llvm-project/llvm/lib/Target/PowerPC/PPCCTRLoops.cpp

784 lines
26 KiB
C++

//===-- PPCCTRLoops.cpp - Identify and generate CTR loops -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass identifies loops where we can generate the PPC branch instructions
// that decrement and test the count register (CTR) (bdnz and friends).
//
// The pattern that defines the induction variable can changed depending on
// prior optimizations. For example, the IndVarSimplify phase run by 'opt'
// normalizes induction variables, and the Loop Strength Reduction pass
// run by 'llc' may also make changes to the induction variable.
//
// Criteria for CTR loops:
// - Countable loops (w/ ind. var for a trip count)
// - Try inner-most loops first
// - No nested CTR loops.
// - No function calls in loops.
//
//===----------------------------------------------------------------------===//
#include "PPC.h"
#include "PPCSubtarget.h"
#include "PPCTargetMachine.h"
#include "PPCTargetTransformInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/Utils/Local.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/PassSupport.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#ifndef NDEBUG
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#endif
using namespace llvm;
#define DEBUG_TYPE "ctrloops"
#ifndef NDEBUG
static cl::opt<int> CTRLoopLimit("ppc-max-ctrloop", cl::Hidden, cl::init(-1));
#endif
// The latency of mtctr is only justified if there are more than 4
// comparisons that will be removed as a result.
static cl::opt<unsigned>
SmallCTRLoopThreshold("min-ctr-loop-threshold", cl::init(4), cl::Hidden,
cl::desc("Loops with a constant trip count smaller than "
"this value will not use the count register."));
STATISTIC(NumCTRLoops, "Number of loops converted to CTR loops");
namespace llvm {
void initializePPCCTRLoopsPass(PassRegistry&);
#ifndef NDEBUG
void initializePPCCTRLoopsVerifyPass(PassRegistry&);
#endif
}
namespace {
struct PPCCTRLoops : public FunctionPass {
#ifndef NDEBUG
static int Counter;
#endif
public:
static char ID;
PPCCTRLoops() : FunctionPass(ID) {
initializePPCCTRLoopsPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<LoopInfoWrapperPass>();
AU.addPreserved<LoopInfoWrapperPass>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addRequired<ScalarEvolutionWrapperPass>();
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<TargetTransformInfoWrapperPass>();
}
private:
bool mightUseCTR(BasicBlock *BB);
bool convertToCTRLoop(Loop *L);
private:
const PPCTargetMachine *TM;
const PPCSubtarget *STI;
const PPCTargetLowering *TLI;
const DataLayout *DL;
const TargetLibraryInfo *LibInfo;
const TargetTransformInfo *TTI;
LoopInfo *LI;
ScalarEvolution *SE;
DominatorTree *DT;
bool PreserveLCSSA;
TargetSchedModel SchedModel;
};
char PPCCTRLoops::ID = 0;
#ifndef NDEBUG
int PPCCTRLoops::Counter = 0;
#endif
#ifndef NDEBUG
struct PPCCTRLoopsVerify : public MachineFunctionPass {
public:
static char ID;
PPCCTRLoopsVerify() : MachineFunctionPass(ID) {
initializePPCCTRLoopsVerifyPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<MachineDominatorTree>();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool runOnMachineFunction(MachineFunction &MF) override;
private:
MachineDominatorTree *MDT;
};
char PPCCTRLoopsVerify::ID = 0;
#endif // NDEBUG
} // end anonymous namespace
INITIALIZE_PASS_BEGIN(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops",
false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_END(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops",
false, false)
FunctionPass *llvm::createPPCCTRLoops() { return new PPCCTRLoops(); }
#ifndef NDEBUG
INITIALIZE_PASS_BEGIN(PPCCTRLoopsVerify, "ppc-ctr-loops-verify",
"PowerPC CTR Loops Verify", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_END(PPCCTRLoopsVerify, "ppc-ctr-loops-verify",
"PowerPC CTR Loops Verify", false, false)
FunctionPass *llvm::createPPCCTRLoopsVerify() {
return new PPCCTRLoopsVerify();
}
#endif // NDEBUG
bool PPCCTRLoops::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
if (!TPC)
return false;
TM = &TPC->getTM<PPCTargetMachine>();
STI = TM->getSubtargetImpl(F);
TLI = STI->getTargetLowering();
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
DL = &F.getParent()->getDataLayout();
auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
LibInfo = TLIP ? &TLIP->getTLI() : nullptr;
PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
bool MadeChange = false;
for (LoopInfo::iterator I = LI->begin(), E = LI->end();
I != E; ++I) {
Loop *L = *I;
if (!L->getParentLoop())
MadeChange |= convertToCTRLoop(L);
}
return MadeChange;
}
static bool isLargeIntegerTy(bool Is32Bit, Type *Ty) {
if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
return ITy->getBitWidth() > (Is32Bit ? 32U : 64U);
return false;
}
// Determining the address of a TLS variable results in a function call in
// certain TLS models.
static bool memAddrUsesCTR(const PPCTargetMachine &TM, const Value *MemAddr) {
const auto *GV = dyn_cast<GlobalValue>(MemAddr);
if (!GV) {
// Recurse to check for constants that refer to TLS global variables.
if (const auto *CV = dyn_cast<Constant>(MemAddr))
for (const auto &CO : CV->operands())
if (memAddrUsesCTR(TM, CO))
return true;
return false;
}
if (!GV->isThreadLocal())
return false;
TLSModel::Model Model = TM.getTLSModel(GV);
return Model == TLSModel::GeneralDynamic || Model == TLSModel::LocalDynamic;
}
// Loop through the inline asm constraints and look for something that clobbers
// ctr.
static bool asmClobbersCTR(InlineAsm *IA) {
InlineAsm::ConstraintInfoVector CIV = IA->ParseConstraints();
for (unsigned i = 0, ie = CIV.size(); i < ie; ++i) {
InlineAsm::ConstraintInfo &C = CIV[i];
if (C.Type != InlineAsm::isInput)
for (unsigned j = 0, je = C.Codes.size(); j < je; ++j)
if (StringRef(C.Codes[j]).equals_lower("{ctr}"))
return true;
}
return false;
}
bool PPCCTRLoops::mightUseCTR(BasicBlock *BB) {
for (BasicBlock::iterator J = BB->begin(), JE = BB->end();
J != JE; ++J) {
if (CallInst *CI = dyn_cast<CallInst>(J)) {
// Inline ASM is okay, unless it clobbers the ctr register.
if (InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue())) {
if (asmClobbersCTR(IA))
return true;
continue;
}
if (Function *F = CI->getCalledFunction()) {
// Most intrinsics don't become function calls, but some might.
// sin, cos, exp and log are always calls.
unsigned Opcode = 0;
if (F->getIntrinsicID() != Intrinsic::not_intrinsic) {
switch (F->getIntrinsicID()) {
default: continue;
// If we have a call to ppc_is_decremented_ctr_nonzero, or ppc_mtctr
// we're definitely using CTR.
case Intrinsic::ppc_is_decremented_ctr_nonzero:
case Intrinsic::ppc_mtctr:
return true;
// VisualStudio defines setjmp as _setjmp
#if defined(_MSC_VER) && defined(setjmp) && \
!defined(setjmp_undefined_for_msvc)
# pragma push_macro("setjmp")
# undef setjmp
# define setjmp_undefined_for_msvc
#endif
case Intrinsic::setjmp:
#if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)
// let's return it to _setjmp state
# pragma pop_macro("setjmp")
# undef setjmp_undefined_for_msvc
#endif
case Intrinsic::longjmp:
// Exclude eh_sjlj_setjmp; we don't need to exclude eh_sjlj_longjmp
// because, although it does clobber the counter register, the
// control can't then return to inside the loop unless there is also
// an eh_sjlj_setjmp.
case Intrinsic::eh_sjlj_setjmp:
case Intrinsic::memcpy:
case Intrinsic::memmove:
case Intrinsic::memset:
case Intrinsic::powi:
case Intrinsic::log:
case Intrinsic::log2:
case Intrinsic::log10:
case Intrinsic::exp:
case Intrinsic::exp2:
case Intrinsic::pow:
case Intrinsic::sin:
case Intrinsic::cos:
return true;
case Intrinsic::copysign:
if (CI->getArgOperand(0)->getType()->getScalarType()->
isPPC_FP128Ty())
return true;
else
continue; // ISD::FCOPYSIGN is never a library call.
case Intrinsic::sqrt: Opcode = ISD::FSQRT; break;
case Intrinsic::floor: Opcode = ISD::FFLOOR; break;
case Intrinsic::ceil: Opcode = ISD::FCEIL; break;
case Intrinsic::trunc: Opcode = ISD::FTRUNC; break;
case Intrinsic::rint: Opcode = ISD::FRINT; break;
case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
case Intrinsic::round: Opcode = ISD::FROUND; break;
case Intrinsic::minnum: Opcode = ISD::FMINNUM; break;
case Intrinsic::maxnum: Opcode = ISD::FMAXNUM; break;
case Intrinsic::umul_with_overflow: Opcode = ISD::UMULO; break;
case Intrinsic::smul_with_overflow: Opcode = ISD::SMULO; break;
}
}
// PowerPC does not use [US]DIVREM or other library calls for
// operations on regular types which are not otherwise library calls
// (i.e. soft float or atomics). If adapting for targets that do,
// additional care is required here.
LibFunc Func;
if (!F->hasLocalLinkage() && F->hasName() && LibInfo &&
LibInfo->getLibFunc(F->getName(), Func) &&
LibInfo->hasOptimizedCodeGen(Func)) {
// Non-read-only functions are never treated as intrinsics.
if (!CI->onlyReadsMemory())
return true;
// Conversion happens only for FP calls.
if (!CI->getArgOperand(0)->getType()->isFloatingPointTy())
return true;
switch (Func) {
default: return true;
case LibFunc_copysign:
case LibFunc_copysignf:
continue; // ISD::FCOPYSIGN is never a library call.
case LibFunc_copysignl:
return true;
case LibFunc_fabs:
case LibFunc_fabsf:
case LibFunc_fabsl:
continue; // ISD::FABS is never a library call.
case LibFunc_sqrt:
case LibFunc_sqrtf:
case LibFunc_sqrtl:
Opcode = ISD::FSQRT; break;
case LibFunc_floor:
case LibFunc_floorf:
case LibFunc_floorl:
Opcode = ISD::FFLOOR; break;
case LibFunc_nearbyint:
case LibFunc_nearbyintf:
case LibFunc_nearbyintl:
Opcode = ISD::FNEARBYINT; break;
case LibFunc_ceil:
case LibFunc_ceilf:
case LibFunc_ceill:
Opcode = ISD::FCEIL; break;
case LibFunc_rint:
case LibFunc_rintf:
case LibFunc_rintl:
Opcode = ISD::FRINT; break;
case LibFunc_round:
case LibFunc_roundf:
case LibFunc_roundl:
Opcode = ISD::FROUND; break;
case LibFunc_trunc:
case LibFunc_truncf:
case LibFunc_truncl:
Opcode = ISD::FTRUNC; break;
case LibFunc_fmin:
case LibFunc_fminf:
case LibFunc_fminl:
Opcode = ISD::FMINNUM; break;
case LibFunc_fmax:
case LibFunc_fmaxf:
case LibFunc_fmaxl:
Opcode = ISD::FMAXNUM; break;
}
}
if (Opcode) {
EVT EVTy =
TLI->getValueType(*DL, CI->getArgOperand(0)->getType(), true);
if (EVTy == MVT::Other)
return true;
if (TLI->isOperationLegalOrCustom(Opcode, EVTy))
continue;
else if (EVTy.isVector() &&
TLI->isOperationLegalOrCustom(Opcode, EVTy.getScalarType()))
continue;
return true;
}
}
return true;
} else if (isa<BinaryOperator>(J) &&
J->getType()->getScalarType()->isPPC_FP128Ty()) {
// Most operations on ppc_f128 values become calls.
return true;
} else if (isa<UIToFPInst>(J) || isa<SIToFPInst>(J) ||
isa<FPToUIInst>(J) || isa<FPToSIInst>(J)) {
CastInst *CI = cast<CastInst>(J);
if (CI->getSrcTy()->getScalarType()->isPPC_FP128Ty() ||
CI->getDestTy()->getScalarType()->isPPC_FP128Ty() ||
isLargeIntegerTy(!TM->isPPC64(), CI->getSrcTy()->getScalarType()) ||
isLargeIntegerTy(!TM->isPPC64(), CI->getDestTy()->getScalarType()))
return true;
} else if (isLargeIntegerTy(!TM->isPPC64(),
J->getType()->getScalarType()) &&
(J->getOpcode() == Instruction::UDiv ||
J->getOpcode() == Instruction::SDiv ||
J->getOpcode() == Instruction::URem ||
J->getOpcode() == Instruction::SRem)) {
return true;
} else if (!TM->isPPC64() &&
isLargeIntegerTy(false, J->getType()->getScalarType()) &&
(J->getOpcode() == Instruction::Shl ||
J->getOpcode() == Instruction::AShr ||
J->getOpcode() == Instruction::LShr)) {
// Only on PPC32, for 128-bit integers (specifically not 64-bit
// integers), these might be runtime calls.
return true;
} else if (isa<IndirectBrInst>(J) || isa<InvokeInst>(J)) {
// On PowerPC, indirect jumps use the counter register.
return true;
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(J)) {
if (SI->getNumCases() + 1 >= (unsigned)TLI->getMinimumJumpTableEntries())
return true;
}
// FREM is always a call.
if (J->getOpcode() == Instruction::FRem)
return true;
if (STI->useSoftFloat()) {
switch(J->getOpcode()) {
case Instruction::FAdd:
case Instruction::FSub:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FCmp:
return true;
}
}
for (Value *Operand : J->operands())
if (memAddrUsesCTR(*TM, Operand))
return true;
}
return false;
}
bool PPCCTRLoops::convertToCTRLoop(Loop *L) {
bool MadeChange = false;
// Do not convert small short loops to CTR loop.
unsigned ConstTripCount = SE->getSmallConstantTripCount(L);
if (ConstTripCount && ConstTripCount < SmallCTRLoopThreshold) {
SmallPtrSet<const Value *, 32> EphValues;
auto AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
*L->getHeader()->getParent());
CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
CodeMetrics Metrics;
for (BasicBlock *BB : L->blocks())
Metrics.analyzeBasicBlock(BB, *TTI, EphValues);
// 6 is an approximate latency for the mtctr instruction.
if (Metrics.NumInsts <= (6 * SchedModel.getIssueWidth()))
return false;
}
// Process nested loops first.
for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
MadeChange |= convertToCTRLoop(*I);
DEBUG(dbgs() << "Nested loop converted\n");
}
// If a nested loop has been converted, then we can't convert this loop.
if (MadeChange)
return MadeChange;
#ifndef NDEBUG
// Stop trying after reaching the limit (if any).
int Limit = CTRLoopLimit;
if (Limit >= 0) {
if (Counter >= CTRLoopLimit)
return false;
Counter++;
}
#endif
// We don't want to spill/restore the counter register, and so we don't
// want to use the counter register if the loop contains calls.
for (Loop::block_iterator I = L->block_begin(), IE = L->block_end();
I != IE; ++I)
if (mightUseCTR(*I))
return MadeChange;
SmallVector<BasicBlock*, 4> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
// If there is an exit edge known to be frequently taken,
// we should not transform this loop.
for (auto &BB : ExitingBlocks) {
Instruction *TI = BB->getTerminator();
if (!TI) continue;
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
uint64_t TrueWeight = 0, FalseWeight = 0;
if (!BI->isConditional() ||
!BI->extractProfMetadata(TrueWeight, FalseWeight))
continue;
// If the exit path is more frequent than the loop path,
// we return here without further analysis for this loop.
bool TrueIsExit = !L->contains(BI->getSuccessor(0));
if (( TrueIsExit && FalseWeight < TrueWeight) ||
(!TrueIsExit && FalseWeight > TrueWeight))
return MadeChange;
}
}
BasicBlock *CountedExitBlock = nullptr;
const SCEV *ExitCount = nullptr;
BranchInst *CountedExitBranch = nullptr;
for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
IE = ExitingBlocks.end(); I != IE; ++I) {
const SCEV *EC = SE->getExitCount(L, *I);
DEBUG(dbgs() << "Exit Count for " << *L << " from block " <<
(*I)->getName() << ": " << *EC << "\n");
if (isa<SCEVCouldNotCompute>(EC))
continue;
if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
if (ConstEC->getValue()->isZero())
continue;
} else if (!SE->isLoopInvariant(EC, L))
continue;
if (SE->getTypeSizeInBits(EC->getType()) > (TM->isPPC64() ? 64 : 32))
continue;
// We now have a loop-invariant count of loop iterations (which is not the
// constant zero) for which we know that this loop will not exit via this
// exisiting block.
// We need to make sure that this block will run on every loop iteration.
// For this to be true, we must dominate all blocks with backedges. Such
// blocks are in-loop predecessors to the header block.
bool NotAlways = false;
for (pred_iterator PI = pred_begin(L->getHeader()),
PIE = pred_end(L->getHeader()); PI != PIE; ++PI) {
if (!L->contains(*PI))
continue;
if (!DT->dominates(*I, *PI)) {
NotAlways = true;
break;
}
}
if (NotAlways)
continue;
// Make sure this blocks ends with a conditional branch.
Instruction *TI = (*I)->getTerminator();
if (!TI)
continue;
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
if (!BI->isConditional())
continue;
CountedExitBranch = BI;
} else
continue;
// Note that this block may not be the loop latch block, even if the loop
// has a latch block.
CountedExitBlock = *I;
ExitCount = EC;
break;
}
if (!CountedExitBlock)
return MadeChange;
BasicBlock *Preheader = L->getLoopPreheader();
// If we don't have a preheader, then insert one. If we already have a
// preheader, then we can use it (except if the preheader contains a use of
// the CTR register because some such uses might be reordered by the
// selection DAG after the mtctr instruction).
if (!Preheader || mightUseCTR(Preheader))
Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA);
if (!Preheader)
return MadeChange;
DEBUG(dbgs() << "Preheader for exit count: " << Preheader->getName() << "\n");
// Insert the count into the preheader and replace the condition used by the
// selected branch.
MadeChange = true;
SCEVExpander SCEVE(*SE, *DL, "loopcnt");
LLVMContext &C = SE->getContext();
Type *CountType = TM->isPPC64() ? Type::getInt64Ty(C) : Type::getInt32Ty(C);
if (!ExitCount->getType()->isPointerTy() &&
ExitCount->getType() != CountType)
ExitCount = SE->getZeroExtendExpr(ExitCount, CountType);
ExitCount = SE->getAddExpr(ExitCount, SE->getOne(CountType));
Value *ECValue =
SCEVE.expandCodeFor(ExitCount, CountType, Preheader->getTerminator());
IRBuilder<> CountBuilder(Preheader->getTerminator());
Module *M = Preheader->getParent()->getParent();
Value *MTCTRFunc = Intrinsic::getDeclaration(M, Intrinsic::ppc_mtctr,
CountType);
CountBuilder.CreateCall(MTCTRFunc, ECValue);
IRBuilder<> CondBuilder(CountedExitBranch);
Value *DecFunc =
Intrinsic::getDeclaration(M, Intrinsic::ppc_is_decremented_ctr_nonzero);
Value *NewCond = CondBuilder.CreateCall(DecFunc, {});
Value *OldCond = CountedExitBranch->getCondition();
CountedExitBranch->setCondition(NewCond);
// The false branch must exit the loop.
if (!L->contains(CountedExitBranch->getSuccessor(0)))
CountedExitBranch->swapSuccessors();
// The old condition may be dead now, and may have even created a dead PHI
// (the original induction variable).
RecursivelyDeleteTriviallyDeadInstructions(OldCond);
// Run through the basic blocks of the loop and see if any of them have dead
// PHIs that can be removed.
for (auto I : L->blocks())
DeleteDeadPHIs(I);
++NumCTRLoops;
return MadeChange;
}
#ifndef NDEBUG
static bool clobbersCTR(const MachineInstr &MI) {
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (MO.isReg()) {
if (MO.isDef() && (MO.getReg() == PPC::CTR || MO.getReg() == PPC::CTR8))
return true;
} else if (MO.isRegMask()) {
if (MO.clobbersPhysReg(PPC::CTR) || MO.clobbersPhysReg(PPC::CTR8))
return true;
}
}
return false;
}
static bool verifyCTRBranch(MachineBasicBlock *MBB,
MachineBasicBlock::iterator I) {
MachineBasicBlock::iterator BI = I;
SmallSet<MachineBasicBlock *, 16> Visited;
SmallVector<MachineBasicBlock *, 8> Preds;
bool CheckPreds;
if (I == MBB->begin()) {
Visited.insert(MBB);
goto queue_preds;
} else
--I;
check_block:
Visited.insert(MBB);
if (I == MBB->end())
goto queue_preds;
CheckPreds = true;
for (MachineBasicBlock::iterator IE = MBB->begin();; --I) {
unsigned Opc = I->getOpcode();
if (Opc == PPC::MTCTRloop || Opc == PPC::MTCTR8loop) {
CheckPreds = false;
break;
}
if (I != BI && clobbersCTR(*I)) {
DEBUG(dbgs() << printMBBReference(*MBB) << " (" << MBB->getFullName()
<< ") instruction " << *I << " clobbers CTR, invalidating "
<< printMBBReference(*BI->getParent()) << " ("
<< BI->getParent()->getFullName() << ") instruction " << *BI
<< "\n");
return false;
}
if (I == IE)
break;
}
if (!CheckPreds && Preds.empty())
return true;
if (CheckPreds) {
queue_preds:
if (MachineFunction::iterator(MBB) == MBB->getParent()->begin()) {
DEBUG(dbgs() << "Unable to find a MTCTR instruction for "
<< printMBBReference(*BI->getParent()) << " ("
<< BI->getParent()->getFullName() << ") instruction " << *BI
<< "\n");
return false;
}
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
PIE = MBB->pred_end(); PI != PIE; ++PI)
Preds.push_back(*PI);
}
do {
MBB = Preds.pop_back_val();
if (!Visited.count(MBB)) {
I = MBB->getLastNonDebugInstr();
goto check_block;
}
} while (!Preds.empty());
return true;
}
bool PPCCTRLoopsVerify::runOnMachineFunction(MachineFunction &MF) {
MDT = &getAnalysis<MachineDominatorTree>();
// Verify that all bdnz/bdz instructions are dominated by a loop mtctr before
// any other instructions that might clobber the ctr register.
for (MachineFunction::iterator I = MF.begin(), IE = MF.end();
I != IE; ++I) {
MachineBasicBlock *MBB = &*I;
if (!MDT->isReachableFromEntry(MBB))
continue;
for (MachineBasicBlock::iterator MII = MBB->getFirstTerminator(),
MIIE = MBB->end(); MII != MIIE; ++MII) {
unsigned Opc = MII->getOpcode();
if (Opc == PPC::BDNZ8 || Opc == PPC::BDNZ ||
Opc == PPC::BDZ8 || Opc == PPC::BDZ)
if (!verifyCTRBranch(MBB, MII))
llvm_unreachable("Invalid PPC CTR loop!");
}
}
return false;
}
#endif // NDEBUG