forked from OSchip/llvm-project
472 lines
19 KiB
C++
472 lines
19 KiB
C++
//===--------------------- InstrBuilder.cpp ---------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
///
|
|
/// This file implements the InstrBuilder interface.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InstrBuilder.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#define DEBUG_TYPE "llvm-mca"
|
|
|
|
namespace mca {
|
|
|
|
using namespace llvm;
|
|
|
|
static void initializeUsedResources(InstrDesc &ID,
|
|
const MCSchedClassDesc &SCDesc,
|
|
const MCSubtargetInfo &STI,
|
|
ArrayRef<uint64_t> ProcResourceMasks) {
|
|
const MCSchedModel &SM = STI.getSchedModel();
|
|
|
|
// Populate resources consumed.
|
|
using ResourcePlusCycles = std::pair<uint64_t, ResourceUsage>;
|
|
std::vector<ResourcePlusCycles> Worklist;
|
|
for (unsigned I = 0, E = SCDesc.NumWriteProcResEntries; I < E; ++I) {
|
|
const MCWriteProcResEntry *PRE = STI.getWriteProcResBegin(&SCDesc) + I;
|
|
const MCProcResourceDesc &PR = *SM.getProcResource(PRE->ProcResourceIdx);
|
|
uint64_t Mask = ProcResourceMasks[PRE->ProcResourceIdx];
|
|
if (PR.BufferSize != -1)
|
|
ID.Buffers.push_back(Mask);
|
|
CycleSegment RCy(0, PRE->Cycles, false);
|
|
Worklist.emplace_back(ResourcePlusCycles(Mask, ResourceUsage(RCy)));
|
|
}
|
|
|
|
// Sort elements by mask popcount, so that we prioritize resource units over
|
|
// resource groups, and smaller groups over larger groups.
|
|
llvm::sort(Worklist.begin(), Worklist.end(),
|
|
[](const ResourcePlusCycles &A, const ResourcePlusCycles &B) {
|
|
unsigned popcntA = countPopulation(A.first);
|
|
unsigned popcntB = countPopulation(B.first);
|
|
if (popcntA < popcntB)
|
|
return true;
|
|
if (popcntA > popcntB)
|
|
return false;
|
|
return A.first < B.first;
|
|
});
|
|
|
|
uint64_t UsedResourceUnits = 0;
|
|
|
|
// Remove cycles contributed by smaller resources.
|
|
for (unsigned I = 0, E = Worklist.size(); I < E; ++I) {
|
|
ResourcePlusCycles &A = Worklist[I];
|
|
if (!A.second.size()) {
|
|
A.second.NumUnits = 0;
|
|
A.second.setReserved();
|
|
ID.Resources.emplace_back(A);
|
|
continue;
|
|
}
|
|
|
|
ID.Resources.emplace_back(A);
|
|
uint64_t NormalizedMask = A.first;
|
|
if (countPopulation(A.first) == 1) {
|
|
UsedResourceUnits |= A.first;
|
|
} else {
|
|
// Remove the leading 1 from the resource group mask.
|
|
NormalizedMask ^= PowerOf2Floor(NormalizedMask);
|
|
}
|
|
|
|
for (unsigned J = I + 1; J < E; ++J) {
|
|
ResourcePlusCycles &B = Worklist[J];
|
|
if ((NormalizedMask & B.first) == NormalizedMask) {
|
|
B.second.CS.Subtract(A.second.size());
|
|
if (countPopulation(B.first) > 1)
|
|
B.second.NumUnits++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// A SchedWrite may specify a number of cycles in which a resource group
|
|
// is reserved. For example (on target x86; cpu Haswell):
|
|
//
|
|
// SchedWriteRes<[HWPort0, HWPort1, HWPort01]> {
|
|
// let ResourceCycles = [2, 2, 3];
|
|
// }
|
|
//
|
|
// This means:
|
|
// Resource units HWPort0 and HWPort1 are both used for 2cy.
|
|
// Resource group HWPort01 is the union of HWPort0 and HWPort1.
|
|
// Since this write touches both HWPort0 and HWPort1 for 2cy, HWPort01
|
|
// will not be usable for 2 entire cycles from instruction issue.
|
|
//
|
|
// On top of those 2cy, SchedWriteRes explicitly specifies an extra latency
|
|
// of 3 cycles for HWPort01. This tool assumes that the 3cy latency is an
|
|
// extra delay on top of the 2 cycles latency.
|
|
// During those extra cycles, HWPort01 is not usable by other instructions.
|
|
for (ResourcePlusCycles &RPC : ID.Resources) {
|
|
if (countPopulation(RPC.first) > 1 && !RPC.second.isReserved()) {
|
|
// Remove the leading 1 from the resource group mask.
|
|
uint64_t Mask = RPC.first ^ PowerOf2Floor(RPC.first);
|
|
if ((Mask & UsedResourceUnits) == Mask)
|
|
RPC.second.setReserved();
|
|
}
|
|
}
|
|
|
|
DEBUG({
|
|
for (const std::pair<uint64_t, ResourceUsage> &R : ID.Resources)
|
|
dbgs() << "\t\tMask=" << R.first << ", cy=" << R.second.size() << '\n';
|
|
for (const uint64_t R : ID.Buffers)
|
|
dbgs() << "\t\tBuffer Mask=" << R << '\n';
|
|
});
|
|
}
|
|
|
|
static void computeMaxLatency(InstrDesc &ID, const MCInstrDesc &MCDesc,
|
|
const MCSchedClassDesc &SCDesc,
|
|
const MCSubtargetInfo &STI) {
|
|
if (MCDesc.isCall()) {
|
|
// We cannot estimate how long this call will take.
|
|
// Artificially set an arbitrarily high latency (100cy).
|
|
ID.MaxLatency = 100U;
|
|
return;
|
|
}
|
|
|
|
int Latency = MCSchedModel::computeInstrLatency(STI, SCDesc);
|
|
// If latency is unknown, then conservatively assume a MaxLatency of 100cy.
|
|
ID.MaxLatency = Latency < 0 ? 100U : static_cast<unsigned>(Latency);
|
|
}
|
|
|
|
static void populateWrites(InstrDesc &ID, const MCInst &MCI,
|
|
const MCInstrDesc &MCDesc,
|
|
const MCSchedClassDesc &SCDesc,
|
|
const MCSubtargetInfo &STI) {
|
|
// Set if writes through this opcode may update super registers.
|
|
// TODO: on x86-64, a 4 byte write of a general purpose register always
|
|
// fully updates the super-register.
|
|
// More in general, (at least on x86) not all register writes perform
|
|
// a partial (super-)register update.
|
|
// For example, an AVX instruction that writes on a XMM register implicitly
|
|
// zeroes the upper half of every aliasing super-register.
|
|
//
|
|
// For now, we pessimistically assume that writes are all potentially
|
|
// partial register updates. This is a good default for most targets, execept
|
|
// for those like x86 which implement a special semantic for certain opcodes.
|
|
// At least on x86, this may lead to an inaccurate prediction of the
|
|
// instruction level parallelism.
|
|
bool FullyUpdatesSuperRegisters = false;
|
|
|
|
// Now Populate Writes.
|
|
|
|
// This algorithm currently works under the strong (and potentially incorrect)
|
|
// assumption that information related to register def/uses can be obtained
|
|
// from MCInstrDesc.
|
|
//
|
|
// However class MCInstrDesc is used to describe MachineInstr objects and not
|
|
// MCInst objects. To be more specific, MCInstrDesc objects are opcode
|
|
// descriptors that are automatically generated via tablegen based on the
|
|
// instruction set information available from the target .td files. That
|
|
// means, the number of (explicit) definitions according to MCInstrDesc always
|
|
// matches the cardinality of the `(outs)` set in tablegen.
|
|
//
|
|
// By constructions, definitions must appear first in the operand sequence of
|
|
// a MachineInstr. Also, the (outs) sequence is preserved (example: the first
|
|
// element in the outs set is the first operand in the corresponding
|
|
// MachineInstr). That's the reason why MCInstrDesc only needs to declare the
|
|
// total number of register definitions, and not where those definitions are
|
|
// in the machine operand sequence.
|
|
//
|
|
// Unfortunately, it is not safe to use the information from MCInstrDesc to
|
|
// also describe MCInst objects. An MCInst object can be obtained from a
|
|
// MachineInstr through a lowering step which may restructure the operand
|
|
// sequence (and even remove or introduce new operands). So, there is a high
|
|
// risk that the lowering step breaks the assumptions that register
|
|
// definitions are always at the beginning of the machine operand sequence.
|
|
//
|
|
// This is a fundamental problem, and it is still an open problem. Essentially
|
|
// we have to find a way to correlate def/use operands of a MachineInstr to
|
|
// operands of an MCInst. Otherwise, we cannot correctly reconstruct data
|
|
// dependencies, nor we can correctly interpret the scheduling model, which
|
|
// heavily uses machine operand indices to define processor read-advance
|
|
// information, and to identify processor write resources. Essentially, we
|
|
// either need something like a MCInstrDesc, but for MCInst, or a way
|
|
// to map MCInst operands back to MachineInstr operands.
|
|
//
|
|
// Unfortunately, we don't have that information now. So, this prototype
|
|
// currently work under the strong assumption that we can always safely trust
|
|
// the content of an MCInstrDesc. For example, we can query a MCInstrDesc to
|
|
// obtain the number of explicit and implicit register defintions. We also
|
|
// assume that register definitions always come first in the operand sequence.
|
|
// This last assumption usually makes sense for MachineInstr, where register
|
|
// definitions always appear at the beginning of the operands sequence. In
|
|
// reality, these assumptions could be broken by the lowering step, which can
|
|
// decide to lay out operands in a different order than the original order of
|
|
// operand as specified by the MachineInstr.
|
|
//
|
|
// Things get even more complicated in the presence of "optional" register
|
|
// definitions. For MachineInstr, optional register definitions are always at
|
|
// the end of the operand sequence. Some ARM instructions that may update the
|
|
// status flags specify that register as a optional operand. Since we don't
|
|
// have operand descriptors for MCInst, we assume for now that the optional
|
|
// definition is always the last operand of a MCInst. Again, this assumption
|
|
// may be okay for most targets. However, there is no guarantee that targets
|
|
// would respect that.
|
|
//
|
|
// In conclusion: these are for now the strong assumptions made by the tool:
|
|
// * The number of explicit and implicit register definitions in a MCInst
|
|
// matches the number of explicit and implicit definitions according to
|
|
// the opcode descriptor (MCInstrDesc).
|
|
// * Register definitions take precedence over register uses in the operands
|
|
// list.
|
|
// * If an opcode specifies an optional definition, then the optional
|
|
// definition is always the last operand in the sequence, and it can be
|
|
// set to zero (i.e. "no register").
|
|
//
|
|
// These assumptions work quite well for most out-of-order in-tree targets
|
|
// like x86. This is mainly because the vast majority of instructions is
|
|
// expanded to MCInst using a straightforward lowering logic that preserves
|
|
// the ordering of the operands.
|
|
//
|
|
// In the longer term, we need to find a proper solution for this issue.
|
|
unsigned NumExplicitDefs = MCDesc.getNumDefs();
|
|
unsigned NumImplicitDefs = MCDesc.getNumImplicitDefs();
|
|
unsigned NumWriteLatencyEntries = SCDesc.NumWriteLatencyEntries;
|
|
unsigned TotalDefs = NumExplicitDefs + NumImplicitDefs;
|
|
if (MCDesc.hasOptionalDef())
|
|
TotalDefs++;
|
|
ID.Writes.resize(TotalDefs);
|
|
// Iterate over the operands list, and skip non-register operands.
|
|
// The first NumExplictDefs register operands are expected to be register
|
|
// definitions.
|
|
unsigned CurrentDef = 0;
|
|
unsigned i = 0;
|
|
for (; i < MCI.getNumOperands() && CurrentDef < NumExplicitDefs; ++i) {
|
|
const MCOperand &Op = MCI.getOperand(i);
|
|
if (!Op.isReg())
|
|
continue;
|
|
|
|
WriteDescriptor &Write = ID.Writes[CurrentDef];
|
|
Write.OpIndex = i;
|
|
if (CurrentDef < NumWriteLatencyEntries) {
|
|
const MCWriteLatencyEntry &WLE =
|
|
*STI.getWriteLatencyEntry(&SCDesc, CurrentDef);
|
|
// Conservatively default to MaxLatency.
|
|
Write.Latency = WLE.Cycles == -1 ? ID.MaxLatency : WLE.Cycles;
|
|
Write.SClassOrWriteResourceID = WLE.WriteResourceID;
|
|
} else {
|
|
// Assign a default latency for this write.
|
|
Write.Latency = ID.MaxLatency;
|
|
Write.SClassOrWriteResourceID = 0;
|
|
}
|
|
Write.FullyUpdatesSuperRegs = FullyUpdatesSuperRegisters;
|
|
Write.IsOptionalDef = false;
|
|
DEBUG({
|
|
dbgs() << "\t\tOpIdx=" << Write.OpIndex << ", Latency=" << Write.Latency
|
|
<< ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
|
|
});
|
|
CurrentDef++;
|
|
}
|
|
|
|
if (CurrentDef != NumExplicitDefs)
|
|
llvm::report_fatal_error(
|
|
"error: Expected more register operand definitions. ");
|
|
|
|
CurrentDef = 0;
|
|
for (CurrentDef = 0; CurrentDef < NumImplicitDefs; ++CurrentDef) {
|
|
unsigned Index = NumExplicitDefs + CurrentDef;
|
|
WriteDescriptor &Write = ID.Writes[Index];
|
|
Write.OpIndex = -1;
|
|
Write.RegisterID = MCDesc.getImplicitDefs()[CurrentDef];
|
|
if (Index < NumWriteLatencyEntries) {
|
|
const MCWriteLatencyEntry &WLE =
|
|
*STI.getWriteLatencyEntry(&SCDesc, Index);
|
|
// Conservatively default to MaxLatency.
|
|
Write.Latency = WLE.Cycles == -1 ? ID.MaxLatency : WLE.Cycles;
|
|
Write.SClassOrWriteResourceID = WLE.WriteResourceID;
|
|
} else {
|
|
// Assign a default latency for this write.
|
|
Write.Latency = ID.MaxLatency;
|
|
Write.SClassOrWriteResourceID = 0;
|
|
}
|
|
|
|
Write.IsOptionalDef = false;
|
|
assert(Write.RegisterID != 0 && "Expected a valid phys register!");
|
|
DEBUG(dbgs() << "\t\tOpIdx=" << Write.OpIndex << ", PhysReg="
|
|
<< Write.RegisterID << ", Latency=" << Write.Latency
|
|
<< ", WriteResourceID=" << Write.SClassOrWriteResourceID
|
|
<< '\n');
|
|
}
|
|
|
|
if (MCDesc.hasOptionalDef()) {
|
|
// Always assume that the optional definition is the last operand of the
|
|
// MCInst sequence.
|
|
const MCOperand &Op = MCI.getOperand(MCI.getNumOperands() - 1);
|
|
if (i == MCI.getNumOperands() || !Op.isReg())
|
|
llvm::report_fatal_error(
|
|
"error: expected a register operand for an optional "
|
|
"definition. Instruction has not be correctly analyzed.\n",
|
|
false);
|
|
|
|
WriteDescriptor &Write = ID.Writes[TotalDefs - 1];
|
|
Write.OpIndex = MCI.getNumOperands() - 1;
|
|
// Assign a default latency for this write.
|
|
Write.Latency = ID.MaxLatency;
|
|
Write.SClassOrWriteResourceID = 0;
|
|
Write.IsOptionalDef = true;
|
|
}
|
|
}
|
|
|
|
static void populateReads(InstrDesc &ID, const MCInst &MCI,
|
|
const MCInstrDesc &MCDesc,
|
|
const MCSchedClassDesc &SCDesc,
|
|
const MCSubtargetInfo &STI) {
|
|
unsigned SchedClassID = MCDesc.getSchedClass();
|
|
bool HasReadAdvanceEntries = SCDesc.NumReadAdvanceEntries > 0;
|
|
|
|
unsigned i = 0;
|
|
unsigned NumExplicitDefs = MCDesc.getNumDefs();
|
|
// Skip explicit definitions.
|
|
for (; i < MCI.getNumOperands() && NumExplicitDefs; ++i) {
|
|
const MCOperand &Op = MCI.getOperand(i);
|
|
if (Op.isReg())
|
|
NumExplicitDefs--;
|
|
}
|
|
|
|
if (NumExplicitDefs)
|
|
llvm::report_fatal_error(
|
|
"error: Expected more register operand definitions. ", false);
|
|
|
|
unsigned NumExplicitUses = MCI.getNumOperands() - i;
|
|
unsigned NumImplicitUses = MCDesc.getNumImplicitUses();
|
|
if (MCDesc.hasOptionalDef()) {
|
|
assert(NumExplicitUses);
|
|
NumExplicitUses--;
|
|
}
|
|
unsigned TotalUses = NumExplicitUses + NumImplicitUses;
|
|
if (!TotalUses)
|
|
return;
|
|
|
|
ID.Reads.resize(TotalUses);
|
|
for (unsigned CurrentUse = 0; CurrentUse < NumExplicitUses; ++CurrentUse) {
|
|
ReadDescriptor &Read = ID.Reads[CurrentUse];
|
|
Read.OpIndex = i + CurrentUse;
|
|
Read.UseIndex = CurrentUse;
|
|
Read.HasReadAdvanceEntries = HasReadAdvanceEntries;
|
|
Read.SchedClassID = SchedClassID;
|
|
DEBUG(dbgs() << "\t\tOpIdx=" << Read.OpIndex);
|
|
}
|
|
|
|
for (unsigned CurrentUse = 0; CurrentUse < NumImplicitUses; ++CurrentUse) {
|
|
ReadDescriptor &Read = ID.Reads[NumExplicitUses + CurrentUse];
|
|
Read.OpIndex = -1;
|
|
Read.UseIndex = NumExplicitUses + CurrentUse;
|
|
Read.RegisterID = MCDesc.getImplicitUses()[CurrentUse];
|
|
Read.HasReadAdvanceEntries = HasReadAdvanceEntries;
|
|
Read.SchedClassID = SchedClassID;
|
|
DEBUG(dbgs() << "\t\tOpIdx=" << Read.OpIndex
|
|
<< ", RegisterID=" << Read.RegisterID << '\n');
|
|
}
|
|
}
|
|
|
|
void InstrBuilder::createInstrDescImpl(const MCInst &MCI) {
|
|
assert(STI.getSchedModel().hasInstrSchedModel() &&
|
|
"Itineraries are not yet supported!");
|
|
|
|
unsigned short Opcode = MCI.getOpcode();
|
|
// Obtain the instruction descriptor from the opcode.
|
|
const MCInstrDesc &MCDesc = MCII.get(Opcode);
|
|
const MCSchedModel &SM = STI.getSchedModel();
|
|
|
|
// Then obtain the scheduling class information from the instruction.
|
|
const MCSchedClassDesc &SCDesc =
|
|
*SM.getSchedClassDesc(MCDesc.getSchedClass());
|
|
|
|
// Create a new empty descriptor.
|
|
std::unique_ptr<InstrDesc> ID = llvm::make_unique<InstrDesc>();
|
|
|
|
if (SCDesc.isVariant()) {
|
|
errs() << "warning: don't know how to model variant opcodes.\n"
|
|
<< "note: assume 1 micro opcode.\n";
|
|
ID->NumMicroOps = 1U;
|
|
} else {
|
|
ID->NumMicroOps = SCDesc.NumMicroOps;
|
|
}
|
|
|
|
if (MCDesc.isCall()) {
|
|
// We don't correctly model calls.
|
|
errs() << "warning: found a call in the input assembly sequence.\n"
|
|
<< "note: call instructions are not correctly modeled. Assume a "
|
|
"latency of 100cy.\n";
|
|
}
|
|
|
|
if (MCDesc.isReturn()) {
|
|
errs() << "warning: found a return instruction in the input assembly "
|
|
"sequence.\n"
|
|
<< "note: program counter updates are ignored.\n";
|
|
}
|
|
|
|
ID->MayLoad = MCDesc.mayLoad();
|
|
ID->MayStore = MCDesc.mayStore();
|
|
ID->HasSideEffects = MCDesc.hasUnmodeledSideEffects();
|
|
|
|
initializeUsedResources(*ID, SCDesc, STI, ProcResourceMasks);
|
|
computeMaxLatency(*ID, MCDesc, SCDesc, STI);
|
|
populateWrites(*ID, MCI, MCDesc, SCDesc, STI);
|
|
populateReads(*ID, MCI, MCDesc, SCDesc, STI);
|
|
|
|
DEBUG(dbgs() << "\t\tMaxLatency=" << ID->MaxLatency << '\n');
|
|
DEBUG(dbgs() << "\t\tNumMicroOps=" << ID->NumMicroOps << '\n');
|
|
|
|
// Now add the new descriptor.
|
|
Descriptors[Opcode] = std::move(ID);
|
|
}
|
|
|
|
const InstrDesc &InstrBuilder::getOrCreateInstrDesc(const MCInst &MCI) {
|
|
if (Descriptors.find_as(MCI.getOpcode()) == Descriptors.end())
|
|
createInstrDescImpl(MCI);
|
|
return *Descriptors[MCI.getOpcode()];
|
|
}
|
|
|
|
std::unique_ptr<Instruction>
|
|
InstrBuilder::createInstruction(unsigned Idx, const MCInst &MCI) {
|
|
const InstrDesc &D = getOrCreateInstrDesc(MCI);
|
|
std::unique_ptr<Instruction> NewIS = llvm::make_unique<Instruction>(D);
|
|
|
|
// Initialize Reads first.
|
|
for (const ReadDescriptor &RD : D.Reads) {
|
|
int RegID = -1;
|
|
if (RD.OpIndex != -1) {
|
|
// explicit read.
|
|
const MCOperand &Op = MCI.getOperand(RD.OpIndex);
|
|
// Skip non-register operands.
|
|
if (!Op.isReg())
|
|
continue;
|
|
RegID = Op.getReg();
|
|
} else {
|
|
// Implicit read.
|
|
RegID = RD.RegisterID;
|
|
}
|
|
|
|
// Skip invalid register operands.
|
|
if (!RegID)
|
|
continue;
|
|
|
|
// Okay, this is a register operand. Create a ReadState for it.
|
|
assert(RegID > 0 && "Invalid register ID found!");
|
|
NewIS->getUses().emplace_back(llvm::make_unique<ReadState>(RD, RegID));
|
|
}
|
|
|
|
// Initialize writes.
|
|
for (const WriteDescriptor &WD : D.Writes) {
|
|
unsigned RegID =
|
|
WD.OpIndex == -1 ? WD.RegisterID : MCI.getOperand(WD.OpIndex).getReg();
|
|
// Check if this is a optional definition that references NoReg.
|
|
if (WD.IsOptionalDef && !RegID)
|
|
continue;
|
|
|
|
assert(RegID && "Expected a valid register ID!");
|
|
NewIS->getDefs().emplace_back(llvm::make_unique<WriteState>(WD, RegID));
|
|
}
|
|
|
|
return NewIS;
|
|
}
|
|
} // namespace mca
|