llvm-project/llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp

231 lines
7.3 KiB
C++

//===-- llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp -------*- C++ -*--===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Common functionality for different debug information format backends.
// LLVM currently supports DWARF and CodeView.
//
//===----------------------------------------------------------------------===//
#include "DebugHandlerBase.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
DebugHandlerBase::DebugHandlerBase(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}
// Each LexicalScope has first instruction and last instruction to mark
// beginning and end of a scope respectively. Create an inverse map that list
// scopes starts (and ends) with an instruction. One instruction may start (or
// end) multiple scopes. Ignore scopes that are not reachable.
void DebugHandlerBase::identifyScopeMarkers() {
SmallVector<LexicalScope *, 4> WorkList;
WorkList.push_back(LScopes.getCurrentFunctionScope());
while (!WorkList.empty()) {
LexicalScope *S = WorkList.pop_back_val();
const SmallVectorImpl<LexicalScope *> &Children = S->getChildren();
if (!Children.empty())
WorkList.append(Children.begin(), Children.end());
if (S->isAbstractScope())
continue;
for (const InsnRange &R : S->getRanges()) {
assert(R.first && "InsnRange does not have first instruction!");
assert(R.second && "InsnRange does not have second instruction!");
requestLabelBeforeInsn(R.first);
requestLabelAfterInsn(R.second);
}
}
}
// Return Label preceding the instruction.
MCSymbol *DebugHandlerBase::getLabelBeforeInsn(const MachineInstr *MI) {
MCSymbol *Label = LabelsBeforeInsn.lookup(MI);
assert(Label && "Didn't insert label before instruction");
return Label;
}
// Return Label immediately following the instruction.
MCSymbol *DebugHandlerBase::getLabelAfterInsn(const MachineInstr *MI) {
return LabelsAfterInsn.lookup(MI);
}
// Determine the relative position of the pieces described by P1 and P2.
// Returns -1 if P1 is entirely before P2, 0 if P1 and P2 overlap,
// 1 if P1 is entirely after P2.
int DebugHandlerBase::pieceCmp(const DIExpression *P1, const DIExpression *P2) {
unsigned l1 = P1->getBitPieceOffset();
unsigned l2 = P2->getBitPieceOffset();
unsigned r1 = l1 + P1->getBitPieceSize();
unsigned r2 = l2 + P2->getBitPieceSize();
if (r1 <= l2)
return -1;
else if (r2 <= l1)
return 1;
else
return 0;
}
/// Determine whether two variable pieces overlap.
bool DebugHandlerBase::piecesOverlap(const DIExpression *P1, const DIExpression *P2) {
if (!P1->isBitPiece() || !P2->isBitPiece())
return true;
return pieceCmp(P1, P2) == 0;
}
/// If this type is derived from a base type then return base type size.
uint64_t DebugHandlerBase::getBaseTypeSize(const DITypeRef TyRef) {
DIType *Ty = TyRef.resolve();
assert(Ty);
DIDerivedType *DDTy = dyn_cast<DIDerivedType>(Ty);
if (!DDTy)
return Ty->getSizeInBits();
unsigned Tag = DDTy->getTag();
if (Tag != dwarf::DW_TAG_member && Tag != dwarf::DW_TAG_typedef &&
Tag != dwarf::DW_TAG_const_type && Tag != dwarf::DW_TAG_volatile_type &&
Tag != dwarf::DW_TAG_restrict_type)
return DDTy->getSizeInBits();
DIType *BaseType = DDTy->getBaseType().resolve();
assert(BaseType && "Unexpected invalid base type");
// If this is a derived type, go ahead and get the base type, unless it's a
// reference then it's just the size of the field. Pointer types have no need
// of this since they're a different type of qualification on the type.
if (BaseType->getTag() == dwarf::DW_TAG_reference_type ||
BaseType->getTag() == dwarf::DW_TAG_rvalue_reference_type)
return Ty->getSizeInBits();
return getBaseTypeSize(BaseType);
}
void DebugHandlerBase::beginFunction(const MachineFunction *MF) {
// Grab the lexical scopes for the function, if we don't have any of those
// then we're not going to be able to do anything.
LScopes.initialize(*MF);
if (LScopes.empty())
return;
// Make sure that each lexical scope will have a begin/end label.
identifyScopeMarkers();
// Calculate history for local variables.
assert(DbgValues.empty() && "DbgValues map wasn't cleaned!");
calculateDbgValueHistory(MF, Asm->MF->getSubtarget().getRegisterInfo(),
DbgValues);
// Request labels for the full history.
for (const auto &I : DbgValues) {
const auto &Ranges = I.second;
if (Ranges.empty())
continue;
// The first mention of a function argument gets the CurrentFnBegin
// label, so arguments are visible when breaking at function entry.
const DILocalVariable *DIVar = Ranges.front().first->getDebugVariable();
if (DIVar->isParameter() &&
getDISubprogram(DIVar->getScope())->describes(MF->getFunction())) {
LabelsBeforeInsn[Ranges.front().first] = Asm->getFunctionBegin();
if (Ranges.front().first->getDebugExpression()->isBitPiece()) {
// Mark all non-overlapping initial pieces.
for (auto I = Ranges.begin(); I != Ranges.end(); ++I) {
const DIExpression *Piece = I->first->getDebugExpression();
if (std::all_of(Ranges.begin(), I,
[&](DbgValueHistoryMap::InstrRange Pred) {
return !piecesOverlap(Piece, Pred.first->getDebugExpression());
}))
LabelsBeforeInsn[I->first] = Asm->getFunctionBegin();
else
break;
}
}
}
for (const auto &Range : Ranges) {
requestLabelBeforeInsn(Range.first);
if (Range.second)
requestLabelAfterInsn(Range.second);
}
}
PrevInstLoc = DebugLoc();
PrevLabel = Asm->getFunctionBegin();
}
void DebugHandlerBase::beginInstruction(const MachineInstr *MI) {
if (!MMI->hasDebugInfo())
return;
assert(CurMI == nullptr);
CurMI = MI;
// Insert labels where requested.
DenseMap<const MachineInstr *, MCSymbol *>::iterator I =
LabelsBeforeInsn.find(MI);
// No label needed.
if (I == LabelsBeforeInsn.end())
return;
// Label already assigned.
if (I->second)
return;
if (!PrevLabel) {
PrevLabel = MMI->getContext().createTempSymbol();
Asm->OutStreamer->EmitLabel(PrevLabel);
}
I->second = PrevLabel;
}
void DebugHandlerBase::endInstruction() {
if (!MMI->hasDebugInfo())
return;
assert(CurMI != nullptr);
// Don't create a new label after DBG_VALUE instructions.
// They don't generate code.
if (!CurMI->isDebugValue())
PrevLabel = nullptr;
DenseMap<const MachineInstr *, MCSymbol *>::iterator I =
LabelsAfterInsn.find(CurMI);
CurMI = nullptr;
// No label needed.
if (I == LabelsAfterInsn.end())
return;
// Label already assigned.
if (I->second)
return;
// We need a label after this instruction.
if (!PrevLabel) {
PrevLabel = MMI->getContext().createTempSymbol();
Asm->OutStreamer->EmitLabel(PrevLabel);
}
I->second = PrevLabel;
}
void DebugHandlerBase::endFunction(const MachineFunction *MF) {
DbgValues.clear();
LabelsBeforeInsn.clear();
LabelsAfterInsn.clear();
}