llvm-project/clang-tools-extra/clangd/CodeComplete.cpp

706 lines
26 KiB
C++

//===--- CodeComplete.cpp ---------------------------------------*- C++-*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===---------------------------------------------------------------------===//
//
// AST-based completions are provided using the completion hooks in Sema.
//
// Signature help works in a similar way as code completion, but it is simpler
// as there are typically fewer candidates.
//
//===---------------------------------------------------------------------===//
#include "CodeComplete.h"
#include "Compiler.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/FrontendActions.h"
#include "clang/Sema/CodeCompleteConsumer.h"
#include "clang/Sema/Sema.h"
#include <queue>
namespace clang {
namespace clangd {
namespace {
CompletionItemKind getKindOfDecl(CXCursorKind CursorKind) {
switch (CursorKind) {
case CXCursor_MacroInstantiation:
case CXCursor_MacroDefinition:
return CompletionItemKind::Text;
case CXCursor_CXXMethod:
return CompletionItemKind::Method;
case CXCursor_FunctionDecl:
case CXCursor_FunctionTemplate:
return CompletionItemKind::Function;
case CXCursor_Constructor:
case CXCursor_Destructor:
return CompletionItemKind::Constructor;
case CXCursor_FieldDecl:
return CompletionItemKind::Field;
case CXCursor_VarDecl:
case CXCursor_ParmDecl:
return CompletionItemKind::Variable;
case CXCursor_ClassDecl:
case CXCursor_StructDecl:
case CXCursor_UnionDecl:
case CXCursor_ClassTemplate:
case CXCursor_ClassTemplatePartialSpecialization:
return CompletionItemKind::Class;
case CXCursor_Namespace:
case CXCursor_NamespaceAlias:
case CXCursor_NamespaceRef:
return CompletionItemKind::Module;
case CXCursor_EnumConstantDecl:
return CompletionItemKind::Value;
case CXCursor_EnumDecl:
return CompletionItemKind::Enum;
case CXCursor_TypeAliasDecl:
case CXCursor_TypeAliasTemplateDecl:
case CXCursor_TypedefDecl:
case CXCursor_MemberRef:
case CXCursor_TypeRef:
return CompletionItemKind::Reference;
default:
return CompletionItemKind::Missing;
}
}
CompletionItemKind getKind(CodeCompletionResult::ResultKind ResKind,
CXCursorKind CursorKind) {
switch (ResKind) {
case CodeCompletionResult::RK_Declaration:
return getKindOfDecl(CursorKind);
case CodeCompletionResult::RK_Keyword:
return CompletionItemKind::Keyword;
case CodeCompletionResult::RK_Macro:
return CompletionItemKind::Text; // unfortunately, there's no 'Macro'
// completion items in LSP.
case CodeCompletionResult::RK_Pattern:
return CompletionItemKind::Snippet;
}
llvm_unreachable("Unhandled CodeCompletionResult::ResultKind.");
}
std::string escapeSnippet(const llvm::StringRef Text) {
std::string Result;
Result.reserve(Text.size()); // Assume '$', '}' and '\\' are rare.
for (const auto Character : Text) {
if (Character == '$' || Character == '}' || Character == '\\')
Result.push_back('\\');
Result.push_back(Character);
}
return Result;
}
std::string getDocumentation(const CodeCompletionString &CCS) {
// Things like __attribute__((nonnull(1,3))) and [[noreturn]]. Present this
// information in the documentation field.
std::string Result;
const unsigned AnnotationCount = CCS.getAnnotationCount();
if (AnnotationCount > 0) {
Result += "Annotation";
if (AnnotationCount == 1) {
Result += ": ";
} else /* AnnotationCount > 1 */ {
Result += "s: ";
}
for (unsigned I = 0; I < AnnotationCount; ++I) {
Result += CCS.getAnnotation(I);
Result.push_back(I == AnnotationCount - 1 ? '\n' : ' ');
}
}
// Add brief documentation (if there is any).
if (CCS.getBriefComment() != nullptr) {
if (!Result.empty()) {
// This means we previously added annotations. Add an extra newline
// character to make the annotations stand out.
Result.push_back('\n');
}
Result += CCS.getBriefComment();
}
return Result;
}
/// Get the optional chunk as a string. This function is possibly recursive.
///
/// The parameter info for each parameter is appended to the Parameters.
std::string
getOptionalParameters(const CodeCompletionString &CCS,
std::vector<ParameterInformation> &Parameters) {
std::string Result;
for (const auto &Chunk : CCS) {
switch (Chunk.Kind) {
case CodeCompletionString::CK_Optional:
assert(Chunk.Optional &&
"Expected the optional code completion string to be non-null.");
Result += getOptionalParameters(*Chunk.Optional, Parameters);
break;
case CodeCompletionString::CK_VerticalSpace:
break;
case CodeCompletionString::CK_Placeholder:
// A string that acts as a placeholder for, e.g., a function call
// argument.
// Intentional fallthrough here.
case CodeCompletionString::CK_CurrentParameter: {
// A piece of text that describes the parameter that corresponds to
// the code-completion location within a function call, message send,
// macro invocation, etc.
Result += Chunk.Text;
ParameterInformation Info;
Info.label = Chunk.Text;
Parameters.push_back(std::move(Info));
break;
}
default:
Result += Chunk.Text;
break;
}
}
return Result;
}
/// A scored code completion result.
/// It may be promoted to a CompletionItem if it's among the top-ranked results.
struct CompletionCandidate {
CompletionCandidate(CodeCompletionResult &Result)
: Result(&Result), Score(score(Result)) {}
CodeCompletionResult *Result;
float Score; // 0 to 1, higher is better.
// Comparison reflects rank: better candidates are smaller.
bool operator<(const CompletionCandidate &C) const {
if (Score != C.Score)
return Score > C.Score;
return *Result < *C.Result;
}
// Returns a string that sorts in the same order as operator<, for LSP.
// Conceptually, this is [-Score, Name]. We convert -Score to an integer, and
// hex-encode it for readability. Example: [0.5, "foo"] -> "41000000foo"
std::string sortText() const {
std::string S, NameStorage;
llvm::raw_string_ostream OS(S);
write_hex(OS, encodeFloat(-Score), llvm::HexPrintStyle::Lower,
/*Width=*/2 * sizeof(Score));
OS << Result->getOrderedName(NameStorage);
return OS.str();
}
private:
static float score(const CodeCompletionResult &Result) {
// Priority 80 is a really bad score.
float Score = 1 - std::min<float>(80, Result.Priority) / 80;
switch (static_cast<CXAvailabilityKind>(Result.Availability)) {
case CXAvailability_Available:
// No penalty.
break;
case CXAvailability_Deprecated:
Score *= 0.1f;
break;
case CXAvailability_NotAccessible:
case CXAvailability_NotAvailable:
Score = 0;
break;
}
return Score;
}
// Produces an integer that sorts in the same order as F.
// That is: a < b <==> encodeFloat(a) < encodeFloat(b).
static uint32_t encodeFloat(float F) {
static_assert(std::numeric_limits<float>::is_iec559, "");
static_assert(sizeof(float) == sizeof(uint32_t), "");
constexpr uint32_t TopBit = ~(~uint32_t{0} >> 1);
// Get the bits of the float. Endianness is the same as for integers.
uint32_t U;
memcpy(&U, &F, sizeof(float));
// IEEE 754 floats compare like sign-magnitude integers.
if (U & TopBit) // Negative float.
return 0 - U; // Map onto the low half of integers, order reversed.
return U + TopBit; // Positive floats map onto the high half of integers.
}
};
class CompletionItemsCollector : public CodeCompleteConsumer {
public:
CompletionItemsCollector(const CodeCompleteOptions &CodeCompleteOpts,
CompletionList &Items)
: CodeCompleteConsumer(CodeCompleteOpts.getClangCompleteOpts(),
/*OutputIsBinary=*/false),
ClangdOpts(CodeCompleteOpts), Items(Items),
Allocator(std::make_shared<clang::GlobalCodeCompletionAllocator>()),
CCTUInfo(Allocator) {}
void ProcessCodeCompleteResults(Sema &S, CodeCompletionContext Context,
CodeCompletionResult *Results,
unsigned NumResults) override final {
StringRef Filter = S.getPreprocessor().getCodeCompletionFilter();
std::priority_queue<CompletionCandidate> Candidates;
for (unsigned I = 0; I < NumResults; ++I) {
auto &Result = Results[I];
if (!ClangdOpts.IncludeIneligibleResults &&
(Result.Availability == CXAvailability_NotAvailable ||
Result.Availability == CXAvailability_NotAccessible))
continue;
if (!Filter.empty() && !fuzzyMatch(S, Context, Filter, Result))
continue;
Candidates.emplace(Result);
if (ClangdOpts.Limit && Candidates.size() > ClangdOpts.Limit) {
Candidates.pop();
Items.isIncomplete = true;
}
}
while (!Candidates.empty()) {
auto &Candidate = Candidates.top();
const auto *CCS = Candidate.Result->CreateCodeCompletionString(
S, Context, *Allocator, CCTUInfo,
CodeCompleteOpts.IncludeBriefComments);
assert(CCS && "Expected the CodeCompletionString to be non-null");
Items.items.push_back(ProcessCodeCompleteResult(Candidate, *CCS));
Candidates.pop();
}
std::reverse(Items.items.begin(), Items.items.end());
}
GlobalCodeCompletionAllocator &getAllocator() override { return *Allocator; }
CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return CCTUInfo; }
private:
bool fuzzyMatch(Sema &S, const CodeCompletionContext &CCCtx, StringRef Filter,
CodeCompletionResult Result) {
switch (Result.Kind) {
case CodeCompletionResult::RK_Declaration:
if (auto *ID = Result.Declaration->getIdentifier())
return fuzzyMatch(Filter, ID->getName());
break;
case CodeCompletionResult::RK_Keyword:
return fuzzyMatch(Filter, Result.Keyword);
case CodeCompletionResult::RK_Macro:
return fuzzyMatch(Filter, Result.Macro->getName());
case CodeCompletionResult::RK_Pattern:
return fuzzyMatch(Filter, Result.Pattern->getTypedText());
}
auto *CCS = Result.CreateCodeCompletionString(
S, CCCtx, *Allocator, CCTUInfo, /*IncludeBriefComments=*/false);
return fuzzyMatch(Filter, CCS->getTypedText());
}
// Checks whether Target matches the Filter.
// Currently just requires a case-insensitive subsequence match.
// FIXME: make stricter and word-based: 'unique_ptr' should not match 'que'.
// FIXME: return a score to be incorporated into ranking.
static bool fuzzyMatch(StringRef Filter, StringRef Target) {
size_t TPos = 0;
for (char C : Filter) {
TPos = Target.find_lower(C, TPos);
if (TPos == StringRef::npos)
return false;
}
return true;
}
CompletionItem
ProcessCodeCompleteResult(const CompletionCandidate &Candidate,
const CodeCompletionString &CCS) const {
// Adjust this to InsertTextFormat::Snippet iff we encounter a
// CK_Placeholder chunk in SnippetCompletionItemsCollector.
CompletionItem Item;
Item.insertTextFormat = InsertTextFormat::PlainText;
Item.documentation = getDocumentation(CCS);
Item.sortText = Candidate.sortText();
// Fill in the label, detail, insertText and filterText fields of the
// CompletionItem.
ProcessChunks(CCS, Item);
// Fill in the kind field of the CompletionItem.
Item.kind = getKind(Candidate.Result->Kind, Candidate.Result->CursorKind);
return Item;
}
virtual void ProcessChunks(const CodeCompletionString &CCS,
CompletionItem &Item) const = 0;
CodeCompleteOptions ClangdOpts;
CompletionList &Items;
std::shared_ptr<clang::GlobalCodeCompletionAllocator> Allocator;
CodeCompletionTUInfo CCTUInfo;
}; // CompletionItemsCollector
bool isInformativeQualifierChunk(CodeCompletionString::Chunk const &Chunk) {
return Chunk.Kind == CodeCompletionString::CK_Informative &&
StringRef(Chunk.Text).endswith("::");
}
class PlainTextCompletionItemsCollector final
: public CompletionItemsCollector {
public:
PlainTextCompletionItemsCollector(const CodeCompleteOptions &CodeCompleteOpts,
CompletionList &Items)
: CompletionItemsCollector(CodeCompleteOpts, Items) {}
private:
void ProcessChunks(const CodeCompletionString &CCS,
CompletionItem &Item) const override {
for (const auto &Chunk : CCS) {
// Informative qualifier chunks only clutter completion results, skip
// them.
if (isInformativeQualifierChunk(Chunk))
continue;
switch (Chunk.Kind) {
case CodeCompletionString::CK_TypedText:
// There's always exactly one CK_TypedText chunk.
Item.insertText = Item.filterText = Chunk.Text;
Item.label += Chunk.Text;
break;
case CodeCompletionString::CK_ResultType:
assert(Item.detail.empty() && "Unexpected extraneous CK_ResultType");
Item.detail = Chunk.Text;
break;
case CodeCompletionString::CK_Optional:
break;
default:
Item.label += Chunk.Text;
break;
}
}
}
}; // PlainTextCompletionItemsCollector
class SnippetCompletionItemsCollector final : public CompletionItemsCollector {
public:
SnippetCompletionItemsCollector(const CodeCompleteOptions &CodeCompleteOpts,
CompletionList &Items)
: CompletionItemsCollector(CodeCompleteOpts, Items) {}
private:
void ProcessChunks(const CodeCompletionString &CCS,
CompletionItem &Item) const override {
unsigned ArgCount = 0;
for (const auto &Chunk : CCS) {
// Informative qualifier chunks only clutter completion results, skip
// them.
if (isInformativeQualifierChunk(Chunk))
continue;
switch (Chunk.Kind) {
case CodeCompletionString::CK_TypedText:
// The piece of text that the user is expected to type to match
// the code-completion string, typically a keyword or the name of
// a declarator or macro.
Item.filterText = Chunk.Text;
LLVM_FALLTHROUGH;
case CodeCompletionString::CK_Text:
// A piece of text that should be placed in the buffer,
// e.g., parentheses or a comma in a function call.
Item.label += Chunk.Text;
Item.insertText += Chunk.Text;
break;
case CodeCompletionString::CK_Optional:
// A code completion string that is entirely optional.
// For example, an optional code completion string that
// describes the default arguments in a function call.
// FIXME: Maybe add an option to allow presenting the optional chunks?
break;
case CodeCompletionString::CK_Placeholder:
// A string that acts as a placeholder for, e.g., a function call
// argument.
++ArgCount;
Item.insertText += "${" + std::to_string(ArgCount) + ':' +
escapeSnippet(Chunk.Text) + '}';
Item.label += Chunk.Text;
Item.insertTextFormat = InsertTextFormat::Snippet;
break;
case CodeCompletionString::CK_Informative:
// A piece of text that describes something about the result
// but should not be inserted into the buffer.
// For example, the word "const" for a const method, or the name of
// the base class for methods that are part of the base class.
Item.label += Chunk.Text;
// Don't put the informative chunks in the insertText.
break;
case CodeCompletionString::CK_ResultType:
// A piece of text that describes the type of an entity or,
// for functions and methods, the return type.
assert(Item.detail.empty() && "Unexpected extraneous CK_ResultType");
Item.detail = Chunk.Text;
break;
case CodeCompletionString::CK_CurrentParameter:
// A piece of text that describes the parameter that corresponds to
// the code-completion location within a function call, message send,
// macro invocation, etc.
//
// This should never be present while collecting completion items,
// only while collecting overload candidates.
llvm_unreachable("Unexpected CK_CurrentParameter while collecting "
"CompletionItems");
break;
case CodeCompletionString::CK_LeftParen:
// A left parenthesis ('(').
case CodeCompletionString::CK_RightParen:
// A right parenthesis (')').
case CodeCompletionString::CK_LeftBracket:
// A left bracket ('[').
case CodeCompletionString::CK_RightBracket:
// A right bracket (']').
case CodeCompletionString::CK_LeftBrace:
// A left brace ('{').
case CodeCompletionString::CK_RightBrace:
// A right brace ('}').
case CodeCompletionString::CK_LeftAngle:
// A left angle bracket ('<').
case CodeCompletionString::CK_RightAngle:
// A right angle bracket ('>').
case CodeCompletionString::CK_Comma:
// A comma separator (',').
case CodeCompletionString::CK_Colon:
// A colon (':').
case CodeCompletionString::CK_SemiColon:
// A semicolon (';').
case CodeCompletionString::CK_Equal:
// An '=' sign.
case CodeCompletionString::CK_HorizontalSpace:
// Horizontal whitespace (' ').
Item.insertText += Chunk.Text;
Item.label += Chunk.Text;
break;
case CodeCompletionString::CK_VerticalSpace:
// Vertical whitespace ('\n' or '\r\n', depending on the
// platform).
Item.insertText += Chunk.Text;
// Don't even add a space to the label.
break;
}
}
}
}; // SnippetCompletionItemsCollector
class SignatureHelpCollector final : public CodeCompleteConsumer {
public:
SignatureHelpCollector(const clang::CodeCompleteOptions &CodeCompleteOpts,
SignatureHelp &SigHelp)
: CodeCompleteConsumer(CodeCompleteOpts, /*OutputIsBinary=*/false),
SigHelp(SigHelp),
Allocator(std::make_shared<clang::GlobalCodeCompletionAllocator>()),
CCTUInfo(Allocator) {}
void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg,
OverloadCandidate *Candidates,
unsigned NumCandidates) override {
SigHelp.signatures.reserve(NumCandidates);
// FIXME(rwols): How can we determine the "active overload candidate"?
// Right now the overloaded candidates seem to be provided in a "best fit"
// order, so I'm not too worried about this.
SigHelp.activeSignature = 0;
assert(CurrentArg <= (unsigned)std::numeric_limits<int>::max() &&
"too many arguments");
SigHelp.activeParameter = static_cast<int>(CurrentArg);
for (unsigned I = 0; I < NumCandidates; ++I) {
const auto &Candidate = Candidates[I];
const auto *CCS = Candidate.CreateSignatureString(
CurrentArg, S, *Allocator, CCTUInfo, true);
assert(CCS && "Expected the CodeCompletionString to be non-null");
SigHelp.signatures.push_back(ProcessOverloadCandidate(Candidate, *CCS));
}
}
GlobalCodeCompletionAllocator &getAllocator() override { return *Allocator; }
CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return CCTUInfo; }
private:
SignatureInformation
ProcessOverloadCandidate(const OverloadCandidate &Candidate,
const CodeCompletionString &CCS) const {
SignatureInformation Result;
const char *ReturnType = nullptr;
Result.documentation = getDocumentation(CCS);
for (const auto &Chunk : CCS) {
switch (Chunk.Kind) {
case CodeCompletionString::CK_ResultType:
// A piece of text that describes the type of an entity or,
// for functions and methods, the return type.
assert(!ReturnType && "Unexpected CK_ResultType");
ReturnType = Chunk.Text;
break;
case CodeCompletionString::CK_Placeholder:
// A string that acts as a placeholder for, e.g., a function call
// argument.
// Intentional fallthrough here.
case CodeCompletionString::CK_CurrentParameter: {
// A piece of text that describes the parameter that corresponds to
// the code-completion location within a function call, message send,
// macro invocation, etc.
Result.label += Chunk.Text;
ParameterInformation Info;
Info.label = Chunk.Text;
Result.parameters.push_back(std::move(Info));
break;
}
case CodeCompletionString::CK_Optional: {
// The rest of the parameters are defaulted/optional.
assert(Chunk.Optional &&
"Expected the optional code completion string to be non-null.");
Result.label +=
getOptionalParameters(*Chunk.Optional, Result.parameters);
break;
}
case CodeCompletionString::CK_VerticalSpace:
break;
default:
Result.label += Chunk.Text;
break;
}
}
if (ReturnType) {
Result.label += " -> ";
Result.label += ReturnType;
}
return Result;
}
SignatureHelp &SigHelp;
std::shared_ptr<clang::GlobalCodeCompletionAllocator> Allocator;
CodeCompletionTUInfo CCTUInfo;
}; // SignatureHelpCollector
bool invokeCodeComplete(const Context &Ctx,
std::unique_ptr<CodeCompleteConsumer> Consumer,
const clang::CodeCompleteOptions &Options,
PathRef FileName,
const tooling::CompileCommand &Command,
PrecompiledPreamble const *Preamble, StringRef Contents,
Position Pos, IntrusiveRefCntPtr<vfs::FileSystem> VFS,
std::shared_ptr<PCHContainerOperations> PCHs) {
std::vector<const char *> ArgStrs;
for (const auto &S : Command.CommandLine)
ArgStrs.push_back(S.c_str());
VFS->setCurrentWorkingDirectory(Command.Directory);
IgnoreDiagnostics DummyDiagsConsumer;
auto CI = createInvocationFromCommandLine(
ArgStrs,
CompilerInstance::createDiagnostics(new DiagnosticOptions,
&DummyDiagsConsumer, false),
VFS);
assert(CI && "Couldn't create CompilerInvocation");
std::unique_ptr<llvm::MemoryBuffer> ContentsBuffer =
llvm::MemoryBuffer::getMemBufferCopy(Contents, FileName);
// Attempt to reuse the PCH from precompiled preamble, if it was built.
if (Preamble) {
auto Bounds =
ComputePreambleBounds(*CI->getLangOpts(), ContentsBuffer.get(), 0);
if (!Preamble->CanReuse(*CI, ContentsBuffer.get(), Bounds, VFS.get()))
Preamble = nullptr;
}
auto Clang = prepareCompilerInstance(
std::move(CI), Preamble, std::move(ContentsBuffer), std::move(PCHs),
std::move(VFS), DummyDiagsConsumer);
auto &DiagOpts = Clang->getDiagnosticOpts();
DiagOpts.IgnoreWarnings = true;
auto &FrontendOpts = Clang->getFrontendOpts();
FrontendOpts.SkipFunctionBodies = true;
FrontendOpts.CodeCompleteOpts = Options;
FrontendOpts.CodeCompletionAt.FileName = FileName;
FrontendOpts.CodeCompletionAt.Line = Pos.line + 1;
FrontendOpts.CodeCompletionAt.Column = Pos.character + 1;
Clang->setCodeCompletionConsumer(Consumer.release());
SyntaxOnlyAction Action;
if (!Action.BeginSourceFile(*Clang, Clang->getFrontendOpts().Inputs[0])) {
log(Ctx,
"BeginSourceFile() failed when running codeComplete for " + FileName);
return false;
}
if (!Action.Execute()) {
log(Ctx, "Execute() failed when running codeComplete for " + FileName);
return false;
}
Action.EndSourceFile();
return true;
}
} // namespace
clang::CodeCompleteOptions CodeCompleteOptions::getClangCompleteOpts() const {
clang::CodeCompleteOptions Result;
Result.IncludeCodePatterns = EnableSnippets && IncludeCodePatterns;
Result.IncludeMacros = IncludeMacros;
Result.IncludeGlobals = IncludeGlobals;
Result.IncludeBriefComments = IncludeBriefComments;
return Result;
}
CompletionList codeComplete(const Context &Ctx, PathRef FileName,
const tooling::CompileCommand &Command,
PrecompiledPreamble const *Preamble,
StringRef Contents, Position Pos,
IntrusiveRefCntPtr<vfs::FileSystem> VFS,
std::shared_ptr<PCHContainerOperations> PCHs,
CodeCompleteOptions Opts) {
CompletionList Results;
std::unique_ptr<CodeCompleteConsumer> Consumer;
if (Opts.EnableSnippets) {
Consumer =
llvm::make_unique<SnippetCompletionItemsCollector>(Opts, Results);
} else {
Consumer =
llvm::make_unique<PlainTextCompletionItemsCollector>(Opts, Results);
}
invokeCodeComplete(Ctx, std::move(Consumer), Opts.getClangCompleteOpts(),
FileName, Command, Preamble, Contents, Pos, std::move(VFS),
std::move(PCHs));
return Results;
}
SignatureHelp signatureHelp(const Context &Ctx, PathRef FileName,
const tooling::CompileCommand &Command,
PrecompiledPreamble const *Preamble,
StringRef Contents, Position Pos,
IntrusiveRefCntPtr<vfs::FileSystem> VFS,
std::shared_ptr<PCHContainerOperations> PCHs) {
SignatureHelp Result;
clang::CodeCompleteOptions Options;
Options.IncludeGlobals = false;
Options.IncludeMacros = false;
Options.IncludeCodePatterns = false;
Options.IncludeBriefComments = true;
invokeCodeComplete(Ctx,
llvm::make_unique<SignatureHelpCollector>(Options, Result),
Options, FileName, Command, Preamble, Contents, Pos,
std::move(VFS), std::move(PCHs));
return Result;
}
} // namespace clangd
} // namespace clang