llvm-project/clang/Parse/Parser.cpp

498 lines
15 KiB
C++

//===--- Parser.cpp - C Language Family Parser ----------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Parser interfaces.
//
//===----------------------------------------------------------------------===//
#include "clang/Parse/Parser.h"
#include "clang/Parse/SemaDecl.h"
#include "clang/Parse/Scope.h"
using namespace llvm;
using namespace clang;
Parser::Parser(Preprocessor &pp, MinimalAction &MinActions)
: PP(pp), Actions(MinActions), Diags(PP.getDiagnostics()) {
MinimalActions = &MinActions;
SemaActions = 0;
Tok.setKind(tok::eof);
CurScope = 0;
ParenCount = BracketCount = BraceCount = 0;
}
Parser::Parser(Preprocessor &pp, SemanticAction &SemanticActions)
: PP(pp), Actions(SemanticActions), Diags(PP.getDiagnostics()) {
MinimalActions = 0;
SemaActions = &SemanticActions;
Tok.setKind(tok::eof);
CurScope = 0;
ParenCount = BracketCount = BraceCount = 0;
}
/// Out-of-line virtual destructor to provide home for Action class.
Action::~Action() {}
void Parser::Diag(SourceLocation Loc, unsigned DiagID,
const std::string &Msg) {
Diags.Report(Loc, DiagID, Msg);
}
/// MatchRHSPunctuation - For punctuation with a LHS and RHS (e.g. '['/']'),
/// this helper function matches and consumes the specified RHS token if
/// present. If not present, it emits the specified diagnostic indicating
/// that the parser failed to match the RHS of the token at LHSLoc. LHSName
/// should be the name of the unmatched LHS token.
SourceLocation Parser::MatchRHSPunctuation(tok::TokenKind RHSTok,
SourceLocation LHSLoc) {
if (Tok.getKind() == RHSTok)
return ConsumeAnyToken();
SourceLocation R = Tok.getLocation();
const char *LHSName = "unknown";
diag::kind DID = diag::err_parse_error;
switch (RHSTok) {
default: break;
case tok::r_paren : LHSName = "("; DID = diag::err_expected_rparen; break;
case tok::r_brace : LHSName = "{"; DID = diag::err_expected_rbrace; break;
case tok::r_square: LHSName = "["; DID = diag::err_expected_rsquare; break;
}
Diag(Tok, DID);
Diag(LHSLoc, diag::err_matching, LHSName);
SkipUntil(RHSTok);
return R;
}
/// ExpectAndConsume - The parser expects that 'ExpectedTok' is next in the
/// input. If so, it is consumed and false is returned.
///
/// If the input is malformed, this emits the specified diagnostic. Next, if
/// SkipToTok is specified, it calls SkipUntil(SkipToTok). Finally, true is
/// returned.
bool Parser::ExpectAndConsume(tok::TokenKind ExpectedTok, unsigned DiagID,
const char *Msg, tok::TokenKind SkipToTok) {
if (Tok.getKind() == ExpectedTok) {
ConsumeAnyToken();
return false;
}
Diag(Tok, DiagID, Msg);
if (SkipToTok != tok::unknown)
SkipUntil(SkipToTok);
return true;
}
//===----------------------------------------------------------------------===//
// Error recovery.
//===----------------------------------------------------------------------===//
/// SkipUntil - Read tokens until we get to the specified token, then consume
/// it (unless DontConsume is false). Because we cannot guarantee that the
/// token will ever occur, this skips to the next token, or to some likely
/// good stopping point. If StopAtSemi is true, skipping will stop at a ';'
/// character.
///
/// If SkipUntil finds the specified token, it returns true, otherwise it
/// returns false.
bool Parser::SkipUntil(tok::TokenKind T, bool StopAtSemi, bool DontConsume) {
// We always want this function to skip at least one token if the first token
// isn't T and if not at EOF.
bool isFirstTokenSkipped = true;
while (1) {
// If we found the token, stop and return true.
if (Tok.getKind() == T) {
if (DontConsume) {
// Noop, don't consume the token.
} else {
ConsumeAnyToken();
}
return true;
}
switch (Tok.getKind()) {
case tok::eof:
// Ran out of tokens.
return false;
case tok::l_paren:
// Recursively skip properly-nested parens.
ConsumeParen();
SkipUntil(tok::r_paren, false);
break;
case tok::l_square:
// Recursively skip properly-nested square brackets.
ConsumeBracket();
SkipUntil(tok::r_square, false);
break;
case tok::l_brace:
// Recursively skip properly-nested braces.
ConsumeBrace();
SkipUntil(tok::r_brace, false);
break;
// Okay, we found a ']' or '}' or ')', which we think should be balanced.
// Since the user wasn't looking for this token (if they were, it would
// already be handled), this isn't balanced. If there is a LHS token at a
// higher level, we will assume that this matches the unbalanced token
// and return it. Otherwise, this is a spurious RHS token, which we skip.
case tok::r_paren:
if (ParenCount && !isFirstTokenSkipped)
return false; // Matches something.
ConsumeParen();
break;
case tok::r_square:
if (BracketCount && !isFirstTokenSkipped)
return false; // Matches something.
ConsumeBracket();
break;
case tok::r_brace:
if (BraceCount && !isFirstTokenSkipped)
return false; // Matches something.
ConsumeBrace();
break;
case tok::string_literal:
case tok::wide_string_literal:
ConsumeStringToken();
break;
case tok::semi:
if (StopAtSemi)
return false;
// FALL THROUGH.
default:
// Skip this token.
ConsumeToken();
break;
}
isFirstTokenSkipped = false;
}
}
//===----------------------------------------------------------------------===//
// Scope manipulation
//===----------------------------------------------------------------------===//
/// ScopeCache - Cache scopes to avoid malloc traffic.
static SmallVector<Scope*, 16> ScopeCache;
/// EnterScope - Start a new scope.
void Parser::EnterScope(unsigned ScopeFlags) {
if (!ScopeCache.empty()) {
Scope *N = ScopeCache.back();
ScopeCache.pop_back();
N->Init(CurScope, ScopeFlags);
CurScope = N;
} else {
CurScope = new Scope(CurScope, ScopeFlags);
}
}
/// ExitScope - Pop a scope off the scope stack.
void Parser::ExitScope() {
assert(CurScope && "Scope imbalance!");
// Inform the actions module that this scope is going away.
Actions.PopScope(Tok.getLocation(), CurScope);
Scope *Old = CurScope;
CurScope = Old->getParent();
if (ScopeCache.size() == 16)
delete Old;
else
ScopeCache.push_back(Old);
}
//===----------------------------------------------------------------------===//
// C99 6.9: External Definitions.
//===----------------------------------------------------------------------===//
Parser::~Parser() {
// If we still have scopes active, delete the scope tree.
delete CurScope;
// Free the scope cache.
while (!ScopeCache.empty()) {
delete ScopeCache.back();
ScopeCache.pop_back();
}
}
/// Initialize - Warm up the parser.
///
void Parser::Initialize() {
// Prime the lexer look-ahead.
ConsumeToken();
// Create the global scope, install it as the current scope.
assert(CurScope == 0 && "A scope is already active?");
EnterScope(0);
// Install builtin types.
// TODO: Move this someplace more useful.
{
//__builtin_va_list
DeclSpec DS;
DS.StorageClassSpec = DeclSpec::SCS_typedef;
// TODO: add a 'TST_builtin' type?
DS.TypeSpecType = DeclSpec::TST_typedef;
Declarator D(DS, Declarator::FileContext);
D.SetIdentifier(PP.getIdentifierInfo("__builtin_va_list"),SourceLocation());
Actions.ParseDeclarator(CurScope, D, 0, 0);
}
if (Tok.getKind() == tok::eof) // Empty source file is an extension.
Diag(diag::ext_empty_source_file);
}
/// ParseTopLevelDecl - Parse one top-level declaration, return whatever the
/// action tells us to. This returns true if the EOF was encountered.
bool Parser::ParseTopLevelDecl(DeclTy*& Result) {
Result = 0;
if (Tok.getKind() == tok::eof) return true;
Result = ParseExternalDeclaration();
return false;
}
/// Finalize - Shut down the parser.
///
void Parser::Finalize() {
ExitScope();
assert(CurScope == 0 && "Scope imbalance!");
}
/// ParseTranslationUnit:
/// translation-unit: [C99 6.9]
/// external-declaration
/// translation-unit external-declaration
void Parser::ParseTranslationUnit() {
Initialize();
DeclTy *Res;
while (!ParseTopLevelDecl(Res))
/*parse them all*/;
Finalize();
}
/// ParseExternalDeclaration:
/// external-declaration: [C99 6.9]
/// function-definition [TODO]
/// declaration [TODO]
/// [EXT] ';'
/// [GNU] asm-definition
/// [GNU] __extension__ external-declaration [TODO]
/// [OBJC] objc-class-definition
/// [OBJC] objc-class-declaration
/// [OBJC] objc-alias-declaration
/// [OBJC] objc-protocol-definition
/// [OBJC] objc-method-definition
/// [OBJC] @end
///
/// [GNU] asm-definition:
/// simple-asm-expr ';'
///
Parser::DeclTy *Parser::ParseExternalDeclaration() {
switch (Tok.getKind()) {
case tok::semi:
Diag(diag::ext_top_level_semi);
ConsumeToken();
// TODO: Invoke action for top-level semicolon.
return 0;
case tok::kw_asm:
ParseSimpleAsm();
ExpectAndConsume(tok::semi, diag::err_expected_semi_after,
"top-level asm block");
// TODO: Invoke action for top-level asm.
return 0;
case tok::at:
ObjCParseAtDirectives();
return 0;
case tok::minus:
ObjCParseInstanceMethodDeclaration();
return 0;
case tok::plus:
ObjCParseClassMethodDeclaration();
return 0;
default:
// We can't tell whether this is a function-definition or declaration yet.
return ParseDeclarationOrFunctionDefinition();
}
}
/// ParseDeclarationOrFunctionDefinition - Parse either a function-definition or
/// a declaration. We can't tell which we have until we read up to the
/// compound-statement in function-definition.
///
/// function-definition: [C99 6.9.1]
/// declaration-specifiers[opt] declarator declaration-list[opt]
/// compound-statement [TODO]
/// declaration: [C99 6.7]
/// declaration-specifiers init-declarator-list[opt] ';' [TODO]
/// [!C99] init-declarator-list ';' [TODO]
/// [OMP] threadprivate-directive [TODO]
///
Parser::DeclTy *Parser::ParseDeclarationOrFunctionDefinition() {
// Parse the common declaration-specifiers piece.
DeclSpec DS;
ParseDeclarationSpecifiers(DS);
// C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
// declaration-specifiers init-declarator-list[opt] ';'
if (Tok.getKind() == tok::semi) {
// TODO: emit error on 'int;' or 'const enum foo;'.
// if (!DS.isMissingDeclaratorOk()) Diag(...);
ConsumeToken();
// TODO: Return type definition.
return 0;
}
// Parse the first declarator.
Declarator DeclaratorInfo(DS, Declarator::FileContext);
ParseDeclarator(DeclaratorInfo);
// Error parsing the declarator?
if (DeclaratorInfo.getIdentifier() == 0) {
// If so, skip until the semi-colon or a }.
SkipUntil(tok::r_brace, true);
if (Tok.getKind() == tok::semi)
ConsumeToken();
return 0;
}
// If the declarator is the start of a function definition, handle it.
if (Tok.getKind() == tok::equal || // int X()= -> not a function def
Tok.getKind() == tok::comma || // int X(), -> not a function def
Tok.getKind() == tok::semi || // int X(); -> not a function def
Tok.getKind() == tok::kw_asm || // int X() __asm__ -> not a fn def
Tok.getKind() == tok::kw___attribute) {// int X() __attr__ -> not a fn def
// FALL THROUGH.
} else if (DeclaratorInfo.isFunctionDeclarator() &&
(Tok.getKind() == tok::l_brace || // int X() {}
isDeclarationSpecifier())) { // int X(f) int f; {}
return ParseFunctionDefinition(DeclaratorInfo);
} else {
if (DeclaratorInfo.isFunctionDeclarator())
Diag(Tok, diag::err_expected_fn_body);
else
Diag(Tok, diag::err_expected_after_declarator);
SkipUntil(tok::semi);
return 0;
}
// Parse the init-declarator-list for a normal declaration.
return ParseInitDeclaratorListAfterFirstDeclarator(DeclaratorInfo);
}
/// ParseFunctionDefinition - We parsed and verified that the specified
/// Declarator is well formed. If this is a K&R-style function, read the
/// parameters declaration-list, then start the compound-statement.
///
/// declaration-specifiers[opt] declarator declaration-list[opt]
/// compound-statement [TODO]
///
Parser::DeclTy *Parser::ParseFunctionDefinition(Declarator &D) {
const DeclaratorTypeInfo &FnTypeInfo = D.getTypeObject(0);
assert(FnTypeInfo.Kind == DeclaratorTypeInfo::Function &&
"This isn't a function declarator!");
// FIXME: Enter a scope for the arguments.
//EnterScope(Scope::FnScope);
// If this declaration was formed with a K&R-style identifier list for the
// arguments, parse declarations for all of the args next.
// int foo(a,b) int a; float b; {}
if (!FnTypeInfo.Fun.hasPrototype && !FnTypeInfo.Fun.isEmpty) {
// Read all the argument declarations.
while (isDeclarationSpecifier())
ParseDeclaration(Declarator::KNRTypeListContext);
// Note, check that we got them all.
} else {
//if (isDeclarationSpecifier())
// Diag('k&r declspecs with prototype?');
// TODO: Install the arguments into the current scope.
}
// We should have an opening brace now.
if (Tok.getKind() != tok::l_brace) {
Diag(Tok, diag::err_expected_fn_body);
// Skip over garbage, until we get to '{'. Don't eat the '{'.
SkipUntil(tok::l_brace, true, true);
// If we didn't find the '{', bail out.
if (Tok.getKind() != tok::l_brace)
return 0;
}
// Parse the function body as a compound stmt.
StmtResult FnBody = ParseCompoundStatement();
if (FnBody.isInvalid) return 0;
// FIXME: Leave the argument scope.
// ExitScope();
// TODO: Pass argument information.
return Actions.ParseFunctionDefinition(CurScope, D, FnBody.Val);
}
/// ParseAsmStringLiteral - This is just a normal string-literal, but is not
/// allowed to be a wide string, and is not subject to character translation.
///
/// [GNU] asm-string-literal:
/// string-literal
///
void Parser::ParseAsmStringLiteral() {
if (!isTokenStringLiteral()) {
Diag(Tok, diag::err_expected_string_literal);
return;
}
ExprResult Res = ParseStringLiteralExpression();
if (Res.isInvalid) return;
// TODO: Diagnose: wide string literal in 'asm'
}
/// ParseSimpleAsm
///
/// [GNU] simple-asm-expr:
/// 'asm' '(' asm-string-literal ')'
///
void Parser::ParseSimpleAsm() {
assert(Tok.getKind() == tok::kw_asm && "Not an asm!");
ConsumeToken();
if (Tok.getKind() != tok::l_paren) {
Diag(Tok, diag::err_expected_lparen_after, "asm");
return;
}
SourceLocation Loc = ConsumeParen();
ParseAsmStringLiteral();
MatchRHSPunctuation(tok::r_paren, Loc);
}