
|
|
.addReg(dest).addReg(ptrA).addReg(ptrB);
|
|
BB->addSuccessor(exitMBB);
|
|
|
|
// exitMBB:
|
|
// ...
|
|
BB = exitMBB;
|
|
} else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
|
|
MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
|
|
// We must use 64-bit registers for addresses when targeting 64-bit,
|
|
// since we're actually doing arithmetic on them. Other registers
|
|
// can be 32-bit.
|
|
bool is64bit = Subtarget.isPPC64();
|
|
bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
|
|
|
|
unsigned dest = MI->getOperand(0).getReg();
|
|
unsigned ptrA = MI->getOperand(1).getReg();
|
|
unsigned ptrB = MI->getOperand(2).getReg();
|
|
unsigned oldval = MI->getOperand(3).getReg();
|
|
unsigned newval = MI->getOperand(4).getReg();
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
|
|
MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
F->insert(It, loop1MBB);
|
|
F->insert(It, loop2MBB);
|
|
F->insert(It, midMBB);
|
|
F->insert(It, exitMBB);
|
|
exitMBB->splice(exitMBB->begin(), BB,
|
|
std::next(MachineBasicBlock::iterator(MI)), BB->end());
|
|
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
MachineRegisterInfo &RegInfo = F->getRegInfo();
|
|
const TargetRegisterClass *RC =
|
|
is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
|
|
(const TargetRegisterClass *) &PPC::GPRCRegClass;
|
|
unsigned PtrReg = RegInfo.createVirtualRegister(RC);
|
|
unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
|
|
unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
|
|
unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
|
|
unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
|
|
unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
|
|
unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
|
|
unsigned MaskReg = RegInfo.createVirtualRegister(RC);
|
|
unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
|
|
unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
|
|
unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
|
|
unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
|
|
unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
|
|
unsigned Ptr1Reg;
|
|
unsigned TmpReg = RegInfo.createVirtualRegister(RC);
|
|
unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
|
|
// thisMBB:
|
|
// ...
|
|
// fallthrough --> loopMBB
|
|
BB->addSuccessor(loop1MBB);
|
|
|
|
// The 4-byte load must be aligned, while a char or short may be
|
|
// anywhere in the word. Hence all this nasty bookkeeping code.
|
|
// add ptr1, ptrA, ptrB [copy if ptrA==0]
|
|
// rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
|
|
// xori shift, shift1, 24 [16]
|
|
// rlwinm ptr, ptr1, 0, 0, 29
|
|
// slw newval2, newval, shift
|
|
// slw oldval2, oldval,shift
|
|
// li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
|
|
// slw mask, mask2, shift
|
|
// and newval3, newval2, mask
|
|
// and oldval3, oldval2, mask
|
|
// loop1MBB:
|
|
// lwarx tmpDest, ptr
|
|
// and tmp, tmpDest, mask
|
|
// cmpw tmp, oldval3
|
|
// bne- midMBB
|
|
// loop2MBB:
|
|
// andc tmp2, tmpDest, mask
|
|
// or tmp4, tmp2, newval3
|
|
// stwcx. tmp4, ptr
|
|
// bne- loop1MBB
|
|
// b exitBB
|
|
// midMBB:
|
|
// stwcx. tmpDest, ptr
|
|
// exitBB:
|
|
// srw dest, tmpDest, shift
|
|
if (ptrA != ZeroReg) {
|
|
Ptr1Reg = RegInfo.createVirtualRegister(RC);
|
|
BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
|
|
.addReg(ptrA).addReg(ptrB);
|
|
} else {
|
|
Ptr1Reg = ptrB;
|
|
}
|
|
BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
|
|
.addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
|
|
BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
|
|
.addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
|
|
if (is64bit)
|
|
BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
|
|
.addReg(Ptr1Reg).addImm(0).addImm(61);
|
|
else
|
|
BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
|
|
.addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
|
|
BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
|
|
.addReg(newval).addReg(ShiftReg);
|
|
BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
|
|
.addReg(oldval).addReg(ShiftReg);
|
|
if (is8bit)
|
|
BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
|
|
else {
|
|
BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
|
|
BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
|
|
.addReg(Mask3Reg).addImm(65535);
|
|
}
|
|
BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
|
|
.addReg(Mask2Reg).addReg(ShiftReg);
|
|
BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
|
|
.addReg(NewVal2Reg).addReg(MaskReg);
|
|
BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
|
|
.addReg(OldVal2Reg).addReg(MaskReg);
|
|
|
|
BB = loop1MBB;
|
|
BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
|
|
.addReg(ZeroReg).addReg(PtrReg);
|
|
BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
|
|
.addReg(TmpDestReg).addReg(MaskReg);
|
|
BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
|
|
.addReg(TmpReg).addReg(OldVal3Reg);
|
|
BuildMI(BB, dl, TII->get(PPC::BCC))
|
|
.addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
|
|
BB->addSuccessor(loop2MBB);
|
|
BB->addSuccessor(midMBB);
|
|
|
|
BB = loop2MBB;
|
|
BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
|
|
.addReg(TmpDestReg).addReg(MaskReg);
|
|
BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
|
|
.addReg(Tmp2Reg).addReg(NewVal3Reg);
|
|
BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
|
|
.addReg(ZeroReg).addReg(PtrReg);
|
|
BuildMI(BB, dl, TII->get(PPC::BCC))
|
|
.addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
|
|
BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
|
|
BB->addSuccessor(loop1MBB);
|
|
BB->addSuccessor(exitMBB);
|
|
|
|
BB = midMBB;
|
|
BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
|
|
.addReg(ZeroReg).addReg(PtrReg);
|
|
BB->addSuccessor(exitMBB);
|
|
|
|
// exitMBB:
|
|
// ...
|
|
BB = exitMBB;
|
|
BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
|
|
.addReg(ShiftReg);
|
|
} else if (MI->getOpcode() == PPC::FADDrtz) {
|
|
// This pseudo performs an FADD with rounding mode temporarily forced
|
|
// to round-to-zero. We emit this via custom inserter since the FPSCR
|
|
// is not modeled at the SelectionDAG level.
|
|
unsigned Dest = MI->getOperand(0).getReg();
|
|
unsigned Src1 = MI->getOperand(1).getReg();
|
|
unsigned Src2 = MI->getOperand(2).getReg();
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
|
|
MachineRegisterInfo &RegInfo = F->getRegInfo();
|
|
unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
|
|
|
|
// Save FPSCR value.
|
|
BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
|
|
|
|
// Set rounding mode to round-to-zero.
|
|
BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
|
|
BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
|
|
|
|
// Perform addition.
|
|
BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
|
|
|
|
// Restore FPSCR value.
|
|
BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)).addImm(1).addReg(MFFSReg);
|
|
} else if (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
|
|
MI->getOpcode() == PPC::ANDIo_1_GT_BIT ||
|
|
MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
|
|
MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) {
|
|
unsigned Opcode = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
|
|
MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) ?
|
|
PPC::ANDIo8 : PPC::ANDIo;
|
|
bool isEQ = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
|
|
MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8);
|
|
|
|
MachineRegisterInfo &RegInfo = F->getRegInfo();
|
|
unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ?
|
|
&PPC::GPRCRegClass :
|
|
&PPC::G8RCRegClass);
|
|
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
|
|
.addReg(MI->getOperand(1).getReg()).addImm(1);
|
|
BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
|
|
MI->getOperand(0).getReg())
|
|
.addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
|
|
} else {
|
|
llvm_unreachable("Unexpected instr type to insert");
|
|
}
|
|
|
|
MI->eraseFromParent(); // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Target Optimization Hooks
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SDValue PPCTargetLowering::getRsqrtEstimate(SDValue Operand,
|
|
DAGCombinerInfo &DCI,
|
|
unsigned &RefinementSteps,
|
|
bool &UseOneConstNR) const {
|
|
EVT VT = Operand.getValueType();
|
|
if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
|
|
(VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
|
|
(VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
|
|
(VT == MVT::v2f64 && Subtarget.hasVSX())) {
|
|
// Convergence is quadratic, so we essentially double the number of digits
|
|
// correct after every iteration. For both FRE and FRSQRTE, the minimum
|
|
// architected relative accuracy is 2^-5. When hasRecipPrec(), this is
|
|
// 2^-14. IEEE float has 23 digits and double has 52 digits.
|
|
RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
|
|
if (VT.getScalarType() == MVT::f64)
|
|
++RefinementSteps;
|
|
UseOneConstNR = true;
|
|
return DCI.DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand,
|
|
DAGCombinerInfo &DCI,
|
|
unsigned &RefinementSteps) const {
|
|
EVT VT = Operand.getValueType();
|
|
if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
|
|
(VT == MVT::f64 && Subtarget.hasFRE()) ||
|
|
(VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
|
|
(VT == MVT::v2f64 && Subtarget.hasVSX())) {
|
|
// Convergence is quadratic, so we essentially double the number of digits
|
|
// correct after every iteration. For both FRE and FRSQRTE, the minimum
|
|
// architected relative accuracy is 2^-5. When hasRecipPrec(), this is
|
|
// 2^-14. IEEE float has 23 digits and double has 52 digits.
|
|
RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
|
|
if (VT.getScalarType() == MVT::f64)
|
|
++RefinementSteps;
|
|
return DCI.DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
|
|
unsigned Bytes, int Dist,
|
|
SelectionDAG &DAG) {
|
|
if (VT.getSizeInBits() / 8 != Bytes)
|
|
return false;
|
|
|
|
SDValue BaseLoc = Base->getBasePtr();
|
|
if (Loc.getOpcode() == ISD::FrameIndex) {
|
|
if (BaseLoc.getOpcode() != ISD::FrameIndex)
|
|
return false;
|
|
const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
|
|
int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
|
|
int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
|
|
int FS = MFI->getObjectSize(FI);
|
|
int BFS = MFI->getObjectSize(BFI);
|
|
if (FS != BFS || FS != (int)Bytes) return false;
|
|
return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
|
|
}
|
|
|
|
// Handle X+C
|
|
if (DAG.isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
|
|
cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
|
|
return true;
|
|
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
const GlobalValue *GV1 = nullptr;
|
|
const GlobalValue *GV2 = nullptr;
|
|
int64_t Offset1 = 0;
|
|
int64_t Offset2 = 0;
|
|
bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
|
|
bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
|
|
if (isGA1 && isGA2 && GV1 == GV2)
|
|
return Offset1 == (Offset2 + Dist*Bytes);
|
|
return false;
|
|
}
|
|
|
|
// Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
|
|
// not enforce equality of the chain operands.
|
|
static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
|
|
unsigned Bytes, int Dist,
|
|
SelectionDAG &DAG) {
|
|
if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
|
|
EVT VT = LS->getMemoryVT();
|
|
SDValue Loc = LS->getBasePtr();
|
|
return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
|
|
}
|
|
|
|
if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
|
|
EVT VT;
|
|
switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
|
|
default: return false;
|
|
case Intrinsic::ppc_altivec_lvx:
|
|
case Intrinsic::ppc_altivec_lvxl:
|
|
case Intrinsic::ppc_vsx_lxvw4x:
|
|
VT = MVT::v4i32;
|
|
break;
|
|
case Intrinsic::ppc_vsx_lxvd2x:
|
|
VT = MVT::v2f64;
|
|
break;
|
|
case Intrinsic::ppc_altivec_lvebx:
|
|
VT = MVT::i8;
|
|
break;
|
|
case Intrinsic::ppc_altivec_lvehx:
|
|
VT = MVT::i16;
|
|
break;
|
|
case Intrinsic::ppc_altivec_lvewx:
|
|
VT = MVT::i32;
|
|
break;
|
|
}
|
|
|
|
return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
|
|
}
|
|
|
|
if (N->getOpcode() == ISD::INTRINSIC_VOID) {
|
|
EVT VT;
|
|
switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
|
|
default: return false;
|
|
case Intrinsic::ppc_altivec_stvx:
|
|
case Intrinsic::ppc_altivec_stvxl:
|
|
case Intrinsic::ppc_vsx_stxvw4x:
|
|
VT = MVT::v4i32;
|
|
break;
|
|
case Intrinsic::ppc_vsx_stxvd2x:
|
|
VT = MVT::v2f64;
|
|
break;
|
|
case Intrinsic::ppc_altivec_stvebx:
|
|
VT = MVT::i8;
|
|
break;
|
|
case Intrinsic::ppc_altivec_stvehx:
|
|
VT = MVT::i16;
|
|
break;
|
|
case Intrinsic::ppc_altivec_stvewx:
|
|
VT = MVT::i32;
|
|
break;
|
|
}
|
|
|
|
return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Return true is there is a nearyby consecutive load to the one provided
|
|
// (regardless of alignment). We search up and down the chain, looking though
|
|
// token factors and other loads (but nothing else). As a result, a true result
|
|
// indicates that it is safe to create a new consecutive load adjacent to the
|
|
// load provided.
|
|
static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
|
|
SDValue Chain = LD->getChain();
|
|
EVT VT = LD->getMemoryVT();
|
|
|
|
SmallSet<SDNode *, 16> LoadRoots;
|
|
SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
|
|
SmallSet<SDNode *, 16> Visited;
|
|
|
|
// First, search up the chain, branching to follow all token-factor operands.
|
|
// If we find a consecutive load, then we're done, otherwise, record all
|
|
// nodes just above the top-level loads and token factors.
|
|
while (!Queue.empty()) {
|
|
SDNode *ChainNext = Queue.pop_back_val();
|
|
if (!Visited.insert(ChainNext).second)
|
|
continue;
|
|
|
|
if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
|
|
if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
|
|
return true;
|
|
|
|
if (!Visited.count(ChainLD->getChain().getNode()))
|
|
Queue.push_back(ChainLD->getChain().getNode());
|
|
} else if (ChainNext->getOpcode() == ISD::TokenFactor) {
|
|
for (const SDUse &O : ChainNext->ops())
|
|
if (!Visited.count(O.getNode()))
|
|
Queue.push_back(O.getNode());
|
|
} else
|
|
LoadRoots.insert(ChainNext);
|
|
}
|
|
|
|
// Second, search down the chain, starting from the top-level nodes recorded
|
|
// in the first phase. These top-level nodes are the nodes just above all
|
|
// loads and token factors. Starting with their uses, recursively look though
|
|
// all loads (just the chain uses) and token factors to find a consecutive
|
|
// load.
|
|
Visited.clear();
|
|
Queue.clear();
|
|
|
|
for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
|
|
IE = LoadRoots.end(); I != IE; ++I) {
|
|
Queue.push_back(*I);
|
|
|
|
while (!Queue.empty()) {
|
|
SDNode *LoadRoot = Queue.pop_back_val();
|
|
if (!Visited.insert(LoadRoot).second)
|
|
continue;
|
|
|
|
if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
|
|
if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
|
|
return true;
|
|
|
|
for (SDNode::use_iterator UI = LoadRoot->use_begin(),
|
|
UE = LoadRoot->use_end(); UI != UE; ++UI)
|
|
if (((isa<MemSDNode>(*UI) &&
|
|
cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
|
|
UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
|
|
Queue.push_back(*UI);
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc dl(N);
|
|
|
|
assert(Subtarget.useCRBits() &&
|
|
"Expecting to be tracking CR bits");
|
|
// If we're tracking CR bits, we need to be careful that we don't have:
|
|
// trunc(binary-ops(zext(x), zext(y)))
|
|
// or
|
|
// trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
|
|
// such that we're unnecessarily moving things into GPRs when it would be
|
|
// better to keep them in CR bits.
|
|
|
|
// Note that trunc here can be an actual i1 trunc, or can be the effective
|
|
// truncation that comes from a setcc or select_cc.
|
|
if (N->getOpcode() == ISD::TRUNCATE &&
|
|
N->getValueType(0) != MVT::i1)
|
|
return SDValue();
|
|
|
|
if (N->getOperand(0).getValueType() != MVT::i32 &&
|
|
N->getOperand(0).getValueType() != MVT::i64)
|
|
return SDValue();
|
|
|
|
if (N->getOpcode() == ISD::SETCC ||
|
|
N->getOpcode() == ISD::SELECT_CC) {
|
|
// If we're looking at a comparison, then we need to make sure that the
|
|
// high bits (all except for the first) don't matter the result.
|
|
ISD::CondCode CC =
|
|
cast<CondCodeSDNode>(N->getOperand(
|
|
N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
|
|
unsigned OpBits = N->getOperand(0).getValueSizeInBits();
|
|
|
|
if (ISD::isSignedIntSetCC(CC)) {
|
|
if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
|
|
DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
|
|
return SDValue();
|
|
} else if (ISD::isUnsignedIntSetCC(CC)) {
|
|
if (!DAG.MaskedValueIsZero(N->getOperand(0),
|
|
APInt::getHighBitsSet(OpBits, OpBits-1)) ||
|
|
!DAG.MaskedValueIsZero(N->getOperand(1),
|
|
APInt::getHighBitsSet(OpBits, OpBits-1)))
|
|
return SDValue();
|
|
} else {
|
|
// This is neither a signed nor an unsigned comparison, just make sure
|
|
// that the high bits are equal.
|
|
APInt Op1Zero, Op1One;
|
|
APInt Op2Zero, Op2One;
|
|
DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One);
|
|
DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One);
|
|
|
|
// We don't really care about what is known about the first bit (if
|
|
// anything), so clear it in all masks prior to comparing them.
|
|
Op1Zero.clearBit(0); Op1One.clearBit(0);
|
|
Op2Zero.clearBit(0); Op2One.clearBit(0);
|
|
|
|
if (Op1Zero != Op2Zero || Op1One != Op2One)
|
|
return SDValue();
|
|
}
|
|
}
|
|
|
|
// We now know that the higher-order bits are irrelevant, we just need to
|
|
// make sure that all of the intermediate operations are bit operations, and
|
|
// all inputs are extensions.
|
|
if (N->getOperand(0).getOpcode() != ISD::AND &&
|
|
N->getOperand(0).getOpcode() != ISD::OR &&
|
|
N->getOperand(0).getOpcode() != ISD::XOR &&
|
|
N->getOperand(0).getOpcode() != ISD::SELECT &&
|
|
N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
|
|
N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
|
|
N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
|
|
N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
|
|
N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
|
|
return SDValue();
|
|
|
|
if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
|
|
N->getOperand(1).getOpcode() != ISD::AND &&
|
|
N->getOperand(1).getOpcode() != ISD::OR &&
|
|
N->getOperand(1).getOpcode() != ISD::XOR &&
|
|
N->getOperand(1).getOpcode() != ISD::SELECT &&
|
|
N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
|
|
N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
|
|
N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
|
|
N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
|
|
N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
|
|
return SDValue();
|
|
|
|
SmallVector<SDValue, 4> Inputs;
|
|
SmallVector<SDValue, 8> BinOps, PromOps;
|
|
SmallPtrSet<SDNode *, 16> Visited;
|
|
|
|
for (unsigned i = 0; i < 2; ++i) {
|
|
if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
|
|
N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
|
|
N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
|
|
N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
|
|
isa<ConstantSDNode>(N->getOperand(i)))
|
|
Inputs.push_back(N->getOperand(i));
|
|
else
|
|
BinOps.push_back(N->getOperand(i));
|
|
|
|
if (N->getOpcode() == ISD::TRUNCATE)
|
|
break;
|
|
}
|
|
|
|
// Visit all inputs, collect all binary operations (and, or, xor and
|
|
// select) that are all fed by extensions.
|
|
while (!BinOps.empty()) {
|
|
SDValue BinOp = BinOps.back();
|
|
BinOps.pop_back();
|
|
|
|
if (!Visited.insert(BinOp.getNode()).second)
|
|
continue;
|
|
|
|
PromOps.push_back(BinOp);
|
|
|
|
for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
|
|
// The condition of the select is not promoted.
|
|
if (BinOp.getOpcode() == ISD::SELECT && i == 0)
|
|
continue;
|
|
if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
|
|
continue;
|
|
|
|
if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
|
|
BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
|
|
BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
|
|
BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
|
|
isa<ConstantSDNode>(BinOp.getOperand(i))) {
|
|
Inputs.push_back(BinOp.getOperand(i));
|
|
} else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
|
|
BinOp.getOperand(i).getOpcode() == ISD::OR ||
|
|
BinOp.getOperand(i).getOpcode() == ISD::XOR ||
|
|
BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
|
|
BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
|
|
BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
|
|
BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
|
|
BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
|
|
BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
|
|
BinOps.push_back(BinOp.getOperand(i));
|
|
} else {
|
|
// We have an input that is not an extension or another binary
|
|
// operation; we'll abort this transformation.
|
|
return SDValue();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Make sure that this is a self-contained cluster of operations (which
|
|
// is not quite the same thing as saying that everything has only one
|
|
// use).
|
|
for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
|
|
if (isa<ConstantSDNode>(Inputs[i]))
|
|
continue;
|
|
|
|
for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
|
|
UE = Inputs[i].getNode()->use_end();
|
|
UI != UE; ++UI) {
|
|
SDNode *User = *UI;
|
|
if (User != N && !Visited.count(User))
|
|
return SDValue();
|
|
|
|
// Make sure that we're not going to promote the non-output-value
|
|
// operand(s) or SELECT or SELECT_CC.
|
|
// FIXME: Although we could sometimes handle this, and it does occur in
|
|
// practice that one of the condition inputs to the select is also one of
|
|
// the outputs, we currently can't deal with this.
|
|
if (User->getOpcode() == ISD::SELECT) {
|
|
if (User->getOperand(0) == Inputs[i])
|
|
return SDValue();
|
|
} else if (User->getOpcode() == ISD::SELECT_CC) {
|
|
if (User->getOperand(0) == Inputs[i] ||
|
|
User->getOperand(1) == Inputs[i])
|
|
return SDValue();
|
|
}
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
|
|
for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
|
|
UE = PromOps[i].getNode()->use_end();
|
|
UI != UE; ++UI) {
|
|
SDNode *User = *UI;
|
|
if (User != N && !Visited.count(User))
|
|
return SDValue();
|
|
|
|
// Make sure that we're not going to promote the non-output-value
|
|
// operand(s) or SELECT or SELECT_CC.
|
|
// FIXME: Although we could sometimes handle this, and it does occur in
|
|
// practice that one of the condition inputs to the select is also one of
|
|
// the outputs, we currently can't deal with this.
|
|
if (User->getOpcode() == ISD::SELECT) {
|
|
if (User->getOperand(0) == PromOps[i])
|
|
return SDValue();
|
|
} else if (User->getOpcode() == ISD::SELECT_CC) {
|
|
if (User->getOperand(0) == PromOps[i] ||
|
|
User->getOperand(1) == PromOps[i])
|
|
return SDValue();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Replace all inputs with the extension operand.
|
|
for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
|
|
// Constants may have users outside the cluster of to-be-promoted nodes,
|
|
// and so we need to replace those as we do the promotions.
|
|
if (isa<ConstantSDNode>(Inputs[i]))
|
|
continue;
|
|
else
|
|
DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
|
|
}
|
|
|
|
// Replace all operations (these are all the same, but have a different
|
|
// (i1) return type). DAG.getNode will validate that the types of
|
|
// a binary operator match, so go through the list in reverse so that
|
|
// we've likely promoted both operands first. Any intermediate truncations or
|
|
// extensions disappear.
|
|
while (!PromOps.empty()) {
|
|
SDValue PromOp = PromOps.back();
|
|
PromOps.pop_back();
|
|
|
|
if (PromOp.getOpcode() == ISD::TRUNCATE ||
|
|
PromOp.getOpcode() == ISD::SIGN_EXTEND ||
|
|
PromOp.getOpcode() == ISD::ZERO_EXTEND ||
|
|
PromOp.getOpcode() == ISD::ANY_EXTEND) {
|
|
if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
|
|
PromOp.getOperand(0).getValueType() != MVT::i1) {
|
|
// The operand is not yet ready (see comment below).
|
|
PromOps.insert(PromOps.begin(), PromOp);
|
|
continue;
|
|
}
|
|
|
|
SDValue RepValue = PromOp.getOperand(0);
|
|
if (isa<ConstantSDNode>(RepValue))
|
|
RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
|
|
|
|
DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
|
|
continue;
|
|
}
|
|
|
|
unsigned C;
|
|
switch (PromOp.getOpcode()) {
|
|
default: C = 0; break;
|
|
case ISD::SELECT: C = 1; break;
|
|
case ISD::SELECT_CC: C = 2; break;
|
|
}
|
|
|
|
if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
|
|
PromOp.getOperand(C).getValueType() != MVT::i1) ||
|
|
(!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
|
|
PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
|
|
// The to-be-promoted operands of this node have not yet been
|
|
// promoted (this should be rare because we're going through the
|
|
// list backward, but if one of the operands has several users in
|
|
// this cluster of to-be-promoted nodes, it is possible).
|
|
PromOps.insert(PromOps.begin(), PromOp);
|
|
continue;
|
|
}
|
|
|
|
SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
|
|
PromOp.getNode()->op_end());
|
|
|
|
// If there are any constant inputs, make sure they're replaced now.
|
|
for (unsigned i = 0; i < 2; ++i)
|
|
if (isa<ConstantSDNode>(Ops[C+i]))
|
|
Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
|
|
|
|
DAG.ReplaceAllUsesOfValueWith(PromOp,
|
|
DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
|
|
}
|
|
|
|
// Now we're left with the initial truncation itself.
|
|
if (N->getOpcode() == ISD::TRUNCATE)
|
|
return N->getOperand(0);
|
|
|
|
// Otherwise, this is a comparison. The operands to be compared have just
|
|
// changed type (to i1), but everything else is the same.
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc dl(N);
|
|
|
|
// If we're tracking CR bits, we need to be careful that we don't have:
|
|
// zext(binary-ops(trunc(x), trunc(y)))
|
|
// or
|
|
// zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
|
|
// such that we're unnecessarily moving things into CR bits that can more
|
|
// efficiently stay in GPRs. Note that if we're not certain that the high
|
|
// bits are set as required by the final extension, we still may need to do
|
|
// some masking to get the proper behavior.
|
|
|
|
// This same functionality is important on PPC64 when dealing with
|
|
// 32-to-64-bit extensions; these occur often when 32-bit values are used as
|
|
// the return values of functions. Because it is so similar, it is handled
|
|
// here as well.
|
|
|
|
if (N->getValueType(0) != MVT::i32 &&
|
|
N->getValueType(0) != MVT::i64)
|
|
return SDValue();
|
|
|
|
if (!((N->getOperand(0).getValueType() == MVT::i1 &&
|
|
Subtarget.useCRBits()) ||
|
|
(N->getOperand(0).getValueType() == MVT::i32 &&
|
|
Subtarget.isPPC64())))
|
|
return SDValue();
|
|
|
|
if (N->getOperand(0).getOpcode() != ISD::AND &&
|
|
N->getOperand(0).getOpcode() != ISD::OR &&
|
|
N->getOperand(0).getOpcode() != ISD::XOR &&
|
|
N->getOperand(0).getOpcode() != ISD::SELECT &&
|
|
N->getOperand(0).getOpcode() != ISD::SELECT_CC)
|
|
return SDValue();
|
|
|
|
SmallVector<SDValue, 4> Inputs;
|
|
SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
|
|
SmallPtrSet<SDNode *, 16> Visited;
|
|
|
|
// Visit all inputs, collect all binary operations (and, or, xor and
|
|
// select) that are all fed by truncations.
|
|
while (!BinOps.empty()) {
|
|
SDValue BinOp = BinOps.back();
|
|
BinOps.pop_back();
|
|
|
|
if (!Visited.insert(BinOp.getNode()).second)
|
|
continue;
|
|
|
|
PromOps.push_back(BinOp);
|
|
|
|
for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
|
|
// The condition of the select is not promoted.
|
|
if (BinOp.getOpcode() == ISD::SELECT && i == 0)
|
|
continue;
|
|
if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
|
|
continue;
|
|
|
|
if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
|
|
isa<ConstantSDNode>(BinOp.getOperand(i))) {
|
|
Inputs.push_back(BinOp.getOperand(i));
|
|
} else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
|
|
BinOp.getOperand(i).getOpcode() == ISD::OR ||
|
|
BinOp.getOperand(i).getOpcode() == ISD::XOR ||
|
|
BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
|
|
BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
|
|
BinOps.push_back(BinOp.getOperand(i));
|
|
} else {
|
|
// We have an input that is not a truncation or another binary
|
|
// operation; we'll abort this transformation.
|
|
return SDValue();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Make sure that this is a self-contained cluster of operations (which
|
|
// is not quite the same thing as saying that everything has only one
|
|
// use).
|
|
for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
|
|
if (isa<ConstantSDNode>(Inputs[i]))
|
|
continue;
|
|
|
|
for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
|
|
UE = Inputs[i].getNode()->use_end();
|
|
UI != UE; ++UI) {
|
|
SDNode *User = *UI;
|
|
if (User != N && !Visited.count(User))
|
|
return SDValue();
|
|
|
|
// Make sure that we're not going to promote the non-output-value
|
|
// operand(s) or SELECT or SELECT_CC.
|
|
// FIXME: Although we could sometimes handle this, and it does occur in
|
|
// practice that one of the condition inputs to the select is also one of
|
|
// the outputs, we currently can't deal with this.
|
|
if (User->getOpcode() == ISD::SELECT) {
|
|
if (User->getOperand(0) == Inputs[i])
|
|
return SDValue();
|
|
} else if (User->getOpcode() == ISD::SELECT_CC) {
|
|
if (User->getOperand(0) == Inputs[i] ||
|
|
User->getOperand(1) == Inputs[i])
|
|
return SDValue();
|
|
}
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
|
|
for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
|
|
UE = PromOps[i].getNode()->use_end();
|
|
UI != UE; ++UI) {
|
|
SDNode *User = *UI;
|
|
if (User != N && !Visited.count(User))
|
|
return SDValue();
|
|
|
|
// Make sure that we're not going to promote the non-output-value
|
|
// operand(s) or SELECT or SELECT_CC.
|
|
// FIXME: Although we could sometimes handle this, and it does occur in
|
|
// practice that one of the condition inputs to the select is also one of
|
|
// the outputs, we currently can't deal with this.
|
|
if (User->getOpcode() == ISD::SELECT) {
|
|
if (User->getOperand(0) == PromOps[i])
|
|
return SDValue();
|
|
} else if (User->getOpcode() == ISD::SELECT_CC) {
|
|
if (User->getOperand(0) == PromOps[i] ||
|
|
User->getOperand(1) == PromOps[i])
|
|
return SDValue();
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned PromBits = N->getOperand(0).getValueSizeInBits();
|
|
bool ReallyNeedsExt = false;
|
|
if (N->getOpcode() != ISD::ANY_EXTEND) {
|
|
// If all of the inputs are not already sign/zero extended, then
|
|
// we'll still need to do that at the end.
|
|
for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
|
|
if (isa<ConstantSDNode>(Inputs[i]))
|
|
continue;
|
|
|
|
unsigned OpBits =
|
|
Inputs[i].getOperand(0).getValueSizeInBits();
|
|
assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
|
|
|
|
if ((N->getOpcode() == ISD::ZERO_EXTEND &&
|
|
!DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
|
|
APInt::getHighBitsSet(OpBits,
|
|
OpBits-PromBits))) ||
|
|
(N->getOpcode() == ISD::SIGN_EXTEND &&
|
|
DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
|
|
(OpBits-(PromBits-1)))) {
|
|
ReallyNeedsExt = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Replace all inputs, either with the truncation operand, or a
|
|
// truncation or extension to the final output type.
|
|
for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
|
|
// Constant inputs need to be replaced with the to-be-promoted nodes that
|
|
// use them because they might have users outside of the cluster of
|
|
// promoted nodes.
|
|
if (isa<ConstantSDNode>(Inputs[i]))
|
|
continue;
|
|
|
|
SDValue InSrc = Inputs[i].getOperand(0);
|
|
if (Inputs[i].getValueType() == N->getValueType(0))
|
|
DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
|
|
else if (N->getOpcode() == ISD::SIGN_EXTEND)
|
|
DAG.ReplaceAllUsesOfValueWith(Inputs[i],
|
|
DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
|
|
else if (N->getOpcode() == ISD::ZERO_EXTEND)
|
|
DAG.ReplaceAllUsesOfValueWith(Inputs[i],
|
|
DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
|
|
else
|
|
DAG.ReplaceAllUsesOfValueWith(Inputs[i],
|
|
DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
|
|
}
|
|
|
|
// Replace all operations (these are all the same, but have a different
|
|
// (promoted) return type). DAG.getNode will validate that the types of
|
|
// a binary operator match, so go through the list in reverse so that
|
|
// we've likely promoted both operands first.
|
|
while (!PromOps.empty()) {
|
|
SDValue PromOp = PromOps.back();
|
|
PromOps.pop_back();
|
|
|
|
unsigned C;
|
|
switch (PromOp.getOpcode()) {
|
|
default: C = 0; break;
|
|
case ISD::SELECT: C = 1; break;
|
|
case ISD::SELECT_CC: C = 2; break;
|
|
}
|
|
|
|
if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
|
|
PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
|
|
(!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
|
|
PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
|
|
// The to-be-promoted operands of this node have not yet been
|
|
// promoted (this should be rare because we're going through the
|
|
// list backward, but if one of the operands has several users in
|
|
// this cluster of to-be-promoted nodes, it is possible).
|
|
PromOps.insert(PromOps.begin(), PromOp);
|
|
continue;
|
|
}
|
|
|
|
SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
|
|
PromOp.getNode()->op_end());
|
|
|
|
// If this node has constant inputs, then they'll need to be promoted here.
|
|
for (unsigned i = 0; i < 2; ++i) {
|
|
if (!isa<ConstantSDNode>(Ops[C+i]))
|
|
continue;
|
|
if (Ops[C+i].getValueType() == N->getValueType(0))
|
|
continue;
|
|
|
|
if (N->getOpcode() == ISD::SIGN_EXTEND)
|
|
Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
|
|
else if (N->getOpcode() == ISD::ZERO_EXTEND)
|
|
Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
|
|
else
|
|
Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
|
|
}
|
|
|
|
DAG.ReplaceAllUsesOfValueWith(PromOp,
|
|
DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
|
|
}
|
|
|
|
// Now we're left with the initial extension itself.
|
|
if (!ReallyNeedsExt)
|
|
return N->getOperand(0);
|
|
|
|
// To zero extend, just mask off everything except for the first bit (in the
|
|
// i1 case).
|
|
if (N->getOpcode() == ISD::ZERO_EXTEND)
|
|
return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
|
|
DAG.getConstant(APInt::getLowBitsSet(
|
|
N->getValueSizeInBits(0), PromBits),
|
|
N->getValueType(0)));
|
|
|
|
assert(N->getOpcode() == ISD::SIGN_EXTEND &&
|
|
"Invalid extension type");
|
|
EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0));
|
|
SDValue ShiftCst =
|
|
DAG.getConstant(N->getValueSizeInBits(0)-PromBits, ShiftAmountTy);
|
|
return DAG.getNode(ISD::SRA, dl, N->getValueType(0),
|
|
DAG.getNode(ISD::SHL, dl, N->getValueType(0),
|
|
N->getOperand(0), ShiftCst), ShiftCst);
|
|
}
|
|
|
|
SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
const TargetMachine &TM = getTargetMachine();
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc dl(N);
|
|
switch (N->getOpcode()) {
|
|
default: break;
|
|
case PPCISD::SHL:
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
|
|
if (C->isNullValue()) // 0 << V -> 0.
|
|
return N->getOperand(0);
|
|
}
|
|
break;
|
|
case PPCISD::SRL:
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
|
|
if (C->isNullValue()) // 0 >>u V -> 0.
|
|
return N->getOperand(0);
|
|
}
|
|
break;
|
|
case PPCISD::SRA:
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
|
|
if (C->isNullValue() || // 0 >>s V -> 0.
|
|
C->isAllOnesValue()) // -1 >>s V -> -1.
|
|
return N->getOperand(0);
|
|
}
|
|
break;
|
|
case ISD::SIGN_EXTEND:
|
|
case ISD::ZERO_EXTEND:
|
|
case ISD::ANY_EXTEND:
|
|
return DAGCombineExtBoolTrunc(N, DCI);
|
|
case ISD::TRUNCATE:
|
|
case ISD::SETCC:
|
|
case ISD::SELECT_CC:
|
|
return DAGCombineTruncBoolExt(N, DCI);
|
|
case ISD::SINT_TO_FP:
|
|
if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
|
|
if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
|
|
// Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
|
|
// We allow the src/dst to be either f32/f64, but the intermediate
|
|
// type must be i64.
|
|
if (N->getOperand(0).getValueType() == MVT::i64 &&
|
|
N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
|
|
SDValue Val = N->getOperand(0).getOperand(0);
|
|
if (Val.getValueType() == MVT::f32) {
|
|
Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
|
|
DCI.AddToWorklist(Val.getNode());
|
|
}
|
|
|
|
Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
|
|
DCI.AddToWorklist(Val.getNode());
|
|
Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
|
|
DCI.AddToWorklist(Val.getNode());
|
|
if (N->getValueType(0) == MVT::f32) {
|
|
Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
|
|
DAG.getIntPtrConstant(0));
|
|
DCI.AddToWorklist(Val.getNode());
|
|
}
|
|
return Val;
|
|
} else if (N->getOperand(0).getValueType() == MVT::i32) {
|
|
// If the intermediate type is i32, we can avoid the load/store here
|
|
// too.
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case ISD::STORE:
|
|
// Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
|
|
if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
|
|
!cast<StoreSDNode>(N)->isTruncatingStore() &&
|
|
N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
|
|
N->getOperand(1).getValueType() == MVT::i32 &&
|
|
N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
|
|
SDValue Val = N->getOperand(1).getOperand(0);
|
|
if (Val.getValueType() == MVT::f32) {
|
|
Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
|
|
DCI.AddToWorklist(Val.getNode());
|
|
}
|
|
Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
|
|
DCI.AddToWorklist(Val.getNode());
|
|
|
|
SDValue Ops[] = {
|
|
N->getOperand(0), Val, N->getOperand(2),
|
|
DAG.getValueType(N->getOperand(1).getValueType())
|
|
};
|
|
|
|
Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
|
|
DAG.getVTList(MVT::Other), Ops,
|
|
cast<StoreSDNode>(N)->getMemoryVT(),
|
|
cast<StoreSDNode>(N)->getMemOperand());
|
|
DCI.AddToWorklist(Val.getNode());
|
|
return Val;
|
|
}
|
|
|
|
// Turn STORE (BSWAP) -> sthbrx/stwbrx.
|
|
if (cast<StoreSDNode>(N)->isUnindexed() &&
|
|
N->getOperand(1).getOpcode() == ISD::BSWAP &&
|
|
N->getOperand(1).getNode()->hasOneUse() &&
|
|
(N->getOperand(1).getValueType() == MVT::i32 ||
|
|
N->getOperand(1).getValueType() == MVT::i16 ||
|
|
(TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
|
|
TM.getSubtarget<PPCSubtarget>().isPPC64() &&
|
|
N->getOperand(1).getValueType() == MVT::i64))) {
|
|
SDValue BSwapOp = N->getOperand(1).getOperand(0);
|
|
// Do an any-extend to 32-bits if this is a half-word input.
|
|
if (BSwapOp.getValueType() == MVT::i16)
|
|
BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
|
|
|
|
SDValue Ops[] = {
|
|
N->getOperand(0), BSwapOp, N->getOperand(2),
|
|
DAG.getValueType(N->getOperand(1).getValueType())
|
|
};
|
|
return
|
|
DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
|
|
Ops, cast<StoreSDNode>(N)->getMemoryVT(),
|
|
cast<StoreSDNode>(N)->getMemOperand());
|
|
}
|
|
break;
|
|
case ISD::LOAD: {
|
|
LoadSDNode *LD = cast<LoadSDNode>(N);
|
|
EVT VT = LD->getValueType(0);
|
|
Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
|
|
unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(Ty);
|
|
if (ISD::isNON_EXTLoad(N) && VT.isVector() &&
|
|
TM.getSubtarget<PPCSubtarget>().hasAltivec() &&
|
|
// P8 and later hardware should just use LOAD.
|
|
!TM.getSubtarget<PPCSubtarget>().hasP8Vector() &&
|
|
(VT == MVT::v16i8 || VT == MVT::v8i16 ||
|
|
VT == MVT::v4i32 || VT == MVT::v4f32) &&
|
|
LD->getAlignment() < ABIAlignment) {
|
|
// This is a type-legal unaligned Altivec load.
|
|
SDValue Chain = LD->getChain();
|
|
SDValue Ptr = LD->getBasePtr();
|
|
bool isLittleEndian = Subtarget.isLittleEndian();
|
|
|
|
// This implements the loading of unaligned vectors as described in
|
|
// the venerable Apple Velocity Engine overview. Specifically:
|
|
// https://developer.apple.com/hardwaredrivers/ve/alignment.html
|
|
// https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
|
|
//
|
|
// The general idea is to expand a sequence of one or more unaligned
|
|
// loads into an alignment-based permutation-control instruction (lvsl
|
|
// or lvsr), a series of regular vector loads (which always truncate
|
|
// their input address to an aligned address), and a series of
|
|
// permutations. The results of these permutations are the requested
|
|
// loaded values. The trick is that the last "extra" load is not taken
|
|
// from the address you might suspect (sizeof(vector) bytes after the
|
|
// last requested load), but rather sizeof(vector) - 1 bytes after the
|
|
// last requested vector. The point of this is to avoid a page fault if
|
|
// the base address happened to be aligned. This works because if the
|
|
// base address is aligned, then adding less than a full vector length
|
|
// will cause the last vector in the sequence to be (re)loaded.
|
|
// Otherwise, the next vector will be fetched as you might suspect was
|
|
// necessary.
|
|
|
|
// We might be able to reuse the permutation generation from
|
|
// a different base address offset from this one by an aligned amount.
|
|
// The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
|
|
// optimization later.
|
|
Intrinsic::ID Intr = (isLittleEndian ?
|
|
Intrinsic::ppc_altivec_lvsr :
|
|
Intrinsic::ppc_altivec_lvsl);
|
|
SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, MVT::v16i8);
|
|
|
|
// Create the new MMO for the new base load. It is like the original MMO,
|
|
// but represents an area in memory almost twice the vector size centered
|
|
// on the original address. If the address is unaligned, we might start
|
|
// reading up to (sizeof(vector)-1) bytes below the address of the
|
|
// original unaligned load.
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineMemOperand *BaseMMO =
|
|
MF.getMachineMemOperand(LD->getMemOperand(),
|
|
-LD->getMemoryVT().getStoreSize()+1,
|
|
2*LD->getMemoryVT().getStoreSize()-1);
|
|
|
|
// Create the new base load.
|
|
SDValue LDXIntID = DAG.getTargetConstant(Intrinsic::ppc_altivec_lvx,
|
|
getPointerTy());
|
|
SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
|
|
SDValue BaseLoad =
|
|
DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
|
|
DAG.getVTList(MVT::v4i32, MVT::Other),
|
|
BaseLoadOps, MVT::v4i32, BaseMMO);
|
|
|
|
// Note that the value of IncOffset (which is provided to the next
|
|
// load's pointer info offset value, and thus used to calculate the
|
|
// alignment), and the value of IncValue (which is actually used to
|
|
// increment the pointer value) are different! This is because we
|
|
// require the next load to appear to be aligned, even though it
|
|
// is actually offset from the base pointer by a lesser amount.
|
|
int IncOffset = VT.getSizeInBits() / 8;
|
|
int IncValue = IncOffset;
|
|
|
|
// Walk (both up and down) the chain looking for another load at the real
|
|
// (aligned) offset (the alignment of the other load does not matter in
|
|
// this case). If found, then do not use the offset reduction trick, as
|
|
// that will prevent the loads from being later combined (as they would
|
|
// otherwise be duplicates).
|
|
if (!findConsecutiveLoad(LD, DAG))
|
|
--IncValue;
|
|
|
|
SDValue Increment = DAG.getConstant(IncValue, getPointerTy());
|
|
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
|
|
|
|
MachineMemOperand *ExtraMMO =
|
|
MF.getMachineMemOperand(LD->getMemOperand(),
|
|
1, 2*LD->getMemoryVT().getStoreSize()-1);
|
|
SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
|
|
SDValue ExtraLoad =
|
|
DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
|
|
DAG.getVTList(MVT::v4i32, MVT::Other),
|
|
ExtraLoadOps, MVT::v4i32, ExtraMMO);
|
|
|
|
SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
|
|
BaseLoad.getValue(1), ExtraLoad.getValue(1));
|
|
|
|
// Because vperm has a big-endian bias, we must reverse the order
|
|
// of the input vectors and complement the permute control vector
|
|
// when generating little endian code. We have already handled the
|
|
// latter by using lvsr instead of lvsl, so just reverse BaseLoad
|
|
// and ExtraLoad here.
|
|
SDValue Perm;
|
|
if (isLittleEndian)
|
|
Perm = BuildIntrinsicOp(Intrinsic::ppc_altivec_vperm,
|
|
ExtraLoad, BaseLoad, PermCntl, DAG, dl);
|
|
else
|
|
Perm = BuildIntrinsicOp(Intrinsic::ppc_altivec_vperm,
|
|
BaseLoad, ExtraLoad, PermCntl, DAG, dl);
|
|
|
|
if (VT != MVT::v4i32)
|
|
Perm = DAG.getNode(ISD::BITCAST, dl, VT, Perm);
|
|
|
|
// The output of the permutation is our loaded result, the TokenFactor is
|
|
// our new chain.
|
|
DCI.CombineTo(N, Perm, TF);
|
|
return SDValue(N, 0);
|
|
}
|
|
}
|
|
break;
|
|
case ISD::INTRINSIC_WO_CHAIN: {
|
|
bool isLittleEndian = Subtarget.isLittleEndian();
|
|
Intrinsic::ID Intr = (isLittleEndian ?
|
|
Intrinsic::ppc_altivec_lvsr :
|
|
Intrinsic::ppc_altivec_lvsl);
|
|
if (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue() == Intr &&
|
|
N->getOperand(1)->getOpcode() == ISD::ADD) {
|
|
SDValue Add = N->getOperand(1);
|
|
|
|
if (DAG.MaskedValueIsZero(Add->getOperand(1),
|
|
APInt::getAllOnesValue(4 /* 16 byte alignment */).zext(
|
|
Add.getValueType().getScalarType().getSizeInBits()))) {
|
|
SDNode *BasePtr = Add->getOperand(0).getNode();
|
|
for (SDNode::use_iterator UI = BasePtr->use_begin(),
|
|
UE = BasePtr->use_end(); UI != UE; ++UI) {
|
|
if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
|
|
cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() ==
|
|
Intr) {
|
|
// We've found another LVSL/LVSR, and this address is an aligned
|
|
// multiple of that one. The results will be the same, so use the
|
|
// one we've just found instead.
|
|
|
|
return SDValue(*UI, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
break;
|
|
case ISD::BSWAP:
|
|
// Turn BSWAP (LOAD) -> lhbrx/lwbrx.
|
|
if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
|
|
N->getOperand(0).hasOneUse() &&
|
|
(N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
|
|
(TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
|
|
TM.getSubtarget<PPCSubtarget>().isPPC64() &&
|
|
N->getValueType(0) == MVT::i64))) {
|
|
SDValue Load = N->getOperand(0);
|
|
LoadSDNode *LD = cast<LoadSDNode>(Load);
|
|
// Create the byte-swapping load.
|
|
SDValue Ops[] = {
|
|
LD->getChain(), // Chain
|
|
LD->getBasePtr(), // Ptr
|
|
DAG.getValueType(N->getValueType(0)) // VT
|
|
};
|
|
SDValue BSLoad =
|
|
DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
|
|
DAG.getVTList(N->getValueType(0) == MVT::i64 ?
|
|
MVT::i64 : MVT::i32, MVT::Other),
|
|
Ops, LD->getMemoryVT(), LD->getMemOperand());
|
|
|
|
// If this is an i16 load, insert the truncate.
|
|
SDValue ResVal = BSLoad;
|
|
if (N->getValueType(0) == MVT::i16)
|
|
ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
|
|
|
|
// First, combine the bswap away. This makes the value produced by the
|
|
// load dead.
|
|
DCI.CombineTo(N, ResVal);
|
|
|
|
// Next, combine the load away, we give it a bogus result value but a real
|
|
// chain result. The result value is dead because the bswap is dead.
|
|
DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
|
|
|
|
// Return N so it doesn't get rechecked!
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
break;
|
|
case PPCISD::VCMP: {
|
|
// If a VCMPo node already exists with exactly the same operands as this
|
|
// node, use its result instead of this node (VCMPo computes both a CR6 and
|
|
// a normal output).
|
|
//
|
|
if (!N->getOperand(0).hasOneUse() &&
|
|
!N->getOperand(1).hasOneUse() &&
|
|
!N->getOperand(2).hasOneUse()) {
|
|
|
|
// Scan all of the users of the LHS, looking for VCMPo's that match.
|
|
SDNode *VCMPoNode = nullptr;
|
|
|
|
SDNode *LHSN = N->getOperand(0).getNode();
|
|
for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
|
|
UI != E; ++UI)
|
|
if (UI->getOpcode() == PPCISD::VCMPo &&
|
|
UI->getOperand(1) == N->getOperand(1) &&
|
|
UI->getOperand(2) == N->getOperand(2) &&
|
|
UI->getOperand(0) == N->getOperand(0)) {
|
|
VCMPoNode = *UI;
|
|
break;
|
|
}
|
|
|
|
// If there is no VCMPo node, or if the flag value has a single use, don't
|
|
// transform this.
|
|
if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
|
|
break;
|
|
|
|
// Look at the (necessarily single) use of the flag value. If it has a
|
|
// chain, this transformation is more complex. Note that multiple things
|
|
// could use the value result, which we should ignore.
|
|
SDNode *FlagUser = nullptr;
|
|
for (SDNode::use_iterator UI = VCMPoNode->use_begin();
|
|
FlagUser == nullptr; ++UI) {
|
|
assert(UI != VCMPoNode->use_end() && "Didn't find user!");
|
|
SDNode *User = *UI;
|
|
for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
|
|
if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
|
|
FlagUser = User;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the user is a MFOCRF instruction, we know this is safe.
|
|
// Otherwise we give up for right now.
|
|
if (FlagUser->getOpcode() == PPCISD::MFOCRF)
|
|
return SDValue(VCMPoNode, 0);
|
|
}
|
|
break;
|
|
}
|
|
case ISD::BRCOND: {
|
|
SDValue Cond = N->getOperand(1);
|
|
SDValue Target = N->getOperand(2);
|
|
|
|
if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
|
|
cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
|
|
Intrinsic::ppc_is_decremented_ctr_nonzero) {
|
|
|
|
// We now need to make the intrinsic dead (it cannot be instruction
|
|
// selected).
|
|
DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
|
|
assert(Cond.getNode()->hasOneUse() &&
|
|
"Counter decrement has more than one use");
|
|
|
|
return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
|
|
N->getOperand(0), Target);
|
|
}
|
|
}
|
|
break;
|
|
case ISD::BR_CC: {
|
|
// If this is a branch on an altivec predicate comparison, lower this so
|
|
// that we don't have to do a MFOCRF: instead, branch directly on CR6. This
|
|
// lowering is done pre-legalize, because the legalizer lowers the predicate
|
|
// compare down to code that is difficult to reassemble.
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
|
|
SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
|
|
|
|
// Sometimes the promoted value of the intrinsic is ANDed by some non-zero
|
|
// value. If so, pass-through the AND to get to the intrinsic.
|
|
if (LHS.getOpcode() == ISD::AND &&
|
|
LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
|
|
cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
|
|
Intrinsic::ppc_is_decremented_ctr_nonzero &&
|
|
isa<ConstantSDNode>(LHS.getOperand(1)) &&
|
|
!cast<ConstantSDNode>(LHS.getOperand(1))->getConstantIntValue()->
|
|
isZero())
|
|
LHS = LHS.getOperand(0);
|
|
|
|
if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
|
|
cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
|
|
Intrinsic::ppc_is_decremented_ctr_nonzero &&
|
|
isa<ConstantSDNode>(RHS)) {
|
|
assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
|
|
"Counter decrement comparison is not EQ or NE");
|
|
|
|
unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
|
|
bool isBDNZ = (CC == ISD::SETEQ && Val) ||
|
|
(CC == ISD::SETNE && !Val);
|
|
|
|
// We now need to make the intrinsic dead (it cannot be instruction
|
|
// selected).
|
|
DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
|
|
assert(LHS.getNode()->hasOneUse() &&
|
|
"Counter decrement has more than one use");
|
|
|
|
return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
|
|
N->getOperand(0), N->getOperand(4));
|
|
}
|
|
|
|
int CompareOpc;
|
|
bool isDot;
|
|
|
|
if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
|
|
isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
|
|
getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
|
|
assert(isDot && "Can't compare against a vector result!");
|
|
|
|
// If this is a comparison against something other than 0/1, then we know
|
|
// that the condition is never/always true.
|
|
unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
|
|
if (Val != 0 && Val != 1) {
|
|
if (CC == ISD::SETEQ) // Cond never true, remove branch.
|
|
return N->getOperand(0);
|
|
// Always !=, turn it into an unconditional branch.
|
|
return DAG.getNode(ISD::BR, dl, MVT::Other,
|
|
N->getOperand(0), N->getOperand(4));
|
|
}
|
|
|
|
bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
|
|
|
|
// Create the PPCISD altivec 'dot' comparison node.
|
|
SDValue Ops[] = {
|
|
LHS.getOperand(2), // LHS of compare
|
|
LHS.getOperand(3), // RHS of compare
|
|
DAG.getConstant(CompareOpc, MVT::i32)
|
|
};
|
|
EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
|
|
SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
|
|
|
|
// Unpack the result based on how the target uses it.
|
|
PPC::Predicate CompOpc;
|
|
switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
|
|
default: // Can't happen, don't crash on invalid number though.
|
|
case 0: // Branch on the value of the EQ bit of CR6.
|
|
CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
|
|
break;
|
|
case 1: // Branch on the inverted value of the EQ bit of CR6.
|
|
CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
|
|
break;
|
|
case 2: // Branch on the value of the LT bit of CR6.
|
|
CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
|
|
break;
|
|
case 3: // Branch on the inverted value of the LT bit of CR6.
|
|
CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
|
|
break;
|
|
}
|
|
|
|
return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
|
|
DAG.getConstant(CompOpc, MVT::i32),
|
|
DAG.getRegister(PPC::CR6, MVT::i32),
|
|
N->getOperand(4), CompNode.getValue(1));
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Inline Assembly Support
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
|
|
APInt &KnownZero,
|
|
APInt &KnownOne,
|
|
const SelectionDAG &DAG,
|
|
unsigned Depth) const {
|
|
KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
|
|
switch (Op.getOpcode()) {
|
|
default: break;
|
|
case PPCISD::LBRX: {
|
|
// lhbrx is known to have the top bits cleared out.
|
|
if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
|
|
KnownZero = 0xFFFF0000;
|
|
break;
|
|
}
|
|
case ISD::INTRINSIC_WO_CHAIN: {
|
|
switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
|
|
default: break;
|
|
case Intrinsic::ppc_altivec_vcmpbfp_p:
|
|
case Intrinsic::ppc_altivec_vcmpeqfp_p:
|
|
case Intrinsic::ppc_altivec_vcmpequb_p:
|
|
case Intrinsic::ppc_altivec_vcmpequh_p:
|
|
case Intrinsic::ppc_altivec_vcmpequw_p:
|
|
case Intrinsic::ppc_altivec_vcmpgefp_p:
|
|
case Intrinsic::ppc_altivec_vcmpgtfp_p:
|
|
case Intrinsic::ppc_altivec_vcmpgtsb_p:
|
|
case Intrinsic::ppc_altivec_vcmpgtsh_p:
|
|
case Intrinsic::ppc_altivec_vcmpgtsw_p:
|
|
case Intrinsic::ppc_altivec_vcmpgtub_p:
|
|
case Intrinsic::ppc_altivec_vcmpgtuh_p:
|
|
case Intrinsic::ppc_altivec_vcmpgtuw_p:
|
|
KnownZero = ~1U; // All bits but the low one are known to be zero.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// getConstraintType - Given a constraint, return the type of
|
|
/// constraint it is for this target.
|
|
PPCTargetLowering::ConstraintType
|
|
PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
default: break;
|
|
case 'b':
|
|
case 'r':
|
|
case 'f':
|
|
case 'v':
|
|
case 'y':
|
|
return C_RegisterClass;
|
|
case 'Z':
|
|
// FIXME: While Z does indicate a memory constraint, it specifically
|
|
// indicates an r+r address (used in conjunction with the 'y' modifier
|
|
// in the replacement string). Currently, we're forcing the base
|
|
// register to be r0 in the asm printer (which is interpreted as zero)
|
|
// and forming the complete address in the second register. This is
|
|
// suboptimal.
|
|
return C_Memory;
|
|
}
|
|
} else if (Constraint == "wc") { // individual CR bits.
|
|
return C_RegisterClass;
|
|
} else if (Constraint == "wa" || Constraint == "wd" ||
|
|
Constraint == "wf" || Constraint == "ws") {
|
|
return C_RegisterClass; // VSX registers.
|
|
}
|
|
return TargetLowering::getConstraintType(Constraint);
|
|
}
|
|
|
|
/// Examine constraint type and operand type and determine a weight value.
|
|
/// This object must already have been set up with the operand type
|
|
/// and the current alternative constraint selected.
|
|
TargetLowering::ConstraintWeight
|
|
PPCTargetLowering::getSingleConstraintMatchWeight(
|
|
AsmOperandInfo &info, const char *constraint) const {
|
|
ConstraintWeight weight = CW_Invalid;
|
|
Value *CallOperandVal = info.CallOperandVal;
|
|
// If we don't have a value, we can't do a match,
|
|
// but allow it at the lowest weight.
|
|
if (!CallOperandVal)
|
|
return CW_Default;
|
|
Type *type = CallOperandVal->getType();
|
|
|
|
// Look at the constraint type.
|
|
if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
|
|
return CW_Register; // an individual CR bit.
|
|
else if ((StringRef(constraint) == "wa" ||
|
|
StringRef(constraint) == "wd" ||
|
|
StringRef(constraint) == "wf") &&
|
|
type->isVectorTy())
|
|
return CW_Register;
|
|
else if (StringRef(constraint) == "ws" && type->isDoubleTy())
|
|
return CW_Register;
|
|
|
|
switch (*constraint) {
|
|
default:
|
|
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
|
|
break;
|
|
case 'b':
|
|
if (type->isIntegerTy())
|
|
weight = CW_Register;
|
|
break;
|
|
case 'f':
|
|
if (type->isFloatTy())
|
|
weight = CW_Register;
|
|
break;
|
|
case 'd':
|
|
if (type->isDoubleTy())
|
|
weight = CW_Register;
|
|
break;
|
|
case 'v':
|
|
if (type->isVectorTy())
|
|
weight = CW_Register;
|
|
break;
|
|
case 'y':
|
|
weight = CW_Register;
|
|
break;
|
|
case 'Z':
|
|
weight = CW_Memory;
|
|
break;
|
|
}
|
|
return weight;
|
|
}
|
|
|
|
std::pair<unsigned, const TargetRegisterClass*>
|
|
PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
|
|
MVT VT) const {
|
|
if (Constraint.size() == 1) {
|
|
// GCC RS6000 Constraint Letters
|
|
switch (Constraint[0]) {
|
|
case 'b': // R1-R31
|
|
if (VT == MVT::i64 && Subtarget.isPPC64())
|
|
return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
|
|
return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
|
|
case 'r': // R0-R31
|
|
if (VT == MVT::i64 && Subtarget.isPPC64())
|
|
return std::make_pair(0U, &PPC::G8RCRegClass);
|
|
return std::make_pair(0U, &PPC::GPRCRegClass);
|
|
case 'f':
|
|
if (VT == MVT::f32 || VT == MVT::i32)
|
|
return std::make_pair(0U, &PPC::F4RCRegClass);
|
|
if (VT == MVT::f64 || VT == MVT::i64)
|
|
return std::make_pair(0U, &PPC::F8RCRegClass);
|
|
break;
|
|
case 'v':
|
|
return std::make_pair(0U, &PPC::VRRCRegClass);
|
|
case 'y': // crrc
|
|
return std::make_pair(0U, &PPC::CRRCRegClass);
|
|
}
|
|
} else if (Constraint == "wc") { // an individual CR bit.
|
|
return std::make_pair(0U, &PPC::CRBITRCRegClass);
|
|
} else if (Constraint == "wa" || Constraint == "wd" ||
|
|
Constraint == "wf") {
|
|
return std::make_pair(0U, &PPC::VSRCRegClass);
|
|
} else if (Constraint == "ws") {
|
|
return std::make_pair(0U, &PPC::VSFRCRegClass);
|
|
}
|
|
|
|
std::pair<unsigned, const TargetRegisterClass*> R =
|
|
TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
|
|
|
|
// r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
|
|
// (which we call X[0-9]+). If a 64-bit value has been requested, and a
|
|
// 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
|
|
// register.
|
|
// FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
|
|
// the AsmName field from *RegisterInfo.td, then this would not be necessary.
|
|
if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
|
|
PPC::GPRCRegClass.contains(R.first)) {
|
|
const TargetRegisterInfo *TRI =
|
|
getTargetMachine().getSubtargetImpl()->getRegisterInfo();
|
|
return std::make_pair(TRI->getMatchingSuperReg(R.first,
|
|
PPC::sub_32, &PPC::G8RCRegClass),
|
|
&PPC::G8RCRegClass);
|
|
}
|
|
|
|
return R;
|
|
}
|
|
|
|
|
|
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
|
|
/// vector. If it is invalid, don't add anything to Ops.
|
|
void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
|
|
std::string &Constraint,
|
|
std::vector<SDValue>&Ops,
|
|
SelectionDAG &DAG) const {
|
|
SDValue Result;
|
|
|
|
// Only support length 1 constraints.
|
|
if (Constraint.length() > 1) return;
|
|
|
|
char Letter = Constraint[0];
|
|
switch (Letter) {
|
|
default: break;
|
|
case 'I':
|
|
case 'J':
|
|
case 'K':
|
|
case 'L':
|
|
case 'M':
|
|
case 'N':
|
|
case 'O':
|
|
case 'P': {
|
|
ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
|
|
if (!CST) return; // Must be an immediate to match.
|
|
unsigned Value = CST->getZExtValue();
|
|
switch (Letter) {
|
|
default: llvm_unreachable("Unknown constraint letter!");
|
|
case 'I': // "I" is a signed 16-bit constant.
|
|
if ((short)Value == (int)Value)
|
|
Result = DAG.getTargetConstant(Value, Op.getValueType());
|
|
break;
|
|
case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
|
|
case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
|
|
if ((short)Value == 0)
|
|
Result = DAG.getTargetConstant(Value, Op.getValueType());
|
|
break;
|
|
case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
|
|
if ((Value >> 16) == 0)
|
|
Result = DAG.getTargetConstant(Value, Op.getValueType());
|
|
break;
|
|
case 'M': // "M" is a constant that is greater than 31.
|
|
if (Value > 31)
|
|
Result = DAG.getTargetConstant(Value, Op.getValueType());
|
|
break;
|
|
case 'N': // "N" is a positive constant that is an exact power of two.
|
|
if ((int)Value > 0 && isPowerOf2_32(Value))
|
|
Result = DAG.getTargetConstant(Value, Op.getValueType());
|
|
break;
|
|
case 'O': // "O" is the constant zero.
|
|
if (Value == 0)
|
|
Result = DAG.getTargetConstant(Value, Op.getValueType());
|
|
break;
|
|
case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
|
|
if ((short)-Value == (int)-Value)
|
|
Result = DAG.getTargetConstant(Value, Op.getValueType());
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (Result.getNode()) {
|
|
Ops.push_back(Result);
|
|
return;
|
|
}
|
|
|
|
// Handle standard constraint letters.
|
|
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
|
|
}
|
|
|
|
// isLegalAddressingMode - Return true if the addressing mode represented
|
|
// by AM is legal for this target, for a load/store of the specified type.
|
|
bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
|
|
Type *Ty) const {
|
|
// FIXME: PPC does not allow r+i addressing modes for vectors!
|
|
|
|
// PPC allows a sign-extended 16-bit immediate field.
|
|
if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
|
|
return false;
|
|
|
|
// No global is ever allowed as a base.
|
|
if (AM.BaseGV)
|
|
return false;
|
|
|
|
// PPC only support r+r,
|
|
switch (AM.Scale) {
|
|
case 0: // "r+i" or just "i", depending on HasBaseReg.
|
|
break;
|
|
case 1:
|
|
if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
|
|
return false;
|
|
// Otherwise we have r+r or r+i.
|
|
break;
|
|
case 2:
|
|
if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
|
|
return false;
|
|
// Allow 2*r as r+r.
|
|
break;
|
|
default:
|
|
// No other scales are supported.
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
MFI->setReturnAddressIsTaken(true);
|
|
|
|
if (verifyReturnAddressArgumentIsConstant(Op, DAG))
|
|
return SDValue();
|
|
|
|
SDLoc dl(Op);
|
|
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
|
|
// Make sure the function does not optimize away the store of the RA to
|
|
// the stack.
|
|
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
|
|
FuncInfo->setLRStoreRequired();
|
|
bool isPPC64 = Subtarget.isPPC64();
|
|
bool isDarwinABI = Subtarget.isDarwinABI();
|
|
|
|
if (Depth > 0) {
|
|
SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
|
|
SDValue Offset =
|
|
|
|
DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
|
|
isPPC64? MVT::i64 : MVT::i32);
|
|
return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
|
|
DAG.getNode(ISD::ADD, dl, getPointerTy(),
|
|
FrameAddr, Offset),
|
|
MachinePointerInfo(), false, false, false, 0);
|
|
}
|
|
|
|
// Just load the return address off the stack.
|
|
SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
|
|
return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
|
|
RetAddrFI, MachinePointerInfo(), false, false, false, 0);
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc dl(Op);
|
|
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
bool isPPC64 = PtrVT == MVT::i64;
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
MFI->setFrameAddressIsTaken(true);
|
|
|
|
// Naked functions never have a frame pointer, and so we use r1. For all
|
|
// other functions, this decision must be delayed until during PEI.
|
|
unsigned FrameReg;
|
|
if (MF.getFunction()->getAttributes().hasAttribute(
|
|
AttributeSet::FunctionIndex, Attribute::Naked))
|
|
FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
|
|
else
|
|
FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
|
|
|
|
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
|
|
PtrVT);
|
|
while (Depth--)
|
|
FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
|
|
FrameAddr, MachinePointerInfo(), false, false,
|
|
false, 0);
|
|
return FrameAddr;
|
|
}
|
|
|
|
// FIXME? Maybe this could be a TableGen attribute on some registers and
|
|
// this table could be generated automatically from RegInfo.
|
|
unsigned PPCTargetLowering::getRegisterByName(const char* RegName,
|
|
EVT VT) const {
|
|
bool isPPC64 = Subtarget.isPPC64();
|
|
bool isDarwinABI = Subtarget.isDarwinABI();
|
|
|
|
if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
|
|
(!isPPC64 && VT != MVT::i32))
|
|
report_fatal_error("Invalid register global variable type");
|
|
|
|
bool is64Bit = isPPC64 && VT == MVT::i64;
|
|
unsigned Reg = StringSwitch<unsigned>(RegName)
|
|
.Case("r1", is64Bit ? PPC::X1 : PPC::R1)
|
|
.Case("r2", isDarwinABI ? 0 : (is64Bit ? PPC::X2 : PPC::R2))
|
|
.Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
|
|
(is64Bit ? PPC::X13 : PPC::R13))
|
|
.Default(0);
|
|
|
|
if (Reg)
|
|
return Reg;
|
|
report_fatal_error("Invalid register name global variable");
|
|
}
|
|
|
|
bool
|
|
PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
|
|
// The PowerPC target isn't yet aware of offsets.
|
|
return false;
|
|
}
|
|
|
|
bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
|
|
const CallInst &I,
|
|
unsigned Intrinsic) const {
|
|
|
|
switch (Intrinsic) {
|
|
case Intrinsic::ppc_altivec_lvx:
|
|
case Intrinsic::ppc_altivec_lvxl:
|
|
case Intrinsic::ppc_altivec_lvebx:
|
|
case Intrinsic::ppc_altivec_lvehx:
|
|
case Intrinsic::ppc_altivec_lvewx:
|
|
case Intrinsic::ppc_vsx_lxvd2x:
|
|
case Intrinsic::ppc_vsx_lxvw4x: {
|
|
EVT VT;
|
|
switch (Intrinsic) {
|
|
case Intrinsic::ppc_altivec_lvebx:
|
|
VT = MVT::i8;
|
|
break;
|
|
case Intrinsic::ppc_altivec_lvehx:
|
|
VT = MVT::i16;
|
|
break;
|
|
case Intrinsic::ppc_altivec_lvewx:
|
|
VT = MVT::i32;
|
|
break;
|
|
case Intrinsic::ppc_vsx_lxvd2x:
|
|
VT = MVT::v2f64;
|
|
break;
|
|
default:
|
|
VT = MVT::v4i32;
|
|
break;
|
|
}
|
|
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = VT;
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = -VT.getStoreSize()+1;
|
|
Info.size = 2*VT.getStoreSize()-1;
|
|
Info.align = 1;
|
|
Info.vol = false;
|
|
Info.readMem = true;
|
|
Info.writeMem = false;
|
|
return true;
|
|
}
|
|
case Intrinsic::ppc_altivec_stvx:
|
|
case Intrinsic::ppc_altivec_stvxl:
|
|
case Intrinsic::ppc_altivec_stvebx:
|
|
case Intrinsic::ppc_altivec_stvehx:
|
|
case Intrinsic::ppc_altivec_stvewx:
|
|
case Intrinsic::ppc_vsx_stxvd2x:
|
|
case Intrinsic::ppc_vsx_stxvw4x: {
|
|
EVT VT;
|
|
switch (Intrinsic) {
|
|
case Intrinsic::ppc_altivec_stvebx:
|
|
VT = MVT::i8;
|
|
break;
|
|
case Intrinsic::ppc_altivec_stvehx:
|
|
VT = MVT::i16;
|
|
break;
|
|
case Intrinsic::ppc_altivec_stvewx:
|
|
VT = MVT::i32;
|
|
break;
|
|
case Intrinsic::ppc_vsx_stxvd2x:
|
|
VT = MVT::v2f64;
|
|
break;
|
|
default:
|
|
VT = MVT::v4i32;
|
|
break;
|
|
}
|
|
|
|
Info.opc = ISD::INTRINSIC_VOID;
|
|
Info.memVT = VT;
|
|
Info.ptrVal = I.getArgOperand(1);
|
|
Info.offset = -VT.getStoreSize()+1;
|
|
Info.size = 2*VT.getStoreSize()-1;
|
|
Info.align = 1;
|
|
Info.vol = false;
|
|
Info.readMem = false;
|
|
Info.writeMem = true;
|
|
return true;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// getOptimalMemOpType - Returns the target specific optimal type for load
|
|
/// and store operations as a result of memset, memcpy, and memmove
|
|
/// lowering. If DstAlign is zero that means it's safe to destination
|
|
/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
|
|
/// means there isn't a need to check it against alignment requirement,
|
|
/// probably because the source does not need to be loaded. If 'IsMemset' is
|
|
/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
|
|
/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
|
|
/// source is constant so it does not need to be loaded.
|
|
/// It returns EVT::Other if the type should be determined using generic
|
|
/// target-independent logic.
|
|
EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
|
|
unsigned DstAlign, unsigned SrcAlign,
|
|
bool IsMemset, bool ZeroMemset,
|
|
bool MemcpyStrSrc,
|
|
MachineFunction &MF) const {
|
|
if (Subtarget.isPPC64()) {
|
|
return MVT::i64;
|
|
} else {
|
|
return MVT::i32;
|
|
}
|
|
}
|
|
|
|
/// \brief Returns true if it is beneficial to convert a load of a constant
|
|
/// to just the constant itself.
|
|
bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
|
|
Type *Ty) const {
|
|
assert(Ty->isIntegerTy());
|
|
|
|
unsigned BitSize = Ty->getPrimitiveSizeInBits();
|
|
if (BitSize == 0 || BitSize > 64)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
|
|
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
|
|
return false;
|
|
unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
|
|
unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
|
|
return NumBits1 == 64 && NumBits2 == 32;
|
|
}
|
|
|
|
bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
|
|
if (!VT1.isInteger() || !VT2.isInteger())
|
|
return false;
|
|
unsigned NumBits1 = VT1.getSizeInBits();
|
|
unsigned NumBits2 = VT2.getSizeInBits();
|
|
return NumBits1 == 64 && NumBits2 == 32;
|
|
}
|
|
|
|
bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
|
|
return isInt<16>(Imm) || isUInt<16>(Imm);
|
|
}
|
|
|
|
bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
|
|
return isInt<16>(Imm) || isUInt<16>(Imm);
|
|
}
|
|
|
|
bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
|
|
unsigned,
|
|
unsigned,
|
|
bool *Fast) const {
|
|
if (DisablePPCUnaligned)
|
|
return false;
|
|
|
|
// PowerPC supports unaligned memory access for simple non-vector types.
|
|
// Although accessing unaligned addresses is not as efficient as accessing
|
|
// aligned addresses, it is generally more efficient than manual expansion,
|
|
// and generally only traps for software emulation when crossing page
|
|
// boundaries.
|
|
|
|
if (!VT.isSimple())
|
|
return false;
|
|
|
|
if (VT.getSimpleVT().isVector()) {
|
|
if (Subtarget.hasVSX()) {
|
|
if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
|
|
VT != MVT::v4f32 && VT != MVT::v4i32)
|
|
return false;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (VT == MVT::ppcf128)
|
|
return false;
|
|
|
|
if (Fast)
|
|
*Fast = true;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
|
|
VT = VT.getScalarType();
|
|
|
|
if (!VT.isSimple())
|
|
return false;
|
|
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
|
|
EVT VT , unsigned DefinedValues) const {
|
|
if (VT == MVT::v2i64)
|
|
return false;
|
|
|
|
return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
|
|
}
|
|
|
|
Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
|
|
if (DisableILPPref || Subtarget.enableMachineScheduler())
|
|
return TargetLowering::getSchedulingPreference(N);
|
|
|
|
return Sched::ILP;
|
|
}
|
|
|
|
// Create a fast isel object.
|
|
FastISel *
|
|
PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
|
|
const TargetLibraryInfo *LibInfo) const {
|
|
return PPC::createFastISel(FuncInfo, LibInfo);
|
|
}
|