forked from OSchip/llvm-project
133 lines
3.8 KiB
LLVM
133 lines
3.8 KiB
LLVM
; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
|
|
; RUN: llc < %s -mtriple=i686-unknown-unknown -mattr=+sse2 | FileCheck %s --check-prefix=X86
|
|
; RUN: llc < %s -mtriple=x86_64-unknown-unknown | FileCheck %s --check-prefix=X64
|
|
|
|
; The easy case: a constant power-of-2 divisor.
|
|
|
|
define i64 @const_pow_2(i64 %x) {
|
|
; X86-LABEL: const_pow_2:
|
|
; X86: # %bb.0:
|
|
; X86-NEXT: movl {{[0-9]+}}(%esp), %eax
|
|
; X86-NEXT: andl $31, %eax
|
|
; X86-NEXT: xorl %edx, %edx
|
|
; X86-NEXT: retl
|
|
;
|
|
; X64-LABEL: const_pow_2:
|
|
; X64: # %bb.0:
|
|
; X64-NEXT: andl $31, %edi
|
|
; X64-NEXT: movq %rdi, %rax
|
|
; X64-NEXT: retq
|
|
%urem = urem i64 %x, 32
|
|
ret i64 %urem
|
|
}
|
|
|
|
; A left-shifted power-of-2 divisor. Use a weird type for wider coverage.
|
|
|
|
define i25 @shift_left_pow_2(i25 %x, i25 %y) {
|
|
; X86-LABEL: shift_left_pow_2:
|
|
; X86: # %bb.0:
|
|
; X86-NEXT: movb {{[0-9]+}}(%esp), %cl
|
|
; X86-NEXT: movl $1, %eax
|
|
; X86-NEXT: shll %cl, %eax
|
|
; X86-NEXT: addl $33554431, %eax # imm = 0x1FFFFFF
|
|
; X86-NEXT: andl {{[0-9]+}}(%esp), %eax
|
|
; X86-NEXT: retl
|
|
;
|
|
; X64-LABEL: shift_left_pow_2:
|
|
; X64: # %bb.0:
|
|
; X64-NEXT: movl $1, %eax
|
|
; X64-NEXT: movl %esi, %ecx
|
|
; X64-NEXT: shll %cl, %eax
|
|
; X64-NEXT: addl $33554431, %eax # imm = 0x1FFFFFF
|
|
; X64-NEXT: andl %edi, %eax
|
|
; X64-NEXT: retq
|
|
%shl = shl i25 1, %y
|
|
%urem = urem i25 %x, %shl
|
|
ret i25 %urem
|
|
}
|
|
|
|
; A logically right-shifted sign bit is a power-of-2 or UB.
|
|
|
|
define i16 @shift_right_pow_2(i16 %x, i16 %y) {
|
|
; X86-LABEL: shift_right_pow_2:
|
|
; X86: # %bb.0:
|
|
; X86-NEXT: movb {{[0-9]+}}(%esp), %cl
|
|
; X86-NEXT: movl $32768, %eax # imm = 0x8000
|
|
; X86-NEXT: shrl %cl, %eax
|
|
; X86-NEXT: decl %eax
|
|
; X86-NEXT: andw {{[0-9]+}}(%esp), %ax
|
|
; X86-NEXT: # kill: def $ax killed $ax killed $eax
|
|
; X86-NEXT: retl
|
|
;
|
|
; X64-LABEL: shift_right_pow_2:
|
|
; X64: # %bb.0:
|
|
; X64-NEXT: movl $32768, %eax # imm = 0x8000
|
|
; X64-NEXT: movl %esi, %ecx
|
|
; X64-NEXT: shrl %cl, %eax
|
|
; X64-NEXT: decl %eax
|
|
; X64-NEXT: andl %edi, %eax
|
|
; X64-NEXT: # kill: def $ax killed $ax killed $eax
|
|
; X64-NEXT: retq
|
|
%shr = lshr i16 -32768, %y
|
|
%urem = urem i16 %x, %shr
|
|
ret i16 %urem
|
|
}
|
|
|
|
; FIXME: A zero divisor would be UB, so this could be reduced to an 'and' with 3.
|
|
|
|
define i8 @and_pow_2(i8 %x, i8 %y) {
|
|
; X86-LABEL: and_pow_2:
|
|
; X86: # %bb.0:
|
|
; X86-NEXT: movb {{[0-9]+}}(%esp), %cl
|
|
; X86-NEXT: andb $4, %cl
|
|
; X86-NEXT: movzbl {{[0-9]+}}(%esp), %eax
|
|
; X86-NEXT: # kill: def $eax killed $eax def $ax
|
|
; X86-NEXT: divb %cl
|
|
; X86-NEXT: movzbl %ah, %eax
|
|
; X86-NEXT: # kill: def $al killed $al killed $eax
|
|
; X86-NEXT: retl
|
|
;
|
|
; X64-LABEL: and_pow_2:
|
|
; X64: # %bb.0:
|
|
; X64-NEXT: andb $4, %sil
|
|
; X64-NEXT: movzbl %dil, %eax
|
|
; X64-NEXT: # kill: def $eax killed $eax def $ax
|
|
; X64-NEXT: divb %sil
|
|
; X64-NEXT: movzbl %ah, %eax
|
|
; X64-NEXT: # kill: def $al killed $al killed $eax
|
|
; X64-NEXT: retq
|
|
%and = and i8 %y, 4
|
|
%urem = urem i8 %x, %and
|
|
ret i8 %urem
|
|
}
|
|
|
|
; A vector constant divisor should get the same treatment as a scalar.
|
|
|
|
define <4 x i32> @vec_const_uniform_pow_2(<4 x i32> %x) {
|
|
; X86-LABEL: vec_const_uniform_pow_2:
|
|
; X86: # %bb.0:
|
|
; X86-NEXT: andps {{\.LCPI.*}}, %xmm0
|
|
; X86-NEXT: retl
|
|
;
|
|
; X64-LABEL: vec_const_uniform_pow_2:
|
|
; X64: # %bb.0:
|
|
; X64-NEXT: andps {{.*}}(%rip), %xmm0
|
|
; X64-NEXT: retq
|
|
%urem = urem <4 x i32> %x, <i32 16, i32 16, i32 16, i32 16>
|
|
ret <4 x i32> %urem
|
|
}
|
|
|
|
define <4 x i32> @vec_const_nonuniform_pow_2(<4 x i32> %x) {
|
|
; X86-LABEL: vec_const_nonuniform_pow_2:
|
|
; X86: # %bb.0:
|
|
; X86-NEXT: andps {{\.LCPI.*}}, %xmm0
|
|
; X86-NEXT: retl
|
|
;
|
|
; X64-LABEL: vec_const_nonuniform_pow_2:
|
|
; X64: # %bb.0:
|
|
; X64-NEXT: andps {{.*}}(%rip), %xmm0
|
|
; X64-NEXT: retq
|
|
%urem = urem <4 x i32> %x, <i32 2, i32 4, i32 8, i32 16>
|
|
ret <4 x i32> %urem
|
|
}
|