llvm-project/llvm/lib/Target/WebAssembly/AsmParser/WebAssemblyAsmParser.cpp

562 lines
22 KiB
C++

//==- WebAssemblyAsmParser.cpp - Assembler for WebAssembly -*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file is part of the WebAssembly Assembler.
///
/// It contains code to translate a parsed .s file into MCInsts.
///
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
#include "MCTargetDesc/WebAssemblyTargetStreamer.h"
#include "WebAssembly.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
#define DEBUG_TYPE "wasm-asm-parser"
namespace {
// We store register types as SimpleValueType to retain SIMD layout
// information, but must also be able to supply them as the (unnamed)
// register enum from WebAssemblyRegisterInfo.td/.inc.
static unsigned MVTToWasmReg(MVT::SimpleValueType Type) {
switch(Type) {
case MVT::i32: return WebAssembly::I32_0;
case MVT::i64: return WebAssembly::I64_0;
case MVT::f32: return WebAssembly::F32_0;
case MVT::f64: return WebAssembly::F64_0;
case MVT::v16i8: return WebAssembly::V128_0;
case MVT::v8i16: return WebAssembly::V128_0;
case MVT::v4i32: return WebAssembly::V128_0;
case MVT::v4f32: return WebAssembly::V128_0;
default: return MVT::INVALID_SIMPLE_VALUE_TYPE;
}
}
/// WebAssemblyOperand - Instances of this class represent the operands in a
/// parsed WASM machine instruction.
struct WebAssemblyOperand : public MCParsedAsmOperand {
enum KindTy { Token, Local, Stack, Integer, Float, Symbol } Kind;
SMLoc StartLoc, EndLoc;
struct TokOp {
StringRef Tok;
};
struct RegOp {
// This is a (virtual) local or stack register represented as 0..
unsigned RegNo;
// In most targets, the register number also encodes the type, but for
// wasm we have to track that seperately since we have an unbounded
// number of registers.
// This has the unfortunate side effect that we supply a different value
// to the table-gen matcher at different times in the process (when it
// calls getReg() or addRegOperands().
// TODO: While this works, it feels brittle. and would be nice to clean up.
MVT::SimpleValueType Type;
};
struct IntOp {
int64_t Val;
};
struct FltOp {
double Val;
};
struct SymOp {
const MCExpr *Exp;
};
union {
struct TokOp Tok;
struct RegOp Reg;
struct IntOp Int;
struct FltOp Flt;
struct SymOp Sym;
};
WebAssemblyOperand(KindTy K, SMLoc Start, SMLoc End, TokOp T)
: Kind(K), StartLoc(Start), EndLoc(End), Tok(T) {}
WebAssemblyOperand(KindTy K, SMLoc Start, SMLoc End, RegOp R)
: Kind(K), StartLoc(Start), EndLoc(End), Reg(R) {}
WebAssemblyOperand(KindTy K, SMLoc Start, SMLoc End, IntOp I)
: Kind(K), StartLoc(Start), EndLoc(End), Int(I) {}
WebAssemblyOperand(KindTy K, SMLoc Start, SMLoc End, FltOp F)
: Kind(K), StartLoc(Start), EndLoc(End), Flt(F) {}
WebAssemblyOperand(KindTy K, SMLoc Start, SMLoc End, SymOp S)
: Kind(K), StartLoc(Start), EndLoc(End), Sym(S) {}
bool isToken() const override { return Kind == Token; }
bool isImm() const override { return Kind == Integer ||
Kind == Float ||
Kind == Symbol; }
bool isReg() const override { return Kind == Local || Kind == Stack; }
bool isMem() const override { return false; }
unsigned getReg() const override {
assert(isReg());
// This is called from the tablegen matcher (MatchInstructionImpl)
// where it expects to match the type of register, see RegOp above.
return MVTToWasmReg(Reg.Type);
}
StringRef getToken() const {
assert(isToken());
return Tok.Tok;
}
SMLoc getStartLoc() const override { return StartLoc; }
SMLoc getEndLoc() const override { return EndLoc; }
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
assert(isReg() && "Not a register operand!");
// This is called from the tablegen matcher (MatchInstructionImpl)
// where it expects to output the actual register index, see RegOp above.
unsigned R = Reg.RegNo;
if (Kind == Stack) {
// A stack register is represented as a large negative number.
// See WebAssemblyRegNumbering::runOnMachineFunction and
// getWARegStackId for why this | is needed.
R |= INT32_MIN;
}
Inst.addOperand(MCOperand::createReg(R));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
if (Kind == Integer)
Inst.addOperand(MCOperand::createImm(Int.Val));
else if (Kind == Float)
Inst.addOperand(MCOperand::createFPImm(Flt.Val));
else if (Kind == Symbol)
Inst.addOperand(MCOperand::createExpr(Sym.Exp));
else
llvm_unreachable("Should be immediate or symbol!");
}
void print(raw_ostream &OS) const override {
switch (Kind) {
case Token:
OS << "Tok:" << Tok.Tok;
break;
case Local:
OS << "Loc:" << Reg.RegNo << ":" << static_cast<int>(Reg.Type);
break;
case Stack:
OS << "Stk:" << Reg.RegNo << ":" << static_cast<int>(Reg.Type);
break;
case Integer:
OS << "Int:" << Int.Val;
break;
case Float:
OS << "Flt:" << Flt.Val;
break;
case Symbol:
OS << "Sym:" << Sym.Exp;
break;
}
}
};
class WebAssemblyAsmParser final : public MCTargetAsmParser {
MCAsmParser &Parser;
MCAsmLexer &Lexer;
// These are for the current function being parsed:
// These are vectors since register assignments are so far non-sparse.
// Replace by map if necessary.
std::vector<MVT::SimpleValueType> LocalTypes;
std::vector<MVT::SimpleValueType> StackTypes;
MCSymbol *LastLabel;
public:
WebAssemblyAsmParser(const MCSubtargetInfo &sti, MCAsmParser &Parser,
const MCInstrInfo &mii, const MCTargetOptions &Options)
: MCTargetAsmParser(Options, sti, mii), Parser(Parser),
Lexer(Parser.getLexer()), LastLabel(nullptr) {
}
#define GET_ASSEMBLER_HEADER
#include "WebAssemblyGenAsmMatcher.inc"
// TODO: This is required to be implemented, but appears unused.
bool ParseRegister(unsigned &/*RegNo*/, SMLoc &/*StartLoc*/,
SMLoc &/*EndLoc*/) override {
llvm_unreachable("ParseRegister is not implemented.");
}
bool Error(const StringRef &msg, const AsmToken &tok) {
return Parser.Error(tok.getLoc(), msg + tok.getString());
}
bool IsNext(AsmToken::TokenKind Kind) {
auto ok = Lexer.is(Kind);
if (ok) Parser.Lex();
return ok;
}
bool Expect(AsmToken::TokenKind Kind, const char *KindName) {
if (!IsNext(Kind))
return Error(std::string("Expected ") + KindName + ", instead got: ",
Lexer.getTok());
return false;
}
MVT::SimpleValueType ParseRegType(const StringRef &RegType) {
// Derive type from .param .local decls, or the instruction itself.
return StringSwitch<MVT::SimpleValueType>(RegType)
.Case("i32", MVT::i32)
.Case("i64", MVT::i64)
.Case("f32", MVT::f32)
.Case("f64", MVT::f64)
.Case("i8x16", MVT::v16i8)
.Case("i16x8", MVT::v8i16)
.Case("i32x4", MVT::v4i32)
.Case("f32x4", MVT::v4f32)
.Default(MVT::INVALID_SIMPLE_VALUE_TYPE);
}
MVT::SimpleValueType &GetType(
std::vector<MVT::SimpleValueType> &Types, size_t i) {
Types.resize(std::max(i + 1, Types.size()), MVT::INVALID_SIMPLE_VALUE_TYPE);
return Types[i];
}
bool ParseReg(OperandVector &Operands, StringRef TypePrefix) {
if (Lexer.is(AsmToken::Integer)) {
auto &Local = Lexer.getTok();
// This is a reference to a local, turn it into a virtual register.
auto LocalNo = static_cast<unsigned>(Local.getIntVal());
Operands.push_back(make_unique<WebAssemblyOperand>(
WebAssemblyOperand::Local, Local.getLoc(),
Local.getEndLoc(),
WebAssemblyOperand::RegOp{LocalNo,
GetType(LocalTypes, LocalNo)}));
Parser.Lex();
} else if (Lexer.is(AsmToken::Identifier)) {
auto &StackRegTok = Lexer.getTok();
// These are push/pop/drop pseudo stack registers, which we turn
// into virtual registers also. The stackify pass will later turn them
// back into implicit stack references if possible.
auto StackReg = StackRegTok.getString();
auto StackOp = StackReg.take_while([](char c) { return isalpha(c); });
auto Reg = StackReg.drop_front(StackOp.size());
unsigned long long ParsedRegNo = 0;
if (!Reg.empty() && getAsUnsignedInteger(Reg, 10, ParsedRegNo))
return Error("Cannot parse stack register index: ", StackRegTok);
unsigned RegNo = static_cast<unsigned>(ParsedRegNo);
if (StackOp == "push") {
// This defines a result, record register type.
auto RegType = ParseRegType(TypePrefix);
GetType(StackTypes, RegNo) = RegType;
Operands.push_back(make_unique<WebAssemblyOperand>(
WebAssemblyOperand::Stack,
StackRegTok.getLoc(),
StackRegTok.getEndLoc(),
WebAssemblyOperand::RegOp{RegNo, RegType}));
} else if (StackOp == "pop") {
// This uses a previously defined stack value.
auto RegType = GetType(StackTypes, RegNo);
Operands.push_back(make_unique<WebAssemblyOperand>(
WebAssemblyOperand::Stack,
StackRegTok.getLoc(),
StackRegTok.getEndLoc(),
WebAssemblyOperand::RegOp{RegNo, RegType}));
} else if (StackOp == "drop") {
// This operand will be dropped, since it is part of an instruction
// whose result is void.
} else {
return Error("Unknown stack register prefix: ", StackRegTok);
}
Parser.Lex();
} else {
return Error(
"Expected identifier/integer following $, instead got: ",
Lexer.getTok());
}
IsNext(AsmToken::Equal);
return false;
}
void ParseSingleInteger(bool IsNegative, OperandVector &Operands) {
auto &Int = Lexer.getTok();
int64_t Val = Int.getIntVal();
if (IsNegative) Val = -Val;
Operands.push_back(make_unique<WebAssemblyOperand>(
WebAssemblyOperand::Integer, Int.getLoc(),
Int.getEndLoc(), WebAssemblyOperand::IntOp{Val}));
Parser.Lex();
}
bool ParseOperandStartingWithInteger(bool IsNegative,
OperandVector &Operands,
StringRef InstType) {
ParseSingleInteger(IsNegative, Operands);
if (Lexer.is(AsmToken::LParen)) {
// Parse load/store operands of the form: offset($reg)align
auto &LParen = Lexer.getTok();
Operands.push_back(
make_unique<WebAssemblyOperand>(WebAssemblyOperand::Token,
LParen.getLoc(),
LParen.getEndLoc(),
WebAssemblyOperand::TokOp{
LParen.getString()}));
Parser.Lex();
if (Expect(AsmToken::Dollar, "register")) return true;
if (ParseReg(Operands, InstType)) return true;
auto &RParen = Lexer.getTok();
Operands.push_back(
make_unique<WebAssemblyOperand>(WebAssemblyOperand::Token,
RParen.getLoc(),
RParen.getEndLoc(),
WebAssemblyOperand::TokOp{
RParen.getString()}));
if (Expect(AsmToken::RParen, ")")) return true;
if (Lexer.is(AsmToken::Integer)) {
ParseSingleInteger(false, Operands);
} else {
// Alignment not specified.
// FIXME: correctly derive a default from the instruction.
Operands.push_back(make_unique<WebAssemblyOperand>(
WebAssemblyOperand::Integer, RParen.getLoc(),
RParen.getEndLoc(), WebAssemblyOperand::IntOp{0}));
}
}
return false;
}
bool ParseInstruction(ParseInstructionInfo &/*Info*/, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) override {
Operands.push_back(
make_unique<WebAssemblyOperand>(WebAssemblyOperand::Token, NameLoc,
SMLoc::getFromPointer(
NameLoc.getPointer() + Name.size()),
WebAssemblyOperand::TokOp{
StringRef(NameLoc.getPointer(),
Name.size())}));
auto NamePair = Name.split('.');
// If no '.', there is no type prefix.
if (NamePair.second.empty()) std::swap(NamePair.first, NamePair.second);
while (Lexer.isNot(AsmToken::EndOfStatement)) {
auto &Tok = Lexer.getTok();
switch (Tok.getKind()) {
case AsmToken::Dollar: {
Parser.Lex();
if (ParseReg(Operands, NamePair.first)) return true;
break;
}
case AsmToken::Identifier: {
auto &Id = Lexer.getTok();
const MCExpr *Val;
SMLoc End;
if (Parser.parsePrimaryExpr(Val, End))
return Error("Cannot parse symbol: ", Lexer.getTok());
Operands.push_back(make_unique<WebAssemblyOperand>(
WebAssemblyOperand::Symbol, Id.getLoc(),
Id.getEndLoc(), WebAssemblyOperand::SymOp{Val}));
break;
}
case AsmToken::Minus:
Parser.Lex();
if (Lexer.isNot(AsmToken::Integer))
return Error("Expected integer instead got: ", Lexer.getTok());
if (ParseOperandStartingWithInteger(true, Operands, NamePair.first))
return true;
break;
case AsmToken::Integer:
if (ParseOperandStartingWithInteger(false, Operands, NamePair.first))
return true;
break;
case AsmToken::Real: {
double Val;
if (Tok.getString().getAsDouble(Val, false))
return Error("Cannot parse real: ", Tok);
Operands.push_back(make_unique<WebAssemblyOperand>(
WebAssemblyOperand::Float, Tok.getLoc(),
Tok.getEndLoc(), WebAssemblyOperand::FltOp{Val}));
Parser.Lex();
break;
}
default:
return Error("Unexpected token in operand: ", Tok);
}
if (Lexer.isNot(AsmToken::EndOfStatement)) {
if (Expect(AsmToken::Comma, ",")) return true;
}
}
Parser.Lex();
// Call instructions are vararg, but the tablegen matcher doesn't seem to
// support that, so for now we strip these extra operands.
// This is problematic if these arguments are not simple $pop stack
// registers, since e.g. a local register would get lost, so we check for
// this. This can be the case when using -disable-wasm-explicit-locals
// which currently s2wasm requires.
// TODO: Instead, we can move this code to MatchAndEmitInstruction below and
// actually generate get_local instructions on the fly.
// Or even better, improve the matcher to support vararg?
auto IsIndirect = NamePair.second == "call_indirect";
if (IsIndirect || NamePair.second == "call") {
// Figure out number of fixed operands from the instruction.
size_t CallOperands = 1; // The name token.
if (!IsIndirect) CallOperands++; // The function index.
if (!NamePair.first.empty()) CallOperands++; // The result register.
if (Operands.size() > CallOperands) {
// Ensure operands we drop are all $pop.
for (size_t I = CallOperands; I < Operands.size(); I++) {
auto Operand =
reinterpret_cast<WebAssemblyOperand *>(Operands[I].get());
if (Operand->Kind != WebAssemblyOperand::Stack)
Parser.Error(NameLoc,
"Call instruction has non-stack arguments, if this code was "
"generated with -disable-wasm-explicit-locals please remove it");
}
// Drop unneeded operands.
Operands.resize(CallOperands);
}
}
// Block instructions require a signature index, but these are missing in
// assembly, so we add a dummy one explicitly (since we have no control
// over signature tables here, we assume these will be regenerated when
// the wasm module is generated).
if (NamePair.second == "block" || NamePair.second == "loop") {
Operands.push_back(make_unique<WebAssemblyOperand>(
WebAssemblyOperand::Integer, NameLoc,
NameLoc, WebAssemblyOperand::IntOp{-1}));
}
// These don't specify the type, which has to derived from the local index.
if (NamePair.second == "get_local" || NamePair.second == "tee_local") {
if (Operands.size() >= 3 && Operands[1]->isReg() &&
Operands[2]->isImm()) {
auto Op1 = reinterpret_cast<WebAssemblyOperand *>(Operands[1].get());
auto Op2 = reinterpret_cast<WebAssemblyOperand *>(Operands[2].get());
auto Type = GetType(LocalTypes, static_cast<size_t>(Op2->Int.Val));
Op1->Reg.Type = Type;
GetType(StackTypes, Op1->Reg.RegNo) = Type;
}
}
return false;
}
void onLabelParsed(MCSymbol *Symbol) override {
LastLabel = Symbol;
}
bool ParseDirective(AsmToken DirectiveID) override {
assert(DirectiveID.getKind() == AsmToken::Identifier);
auto &Out = getStreamer();
auto &TOut = reinterpret_cast<WebAssemblyTargetStreamer &>(
*Out.getTargetStreamer());
// TODO: we're just parsing the subset of directives we're interested in,
// and ignoring ones we don't recognise. We should ideally verify
// all directives here.
if (DirectiveID.getString() == ".type") {
// This could be the start of a function, check if followed by
// "label,@function"
if (!(IsNext(AsmToken::Identifier) &&
IsNext(AsmToken::Comma) &&
IsNext(AsmToken::At) &&
Lexer.is(AsmToken::Identifier)))
return Error("Expected label,@type declaration, got: ", Lexer.getTok());
if (Lexer.getTok().getString() == "function") {
// Track locals from start of function.
LocalTypes.clear();
StackTypes.clear();
}
Parser.Lex();
//Out.EmitSymbolAttribute(??, MCSA_ELF_TypeFunction);
} else if (DirectiveID.getString() == ".param" ||
DirectiveID.getString() == ".local") {
// Track the number of locals, needed for correct virtual register
// assignment elsewhere.
// Also output a directive to the streamer.
std::vector<MVT> Params;
std::vector<MVT> Locals;
while (Lexer.is(AsmToken::Identifier)) {
auto RegType = ParseRegType(Lexer.getTok().getString());
if (RegType == MVT::INVALID_SIMPLE_VALUE_TYPE) return true;
LocalTypes.push_back(RegType);
if (DirectiveID.getString() == ".param") {
Params.push_back(RegType);
} else {
Locals.push_back(RegType);
}
Parser.Lex();
if (!IsNext(AsmToken::Comma)) break;
}
assert(LastLabel);
TOut.emitParam(LastLabel, Params);
TOut.emitLocal(Locals);
} else {
// For now, ignore anydirective we don't recognize:
while (Lexer.isNot(AsmToken::EndOfStatement)) Parser.Lex();
}
return Expect(AsmToken::EndOfStatement, "EOL");
}
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &/*Opcode*/,
OperandVector &Operands,
MCStreamer &Out, uint64_t &ErrorInfo,
bool MatchingInlineAsm) override {
MCInst Inst;
unsigned MatchResult =
MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm);
switch (MatchResult) {
case Match_Success: {
Out.EmitInstruction(Inst, getSTI());
return false;
}
case Match_MissingFeature:
return Parser.Error(IDLoc,
"instruction requires a WASM feature not currently enabled");
case Match_MnemonicFail:
return Parser.Error(IDLoc, "invalid instruction");
case Match_NearMisses:
return Parser.Error(IDLoc, "ambiguous instruction");
case Match_InvalidTiedOperand:
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0ULL) {
if (ErrorInfo >= Operands.size())
return Parser.Error(IDLoc, "too few operands for instruction");
ErrorLoc = Operands[ErrorInfo]->getStartLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IDLoc;
}
return Parser.Error(ErrorLoc, "invalid operand for instruction");
}
}
llvm_unreachable("Implement any new match types added!");
}
};
} // end anonymous namespace
// Force static initialization.
extern "C" void LLVMInitializeWebAssemblyAsmParser() {
RegisterMCAsmParser<WebAssemblyAsmParser> X(getTheWebAssemblyTarget32());
RegisterMCAsmParser<WebAssemblyAsmParser> Y(getTheWebAssemblyTarget64());
}
#define GET_REGISTER_MATCHER
#define GET_MATCHER_IMPLEMENTATION
#include "WebAssemblyGenAsmMatcher.inc"